
Securing Internet
Communication: TLS

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

https://inst.eecs.berkeley.edu/~cs161/
April 6, 2017

Today’s Lecture

•  Finish discussion of Denial-of-Service (DoS)

•  Begin discussion of crypto technology in practice

•  Goal #1: overview of the most prominent Internet
security protocol
–  SSL/TLS: transport-level (process-to-process)

on top of TCP
•  Secures the web via HTTPS

–  (Next lecture: DNSSEC, securing domain name lookups)

•  Goal #2: cement understanding of crypto building
blocks & how they’re used together

Practical Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode critical state
entirely within SYN-ACK’s sequence # y !
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here if y validates

	cookie	y	=	<t,	m,	S>	
								t	=	5-bit	2mestamp	that	advances	every	64	seconds	
								m	=	3	bits	for	encoding	TCP	op2ons	
								S	=	boCom	24	bits	of	SHA-1(4-tuple,	t,	server	secret)	

Cookies: Discussion
•  Illustrates general strategy: rather than holding

state, encode it so that it is returned when
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the critical state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

TCP SYN Flooding, con’t

•  Approach #4: spread service across lots of
different physical servers

–  This is a general defense against a wide range
of DoS threats (including application-layer)

–  If servers are at different places around the
network, protects against network-layer DoS too

•  But: costs $$
•  And: some services are not easy to divide up

–  Such as when need to modify common database
•  E.g. a multi-player real-time game

Application-Layer DoS

•  Rather than exhausting network or memory
resources, attacker can overwhelm a
service’s processing capacity

•  There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

The link sends a request to the web
server that requires heavy processing
by its backend database.

Application-Layer DoS, con’t

•  Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

•  There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

•  Defenses against such attacks?
•  Approach #1: Only let legit users to issue expensive

requests
–  Relies on being able to identify/authenticate them
–  Note: that this itself might be expensive!

•  Approach #2: Look for clusters of similar activity
–  Arms race w/ attacker AND costs collateral damage

•  Approach #3: distribute service across multiple physical
servers ($$$)

Securing
Internet Communication

Channel vs. Object Security

•  Channel security = securing a means of
communication

•  Object security = securing data values

•  CIA applies to both of them
– But with different design implications

•  TLS provides channel security

Building Secure End-to-End Channels

•  End-to-end = communication protections
achieved all the way from originating client
to intended server
– With no need to trust intermediaries

•  Dealing with threats:
– Eavesdropping?

•  Encryption (including session keys)
– Manipulation (injection, MITM)?

•  Integrity (use of a MAC); replay protection
–  Impersonation?

•  Signatures
What's missing?
Availability … ()

Building A Secure End-to-End
Channel: SSL/TLS

•  SSL = Secure Sockets Layer (predecessor)
•  TLS = Transport Layer Security (standard)

–  Both terms used interchangeably
•  Notion: provide means to secure any application

that uses TCP

SSL/TLS In Network Layering

Application

Transport

(Inter)Network

Link

Physical

7
4
3
2

1

Transport (TCP)

(Inter)Network

Link

Physical

SSL / TLS 7
4
3

2

1

Application 7

Building A Secure End-to-End
Channel: SSL/TLS

•  SSL = Secure Sockets Layer (predecessor)
•  TLS = Transport Layer Security (standard)

–  Both terms used interchangeably
•  Notion: provide means to secure any application

that uses TCP
–  Secure = encryption/confidentiality + integrity +

 authentication (of server, but typ. not of client)
–  E.g., puts the ‘s’ in “https”

Regular web surfing – http: URL

Web surfing with TLS/SSL –
https: URL

Note: site needs to make sure that all of its
images, links, etc., are now also fetched
via https: URLs.

Doing so gives the web page full integrity,
in keeping with end-to-end security.

(Browsers do not provide this “promotion”
automatically.)

Building A Secure End-to-End
Channel: SSL / TLS

•  SSL = Secure Sockets Layer (predecessor)
•  TLS = Transport Layer Security (standard)

–  Both terms used interchangeably

•  Notion: provide means to secure any application
that uses TCP
–  Secure = encryption/confidentiality + integrity +

 authentication (of server, but typ. not of client)
–  E.g., puts the ‘s’ in “https”

•  API similar to “socket” interface used for regular
network programming
–  Fairly easy to convert an app to be secured

HTTPS Connection (SSL / TLS)

•  Browser (client) connects via
TCP to Amazon's HTTPS server

•  Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

•  Server picks 256-bit random
number RS, selects cipher suite
to use for this session

•  Server sends over its certificate

•  (all of this is in the clear)

•  Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA256) or

(SSL+DH+3DES+MD5) or …

My rnd # = RS. Let's use

TLS+RSA+AES128+SHA256

Here's my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), con’t
•  For RSA, browser constructs long

(368 bits) “Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon's public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

–  One pair to use in each direction

Browser

Here's my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

HTTPS Connection (SSL / TLS), con’t
•  For RSA, browser constructs long

(368 bits) “Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon's public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

–  One pair to use in each direction

Browser

Here's my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

PS is used as the key for iterative HMAC
invocations on RB || RS. Browser & server
use the output to generate CB, CS, etc.

•  For RSA, browser constructs long
(368 bits) “Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon's public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)

–  One pair to use in each direction

•  Browser & server exchange MACs
computed over entire dialog so far

•  If good MAC, Browser displays
•  All subsequent communication

encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys, MACs

–  Messages also numbered to thwart
replay attacks

Browser

Here's my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

HTTPS Connection (SSL / TLS), con’t

Alternative: Key Exchange via Diffie-Hellman
•  For Diffie-Hellman, server

generates random a, sends
public params and ga mod p

–  Signed with server’s public key

•  Browser verifies signature

•  Browser generates random b,
computes PS = gab mod p, sends
to server

•  Server also computes
PS = gab mod p

•  Remainder is as before: from
PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) and MAC integrity keys
(IB, IS), etc…

Browser

Here's my cert

~2-3 K
B of d

ata

gb mod p

PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K
-1

Amazon

…

Amazon
Server

5 Minute Break

Questions Before We Proceed?

HTTPS Connection (SSL / TLS)

•  Browser (client) connects via
TCP to Amazon's HTTPS server

•  Client picks 256-bit random
number RB, sends over list of
crypto protocols it supports

•  Server picks 256-bit random
number RS, selects cipher suite
use for this session

•  Server sends over its certificate

•  (all of this is in the clear)

•  Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA256) or

(SSL+DH+3DES+MD5) or …

My rnd # = RS. Let's use

TLS+RSA+AES128+SHA256

Here's my cert

~2-3 K
B of d

ata

Certificates
•  Cert = signed statement about someone’s public key

–  Note that a cert does not say anything about the identity of
who gives you the cert

–  It simply states a given public key KBob belongs to Bob …
•  … and backs up this statement with a digital signature made using a

different public/private key pair, say from Alice

•  Bob then can prove his identity to you by you sending
him something encrypted with KBob …
– … which he then demonstrates he can read

•  … or by signing something he demonstrably uses
•  Works provided you trust that you have a valid copy

of Alice’s public key …
– … and you trust Alice to use prudence when she signs

other people’s keys, such as Bob’s

What’s Inside
Amazon’s Cert?

The CA is Symantec Corporation

Here’s the cipher suite used for the connection

PKCS #1 = “Standard RSA encryption/signing” algorithms

It’s a 2,048-bit key

The value of “e” to use in Me mod n is 216+1

This cert is valid for associating
with any of these DNS names

Our browser will only honor this cert if the URL
we’re accessing uses one of those domains

The key can be used for both
encryption and digital signatures

If the browser doesn’t understand this“Certificate
Key Usage” extension, it must reject the cert

Here is where to download the
CA’s certificate revocation list

Note: it’s 1.25MB in size

Why is it okay that we download this
using http rather than requiring https?

Because the CRL is signed using
the CA’s public key, which we trust.

Here is where to access the CA’s
Online Certificate Status Protocol
server to check for revocations

The CA has signed a SHA-256
hash of this cert using RSA

Here’s the actual signature, which our browser
then needs to validate against a SHA256 hash
the browser computes over the cert

Validating Amazon’s Identity

•  Browser compares domain name in cert w/ URL
–  Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)
•  Browser accesses separate cert belonging to issuer

–  These are hardwired into the browser - trusted!
–  There could be a chain of these …

•  Browser applies issuer’s public key to verify
signature, obtaining hash of what issuer signed
–  Compares with its own SHA-256 hash of Amazon’s cert

•  Assuming hashes match, now have high confidence
it’s indeed Amazon …
–  assuming signatory is trustworthy = assuming didn’t lose

private key; assuming
didn’t sign thoughtlessly

End-to-End ⇒ Powerful Protections

•  Attacker runs a sniffer to capture our WiFi session?
–  (maybe by buying a cup of coffee to get the password)
–  But: encrypted communication is unreadable

•  No problem!

•  DNS cache poisoning?
–  Client goes to wrong server
–  But: detects impersonation since attacker lacks valid cert

•  No problem!

•  Attacker hijacks our connection, injects new traffic
–  But: data receiver rejects it due to failed integrity check

•  No problem!

Powerful Protections, con't

•  DHCP spoofing?
–  Client goes to wrong server
–  But: detects impersonation since attacker lacks valid cert

•  No problem!

•  Attacker manipulates routing to run us by an
eavesdropper or take us to the wrong server?
–  But: they can’t read; we detect impersonation

•  No problem!

•  Attacker slips in as a Man In The Middle?
–  But: they can’t read, they can’t inject
–  They can’t even replay previous encrypted traffic
–  No problem!

Validating Amazon’s Identity, con’t

•  Browser accesses separate cert belonging to issuer
–  These are hardwired into the browser - trusted!

•  What if browser can’t find a cert for the issuer?

Validating Amazon’s Identity, con’t
•  Browser accesses separate cert belonging to issuer

–  These are hardwired into the browser - trusted!

•  What if browser can’t find a cert for the issuer?

•  If it can’t find the cert, then warns the user that site
has not been verified
–  Note, can still proceed, just without authentication

•  Q: Which end-to-end security properties do we lose
if we incorrectly trust that the site is whom we think?

•  A: All of them!
–  Goodbye confidentiality, integrity, authentication
–  Attacker can read everything, modify, impersonate

SSL / TLS Limitations
•  Properly used, SSL / TLS provides powerful end-to-

end protections
•  So why not use it for everything??
•  Issues:

–  Cost of public-key crypto
•  Takes non-trivial CPU processing (but today a minor issue)
•  Note: symmetric key crypto on modern hardware is non-issue

–  Hassle of buying/maintaining certs (fairly minor)

You prove to this CA that you’re entitled to a cert for
foo.com by demonstrating your control over the domain.

The CA issues a challenge, one of:
1. Add an (invisible) item to the foo.com homepage
2. Add an entry to the foo.com DNS zone
3. Show you can receive email at the registered foo.com

email address

SSL / TLS Limitations
•  Properly used, SSL / TLS provides powerful end-to-

end protections
•  So why not use it for everything??
•  Issues:

–  Cost of public-key crypto
•  Takes non-trivial CPU processing (but today a minor issue)
•  Note: symmetric key crypto on modern hardware is non-issue

–  Hassle of buying/maintaining certs (fairly minor)
–  DoS amplification

•  Client can force server to undertake public key operations
•  But: requires established TCP connection, and given that, there

are often other juicy targets like back-end databases
–  Integrating with other sites that don’t use HTTPS
–  Latency: extra round trips ⇒ pages take longer to load

