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What is a deepfake?

e Synthetic image/video of a person that looks realistic to human viewers, which
can be used to perpetrate fraud or spread misinformation

e Deepfakes are a form of social engineering attack

e \We have focused our research on detecting facial deepfakes



Social engineering attacks
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Face synthesis

StyleGan (2019)




Face swap

FaceSwap (2016) Deepfake FaceSwap (2020)

Jennifer Lawrence/Steve Buscemi FaceSwap using the Villain model



Face attribute

StarGAN (2018)

Input Black hair  Blond hair Gender Aged H+G H+A G+A H+G+A




Facial expression

Face2Face (2016)
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Protecting against deepfake

e \We need a system for authenticating media

Authenticator

Real/fake?
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Convolutional Neural Network (CNN)

Feature maps

Convolutions Subsampling Convolutions ~ Subsampling  Fully connected
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Convolutional Neural Network (CNN) cont.

Convolutional

- Real/fake?

Neural Network
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Input layer
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Optical flow

Amerini et al., 2019

Figure 2. Optical flow for original (left) and deepfake (right)
videos.
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CNN'’s with optical flow
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CNN’s with self-labeled data (Li et al., 2019)

1. Generate “negative” examples that contain deepfake generation artifacts
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2. Use “negative” examples to train a CNN

Convolutional Real/fake?
Neural Network




Forensic deepfake detection

e Forensic approach

o Generate correlations between facial features in a video to determine “signature motion”
(Agarwal et al., 2019)

t =50
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Figure 3. Shown is a 2-D visualization of the 190-D features for
Hillary Clinton (brown), Barack Obama (light gray with a black
border), Bernie Sanders (green), Donald Trump (orange), Eliza-
beth Warren (blue), random people [23] (pink), and lip-sync deep
fake of Barack Obama (dark gray with a black border).

18



Forensic deepfake detection cont.
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Our contribution

e \We aim to improve upon existing neural network and forensic feature models.
v Feature augmentation and enhancement
v Better classification model
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Dataset cont.

704 videos for training (368,135 images)
150 videos for validation (75,526 images)
50 videos for testing (77,745 images)

| Original set

|

| Training set | Test set

|

| Training set l Validation set | Test set

|

Training, tuning, and
evaluation

Machine learning w

algorithm
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—Jv Final performance estimate
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Forensic analysis of facial landmarks
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Principal Component Analysis (PCA)

e Popular technique for dimensionality reduction

e Transform feature space into orthogonal basis features, only capture most
prominent features

e Fewer features — less variance, less overfitting
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Method: Random forest classifier

Instance

e Pros: Random Forest /‘ \\\
o  Works with few features

o Lower variance compared to regular decision tree i ?( m m
o Explainable model

Tree-1 Tree-2 Tree-n
o Low cost

Class-A Class-B Class-B

[ Majority-Voting |
Final-Class
e Cons:

o Hard to tune
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Method: Support vector machine

e Pros:

o Supports non-linear decision boundaries

e (Cons:

o Hard to tune kernel and hyperparameters

Sepal width

Sepal length

https://pythonmachinelearning.pro/classification-with-support-vector-machines/
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Method: Neural Network with facial landmarks

Facial FC
Landmark neural |:> Output
detector Net _
Loss: Cross
Entropy loss
Features x

"PCA for dimension
Pros: reduction
Lightweight --- single GPU training
Large batchsize
Cons:
Data hungry
Need extensive tuning



Metrics

Accuracy: (True Positive + True Negative) / total samples
Precision: True Positives / All the predicted positives

Recall:  True Positives / All the actual positives
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Results: in-distribution samples (small scale)

Near perfect performance
for random forest

What does this imply? We
can perfectly detect
fake/real across the web if
we have label for part of a
clip.

10K training images

SVM Random NN
Forest
Accuracy 80.00% 98.10% 85.12%
Table 1: Accuracy for different models
Random Forest NN
Precision 98.52% 92.81%
Recall 98.72% 85.01%

Table 2: Precision and Recall for top 2 models
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Results: out-of-distribution training and testing

- Both methods drops
significantly

- Neural Net performs slightly
better (the training accuracy for
NN is 90% and for random
forest 99.9%)

- Training data is too little!

- 14K training images

SVM Random NN
Forest

Accuracy N/A 70.50% 73.78%

Table 1: Accuracy of Random and NN model

Random Forest | NN

Precision 77.15% 79.23%

Recall 58.82% 63.44%

Table 2: Precision and Recall for top 2 models
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Public Benchmark
Results w/ ~5 times our
current training data
- Larger net
- More data
- Utilize video
property

Method Info Deepfakes |

Xception [P] 0.964 0.869

I Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, Matthias NieBner: FaceForensics++: Leamning to Detect Manipulated Facial Images. ICCV Z

Inception Resnet V1 0.936 0.839
Nika Dogonadze, Jana Obernosterer: Deep Face Forgery Detection. Advanced Deep Learing for Computer Vision Course at TUM

SCAN C 0.909 0.825
EfficientNet-b4 0.955 0.796
Face Defence 0.945 0.766
swap_classify 0.909 0.759
XceptionNet Full Image [P 0.745 0.759

Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, Matthias NieBner: FaceForensics++: Leaming to Detect Manipulated Facial Images. ICCV Z

Bayar and Stamm 0.845 0.737

Belhassen Bayar and Matthew C. Stamm: A deep leamning approach to universal image manipulation detection using a new convolutional layer. ACM Workshop on Informatic

Steganalysis Features 0.736 0.737
Jessica Fridrich and Jan Kodovsky: Rich Models for Steganalysis of Digital Images. |EEE Transactions on Information Forensics and Security

GAEL-Net 0.718 0.686
Recasting 0.855 0.679

Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detectio
Hiding and Multimedia Security

Forged face detection : f{CNN 0.791 0.642

Rahmouni 0.855 0.642

Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and Isao Echizen: Distinguishing computer graphics from natural images using convolution neural networks. IEEE Worl
Security,

http://kaldir.vc.in.tum.de/faceforensics_benchmark/index.php?sortby=dface2face
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Visualized Examples

Original Image

Altered Image
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Next steps

Scale Up

=

z =

v ool 7

Scale up & Analysis

Compare with public Benchmark

Temporal Features

ing  Fully connected

CNN + Forensic Features
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Thank youl!
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