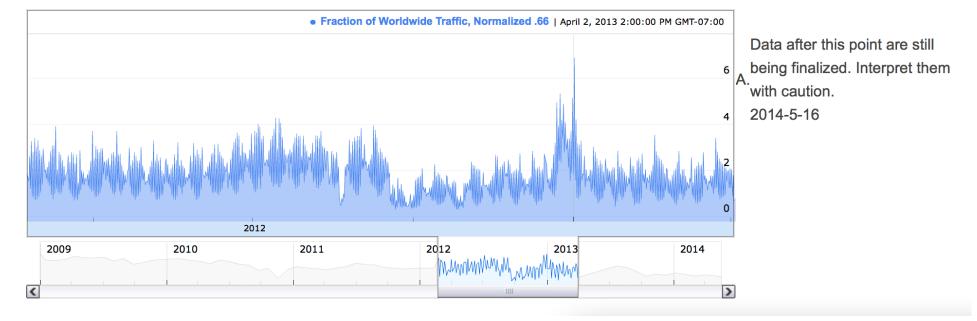
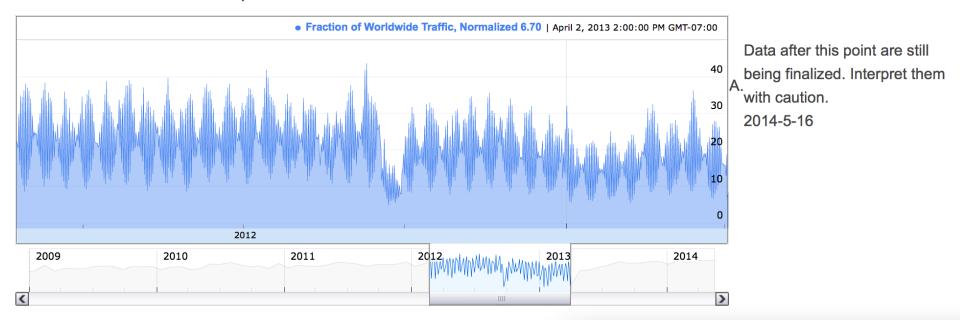
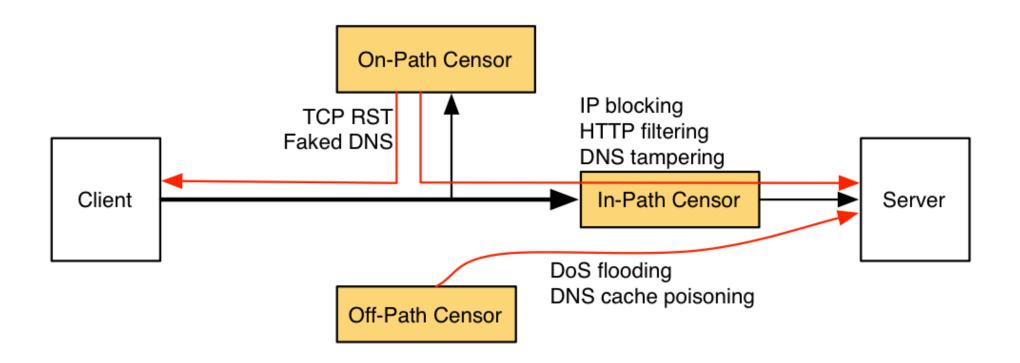

This page provides near real-time information about traffic to our products and services around the world. Each graph shows historic traffic patterns for a given geographic region and product. For more information, see our FAQ.

Pakistan	*	YouTube	*
T divisioni	_	(

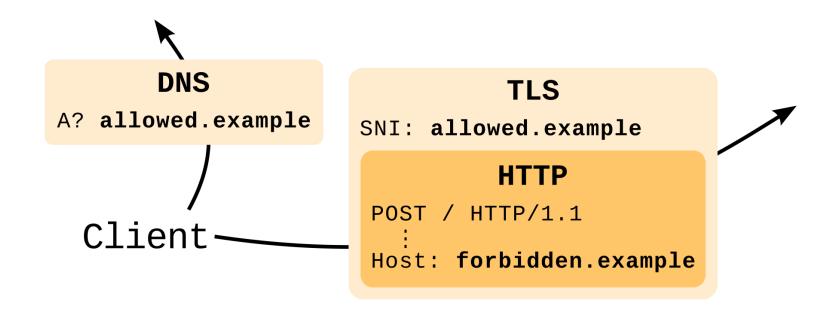

This page provides near real-time information about traffic to our products and services around the world. Each graph shows historic traffic patterns for a given geographic region and product. For more information, see our FAQ.

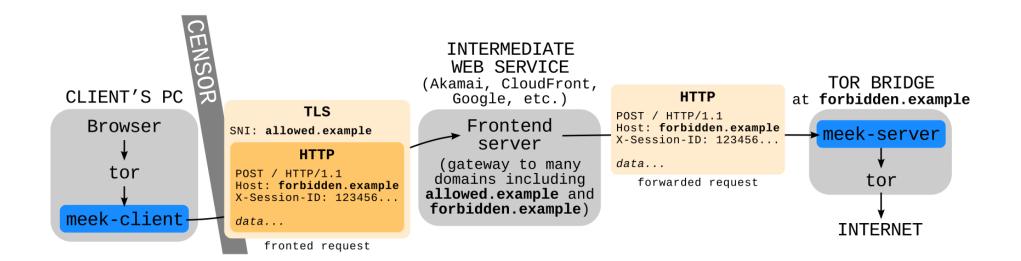
Blogger
,

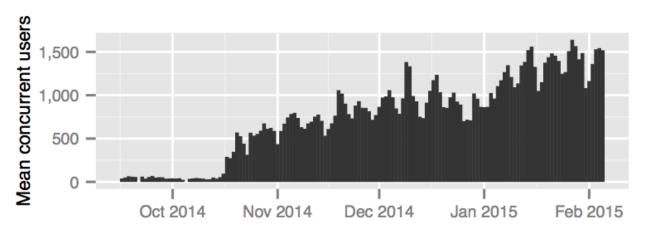

This page provides near real-time information about traffic to our products and services around the world. Each graph shows historic traffic patterns for a given geographic region and product. For more information, see our FAQ.



This page provides near real-time information about traffic to our products and services around the world. Each graph shows historic traffic patterns for a given geographic region and product. For more information, see our FAQ.




71	at .		
Identified Source	Signature		
Identified Injector			
Sandvine	Multipacket: First Packet IPID += 4, second packet SEQ + 12503, IPID += 5		
Bezeqint	Multipacket: Constant sequence, RST_ACK_CHANGE, IPID = 16448		
Yournet	SYN_RST: Only on SMTP, TTL usually +3 to +5, unrelated IPID		
Victoria	Multipacket: Sequence Increment 1500, IPID = 305, TTL += 38		
IPID 256	Single packet: Usually less TTL, IPID = 256		
IPID 64	Multipacket: IPID = 64, often sequence increment of 1460		
IPID -26	Multipacket: First IPID -= 26, often sequence increment of 1460		
SEQ 1460	Multipacket: Sequence increment always 1460		
RAE	Single packet: Sets RST, ACK and ECN nonce sum (control bit 8)		
Go Away	Single packet: Payload on RST of "Go Away, We're Not Home"		
Optonline	Multipacket: No fingerprint, all activity from a single ISP		
Identified Non-Injected Source			
SYN/RST 128	SYN_RST with RST TTL += 128		
SYN/RST 65259	SYN_RST with RST IPID = 65259		
0-Seq RST	Reset with SEQ = 0		
IPID 0	IPID = 0, multiple RSTs, limited range		
IPID 0 Solo	IPID = 0, spurious RST (often ignored)		
Stale RST	RST belonging to a previous connection (port reuse)		
Spambot SR	Spam source sending payload packets with SYN and RST flags		
DNS SYN_RST	Normal DNS servers aborting connections at initiation		


Table 1. Features for both identified RST injectors and identified non-injected sources.

Test	Evasion Class	Description	Circumvention Opportunities	Fixing Cost	Receiver Dependent?
IP1	Ambiguity	$_{IP(TTL=< low>)}p(Bad) \implies reset$	Insertion	High	
IP2	Reassembly	Overlapping fragment processing	Insertion	High	/
TCP1	TCB creation	$IP(TTL=)p_i^S$, p_{i+1}^S , $p_{i+2}(Bad) \land (tuple(p_i) = tuple(p_{i+1})) \land (seq(p_i) \neq seq(p_{i+1})) \Longrightarrow \neg reset$	Insertion-Evasion	Low	
TCP2	Incompleteness	$_{IP(ack=< bad>)}p(Bad) \implies reset$	Insertion	Low	
TCP3	Incompleteness	$_{IP(chksum=< bad>)}p(Bad) \implies reset$	Insertion	Low	
TCP4	Incompleteness	$p^{-A}(Bad) \implies reset$	Insertion	Low	
TCP5	Reassembly	Overlapping segment processing	Insertion	High	/
TCP6a	TCB Teardown	$_{IP(TTL=< low>)}p_{i}^{R(A)}, p_{i+1}(Bad) \implies \neg reset$	Insertion-Evasion	High	
$TCP6^b$	TCB Teardown	$_{IP(TTL=< low>)} p_i^F, p_{i+1}(Bad) \Longrightarrow \neg reset$	Insertion-Evasion	Low	
TCP7	State Management	$\tau(\leq \approx 10 \text{ hr}), p_i(Bad) \implies reset$	State exhaust.	High	
TCP8	State Management	$(p_i(Good)^+ \wedge \delta(Good) \leq \approx 1 \text{ GB}), p_{i+1}(Bad) \implies reset$	State exhaust.	High	
TCP9	State Management	hole, $(p_i(Good)^+ \wedge \delta(Good) \geq 1 \text{ KB} \wedge abovehole(p_i)),$ $p_{i+1}(Bad) \Longrightarrow \neg reset$	State exhaust.	High	1
TCP10	State Management	$hole, \tau(y) \ge 60 \min, (p_i(Bad) \land abovehole(p_i)) \Longrightarrow \neg reset$	State exhaust.	High	/
HTTP1	Ambiguity	GET with > 1 space between method and URI $\implies \neg$ reset	Evasion	Low	
HTTP2	Incompleteness	GET with keyword at location > 2048 ⇒ ¬ reset	Evasion	Low	
НТТР3	Incompleteness	GET with keyword in \geq 2nd of multiple requests in single segment $\Longrightarrow \neg reset$	Evasion	Low	
HTTP4	Incompleteness	GET with URL encoded (except %-encoding) ⇒ ¬ reset	Evasion	Low	/

Table 1: Evasion opportunities in GFW's analysis of network traffic.

	App Engine		CloudFront		Azure (est.)	
	GB	cost	GB	cost	GB	cost
early 2014	37	\$4.28	31	\$3.10	0	\$0.00
Sep 2014	34	\$4.02	36	\$4.59	47	\$5.53
Oct 2014	289	\$40.85	479	\$130.29	298	\$35.04
Nov 2014	1375	\$224.67	1269	\$362.60	500	\$58.80
Dec 2014	2132	\$326.81	1579	\$417.31	512	\$60.21
Jan 2015	2944	\$464.37	2449	\$669.02	638	\$75.03
total	6811	\$1065.00	5843	\$1586.91	1995	\$267.30

	Who	What	How
Polymorphism	Tor bridges, Flash Proxy [99], VPN Gate [177]	Obfs2/3/4, ScrambleSuit [247], Dust [241]	Tor Jun, 2012 ¹
Steganography	Cirripede [118], Decoy routing [142], GoAgent, Meek [221], OSS [100], TapDance [249], Telex [250], CloudTransport [46]	FTE [85], Infranet [96], SkyF2F [54], Collage [49], CensorSpoofer [229], DEFIANCE [156], SkypeMorph [166], StegoTorus [237], Freewave [119], Identity-based Steganographic Tagging [196], Message In A Bottle [126], SWEET [255], Facade [137], Trist [65], Facet [155], DenaLi [171]	Tor Jan, 2011 ² , Tor Sep, 2011 ³ [17]

Table 1: Prior research on evading network-based censorship using obfuscation, organized by primary obfuscation method. Columns show the primary type of feature obfuscated. **Bold** denotes deployed tools.

Attacks	List type	Target	Seen: Description
Website blocking	Blacklist	Who	Thailand 2006: DNS filtering Tor website [80]; Iran & Saudi Arabia 2007: Block GET request pattern with /tor/ [80]; China 2008, Iran 2012: Block Tor website [34, 154].
Block by default	Whitelist	Who	Tunisia 2009: Only allow ports 80/443 [80]; Iran 2013: TCP reset all non-HTTP [33].
SSL throttling/blocking	Blacklist	Who	Iran 2009, 2011 [30,153] SSL throttled to 2 Kb/s; Iran 2012: Block port 443 [154].
IP address blocking	Blacklist	Who	China 2009: Block public relays and directory authorities [151]; China 2010: Block bridges [152]; Iran 2014: Block directory authorities [31].
Deep packet inspection (DPI)	Blacklist	How	Iran 2011: On Diffie–Hellman parameter in SSL handshake [80]; Iran 2011, Iran 2013: On SSL certificate lifetime [79, 153]; Syria 2011 and 2012: On TLS renegotiation [80]; China 2011: On TLS cipher list in "Client Hello" [239]; Iran 2012, UAE 2012: On TLS handshake [154,200]; Iran 2012: On TLS client key exchange [33]; Ethiopia 2012, Kazakhstan 2012: On TLS "Server Hello" [198,199]; Philippines 2012: On TLS cipher suite [242].
Active probing	(Blacklist)	How	Probing is used to populate a blacklist. China 2011, 2013 [120, 243].
Unplug Internet	N/A	N/A	Egypt 2011, Libya 2011 [21], Syria 2012 [61].

Table 2: Survey of Known Tor Censorship Incidents