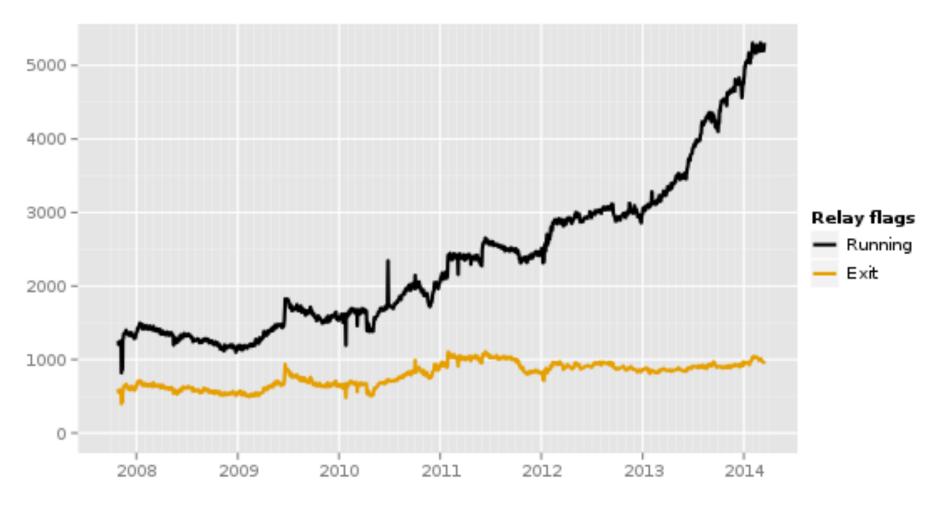
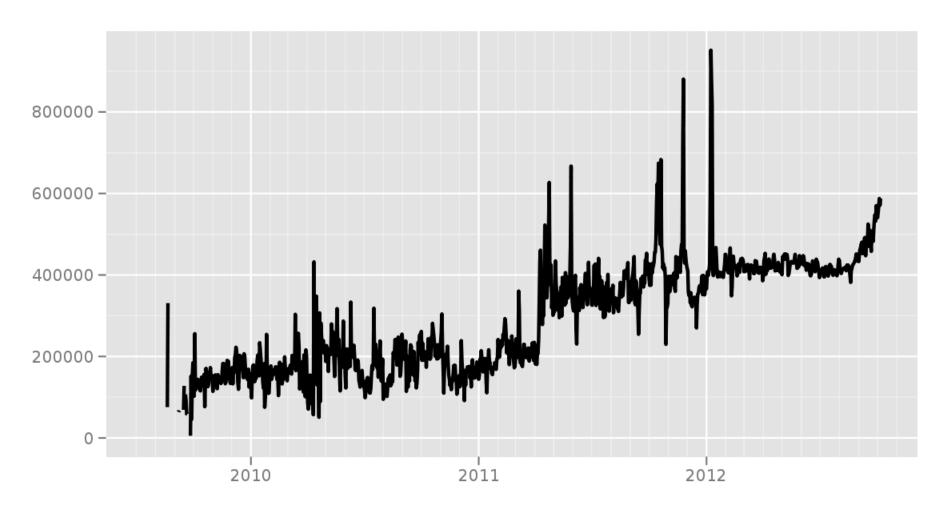
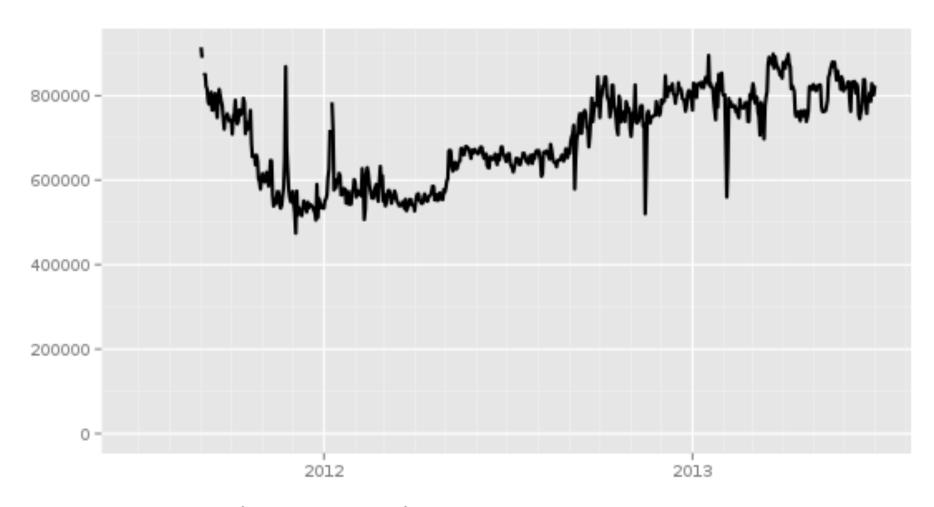

Daily Patterns Seen in 1023/TCP Scans


/16 at LBL, sampled 1-in-1K 2nd /16, sampled 1-in-1K

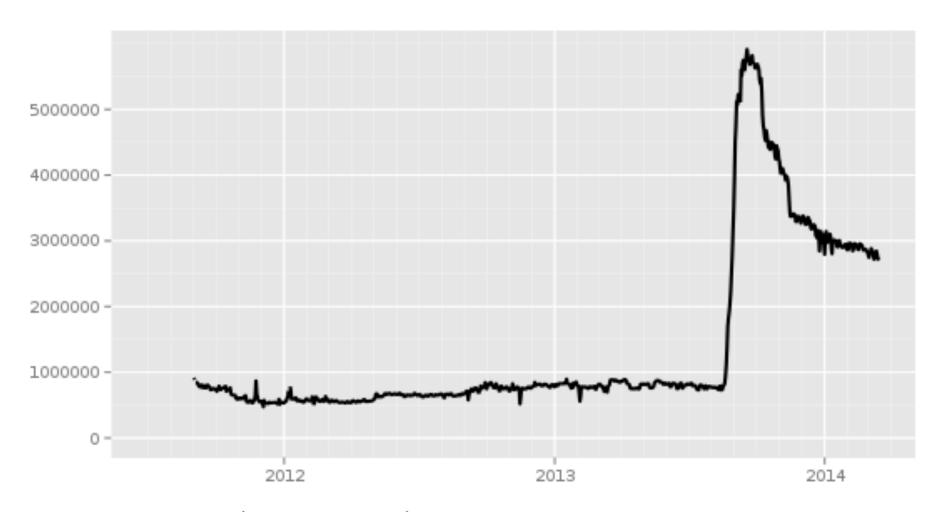
Number of relays


The Tor Project - https://metrics.torproject.org/

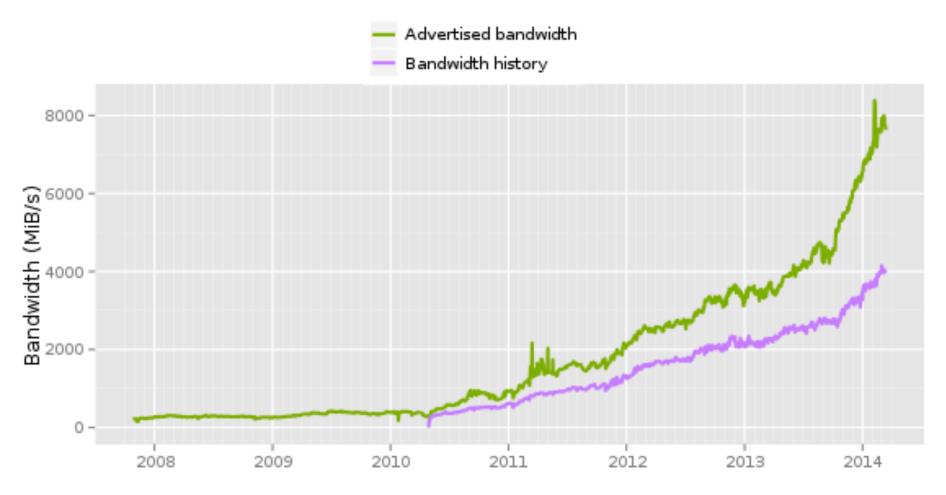
Number of relays with relay flags assigned


The Tor Project - https://metrics.torproject.org/

Directly connecting users from all countries


The Tor Project - https://metrics.torproject.org/

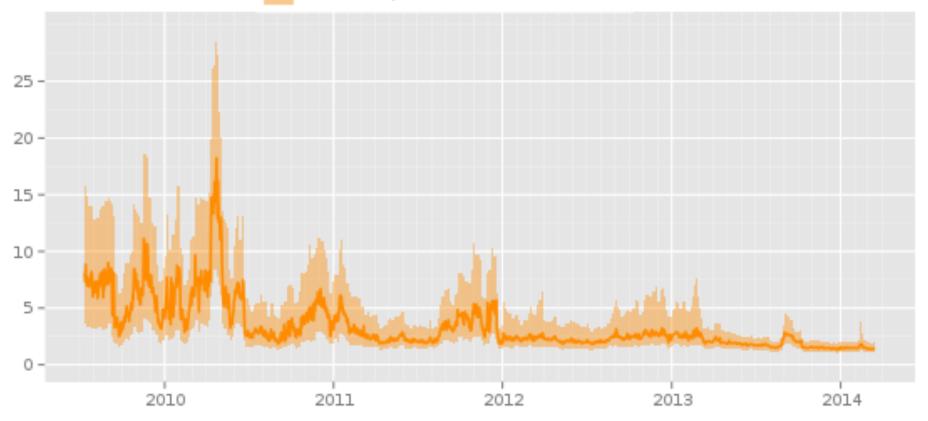
Directly connecting users


The Tor Project - https://metrics.torproject.org/

Directly connecting users

The Tor Project - https://metrics.torproject.org/

Total relay bandwidth


The Tor Project - https://metrics.torproject.org/

Time in seconds to complete 50 KiB request

Measured times on all sources per day

Median

1st to 3rd quartile

The Tor Project - https://metrics.torproject.org/

Port	Number of Exit Nodes
22	211
53	216
80	226
110	210
143	208
443	238
5190	184
6667	172

Port	Number of Exit Nodes
25	4
119	25
135 - 139	6
445	6
465	12
587	13
1214	7
4661-4666	5
6699	9

(from 2006)

Table 1. Exit traffic protocol distribution by number of TCP connections, size, and number of unique destination hosts.

Protocol	Connections	Bytes	Destinations
HTTP	12,160,437 (92.45%)	411 GB (57.97%)	173,701 (46.01%)
SSL	534,666 (4.06%)	11 GB (1.55%)	7,247 (1.91%)
BitTorrent	438,395 (3.33%)	285 GB (40.20%)	194,675 (51.58%)
Instant Messaging	10,506 (0.08%)	735 MB (0.10%)	880 (0.23%)
E-Mail	7,611 (0.06%)	291 MB (0.04%)	389 (0.10%)
FTP	1,338 (0.01%)	792 MB (0.11%)	395 (0.10%)
Telnet	1,045 (0.01%)	110 MB (0.02%)	162 (0.04%)
Total	13,154,115	709 GB	377,449

(from 2008)

Passion and dalliance

Tch! What's the World coming to?

« Let's try this one

More Tor! »

Why you need balls of steel to operate a Tor exit node

By calumog

I became interested in Tor in the spring of 2007 after reading about the situation in Burma and felt that I would like to do something, anything, to help. As a geek and lover of the internet it seemed the best thing I could do was to run Tor as an exit node to allow those under jurisdictions that censor the internet free access to the information they need. I had a lot of unused bandwidth and it seemed like a philanthropic use of it to donate that to Tor.

Sign In | RSS F

TICS : SECURITY 🔝

Rogue Nodes Turn Tor Anonymizer Into Eavesdropper's Paradise

SUBSCRIBE >>

By Kim Zetter X 09.10.07

A security researcher intercepted thousands of private e-mail messages sent by foreign embassies and human rights groups around the world by turning portions of the Tor internet anonymity service into his own private listening post.

SECTIONS >>

A little over a week ago, Swedish computer security consultant Dan Egerstad posted the user names and passwords for 100 e-mail accounts used by the victims, but didn't say how he obtained them. He revealed Friday that he intercepted the information by hosting five Tor exit nodes placed in different locations on the internet as a research project.

But Egerstad says that many who use Tor mistakenly believe it is an end-to-end encryption tool. As a result, they aren't taking the precautions they need to take to protect their web activity.

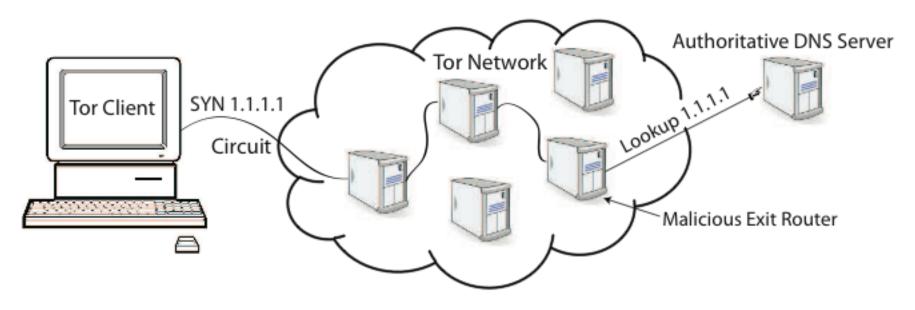
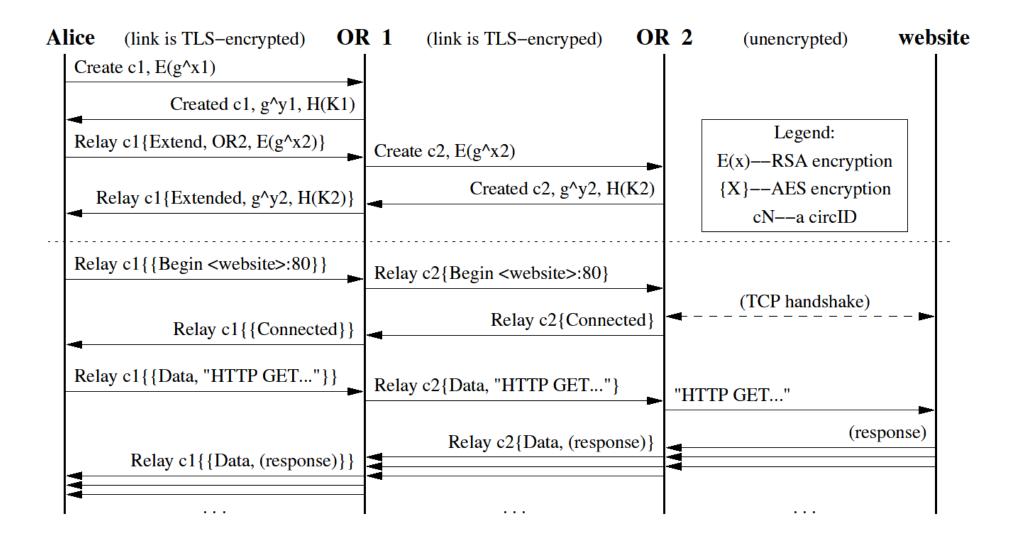
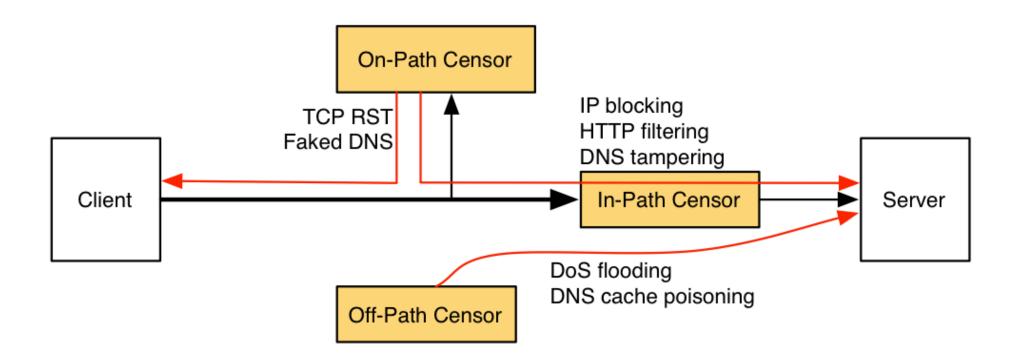




Fig. 1. Malicious exit router logging detection technique.

Nickname	Ban Type	IP	Port	Date	Reporter	Reason
⇒Unnamed	BadExit	176.99.12.246	9001	7/12/13	phw	SSL MITM with CN as main authority
⇒Unnamed	BadExit	109.68.190.231	9001	6/29/13	athena	SSL MITM with CN as main authority
⇒Unnamed	BadExit	176.99.10.92	9001	4/10/13		SSL MITM
⇒Unnamed	BadExit	64.237.42.138	9001	3/1/13		SSL MITM
⇒Unnamed	BadExit	141.101.238.182	9001	1/8/13	Pierre Richard	SSL MITM
⇒Unnamed	BadExit	46.30.42.154	9001	11/9/12		SSL MITM with CN as main authority
⇒Unnamed	BadExit	46.30.42.153	9001	11/9/12		SSL MITM with CN as main authority
⇒HumaniTOR	BadExit	212.80.35.73	9001	5/11/12	arma	connection refused for ports 80 and 443
⇒Unnamed	BadExit	219.90.126.61	443	5/1/12	James Hooker	running sslstrip
⇒ididedittheconfig	BadExit	94.185.81.130	9001	4/3/12	James Hooker	running sslstrip
⇒UnFilTerD	BadExit	82.95.57.4	8888	4/3/12	James Hooker	running sslstrip
⇒default	BadExit	66.165.177.139	443	3/5/12		sniffing traffic
⇒100mbitTOR	BadExit	109.87.69.138		11/6/11	Sebastian	MITM of SSL
⇒Secureroute	BadExit			11/4/11	mikeperry	MITM of SSL with self-signed cert
⇒Unnamed	BadExit	164.41.103.153	443	9/30/11	aagbsn	MITM of SSL with a fortinet cert
⇒QuantumSevero	BadExit	84.19.176.56	443	1/30/11	mikeperry	plaintext-only exit policy + no reachable contact
⇒ElzaTorServer	BadExit	109.202.66.4	9001	1/30/11	mikeperry	plaintext-only exit policy + no reachable contact
⇒agitator	BadExit	188.40.77.107	9001	1/15/11		sniffing traffic
⇒PrivacyPT	BadExit	84.90.72.186		1/5/11	mikeperry	running sslstrip
⇒KnightVison	BadExit	213.247.98.204		1/5/11	mikeperry	403 responses for arbitrary URLs
⇒Unnamed	BadExit	84.46.20.223		1/5/11	mikeperry	SSL MITM with Kaspersky AV certs
⇒newworld	BadExit	98.126.68.58	443	12/22/10	mikeperry	running sslstrip
⇒Unnamed	BadExit	118.160.19.236	443	11/19/10	mikeperry	anti-virus filter is blocking sites (trend-micro)
⇒Unnamed	BadExit			11/19/10	mikeperry	anti-virus filter is blocking sites (trend-micro)
⇒Unnamed	BadExit			11/19/10	mikeperry	anti-virus filter is blocking sites (trend-micro)
⇒Unnamed	BadExit			11/19/10	mikeperry	anti-virus filter is blocking sites (trend-micro)
⇒Unnamed	BadExit			11/19/10	mikeperry	anti-virus filter is blocking sites (trend-micro)
⇒703server	BadExit	173.49.70.62		11/19/10	mikeperry	several issues including possible SSL downgrade attack

T1 41C 1.C	G' .			
Identified Source	Signature			
Identified Injector				
Sandvine	Multipacket: First Packet IPID += 4, second packet SEQ + 12503, IPID += 5			
Bezeqint	Multipacket: Constant sequence, RST_ACK_CHANGE, IPID = 16448			
Yournet	SYN_RST: Only on SMTP, TTL usually +3 to +5, unrelated IPID			
Victoria	Multipacket: Sequence Increment 1500, IPID = 305, TTL += 38			
IPID 256	Single packet: Usually less TTL, IPID = 256			
IPID 64	Multipacket: IPID = 64, often sequence increment of 1460			
IPID -26	Multipacket: First IPID -= 26, often sequence increment of 1460			
SEQ 1460	Multipacket: Sequence increment always 1460			
RAE	Single packet: Sets RST, ACK and ECN nonce sum (control bit 8)			
Go Away	Single packet: Payload on RST of "Go Away, We're Not Home"			
Optonline	Multipacket: No fingerprint, all activity from a single ISP			
	Identified Non-Injected Source			
SYN/RST 128	SYN_RST with RST TTL += 128			
SYN/RST 65259	SYN_RST with RST IPID = 65259			
0-Seq RST	Reset with SEQ = 0			
IPID 0	IPID = 0, multiple RSTs, limited range			
IPID 0 Solo	IPID = 0, spurious RST (often ignored)			
Stale RST	RST belonging to a previous connection (port reuse)			
Spambot SR	Spam source sending payload packets with SYN and RST flags			
DNS SYN_RST	Normal DNS servers aborting connections at initiation			

Table 1. Features for both identified RST injectors and identified non-injected sources.

Test	Evasion Class	Description	Circumvention Opportunities	Fixing Cost	Receiver Dependent?
IP1	Ambiguity	$_{IP(TTL=< low>)}p(Bad) \implies reset$	Insertion	High	
IP2	Reassembly	Overlapping fragment processing	Insertion	High	/
TCP1	TCB creation	$IP(TTL=)p_i^S$, p_{i+1}^S , $p_{i+2}(Bad) \land (tuple(p_i) = tuple(p_{i+1})) \land (seq(p_i) \neq seq(p_{i+1})) \Longrightarrow \neg reset$	Insertion-Evasion	Low	
TCP2	Incompleteness	$_{IP(ack=< bad>)}p(Bad) \implies reset$	Insertion	Low	
TCP3	Incompleteness	$_{IP(chksum=< bad>)}p(Bad) \implies reset$	Insertion	Low	
TCP4	Incompleteness	$p^{-A}(Bad) \implies reset$	Insertion	Low	
TCP5	Reassembly	Overlapping segment processing	Insertion	High	/
TCP6 ^a	TCB Teardown	$IP(TTL=)p_i^{R(A)}, p_{i+1}(Bad) \implies \neg reset$	Insertion-Evasion	High	
$TCP6^b$	TCB Teardown	$_{IP(TTL=< low>)} p_i^F, p_{i+1}(Bad) \Longrightarrow \neg reset$	Insertion-Evasion	Low	
TCP7	State Management	$\tau(\leq \approx 10 \text{ hr}), p_i(Bad) \implies reset$	State exhaust.	High	
TCP8	State Management	$(p_i(Good)^+ \wedge \delta(Good) \leq \approx 1 \text{ GB}), p_{i+1}(Bad) \implies reset$	State exhaust.	High	
TCP9	State Management	hole, $(p_i(Good)^+ \wedge \delta(Good) \geq 1 \text{ KB} \wedge abovehole(p_i)),$ $p_{i+1}(Bad) \Longrightarrow \neg reset$	State exhaust.	High	1
TCP10	State Management	$hole, \tau(y) \ge 60 \min, (p_i(Bad) \land abovehole(p_i)) \Longrightarrow \neg reset$	State exhaust.	High	✓
HTTP1	Ambiguity	GET with > 1 space between method and URI $\implies \neg$ reset	Evasion	Low	
HTTP2	Incompleteness	GET with keyword at location > 2048 ⇒ ¬ reset	Evasion	Low	
НТТР3	Incompleteness	GET with keyword in \geq 2nd of multiple requests in single segment $\Longrightarrow \neg reset$	Evasion	Low	
HTTP4	Incompleteness	GET with URL encoded (except %-encoding) ⇒ ¬ reset	Evasion	Low	/

Table 1: Evasion opportunities in GFW's analysis of network traffic.