

HTTPS Connection (SSL / TLS)
•  Browser (client) connects via

TCP to Amazon’s HTTPS
server

•  Client picks 224-bit random
number RB, sends over list of
crypto protocols it supports

•  Server picks 224-bit random
number RS, selects protocols to
use for this session

•  Server sends over its certificate
•  (all of this is in the clear)

•  Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = R
B. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), con’t
•  For RSA, browser constructs long

(368 bits) “Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
–  One pair to use in each direction

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon
PS

PS

These seed a cryptographically strong
pseudo-random number generator (PRNG).
Then browser & server produce CB, CS,
etc., by making repeated calls to the

PRNG.

Amazon
Server

HTTPS Connection (SSL / TLS), con’t
•  For RSA, browser constructs long

(368 bits) “Premaster Secret” PS

•  Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

•  Using PS, RB, and RS, browser &
server derive symm. cipher keys
(CB, CS) & MAC integrity keys (IB, IS)
–  One pair to use in each direction

•  Browser & server exchange MACs
computed over entire dialog so far

•  If good MAC, Browser displays
•  All subsequent communication

encrypted w/ symmetric cipher (e.g.,
AES128) cipher keys, MACs
–  Messages also numbered to thwart

replay attacks

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon
PS

PS

{M1, MAC(M1,IB)}CB

{M2, M
AC(M2,

IS)}CS

MAC(di
alog,IS

)

MAC(dialog,IB)

Amazon
Server

