Current as of: Wed Aug 29 16:04:11 EST 2012
Total Tests: 28103
Unique Client Sessions: 18518

Netblocks
- UnSpoofable: 85.7%
 Estimated: 60870 out of 424786 Netblocks Spoofable
- Spoofable: 24.3%
 970

IP Addresses
- UnSpoofable: 82.7%
 Estimated: 575 million out of 3.32 billion IP Addresses Spoofable
- Spoofable: 17.3%
 114.7M

Autonomous Systems
- UnSpoofable: 76.7%
 Estimated: 9300 out of 39833 ASes Spoofable
- Spoofable: 23.3%
 599
Address

Hash(Address)

BitInterleave

Send k fragments into network
for $d := 0$ to $maxd$
for all ordered combinations of fragments at distance d
 construct edge z
 if $d \neq 0$ then
 $z := z \oplus last$
 if $\text{Hash(EvenBits}(z)) = \text{OddBits}(z)$ then
 insert edge $(z, \text{EvenBits}(z), d)$ into G
 $last := \text{EvenBits}(z)$;
Figure 3. Example of our initial marking scheme. The packet travels from the attacker A to the victim V across the routers R1 to R5. Each router uses the TTL value of the packet to index into the IP identification field to insert its marking. In this example we show a 1-bit marking in a 4-bit field for simplicity.