<table>
<thead>
<tr>
<th>Kind</th>
<th>Trace-1</th>
<th>Trace-2</th>
<th>Trace-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attacks</td>
<td>Packets (k)</td>
<td>Attacks</td>
</tr>
<tr>
<td>Other</td>
<td>1,917 (46)</td>
<td>19,118 (38)</td>
<td>1,985 (51)</td>
</tr>
<tr>
<td>In-Addr Arpa</td>
<td>1,230 (29)</td>
<td>16,716 (33)</td>
<td>1,105 (28)</td>
</tr>
<tr>
<td>Broadband</td>
<td>394 (9.4)</td>
<td>9,869 (19)</td>
<td>275 (7.1)</td>
</tr>
<tr>
<td>Dial-Up</td>
<td>239 (5.7)</td>
<td>956 (1.9)</td>
<td>163 (4.2)</td>
</tr>
<tr>
<td>IRC Server</td>
<td>110 (2.6)</td>
<td>461 (0.91)</td>
<td>88 (2.3)</td>
</tr>
<tr>
<td>Nameserver</td>
<td>124 (3.0)</td>
<td>453 (0.89)</td>
<td>84 (2.2)</td>
</tr>
<tr>
<td>Router</td>
<td>58 (1.4)</td>
<td>2,698 (5.3)</td>
<td>76 (2.0)</td>
</tr>
<tr>
<td>Web Server</td>
<td>54 (1.3)</td>
<td>393 (0.77)</td>
<td>64 (1.7)</td>
</tr>
<tr>
<td>Mail Server</td>
<td>38 (0.91)</td>
<td>156 (0.31)</td>
<td>35 (0.90)</td>
</tr>
<tr>
<td>Firewall</td>
<td>9 (0.22)</td>
<td>7 (0.01)</td>
<td>3 (0.08)</td>
</tr>
</tbody>
</table>

Table 6: Breakdown of victim hostnames.

The majority of attacks are not classified by this scheme, either because they are not matched by our criteria (shown by “other”), or more likely, because there was no valid reverse DNS mapping (shown by “In-Addr Arpa”).
Current as of: Tue Oct 25 16:03:26 EST 2011
Total Tests: 26954
Unique Client Sessions: 17822

Netblocks
- Unspoofable: 4775 (87.0%)
- Spoofable: 715 (13.0%)

IP Addresses
- Unspoofable: 474M (84.3%)
- Spoofable: 88.7M (15.7%)

Autonomous Systems
- Unspoofable: 1571 (77.8%)
- Spoofable: 449 (22.2%)

Estimated:
- 32940 out of 252923 Netblocks Spoofable
- 420 million out of 2.67 billion IP Addresses Spoofable
- 6700 out of 30205 ASes Spoofable
Address

Hash(Address)

BitInterleave

Send k fragments into network
for $d := 0$ to maxd
for all ordered combinations of fragments at distance d
construct edge z
if $d \neq 0$ then
 $z := z \oplus \text{last}$
if $\text{Hash(EvenBits}(z)) = \text{OddBits}(z)$ then
 insert edge $(z, \text{EvenBits}(z), d)$ into G
$\text{last} := \text{EvenBits}(z)$;
Diffuse DDoS: Reflector Attack

Request: `src = victim`
`dst = reflector`

Control traffic directs slaves at victim & reflectors

Reflectors send streams of non-spoofed but unsolicited traffic to victim

Reply: `src = reflector`
`dst = victim`