HTTPS Connection (SSL / TLS)

• Browser (client) connects via TCP to Amazon’s HTTPS server

• Client picks 256-bit random number R_B, sends over list of crypto protocols it supports

• Server picks 256-bit random number R_S, selects protocols to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

Browser

SYN

SYN ACK

ACK

Amazon Server

Hello. My rnd # = R_B. I support (TLS+RSA+AES128+SHA1) or (SSL+RSA+3DES+MD5) or ...

My rnd # = R_S. Let’s use TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 KB of data
For RSA, browser constructs long (368 bits) “Premaster Secret” PS.

Browser sends PS encrypted using Amazon’s public RSA key K_{Amazon}.

Using PS, R_B, and R_S, browser & server derive symm. cipher keys (C_B, C_S) & MAC integrity keys (I_B, I_S).

- One pair to use in each direction.

Browser

Amazon Server

PS

Here’s my cert

$\{\text{PS}\}_{K_{\text{Amazon}}}$

~2–3 KB of data

PS
HTTPS Connection (SSL / TLS), con’t

- For RSA, browser constructs long (368 bits) “Premaster Secret” PS
- Browser sends PS encrypted using Amazon’s public RSA key K_{Amazon}
- Using PS, R_B, and R_S, browser & server derive symm. cipher keys (C_B, C_S) & MAC integrity keys (I_B, I_S)
 - One pair to use in each direction

These seed a cryptographically strong pseudo-random number generator (PRNG). Then browser & server produce C_B, C_S, I_B, I_S, etc., by making repeated calls to the PRNG.
HTTPS Connection (SSL / TLS), con’t

- For RSA, browser constructs long (368 bits) “Premaster Secret” PS
- Browser sends PS encrypted using Amazon’s public RSA key K_{Amazon}
- Using PS, R_B, and R_S, browser & server derive symm. cipher keys (C_B, C_S) & MAC integrity keys (I_B, I_S)
 - One pair to use in each direction
- Browser & server exchange MACs computed over entire dialog so far
- If good MAC, Browser displays
- All subsequent communication encrypted w/ symmetric cipher (e.g., AES128) cipher keys, MACs
 - Messages also numbered to thwart replay attacks