Identifying Load-Balanced Backends

Ian Rodney

Why does it matter?

- Targeted DDoS
- Service degradation

2

Load Balancers

- Terminate & regenerate :(
- Pass through
 - :)
- Hashing_IP/Port

Side Channels

- Information leaks around shared state
- Well studied
- Setup:

IPID

packet.

Mechanism

- Unique fragment ID
 - 16-bit field in IPv4

	4-bit Version 4-bit Header Length Type of Service (TOS)		16-bit Total Length (Bytes)	
ID field is supposed to be unique per IP packet.	16-bit Identification		3-bit Flags	13-bit Fragment Offset
	8-bit Time to Live (TTL)	8-bit Protocol	16-bit Header Checksum	
	32-bit Source IP Address			
	32-bit Destination IP Address			
One easy way to do this: increment it each time system sends a new	Payload			

- Counter types:
 - Global
 - Per-Destination
 - Hybrid (2048 counters)

IPID

Side Channel

- Global Counter
- Per-Dest
- Hybrid

Echo request

Echo request

Echo request

reply, ID=7

reply, ID=9

reply, ID=10

TCP SYN, src=P, dst port=25

TCP SYN-ACK

TCP RST, ID=8

P has no state for this connection, so generates

the IP ID sequence

a RST, which increments

listener exists on port 25,

SYN-ACK generated.

+1

+2

+1

listener

exists!

IPID

Side Channel

- Global Counter
- Pretty hard to defeat
- Per-Dest
- Hybrid

• But there is a way

IPID Side Channel

Global Counter

Timestamps Mechanisms

Systems have a unique clock drift

Shared State Mechanisms

- Fragment reassembly buffer
- TCP SYN Cache
- Challenge ACK rate limit

Rate-Limit Mechanism

- Challenge ACK rate limit
 - SYN or RST variants

RFC 5961

Rate-Limit Mechanism

- Challenge ACK rate limit
 - SYN or RST variants

RFC 5961

Cao & Et. Al 2016

Cao & Et. Al 2016

Buffer

Side Channel

 Fragment buffer & per-destination IPID
subtle
Source: U, Frag
Frag
Victim
Frag
Victim
Frag
Victim
Source: V, Full
U, IPID: 10 A, IPID: 80 U, IPID: 90

Cao & Et. Al 2016

<u>Buffer</u>

Side Channel

 Fragment buffer & per-destination IPID
subtle
subtle subtle subtle subtle subtle

Buffer

- Fragment buffer & per-destination IPID
- subtle

Zhang 2018

Zhang & Et. Al 2015

Zhang & Et. Al 2015

How to leverage?

• IPID:

- Global --> straight forward
- Per-Dest/2048 --> impossible/hard
- Timestamps --> straight forward
- Shared State --> overwhelm and check

My contributions

- Check for side-channel presence
 - Alexa Top 1000

My contributions

- Check for side-channel presence
 - Alexa Top 1000
- ICMP/TCP/HTTP timestamps
- TCP traceroute (termination location)

Tools

- Scapy
 - Raw pcaps
 - Packet manipulation
- Requests
 - HTTP
- Ray
 - Distributed programming (scanning)

Results (a few)

- 986 responses
 - 98% had TCP responses
 - 60% had TCP timestamps
 - 85% had HTTP responses
 - 0 ICMP

Results (a few)

Results (a few)

Lessons Learned

Don't underestimate the kernel

Lessons Learned

- Don't underestimate the kernel
- ISPs can be annoying

COX

ThisNameDoesNotExist.com cannot be found

Displaying search results for ThisNameDoesNotExist.com

Lessons Learned

- Don't underestimate the kernel
- ISPs can be annoying
- I don't get IPv6
 - Google IPv6 DNS + IPv6 ISP support = No connection?!

Experiments Next Steps

- Existence of Challenge ACKs
- IPv6 reachability
- HTTP timestamp analysis

Validation Next Steps

Simple GCP Load Balanced Web Server

• Easy ground-truth

In-the-wild validation

Thanks for listening!