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Abstract

There is a growing interest in designing high-speed network de-
vices to perform packet processing at semantic levels above the
network layer. Some examples are layer-7 switches, content in-
spection and transformation systems, and network intrusion de-
tection/prevention systems. Such systems must maintain per-
flow state in order to correctly perform their higher-level pro-
cessing. A basic operation inherent to per-flow state manage-
ment for a transport protocol such as TCP is the task of reassem-
bling any out-of-sequence packets delivered by an underlying
unreliable network protocol such as IP. This seemingly prosaic
task of reassembling the byte stream becomes an order of mag-
nitude more difficult to soundly execute when conducted in the
presence of an adversary whose goal is to either subvert the
higher-level analysis or impede the operation of legitimate traffic
sharing the same network path.

We present a design of a hardware-based high-speed TCP
reassembly mechanism that is robust against attacks. It is in-
tended to serve as a module used to construct a variety of net-
work analysis systems, especially intrusion prevention systems.
Using trace-driven analysis of out-of-sequence packets, we first
characterize the dynamics of benign TCP traffic and show how
we can leverage the results to design a reassembly mechanism
that is efficient when dealing with non-attack traffic. We then
refine the mechanism to keep the system effective in the pres-
ence of adversaries. We show that although the damage caused
by an adversary cannot be completely eliminated, it is possible
to mitigate the damage to a great extent by careful design and
resource allocation. Finally, we quantify the trade-off between
resource availability and damage from an adversary in terms of
Zombie equations that specify, for a given configuration of our
system, the number of compromised machines an attacker must
have under their control in order to exceed a specified notion of
“acceptable collateral damage.”

1 Introduction

The continual growth of network traffic rates and the in-
creasing sophistication of types of network traffic process-
ing have driven a need for supporting traffic analysis using
specialized hardware. In some cases the analysis is in a
purely passive form (intrusion detection, accounting, per-
formance monitoring) and for others in an active, in-line
form (intrusion prevention, firewalling, content transfor-

mation, network address translation). Either way, a key
consideration is that increasingly the processing must op-
erate at a semantic level higher than the network layer; in
particular, we often can no longer use stateless process-
ing but must instead maintain per-flow state in order to
correctly perform higher-level analyses.

Such stateful analysis brings with it the core problem
of state management: what hardware resources to allocate
for holding state, how to efficiently access it, and how to
reclaim state when the resources become exhausted. De-
signing a hardware device for effective state management
can require considerable care. This is particularly the case
for in-line devices, where decisions regarding state man-
agement can adversely affect network operation, such as
prematurely terminating established TCP connections be-
cause the device no longer has the necessary state to cor-
rectly transform the flow.

Critically, the entire problem of state management be-
comes an order of magnitude more difficult when con-
ducted in the presence of an adversary whose goal is to
either subvert the hardware-assisted analysis or impede
the operation of legitimate traffic along the same network
path.

Two main avenues for subverting the analysis (“eva-
sion”) are to exploit the ambiguities inherent in observ-
ing network traffic mid-stream [18, 12] or to cause the
hardware to discard the state it requires for sound anal-
ysis. If the hardware terminates flows for which it has
lost the necessary state, then the adversary can pursue the
second goal of impeding legitimate traffic—i.e., denial-
of-service, where rather than targeting the raw capacity of
the network path or end server, instead the attacker targets
the newly-introduced bottleneck of the hardware device’s
limited state capacity.

Issues of state-holding, disambiguation, and robust op-
eration in the presence of flooding arise in different ways
depending on the semantic level at which the hardware
conducts its analysis. In this paper we consider one of
the basic building blocks of higher-level analysis, namely
the conceptually simple task of reassembling the layer-4
byte streams of TCP connections. As we will show, this
seemingly prosaic bookkeeping task—just track the con-
nection’s sequence numbers, buffer out-of-sequence data,



lay down new packets in the holes they fill, and deliver
to the next stage of processing any bytes that are now in-
order—becomes subtle and challenging when faced with
(i) limited hardware resources and, more importantly, (ii)
an adversary who wishes to either undermine the sound-
ness of the reassembly or impair the operation of other
connections managed by the hardware.

While fast hardware for robust stream reassembly has
a number of applications, we focus our discussion on en-
abling high-speed intrusion prevention. The basic model
we assume is a high-speed, in-line network element de-
ployed at a site’s gateway (so it sees both directions of the
flows it monitors). This module serves as the first stage of
network traffic analysis, with its output (reassembled byte
streams) feeding the next stage that examines those byte
streams for malicious activity. This next stage might also
execute in specialized hardware (perhaps integrated with
the stream reassembly hardware), or could be a function-
ally distinct unit.

A key consideration is that because the reassembly
module is in-line, it can (i) normalize the traffic [12] prior
to subsequent analysis, and (ii) enable intrusion preven-
tion by only forwarding traffic if the next stage signals
that it is okay to do so. (Thus, by instead signaling the
hardware to discard rather than forward a given packet,
the next stage can prevent attacks by blocking their deliv-
ery to the end receiver.) As we will discuss, another key
property with operating in-line is that the hardware has the
potential means of defending itself if it finds its resources
exhausted (e.g., due to the presence of state-holding at-
tacks). It can either reclaim state that likely belongs to at-
tacker flows, or else at least exhibit graceful degradation,
sacrificing performance first rather than connectivity.

A basic notion we will use throughout our discussion is
that of a sequence gap, or hole, which occurs in the TCP
stream with the arrival of a packet with a sequence number
greater than the expected sequence number. Such a hole
can result from packet loss or reordering. The hardware
must buffer out-of-order packets until a subsequent packet
fills the gap between the expected and received sequence
numbers. After this gap is filled, the hardware can then
supply the byte-stream analyzer with the packets in the
correct order, which is crucial for higher-level semantic
analysis of the traffic stream.

At this point, the hardware can release the buffer al-
located to the out-of-order packet. However, this pro-
cess raises some natural questions: if the hardware has
to buffer all of the out-of-order packets for all the connec-
tions, how much buffer does it need for a “typical” TCP
traffic? How long do holes persist, and how many con-
nections exhibit them? Should the hardware immediately
forward out-of-order packets along to the receiver, or only
after they have been inspected in the correct order?

To explore these questions, we present a detailed trace-

driven analysis to characterize the packet re-sequencing
phenomena seen in regular TCP/IP traffic. This analy-
sis informs us with regard to provisioning an appropriate
amount of resources for packet re-sequencing. We find
that for monitoring the Internet access link of sites with
several thousand hosts, less than a megabyte of buffer suf-
fices.

Moreover, the analysis helps us differentiate between
benign TCP traffic and malicious traffic, which we then
leverage to realize a reassembly design that is robust in
the presence of adversaries. After taking care of traf-
fic normalization as discussed above, the main remain-
ing threat is that an adversary can attempt to overflow the
hardware’s re-sequencing buffer by creating numerous se-
quence holes. If an adversary creates such holes in a dis-
tributed fashion, spreading them across numerous connec-
tions, then it becomes difficult to isolate the benign traffic
from the adversarial.

Tackling the threat of adversaries gives rise to another
set of interesting issues: what should be done when the
buffer overflows? Terminate the connections with holes,
or just drop the buffered packets? How can we minimize
the collateral damage? In light of these issues, we devise
a buffer management policy and evaluate its impact on
system performance and security.

We frame our analysis in terms of Zombie equations:
that is, given a set of operational parameters (available
buffer, traffic volume, acceptable collateral damage), how
many total hosts (“zombies”) must an adversary control in
order to inflict an unacceptably high degree of collateral
damage?

The rest of the paper is organized as follows. Section 2
discusses the related work. In Section 3 we present the re-
sults of our trace-driven analysis of out-of-sequence pack-
ets. Section 4 describes the design of a basic reassembly
mechanism which handles the most commonly occurring
re-ordering case. In Section 5, we explore the vulnera-
bilities of this mechanism from an adversarial point of
view, refine it to handle attacks gracefully, and develop
the Zombie equations quantifying the robustness of the
system. Section 6 concludes the paper.

2 Related Work

Previous work relating to TCP stream reassembly primar-
ily addresses (i) measuring, characterizing and modeling
packet loss and reordering, and (ii) modifying the TCP
protocol to perform more robustly in the presence of se-
quence holes.

Paxson characterized the prevalence of packet loss and
reordering observed in 100 KB TCP transfers between a
number of Internet hosts [16], recording the traffic at both
sender and receiver in order to disambiguate behavior. He



found that many connections are loss-free, and for those
that are not, packet loss often comes in bursts of consec-
utive losses. We note that such bursts do not necessarily
create large sequence holes—if all packets in a flight are
lost, or all packets other than those at the beginning, then
no hole is created. Similarly, consecutive retransmissions
of the same packet (which would count as a loss burst
for his definition) do not create larger holes, and again
might not create any hole if the packet is the only one un-
acknowledged. For packet reordering, he found that the
observed rate of reordering varies greatly from site to site,
with about 2% of all packets in his 1994 dataset being
reordered, and 0.6% in his 1995 dataset. However, it is
difficult to gauge how we might apply these results to to-
day’s traffic, since much has changed in terms of degree
of congestion and multipathing in the interim.

Bennett and colleagues described a methodology for
measuring packet reordering using ICMP messages and
reported their results as seen at a MAE-East router [5].
They found that almost 90% of the TCP packets were re-
ordered in the network. They provide an insightful dis-
cussion over the causes of packet reordering and isolate
the packet-level parallelism offered by packet switches
in the data path as the main culprit. Our observations
differ significantly from theirs; we find that packet re-
ordering in TCP traffic affects 2–3% of the overall traf-
fic. We attribute this difference to the fact that the results
in [5] reflect an older generation of router architecture.
In addition, it should be mentioned that some router ven-
dors have modified or are modifying router architectures
to provide connection-level parallelism instead of packet
level-parallelism in order to eliminate reordering [1].

Jaiswal and colleagues presented measurements of out-
of-sequence packets on a backbone router [13]. Through
their passive measurements on recent OC-12 and OC-48
traces, they found that packet reordering is seen for 3–5%
of overall TCP traffic. This more closely aligns with our
findings. Gharai and colleagues presented a similar mea-
surement study of out-of-order packets using end-to-end
UDP measurements [11]. They too conclude that reorder-
ing due to network parallelism is more prevalent than the
packet loss.

Bellardo and Savage devised a clever scheme for mea-
suring TCP packet reordering from a single endpoint and
discriminating between reordering on the forward path
with that on the reverse path [4]. (For many TCP con-
nections, reordering along one of the paths is irrelevant
with respect to the formation of sequencing holes, because
data transfers tend to be unidirectional, and reordered ac-
knowledgments do not affect the creation of holes.) They
quantify the degree that reordering rates increase as the
spacing between packets decreases. The overall reorder-
ing rates they report appear consistent with our own ob-
servations.

Laor et. al. investigated the effect of packet reorder-
ing on application throughput [14]. In a laboratory with a
Cisco backbone router connecting multiple end-hosts run-
ning different OSes, they measured HTTP throughput as
a function of injected packet reordering. Their experi-
ments were however confined to cases where the reorder-
ing elicited enough duplicate-ACKs to trigger TCP’s “fast
retransmission” in the sender. This leads to a significant
degradation in throughput. However, we find that this
degree of reordering does not represent the TCP traffic
behavior seen in actual traffic, where very few reordered
packets cause the sender to retransmit spuriously.

Various algorithms have been proposed to make TCP
robust to packet reordering [6, 7, 21]. In [6], Blanton
and Allman propose to modify the duplicate-ACK thresh-
old dynamically to minimize the effect of duplicate re-
transmissions on TCP throughput degradation. Our work
differs from theirs in that we use trace-driven analysis to
guide us in choosing various parameters to realize a robust
reassembly system, as well as our interest in the compli-
cations due to sequence holes being possibly created by
an adversary.

In a project more closely related to our work, Schuehler
et al. discuss the design of a TCP processor that maintains
per-flow TCP state to facilitate application-level analy-
sis [20]. However, the design does not perform packet
reordering—instead, out-of-order packets are dropped.
There are also some commercial network processors
available today that perform TCP processing and packet
reassembly. Most of these processors, however, are used
as TCP offload engines in end hosts to accelerate TCP pro-
cessing. To our knowledge, there are few TCP processors
which process and manipulate TCP flows in-line, with In-
tel’s TCP processor being one example [10]. TCP pack-
ets are reordered using a CAM that stores the sequence
numbers of out-of-order packets. When a new data packet
arrives, the device compares its sequence number against
the CAM entries to see if it plugs any of the sequence
holes. Unfortunately, details regarding the handling of
edge cases do not appear to be available; nor is it clear
how such processors handle adversarial attacks that aim
to overflow the CAM entries.

Finally, Paxson discusses the problem of state manage-
ment for TCP stream reassembly in the presence of an
adversary, in the context of the Bro intrusion detection
system [17]. The problem is framed in terms of when to
release memory used to hold reassembled byte streams,
with the conclusion being to do so upon observing an ac-
knowledgment for the data, rather than when the data first
becomes in-sequence, in order to detect inconsistent TCP
retransmissions. The paper does not discuss the problem
of managing state for out-of-sequence data; Bro simply
buffers such data until exhausting available memory, at
which point the system fails.



Univsub Univ19 Lablo Lab2 Super T3 Munich

Trace duration (seconds) 303 5,697 / 300∗ 3,602 3,604 3,606 10,800 6,167
Total packets 1.25M 6.2M 1.5M 14.1M 3.5M 36M 220M
Total connections 53K 237K 50K 215K 21K 1.04M 5.62M
Connections with holes 1,146 17,476 4,469 41,611 598 174,687 714,953
Total holes 2,048 29,003 8,848 79,321 4,088 575K 1.88M
Max buffer required (bytes) 128 KB 91 KB 68 KB 253K 269 KB 202 KB 560KB
Avg buffer required (bytes) 5,943 2,227 3,111 13,392 122 28,707 178KB
Max simultaneous holes 15 13 9 39 6 94 114
Max simultaneous holes 9 16 6 16 6 85 61
in single connection
Fraction of holes with 90% 87% 90% 87% 97% 85% 87%
< 3 packets in buffer
Fraction of connections with 96% 98% 96% 97% 97% 95% 97%
single concurrent hole
Fraction of holes that overlap 0.5% 0.02% 0.06% 0.06% 0% 0.46% 0.02%
hole on another connection
of same external host (§ 5.1)

Table 1: Properties of the datasets used in the study

3 Trace Analysis

In this section we present an analysis of a set of TCP
packet header traces we obtained from the access links at
five sites: two large university environments, with about
45,000 hosts (the Univsub and Univ19 traces) and 50,000
hosts (Munich), respectively; a research laboratory with
about 6,000 hosts (Lablo, and Lab2); a supercomputer
center with 3,000 hosts (Super); and an enterprise of
10,000 hosts connected to the Internet via a heavily loaded
T3 link (T3). The Super site is unusual in that many of its
hosts are not typical end-user machines but rather belong
to CPU “farms,” some of which make very high-speed and
high-volume connections; and the T3 site funnels much of
its traffic through a small number of Web and SMTP prox-
ies.

While we cannot claim that these traces are broadly
representative, they do span a spectrum from many hosts
making small connections (the primary flavor of Univsub,
Univ19, and Munich) to a few hosts making large, fast con-
nections (Super). We obtained traces of the inbound and
outbound traffic at each site’s Internet access link; for all
but T3, this was a Gbps Ethernet. The volume of traffic
at most of the sites is sufficiently high that it is difficult to
capture packet header traces without loss. The exception
to this is the Munich dataset, which was recorded using
specialized hardware able to keep up with the high vol-
ume. For the other sites, most of the traces we obtained
were filtered, as follows.

We captured Univsub off-hours (10:25 PM, for 5 min-
utes) with a filter that restricted the traffic to one of the
university’s three largest subnets. tcpdump reported very
little loss (88 packets out of 22.5M before filtering). Thus,
this trace is best interpreted as reflecting the performance

we would see at a good-sized university rather than a quite
large university.

We captured Univ19 in a somewhat unusual fashion.
We wanted a trace that reflected the aggregate university
traffic, but this volume far exceeded what tcpdump could
capture on the monitoring host. While sampling is a natu-
ral fallback, a critical requirement is that we must be able
to express the sampling in a form realizable by the kernel’s
BPF filtering engine—we cannot bring the packets up to
user space for sampling without incurring a high degree of
measurement loss. We instead used a BPF expression that
adds the addresses and ports (both source and destination)
together and then computes their residue modulo a given
prime P (which can be expressed in BPF using integer di-
vision and multiplication). We take all of the packets with
a given residue, which gives us a 1-in-P per-connection
sample.

Univ19 was captured using P = 19 and cycling through
all of the possible residues 0 . . . 18, capturing 5 minutes
per residue. The traces were made back-to-back during
a workday afternoon. Out of 631M total packets seen by
the packet filter, tcpdump reported 2,104 drops. We argue
that this is an acceptable level, and note that the presence
of measurement drops in the trace will tend to introduce a
minor bias towards a more pessimistic view of the preva-
lence of holes.

We then form Univ19 by analyzing the 19 traces and
combining the results, either adding up the per-subtrace
figures, or taking the maximum across them. For exam-
ple, when computing the maximum buffer size induced
by holes, we take the maximum of the maximums com-
puted for each of the 19 traces. Doing so gives a likely
approximation to what would have been seen in a full 5-



minute trace, since we find that “local” maxima are gener-
ally short-lived and thus would not likely overlap in time.

On the other hand—and this is a major point to bear
in mind—the short duration of the Univsub and Univ19

traces introduces a significant bias towards underestimat-
ing the prevalence of holes. This comes both from the
short lifetimes of the traces (less opportunity to observe
diverse behavior) and, perhaps more significantly, from
the truncation effect: we do not analyze connections that
were already in progress when a trace began, or that have
not finished upon termination of the trace, because we do
not accurately know their state in terms of which pack-
ets constitute holes (upon trace startup) or how long it
takes holes to resolve (upon trace termination). This will
tend to bias our analysis towards under-representing long-
running connections, and these may in turn be respon-
sible for a disproportionate number of holes. However,
the overall consistency of the results for the university
traces with those for the longer-lived traces suggests that
the general findings we base on the traces—that buffer re-
quired for holes are modest, connections tend to have few
holes that take little per-hole memory, and that holes re-
solve quickly—remain plausible. In addition, the similar
Munich environment does not suffer from these biases. Its
results mostly agree qualitatively with those from Univ19,
except it shows a much higher level of average concurrent
holes, which appears to be due to a higher prevalence of
fine-grained packet reordering.

The first of the research lab traces, Lablo, was extracted
from ongoing tracing that the lab runs. This tracing uses
an elaborate filter to reduce the total traffic to about 5%
of its full volume, and this subset is generally recorded
without any measurement drops. The filtering includes
eliminating traffic corresponding to some popular ports;
in particular, HTTP, which includes the majority of the
site’s traffic. Thus, this trace is more simply a touchstone
reflecting a lower-volume environment.

Lab2 includes all packet headers. It was recorded dur-
ing workday afternoon hours. The packet filter inspected
46M packets, reporting about 1-in-566 dropped. Super
is a full header trace captured during workday afternoon
hours, with the filter inspecting 13.5M packets and report-
ing no drops.

T3 is a three-hour full header trace captured during
workday afternoon hours, with the filter capturing 101M
packets and reporting no drops. The mean inbound data
rate over the three hours was 30.3 Mbps (with the link
having a raw capacity of 44.7 Mbps); outbound was
11.0 Mbps. Note that the actual monitoring was at a Gbps
Ethernet link just inside of the T3 bottleneck, so losses in-
duced by the congested T3 on packets arriving from the
exterior Internet would show up as holes in the trace, but
losses induced on traffic outbound from the site would not.
However, the figures above show that the congestion was
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Figure 2: Cumulative distribution function of the duration
of holes. Most of the holes have a lifetime of less than 0.01
seconds.

primarily for the inbound traffic. We note that monitor-
ing in this fashion, just inside of a bottleneck access link,
is a natural deployment location for intrusion prevention
systems and the like.

Table 1 summarizes the datasets and some of the char-
acteristics of the sequence holes present in their TCP con-
nections. We see that holes are very common: in Univsub

and Super, about 3% of connections include holes, while
in Lablo and T3, the number jumps to 10–20%. Overall,
0.1%–0.5% of all packets lead to holes.

Figure 1 shows how the reassembly buffer occupancy
changes during the traces. Of the four traces, Super is pe-
culiar: the buffer occupancy is mostly very low, but surges
to a high value for a very short period. This likely reflects
the fact that Super contains fewer connections, many of
which do bulk data transfers.

It is important to note the de-synchronized nature of the
sequence hole creation phenomenon. A key point is that
the buffer occupancy remains below 600 KB across all of
the traces, which indicates that stream reassembly over a
set of several thousand connections requires only a modest
amount of memory, and thus may be feasible at very high
speeds.

It is also noteworthy how some holes last for a long du-
ration and keep the buffer level elevated. These are visi-
ble as plateaus in several of the figures—for example, be-
tween T = 100 and T = 150 in the Univsub plot—and
are due to some long lived holes whose durations overlap,
whereas for the Munich trace we observed that the aver-
age buffer occupancy is significantly higher than the rest
of the traces. This too is a result of concurrent but short-
lived holes, although the average number of concurrent
holes for this trace is larger (around 60) compared to the
other traces (< 5 concurrent holes on an average).

The frequent sudden transitions in the buffer level show
that most of the holes are quite transient. Indeed, Figure 2



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  500  1000  1500  2000  2500  3000  3500  4000

B
uf

fe
r 

re
qu

ire
m

en
t (

by
te

s)

Time (seconds)

Lab_lo

(a) Lablo

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  500  1000  1500  2000  2500  3000  3500  4000

B
uf

fe
r 

re
qu

ire
m

en
t (

by
te

s)

Time (seconds)

lab_hv

(b) Lab2

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  500  1000  1500  2000  2500  3000  3500  4000

B
uf

fe
r 

re
qu

ire
m

en
t (

by
te

s)

Time (seconds)

Super

(c) Super

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  1000  2000  3000  4000  5000  6000

B
uf

fe
r 

re
qu

ire
m

en
t(

by
te

s)

Time(seconds)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

(d) Univ19

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1000  1500  2000  2500  3000  3500  4000  4500  5000

B
uf

fe
r 

re
qu

ire
m

en
t (

by
te

s)

Time (seconds)

(e) Munich

 0

 50000

 100000

 150000

 200000

 250000

 0  2000  4000  6000  8000  10000  12000

B
uf

fe
r 

re
qu

ire
m

en
t (

by
te

s)

Time (seconds)

T3

(f) T3

Figure 1: Reassembly buffer occupancy due to unfilled holes. Univsub, which we omitted, is similar to the elements of
Univ19.
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shows the cumulative distribution of the duration of holes.
Most holes have a very short lifetime, strongly sugges-
tive that they are created due to packet reordering and not
packet loss, as in the latter case the hole will persist for at
least an RTT, significantly longer than a millisecond for
non-local connections. The average hole duration is less
than a millisecond. In addition, the short-lived holes have
a strong bias towards the out-of-order packet (sent later,
arriving earlier) being smaller than its later-arriving pre-
decessor, which is suggestive of reordering due to multi-
pathing.

Finally, in Figure 3 we plot the cumulative distribution
of the size of the buffer associated with a single hole. The
graph shows that nearly all holes require less than 10 KB
of buffer. This plot thus argues that we can choose an ap-
propriate limit on the buffer-per-hole so that we can iden-
tify an adversary trying to claim an excessively large por-
tion.

4 System architecture

Since our reassembly module is an in-line element, one of
its key properties is the capability to transform the packet
stream if needed, including dropping packets or killing
connections (by sending TCP RST packets to both sides
and discarding the corresponding state). This ability al-
lows the system to make intelligent choices for more ro-
bust performance. TCP streams semantically allow nearly
arbitrary permutations of sequence hole creation (illus-
trated in Figure 4 below). In particular, all of the fol-
lowing possible scenarios might in principle occur in a
TCP stream: very long-lived holes; holes that accumulate
large amounts of buffer; large numbers of simultaneous
holes in a connection; presence of simultaneous holes in
both directions of a single connection; and/or a high rate
of sequence hole creation. However, as our trace analysis
shows, most of these cases are highly rare in typical TCP
traffic.

On the one hand, we have an objective to preserve



end-to-end TCP semantics as much as possible. On the
other hand, we have limited hardware resources in terms
of memory and computation. Hence, we adopt the well-
known principle of “optimize for the common case, de-
sign for the worst case,” i.e., the system should be effi-
cient in handling commonly-seen cases of reordering, and
should not catastrophically fail when faced with a worst-
case scenario, but exhibit graceful degradation. Since the
traces highlight that the highly dominant case is that of
a single, short-lived hole in just one direction within a
connection, we design the system to handle this case ef-
ficiently. We then also leverage its capability of dropping
packets in order to restrict the occurrence of uncommon
cases, saving us from the complexity of having to accom-
modate these.

With this approach, most of the TCP traffic passes un-
altered, while a very small portion experiences a higher
packet loss rate than it otherwise would. Note that this
latter traffic is likely already suffering from impaired per-
formance due to TCP’s congestion-control response in the
presence of packet loss, since multiple concurrent holes
are generally due to loss rather than reordering. We fur-
ther note that dropping packets is much more benign than
terminating connections that exhibit uncommon behavior,
since the connection will still proceed by retransmitting
the dropped packet.

The reader might wonder: Why not drop packets when
the first hole is created? Why design a system that bothers
buffering data at all? The simple answer: the occurrence
of a single connection hole is very common, much more
so than multiple holes of any form, and we would like to
avoid the performance degradation of a packet drop in this
case.

4.1 Maintaining Connection Records

Our system needs to maintain TCP connection records
for thousands of simultaneous connections, and must ac-
cess these at high speeds. For such a high-speed and
high-density storage, commodity synchronous DRAM
(SDRAM) chip is the only appropriate choice. Today,
Dual Data Rate SDRAM modules operating at 166 MHz
and with a capacity of 512 MB are available commer-
cially [15]. With a 64-bit wide data bus, such an SDRAM
module offers a raw data throughput of 64 × 2 × 166 ×
106 ≈ 21 Gbps. However, due to high access latency, the
actual throughput realized in practice is generally much
less. Nevertheless, we can design memory controllers to
exploit bank-level parallelism in order to hide the access
latency and achieve good performance [19].

When dimensioning connection records, we want to try
to fit them into multiples of four SDRAM words, since
modern SDRAMs are well suited for burst access with
such multiples. With this practical consideration, we de-

sign the following connection record. First, in the absence
of any sequence hole in the stream, the minimum informa-
tion we need in the connection record is:

• CA, SA: client / server address (4 bytes + 4 bytes)
• CP, SP: client / server port (2 bytes + 2 bytes)
• Cseq: client’s expected sequence number (4 bytes)
• Sseq: server’s expected sequence number (4 bytes)
• Next: pointer to the next connection record for re-

solving hash collisions (23 bits)
• Est: whether the connection has been established,

i.e., we’ve seen both the initial SYN and a SYN-
ACK (1 bit). This bit also helps us in identifying
SYN floods.

Here, we allocate 23 bits to store the pointer to the
next connection record, assuming that the total number
of records does not exceed 8M. When a single sequence
hole is present in a connection, we need to maintain the
following extra information:

• CSH: Client hole or server hole (1 bit)
• HS: hole size (2 bytes)
• BS: buffer size (2 bytes)
• Bh, Bt: pointer to buffer head / tail (2 bytes + 2 bytes)
• PC: IP Packet count in the buffer (7 bits)

The flag CSH indicates whether the hole corresponds to
the client-to-server stream or the server-to-client stream.
Hole size tells us how many bytes are missing, starting
from the expected sequence number of the client or the
server. Buffer size tells how many bytes we have buffered
up, starting from the end of the hole. Here we assume
that both the hole size and the buffer size do not exceed
64 KB. We drop packets that would cause these thresh-
olds to be exceeded, a tolerable performance degradation
as such packets are extremely rare. Finally, Bh and Bt are
the pointers to the head and tail of the associated buffer.
We access the buffer at a coarse granularity of a “page”
instead of byte. Hence, the pointers Bh and Bt point to
pages. With two bytes allocated to Bh and Bt, the number
of pages in the buffer must not exceed 64K. We can com-
pactly arrange the fields mentioned above in four 8-byte
SDRAM words.

We keep all connection records in a hash table for ef-
ficient access. Upon receiving a TCP packet, we com-
pute a hash value over its 4-tuple (source address, source
port, destination address, destination port). Note that the
hash value needs to be independent of the permutation
of source and destination pairs. Using this hash value as
the address in the hash table, we locate the corresponding
connection. We resolve hash collisions by chaining the
colliding records in a linked list. A question arises here
regarding possibly having to traverse large hash chains.
Recall that by using a 512 MB SDRAM, we have space



to maintain 16M connection records (32 bytes each).
However, the number of concurrent connections is much
smaller (indeed, Table 1 shows that only T3 exceeded 1M
connections total, over its entire 3-hour span). Thus, the
connection record hash table will be very sparsely popu-
lated, greatly reducing the probability of hash collisions.1

Even with an assumption of 1M concurrent connections,
theoretically the memory accesses required for a success-
ful search will be T = 1+(1M−1)/(2×16M) ≈ 1.03 [8].

The following pseudo-code summarizes the algorithm
for accessing connection records:

1. P = ReceivePacket()
2. h = (P.SA, P.SP, P.DA, P.DP)
3. {CPtr, C} = LocateConn(h)
4. if (C is valid)
5. UpdateConn(CPtr, C, P)
6. else if (P.Syn and ! P.Ack) then
7. C=CreateConn(h, P.Cseq)
8. InsertConn(C, CPtr)
9. Forward(P)
10. else
11. DropPacket(P)

LocateConn() locates the connection entry in the
hash table using the header values and returns the
{record pointer, record} pair (C indicates the actual con-
nection record and CPtr indicates a pointer to this record).
If a record was not found and if the packet is a SYN packet
then we create a record for the connection, otherwise we
drop the packet. If we find the record then we update the
record fields after processing the packet. We describe Up-
dateConn() in the next section.

4.2 Reordering Packets

TCP’s general tolerance for out-of-order datagram deliv-
ery allows for numerous types of sequence hole creation
and plugging. Figure 4 illustrates the possibilities. In this
figure, a line shows a packet, and the absence of a line
indicates a missing packet or a hole. As shown, a stream
can have a single hole or multiple simultaneous holes (we
consider only one direction). An arriving packet can plug
one of the holes completely or partially. When it closes
it partially, it can do so from the beginning or from the
end or in the middle. In all such cases, the existing hole is
narrowed, and in the last case a new hole is also created.
Moreover, a packet can also close multiple simultaneous
holes and overlap with existing packet sequence numbers.

In order to interpret the packet content consistently,
whenever packet data overlaps with already-received data,
we must first normalize the packet, as discussed in the In-
troduction. In the case of packet overlap, a simple normal-
ization approach is to discard the overlapping data from
the new packet. Thus, cases (A) to (F), cases (J) to (K),
and cases (O) to (R) all require normalization. In cases
(F), (K) and (P) (which, actually, were never seen in our
trace analysis), the arriving packet provides multiple valid
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Figure 4: Various possibilities of sequence hole creation and
plugging.

segments after normalization. In these cases, we retain
only the first valid segment that plugs the hole (partially
or completely) and discard the second. It is easy to see
that once a packet is normalized, the only cases left to
deal with are (G,H,I,L,M,N,S,T).

A key question at this point is whether to forward out-
of-sequence packets as they arrive, or hold on to them
until they become in-sequence. Buffering packets with-
out forwarding them to the end hosts can affect TCP
dynamics significantly. For instance, if a packet is lost
and a hole is created, then buffering all the packets fol-
lowing the missing packet and not forwarding them will
prevent the receiver from sending duplicate-ACKs to the
sender, foiling TCP fast retransmission and degrading per-
formance significantly. Hence, for our initial design we
choose to always forward packets, whether in-order or
out-of-order (delivering in-order packets immediately to
the byte-stream analyzer, and retaining copies of out-of-
order packets for later delivery). We revisit this design
choice below.

When a new packet plugs a sequence hole from the be-
ginning then the packet can be immediately inspected and
forwarded. If it closes a hole completely then we can
now pass along all the buffered packets associated with
the hole for byte-stream analysis, and reclaim the associ-
ated memory. (Note that we do not reinject these packets
into the network since they were already forwarded to the
end host.)

We should note that it is possible for a hole to be cre-
ated due to a missing packet, however the correspond-



ing packet reaches the destination through another route.
In this case, although the missing packet will never ar-
rive at the reassembly system, the acknowledgment for
that packet (or for packets following the missing packet)
can be seen going in the opposite direction. Hence, if
such an acknowledgment is seen, we immediately close
the hole. (See [17] for a related discussion on retaining
copies of traffic after analyzing them until observing the
corresponding acknowledgments.) If the Ack number ac-
knowledges just a portion of the missing data then we nar-
row the hole rather than close it. In any case, the released
packets will remain uninspected since the data stream is
not complete enough to soundly analyze it.

We can summarize the discussion above in the follow-
ing pseudocode. For clarity, we write some of the condi-
tional statements to refer to the corresponding cases in the
Figure 4.

1. UpdateConn(CPtr, C, P)
2. if (hole in other direction) then
3. if (P.Ack > C.Seq) then
4. if (hole closed completely) then
5. FreeBuffer(C.Bh-C.Bt)
6. WriteConn(C, CPtr)
7. if (Case (A-F, J-K, O-R)) then
8. Normalize(P)
9. if (Case (G, H, I, L, N, S) then
10. Forward(P)
11. if (Case (G, H, I)) then
12. WriteConn(C, CPtr)
13. Analyze(P)
14. if (Case (I)) then
15. Analyze(C.Bh-C.Bt)
16. else if (Case (L, N, S)) then
17. Buffer(P, C, CPtr)
18. else if (Case (M, T)) then
19. DropPacket(P)

4.3 Buffering out-of-order packets

Storing variable-length IP packets efficiently requires a
memory management algorithm such as paging or a
buddy system. Due to its simplicity and low overhead,
in our design we use paging. We segment available mem-
ory into fixed-length pages (chunks) allocated to incoming
packets as required. If a packet is bigger than a page then
we store it across multiple pages, with all pages linked in a
list. We use a pointer to the first page as the packet pointer.
If a packet is smaller than the page size then we use the
remaining space in its page to store the next packet, com-
pletely or partially.

To track a packet chunk, we need the following (see
Figure 5):

• Conn: pointer to the connection associated with the
buffer (3 bytes)

• Next: pointer to the next page (3 bytes)
• FrontOrBack (FB): whether the page is filled starting

from its beginning or its end (1 bit)
• Offset (Of): pointer to boundary between valid data

and unused portion of the page (11 bits)

Next

Packet 2

to next page
to the corresponding
connection record

Conn

Data of the 
previous packet

Packet 1

Beginning of Packet 3

256 words

8−byte word

FB,Of

Figure 5: Page record. Note that packets can be split across
two pages. The page shown here holds data for a packet
that starts in a previous chunk, and another that ends in a
later chunk. A packet starts immediately from the next byte
where the previous packet ends. (For convenience, in our
design buffered packets include their full TCP/IP headers,
although we could compress these.)

Conn is needed in the case of a premature eviction of
a page requiring an update of the corresponding connec-
tion record. Next points to the next page used in the same
hole buffer. FrontOrBack allows us to fill pages either
from their beginning (just after the header) or their end.
We fill in front-to-back order when appending data to ex-
tend a hole to later sequence numbers. We fill in back-
to-front order when prepending data to extend to earlier
sequence numbers. If FrontToBack is set to FRONT, then
Offset points to where valid data in the page ends (so we
know where to append). If it is set to BACK, then Offset
points to where valid data begins (so we know where to
prepend).

When we free memory pages, we append them to a
free-list with head (FreeH) and tail (FreeT) pointers. The
pseudocode for our initial design (which we will modify
in the next section) is:

1. BufferPacket_v1(P, C, CPtr)
2. WritePage(P, C.Bt)
3. if (insufficient space in C.Bt) then
4. if (free page not available) then
5. EvictPages()
6. x = AllocatePage(FreeH)
7. WritePage(P, x)
8. AppendPage(x, C.Bt)
9. WriteConn(C, CPtr)

In the pseudocode above, we first start writing the
packet in the free space of the tail page (line 2), updating
the page’s Offset field in the process. (If FrontOrBack is
set to BACK for this page, then we know immediately that
we cannot append further to it.) If this fills up the page and
a portion of the packet remains to be written (line 3), we
need to allocate a free page for the remaining portion (a
single page suffices since pages are larger than maximum-
sized packets). To do that, we first check if we have any
free pages left in the memory. If not, then we must evict
some occupied pages. (See below for discussion of the
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eviction policy.) After possibly freeing up pages and ap-
pending them to the free-list, we write the packet into the
first free page, FreeH (lines 6–7). When done, we append
the page to the list of pages associated with the connec-
tion (line 8). Finally, we update the connection record
and write it back at the corresponding connection pointer
(line 9).

Note that in some cases we need to prepend a page to
the existing hole buffer instead of appending it (e.g., Case
(N) in Fig. 4). In this case, we allocate a new page, set
FrontOrBack to BACK, copy the packet to the end of the
page, and set Offset to point to the beginning of the packet
rather than the end. The pseudocode for this case is simi-
lar to the above, and omitted for brevity.

4.4 Block Diagram

We can map the various primitives of connection and
buffer management from the previous sections to the
block diagram shown in Figure 6. Module In-order Packet
Processing (IOPP) handles the processing of in-order
packets (cases (G,H,I) in Figure 4). It contains the prim-
itives CreateConn(), InsertConn(), LocateConn(), Read-
Conn(), WriteConn() and Normalize(). It passes all in-
order packets to the Analyzer module, which is the inter-
face to the byte-stream analyzer (which can be a separate
software entity or an integrated hardware entity). When
a hole is closed completely, the buffer pointers (C.Bh and
C.Bt) are passed to the Analyzer, which reads the pack-
ets from Buffer Manager. For out-of-order packets (cases
(L,N,S)), the packet is passed to the Out-of-order packet
processing (OOPP) module. This module maintains the
primitives WritePage(), EvictPage(), AppendPage() and
WriteConn(). When the packet needs buffering, the cor-
responding connection record can be updated only after
allocating the buffer. Hence, these delayed connection up-
dates are handled by WriteConn() of OOPP. The Connec-
tion Record Manager arbitrates requests from both IOPP
and OOPP.

To accommodate delays in buffering a packet, we use a
small queue between IOPP and OOPP, as shown in Fig-

ure 6. Note that the occupancy of this queue depends
on how fast out-of-order packets can arrive, and at what
speed we can process them (in particular, buffer them).
Since we have two independent memory modules for
connection record management and packet buffering, we
can perform these processes in a pipelined fashion. The
speedup gained due to this parallelism ensures that the
OOPP is fast enough to keep the occupancy of the small
queue quite low. In particular, recall that the raw band-
width of a DDR SDRAM used for buffering packets can
be as high as 21 Gbps. Even after accounting for access
latency and other inefficiencies, if we assume a through-
put of a couple of Gbps for OOPP, then an adversary must
send out-of-order packets at multi-Gbps rates to overflow
the queue. This will cause more collateral damage simply
by completely clogging the link than by lost out-of-order
packets.

5 Dealing with an Adversary

We now turn to analyzing possible vulnerabilities in our
stream reassembly mechanism in terms of ways by which
an adversary can launch an attack on it and how we can
avoid or at least minimize the resulting damage.

In a memory subsystem, the obvious resources that an
attacker can exploit are the memory space and the mem-
ory bandwidth. For our design, we have two independent
memory modules, one for maintaining connection state
records and the other for buffering out-of-order packets.
Furthermore, attacking any of the design’s components, or
a combination, can affect the performance of other com-
ponents (e.g., bytes-stream analyzer).

For our system, the buffer memory space is particularly
vulnerable, since it presents a ready target for overflow
by an attacker, which can then potentially lead to abrupt
termination of connections. We refer to such disruption as
collateral damage.

We note that an attacker can also target the connection
record memory space. However, given 512 MB of mem-
ory one can potentially maintain 16M 32-byte connection
records. If we give priority to evicting non-established
connections first, then an attacker will have great difficulty
in overflowing this memory to useful effect. We can ef-
ficiently perform such eviction by choosing a connection
record to reuse at random, and if it is marked as estab-
lished then scanning linearly ahead until finding one that
is not. Under flooding conditions the table will be heavily
populated with non-established connections, so we will
not spend much time finding one (assuming we have been
careful with randomizing our hash function [9]).

Attacks on memory bandwidth can slow down the de-
vice’s operation, but will not necessarily lead to connec-
tion evictions. To stress the memory bandwidth, an at-



tacker can attempt to identify a worst-case memory ac-
cess pattern and cause the system to repeatedly execute
it. The degree to which this attack is effective will de-
pend on the details of the specific hardware design. How-
ever, from an engineering perspective we can compute the
resultant throughput in this case and deem it the overall,
guaranteed-supported throughput.

Finally, as we show in the next section, if we do not
implement appropriate mechanisms, then an attacker can
easily overflow the hole buffer and cause collateral dam-
age. Hence, we focus on this particular attack and refine
our system’s design to minimize the resulting collateral
damage.

5.1 Attacks on available buffer memory

While our design limits each connection to a single hole,
it does not limit the amount of buffer a single connection
can consume for its one hole. A single connection cre-
ated by an adversary can consume the entire packet buffer
space by accumulating an arbitrary number of packets be-
yond its one hole. However, we can contain such con-
nections by limiting per-connection buffer usage to a pre-
determined threshold, where we determine the threshold
based on trace analysis. As shown in Figure 3, 100 KB of
buffer suffices for virtually all connections.

Unfortunately, an adversary can then overflow the
buffer by creating multiple connections with holes while
keeping the buffer of each within the threshold. A simple
way to do this is by creating connections from the same
host (or to the same host) but using different source or
destination ports. However, in our trace analysis we ob-
served very few instances of a single host having multiple
holes concurrently on two different connections. Here, it
is important to observe that the adversary is essentially an
external client trying to bypass our system into a protected
network. While we see several instances of a single client
(e.g. web or email proxy) inside the protected network
creating concurrent connections with holes, these can be
safely discounted since these hosts do not exhibit any ad-
verse behavior unless they are compromised. From our
traces, it is very rare for a (legitimate) external client to
create concurrent connections with holes (the last row of
Table 1). This observation holds true even for T3’s con-
gested link.

We exploit this observation to devise a simple policy
of allowing just one connection with a hole per external
client. With this policy, we force the attacker to create
their different connections using different hosts.

To realize this policy, we need an additional table to
track which external clients already have an unplugged
hole. When we decide to buffer a packet, we first check
to see if the source is an internal host by comparing it
against a white-list of known internal hosts (or prefixes).

If it is an external client and already has an entry in the
table then we simply drop the packet and disallow it to
create another connection with hole.

Our modified design forces an adversary to use multi-
ple attacking hosts (assuming they cannot spoof both sides
of a TCP connection establishment handshake). Let us
now analyze this more difficult case, for which it is prob-
lematic to isolate the adversary since their connections
will adhere to the predefined limits and appear benign,
in which case (given enough zombie clients) the attacker
can exhaust the hole buffer. Then, when we require a new
buffer for a hole, we must evict an existing buffer (drop-
ping the new packet would result in collateral damage if it
belongs to a legitimate connection).

If we use a deterministic policy to evict the buffer, the
adversary may be able to take this into account in order to
protect its buffers from getting evicted at the time of over-
flow (the inverse of an adversary willfully causing hash
collisions, as discussed in [9]). This leads us to instead
consider a randomized eviction policy. In this policy, we
chose a buffer page at random to evict. We can intuitively
see that if most of the pages are occupied by the adver-
sary, then the chances are high that we evict one of the ad-
versary’s pages. This diminishes the effectiveness of the
attacker’s efforts to exhaust the buffer, as analyzed below.

5.1.1 Eviction and Connection Termination

Eviction raises an important issue: what becomes of the
analysis of the connection whose out-of-sequence pack-
ets we have evicted? If the evicted packet has already
reached the receiver and we have evicted it prior to in-
spection by the byte-stream analyzer (which will gener-
ally be the case), then we have a potential evasion threat:
an adversary can send an attack using out-of-order pack-
ets, cause the device to flush these without first analyzing
them, and then later fill the sequence hole so that the re-
ceiver will itself process them.

In order to counter this evasion, it appears we need
to terminate such connections to ensure air-tight security.
With such a policy, benign connections pay a heavy price
for experiencing even a single out-of-order packet when
under attack. We observe, however, that if upon buffer-
ing an out-of-sequence packet we do not also forward the
packet at that time to the receiver, then we do not need to
terminate the connection upon page eviction. By simply
discarding the buffered packet(s) in this case, we force the
sender to retransmit them, which will give us another op-
portunity to reassemble the byte stream and provide it to
the intrusion-prevention analyzer. Thus, we degrade the
collateral damage from the severe case of abnormal con-
nection termination to the milder case of reduced perfor-
mance.

Before making this change, however, we need to re-



visit the original rationale behind always forwarding out-
of-sequence packets. We made that decision to aid TCP
retransmission: by letting out-of-order packets reach the
end host, the ensuing duplicate-ACKs will trigger TCP’s
“fast retransmission.” However, a key detail is that trig-
gering fast retransmission requires at least 3 duplicate-
ACK packets [3]. Thus, if the receiver receives fewer than
three out-of-order packets, it will not trigger fast retrans-
mission in any case. We can then exploit this observa-
tion by always buffering—without forwarding—the first
two out-of-order packets on given TCP stream. When the
third out-of-order packet arrives, we release all three of
them, causing the receiver to send three duplicate-ACKs,
thereby aiding the fast retransmission.2 In the pseudocode
of UpdateConn (Section 4.2), lines 16 and 17 change as
follows:

1. else if (Case (L, N, S)) then
2. BufferPacket(P, C, Cptr)
3. if (Case (N, S) and C.PC >= 2) then
4. if (C.PC == 2) then

# Forward the previously
# unforwarded packets.

5. Forward(C.Bh - C.Bt)
6. Forward(P)

With this modification, we ensure that if a connection
has fewer than three out-of-order packets in the buffer,
then their eviction does not require us to terminate the
connection. Our trace analysis indicates that such connec-
tions are far-and-away the most common (the 10th row of
Table 1). Hence, this policy protects most connections
even using random page eviction. Thus, our final proce-
dure is:

1. EvictPages()
2. x = random(1, G)
3. p = ReadPage(x)
4. C = ReadConnection(p.Conn)
5. Deallocate(C.bh, C.bt)
6. if (C.PC > 2) then

# Must kill since already
# forwarded packets.

7. KillConnection(C)
8. else

# Update to reflect Deallocate.
9. WriteConn(C)

5.1.2 Analysis of randomized eviction

How many attempts must an adversary make in order to
evict a benign page? Consider the following parameters.
Let M be the total amount of memory available and g
the page size. Hence, the total number of pages available
is P = M/g, assuming that M is a multiple of g. Let
Ml denote the amount of memory occupied by legitimate
buffers at a given time. Hence, the number of pages of
legitimate buffers, Pl, is simply Pl ≈ Ml/g (the equality
is not exact due to page granularity).

Let T denote the threshold of per-connection buffer in
terms of pages, i.e., a connection can consume no more
than T pages for buffering out-of-sequence data. Let C

denote the number of connections an adversary uses for
their attack. Several cases are possible:

Case 1: C ≤ P−Pl

T
. In this case, the adversary does

not have enough connections at their disposal. We have
sufficient pages available to satisfy the maximum require-
ments of all of the adversary’s connections. Thus, the ad-
versary fills the buffer but still there is enough space to
keep all benign buffer pages, and no eviction is needed.

Case 2: C > P−Pl

T
. In this case, the adversary has

more connections at their disposal than we can support,
and thus they can drive the system into eviction. On av-
erage, the adversary needs to evict P/Pl pages in order to
evict a page occupied by legitimate buffers. Let b evic-
tions/second be the aggregate rate at which the adver-
sary’s connections evict pages.

If we denote the rate of eviction of legitimate pages by
e then we have the following expression:

e =
Pl

P
b (1)

We now express the eviction rate, b, as a function of
other parameters. Recall that if the number of packets ac-
cumulated by a hole is fewer than three, then upon evic-
tion of a page containing these packets, we do not need
to terminate the connection. If we have buffered three or
more packets following a hole, then evicting any of them
will cause the eviction of all of them due to our policy
of terminating the corresponding connection in this case.
Thus the adversary, in order to protect their own connec-
tions and avoid having all of their pages reclaimed due to
the allocation of a single new page, would like to fit in the
first of these two cases, by having fewer than three pack-
ets in the buffer. However, the adversary would also like
to occupy as much buffer as possible. Assuming pages
are big enough to hold a single full-sized packet, then to
remain in the first case the best they can do is to send two
packets that occupy two pages, leading to the following
sub-case:

Case 2a: C ≥ P−Pl

2
. In this case, if adversary evicts

one of their own pages, then this will not cause termina-
tion of the connection; only a single page is affected, and
replaced by another of the adversary’s pages: such evic-
tions do not cost the adversary in terms of resources they
have locked up.

We now consider r, the rate at which a single adversary
connection can send data. The adversary’s corresponding
aggregate page creation rate is (r/g)C, leading to:

b ≤
rC

g

which becomes an equality when the buffer is full. (Recall
that b is the page eviction rate.) Thus, when the buffer is
full, Eqn. 1 then gives us:

e =
PlrC

Pg



Which can be expressed as our first Zombie Equation:

C =
P

Pl

eg

r
(2)

As this expression shows, the adversary needs a large
number of connections if the proportion of “spare” pages
is large.

On the other hand, if the adversary uses a lesser number
of connections, then we have the following case:

Case 2b: C < P−Pl

2
. In this case, to cause evictions the

adversary’s connections must all consume three or more
pages. However, as discussed above, if one of the con-
nection’s pages is evicted then the connection will be ter-
minated and all of its pages evicted. Thus, eviction im-
mediately frees up a set of pages, and adding more pages
is not going to cause eviction until the buffer is full again.
Providing that in steady-state most evictions are of the ad-
versary’s pages (which we can achieve using P � Pl), in
this case they are fighting a losing battle: each new page
they claim costs them a multiple of existing pages. Thus,
it is to the adversary’s detriment to be greedy and create a
lot of pages.

We can make this argument more precise, as follows.
Suppose every time the adversary evicts one of their own
existing connections, it releases Pc pages (the number of
pages that each of their connections occupies). For the
next Pc − 1 page additions, no page needs to be evicted,
since the buffer is not yet full. After the buffer is again
full, the same process of eviction and repletion repeats.
Thus, the rate of attempts to evict a buffer is simply once
every Pc page additions.

The time required for Pc additions is Pcg/rC (total size
in bytes of the amount of buffer that must be consumed,
divided by the aggregate rate at which the adversary can
send data). Furthermore, since the number of pages the
adversary must consume is P − Pl, if each connection
consumes Pc pages, then we have Pc = (P − Pl)/C.
Putting these two together, we have:

b =
1

Pcg/rC
=

rC

Pcg
=

rC2

(P − Pl)g
(3)

Holding the other parameters fixed, this equation says that
the rate of eviction varies quadratically with the number
of connections available to the adversary. Intuitively, the
quadratic factor comes from the fact that by increasing
the number of connections, the adversary not only can in-
crease their rate of page addition but also reduce their own
page eviction rate, since now each individual connection
needs to contribute fewer pages.

Substituting Eqn. 3 for b in Eqn. 1 and assuming P �
Pl, we get:

e =
rC2Pl

(P − Pl)gP
≈

rC2Pl

gP 2
=

rC2Ml

M2
(4)

This gives us our second Zombie Equation:

C = M

√

e

rMl

(5)

Due to our policy of one-hole-per-host, the required
connections in Eqns. 2 and 5 must originate from different
hosts. Hence, the value of C essentially tells us how many
total hosts (“Zombies”) an adversary must command in
order to launch this attack.

Finally, it is important to note that e is just the rate of
eviction of benign buffer pages. As can been seen from
Table 1, 85% or more of the time an evicted page hosts
an un-forwarded packet (< 3 packets in the buffer), and
hence its eviction causes only minor collateral damage
(degraded TCP performance due to retransmission). If we
denote the benign connection termination rate by E, then:

E ≤ (1 − 0.85)e = 0.15e (6)

expresses the rate of serious collateral damage.
We now evaluate these equations with parameters re-

flecting current technologies. We assume the availabil-
ity of 128 MB and 512 MB DDR-SDRAM modules for
buffering packets. Figure 3 shows that the maximum
amount of buffer accumulated by a hole was observed
to be around 100 KB. However, it can also be seen that
for almost 95% of the cases it was below 25 KB. There-
fore, it is reasonable to limit the per connection buffer to
a 25 KB threshold, which translates into approximately
T < 13 pages with a page size of 2 KB. ¿From Table 1,
we see that there is a notable difference between the av-
erage buffer occupancy of the Munich trace compared to
other traces. While for other traces, the average buffer
requirement of legitimate connections is Ml ≤ 30KB,
the same jumps to about 180 KB for the Munich. We will
consider both these values of Ml. Finally, to get an idea of
the degree of damage in a real life scenario, we pick three
different zombie data-rates: 56 Kbps for dial-up zombies,
384 Kbps for the zombies with DSL, and 10 Mbps for
high-speed zombies. With all these parameters fixed, the
rate of collateral damage, E, can be plotted as a function
of the number of zombies and their data rate r, as shown
in Figure 7.

Each curve has three distinct regions: the first region
when the eviction rate of benign connections is zero, cor-
responding to Case 1 analyzed above; the second region
where the eviction rate increases quadratically with the
number of zombies, reflecting Case 2b (it’s in the ad-
versary’s interest to create large holes); and the third re-
gion where the eviction rate increases linearly, reflecting
Case 2a (the adversary is better off creating small holes).

Note that the Y-axis is log-scaled. The abrupt change in
eviction rate from region 2 to region 3 arises due to the as-
sumption that all the connections of an adversary occupy
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Figure 7: Benign connection eviction rate as a function of different memory sizes and zombie data rates: dialup zombies
(56 Kbps), DSL zombies (384 Kbps) and high-speed zombies (10 Mbps). (a) Total available memory, M=512 MB and average
legitimate buffer occupancy Ml=30 KB (b) M=128 MB, Ml=30 KB (c) M=512 KB, Ml=180 KB (d) M=128 MB, Ml=180 KB.
For all cases, we assume a 2 KB page size and a per-connection buffer threshold of 25 KB (T < 13 pages).

the same number of pages in the buffer. This assumption
results in each connection in region 2 having more than
two pages and thus all pages are evicted upon eviction of
any one of these pages; while each connection in region 3
has at most two pages, which are thus not evicted in en-
semble. In practice, this change will not be so abrupt since
each region will have a mix of connections with different
page occupancy, the analysis of which requires more so-
phisticated mathematical tools beyond the scope of this
paper.

As the figure shows, in the most favorable case
(512 MB of buffer, and average buffer requirement of
30KB) for the adversary to cause collateral damage of
more than 100 benign connection evictions per second,
they need to control more than 100,000 machines, with
each of them sending data at a rate of 10 Mbps. Moreover,
for the same configuration, if these zombies number less
than 20,000, then no damage occurs, since the buffer is
large enough to keep the out-of-sequence packets of each

legitimate connection (provided none exceeds the thresh-
old of 25 KB).

To summarize, our buffer management policy consists
of three rules:

• Rule 1: Limit the reordering buffer consumed by
each connection to a predefined threshold (which is
carefully chosen through a trace-driven analysis).

• Rule 2: Upon overflow, randomly evict a page to as-
sign to new packet.

• Rule 3: Do not evict a connection if it has less than
three packets in the buffer.

We pause here and reflect: what would have been the
effect of a naive buffer management policy consisting of
only Rule 2? What if we just randomly evict a page on
overflow ? First, we note that in the absence of Rule 3,
the option of not evicting a connection upon its page evic-
tion is ruled out, since otherwise the system is evadable.
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Figure 8: Comparison of eviction rates for the devised buffer
management policy (Rules 1, 2 & 3) and a naive policy of just
random eviction (only Rule 2). The total available memory
was assumed to be M=512 MB and the average buffer occu-
pancy of benign connections was assumed to be Ml=30 KB.
The zombie rate is 10 Mbps.

Now, given that a buffer eviction is equivalent to connec-
tion eviction, we lose out on the improvement given by
Eqn 6 (thus, now E = e). Secondly, in the absence of
Rule 1 and Rule 3, Case 1 and Case 2a do not come into
picture; the system behaves in the same way as it would
in Case 2b. Hence the benign connection eviction rate is
the same as given by Eqn 4.

We contrast the benign connection eviction rate in the
two cases for a given configuration in Figure 8. Clearly,
with the application of Rule 1 and 3, we reduce the dam-
age to legitimate connections a great deal.

5.2 Designing for the general case

Our approach so far has been to design a system that han-
dles the most common case of packet reordering, i.e., the
occurrence of a single hole, at the cost of reduced TCP
performance (even when not under attack) for the rare
case of multiple concurrent holes. In this section we ex-
plore the design space for handling the case of multiple
concurrent holes in a single connection.

It is important to note that any mechanism we design
will ultimately have resource limitations. Hence, no mat-
ter how we configure our system, it is possible to come up
with a pathological case (e.g., a very large number of con-
current holes in a connection—a semantically valid case)
that will force us to break end-to-end semantics. In this
light, our previous trace analysis provides us with a “rea-
sonable” set of cases that merit engineering consideration.
In particular, the observation that more than 95% of the
connections have just a single concurrent sequence hole
indeed presents a compelling case for designing for this
case. Unfortunately, when we analyze multi-hole connec-
tions in terms of the number of holes in each, no modality
appears that is nearly as sharp as the distinction between
single-hole and multi-hole connections. Thus, picking a

“reasonable” number of per-connection holes is difficult.
(For instance, the trace T3 shows that a connection can ex-
hibit 85 concurrent holes—though this turns out to reflect
pathological behavior, in which a Web server returned an
item in a single, large burst of several hundred six-byte
chunks, many of which were lost.)

Allowing multiple concurrent holes requires maintain-
ing per-hole state. The key difficulty here is that we can-
not afford to use a large, arbitrarily extensible data struc-
ture such as a linked list. Once the data structure’s size
exceeds what we can store in on-chip RAM, an adversary
can cause us to consume excessive CPU cycles iteratively
traversing it off-chip. On the other hand, if we expand the
size of each connection record to accommodate N holes
rather than 1, which will allow us to make a small number
of off-chip accesses to find the hole, this costs significant
additional memory.

Since most connections have zero or one hole, we can
realize significant memory savings by differentiating be-
tween the two types of connections: connections with at
most one hole (per the data structure in our current de-
sign) and connections with up to N holes. We could par-
tition memory to support these two different types. Con-
nections initially exist only in the at-most-one-hole parti-
tion. As necessary, we would create an additional record
in the multiple-holes partition. We would likely keep the
original record, too, so we can easily locate the record for
newly-received packets by following a pointer in it to the
additional record.

A key issue here is sizing the second partition. If it is
too large, then it defeats the purpose of saving memory
by partitioning. On the other hand, if it is small then it
becomes a potential target for attack: an adversary can
create a number of connections with multiple holes and
flood the second partition. Given this last consideration,
we argue that extending the design for handling multiple
sequence holes within single connections yields diminish-
ing returns, given the resources it requires and the addi-
tional complexity it introduces. This would change, how-
ever, if the available memory is much larger than what is
needed for the simpler, common-case design.

6 Conclusions

TCP packet reassembly is a fundamental building block
for analyzing network traffic at higher semantic levels.
However, engineering packet reassembly hardware be-
comes highly challenging when it must resist attempts by
adversaries to subvert it. We have presented a hardware-
based reassembly system designed for both efficiency and
robust performance in the face of such attacks.

First, through trace-driven analysis we characterized
the behavior of out-of-sequence packets seen in benign



TCP traffic. By leveraging the results of this analysis, we
designed a system that addresses the most commonly ob-
served packet-reordering case in which connections have
at most a single sequence hole in only one direction of the
stream.

We then focused on the critical problem of buffer ex-
haustion. An adversary can create sequence holes to cause
the system to continuously buffer out-of-order packets un-
til the buffer memory overflows. We showed that through
careful design we can force the adversary to acquire a
large number hosts to launch this attack. We then devel-
oped a buffer management policy of randomized eviction
in the case of overflow and analyzed its efficacy, deriving
Zombie equations that quantify how many hosts the adver-
sary must control in order to inflict a given level of collat-
eral damage (in terms of forcing the abnormal termination
of benign connections) for a given parameterization of the
system and bandwidth available to the attacker’s hosts.

We also discussed a possible design space for a sys-
tem that directly handles arbitrary instances of packet re-
sequencing, arguing that due to its complexity, such a sys-
tem yields diminishing returns for the amount of memory
and computational resources we must invest in it.

We draw two broad conclusions from our work. First,
it is feasible to design hardware for boosting a broad class
of high-level network analysis even in the presence of ad-
versaries attempting to thwart the analysis. Second, to
soundly realize such a design it is critical to perform an
extensive adversarial analysis. For our design, assessing
traces of benign traffic alone would have led us to an ap-
pealing, SRAM-based design that leverages the property
that in such traffic, holes are small and fleeting. In the
presence of an adversary, however, our analysis reveals
that we must switch to a DRAM-based design in order to
achieve robust high-performance operation.
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Notes
1Another consideration here concerns SYN flooding attacks filling

up the table with bogus connection entries. We can considerably offset
this effect by only instantiating connection entries based on packets seen
from the local site.

2 If alternate schemes for responding to duplicate-ACKs such as Lim-
ited Transmit [2] come into use, then this approach requires reconsider-
ation.
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