

Security & Privacy Analysis Framework For TOTP 2FA apps

Case-Study: Authy 2FA

Conor Gilsenan, Noura Alomar CS261N - Spring 2020

- Research Questions
- Background & Motivation
 - Related work
- Analysis framework
 - Case-study: Authy 2FA

1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps? 2. How can they be fixed?

1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps? 2. How can they be fixed?

1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps? 2. How can they be fixed?

- 1. What security and privacy issues exist in the backup & recovery functionality of prevalent TOTP 2FA apps?
- 2. How can they be fixed?

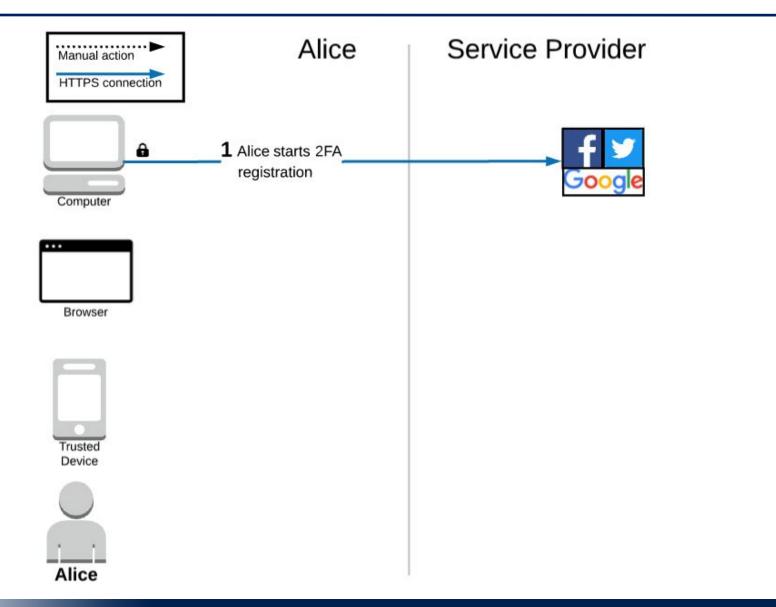
Background & Motivation

- Knowledge (something you know)
- Possession (something you have)
- Inherence (something you are)

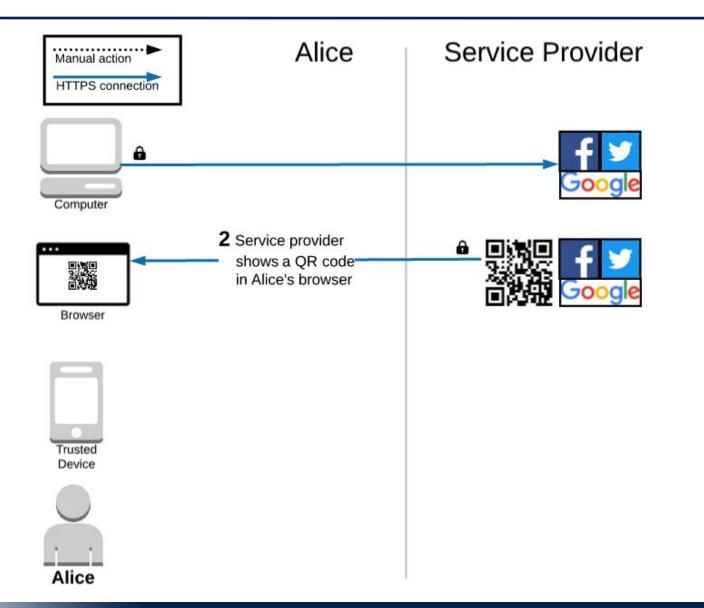
- Knowledge (something you know)
- Possession (something you have)
- Inherence (something you are)

2FA Methods

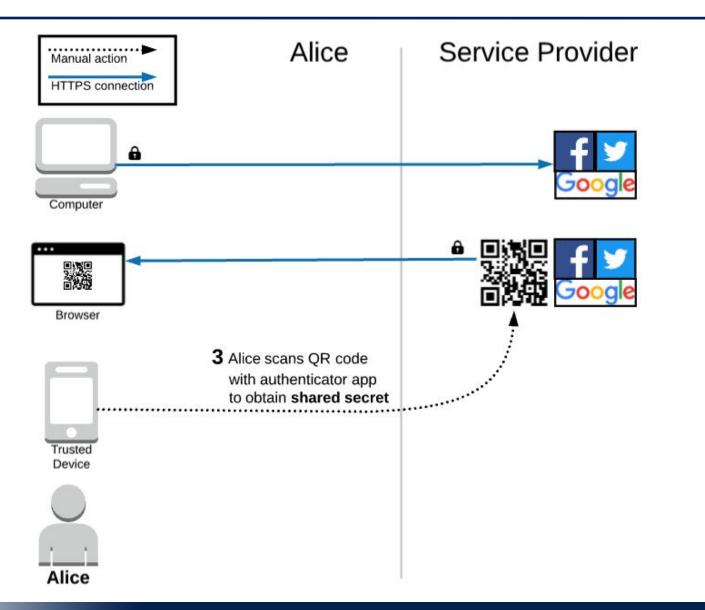
- SMS
- Time-based One-time Passwords (TOTP)
 - e.g. Google Authenticator
- Push notifications
 - e.g. Duo Push
- WebAuthn
 - e.g. USB security keys

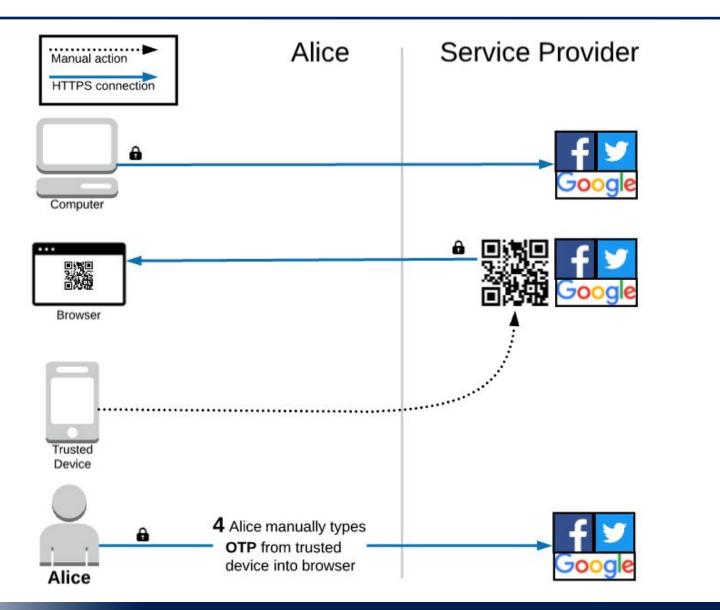


2FA Methods


• SMS

- Time-based One-time Passwords (TOTP)
 - e.g. Google Authenticator
- Push notifications
 - e.g. Duo Push
- WebAuthn
 - e.g. USB security keys





TOTP: QR Code

Please use the TOTP protocol

Alice's email address or username

The shared secret The service provider

Anyone can build a TOTP 2FA app!

Dozens of TOTP Apps

Blizzard Authenticator Blizzard Entertainment, Inc.

2FA Authenticator (2FAS) 2FAS

LastPass Authenticator LogMeIn, Inc.

FreeOTP Authenticator Red Hat

Duo Mobile Duo Security, Inc.

andOTP - Android OTP Authenticator Jakob Nixdorf

Salesforce Authenticator

Salesforce.com, inc.

SAASPASS Authenticator 2FA App & Password Manager SAASPASS

Microsoft Authenticator Microsoft Corporation

Authy 2-Factor Authentication

TOTP Authenticator – 2FA with Backup & Restore BinaryBoot

Google Authenticator

How should our app generate the OTP?

TOTP: Generate & Verify OTP

RFC says:

OTP ≈ HMAC-SHA-1 (shared secret + time)

RFC6238 - https://tools.ietf.org/html/rfc6238

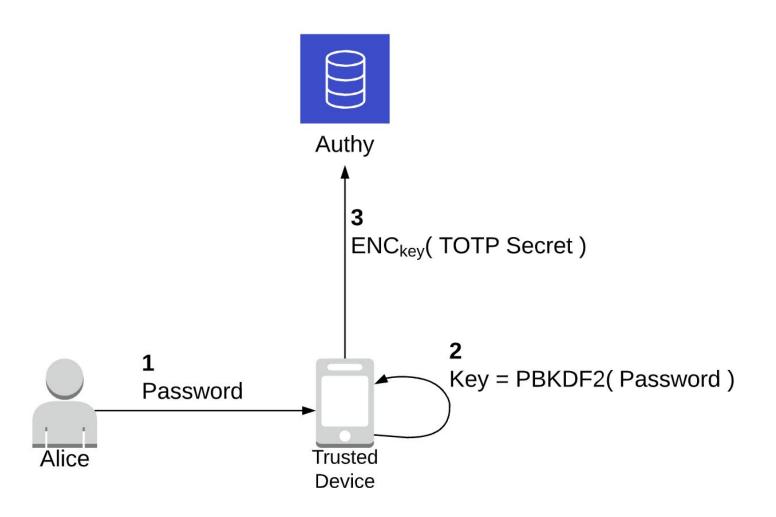
How should our app backup the secret?

TOTP: Generate & Verify OTP

RFC says:

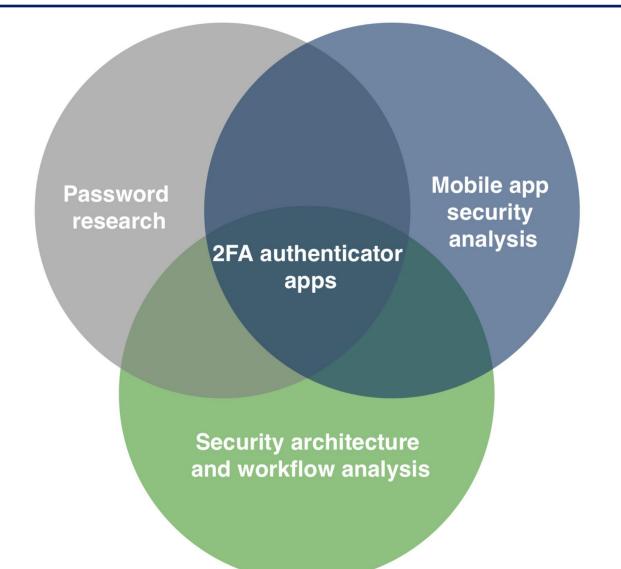
RFC6238 - https://tools.ietf.org/html/rfc6238

Google Authenticator


Google LLC

No backup capability by design!

🛠 }♥\$ 🗭 🍞 Ч⊑ 👝 100% 📩 6:45 PM **Google Authenticator** 742 378 Google (someone@example.com) 173 724 Amazon (someone@example.com) 756 522 Slack (someone@example.com) 671 635 Facebook (someone@example.com) +


https://authy.com/blog/how-the-authy-two-factor-backups-work/

Related Work

Related Work

- Password research shows
 - people pick mostly weak passwords
 - passwords are easy for attackers to crack

[1] Bonneau, Joseph. "The science of guessing: analyzing an anonymized corpus of 70 million passwords." 2012 IEEE Symposium on Security and Privacy.

[2] Bonneau, Joseph, Sören Preibusch, and Ross Anderson. "A birthday present every eleven wallets? The security of customer-chosen banking PINs." *International Conference on Financial Cryptography and Data Security*. Springer, Berlin, Heidelberg, 2012.

[3] Ur, Blase, et al. "Measuring real-world accuracies and biases in modeling password guessability." (USENIX Security 15).

Bhargavan and Delignat-Lavaud (2012)

- Analyzed several "host-proof" systems
 - ideal: all data is encrypted on the clients
 - <u>reality</u>: flaws in client side crypto

Bhargavan and Delignat-Lavaud (2012)

- Analyzed several "host-proof" systems
 - ideal: all data is encrypted on the clients
 - <u>reality</u>: flaws in client side crypto
- Relationship to our work
 - considered offline brute force attacks out of scope
 - which data is encrypted?
 - how to circumvent client-side crypto?

Lie et al. (2014)

- Systematic security analysis
 - 5 web-based password managers

Lie et al. (2014)

- Security goals
 - Master account security
 - Credential db security
 - sharing features
 - Unlinkability

<u>Lie et al. (2014)</u>

- Security goals
 - Master account security
 - Credential db security
 - sharing features
 - Unlinkability

- Attack surface
 - Bookmarklet
 - Web
 - Authorization
 - User Interface

<u>Lie et al. (2014)</u>

- Relationship to our work
 - identified attacks to obtain password ciphertexts
 - CSRF

<u>Lie et al. (2014)</u>

- Relationship to our work
 - identified attacks to obtain password ciphertexts
 - CSRF
- "Systematic"

<u>Lie et al. (2014)</u>

- Relationship to our work
 - identified attacks to obtain password ciphertexts
 - CSRF
- "Systematic"
- Our goals
 - systematic analysis of TOTP 2FA apps
 - more technical detail to allow replication

Belenko and Sklyarov (2012)

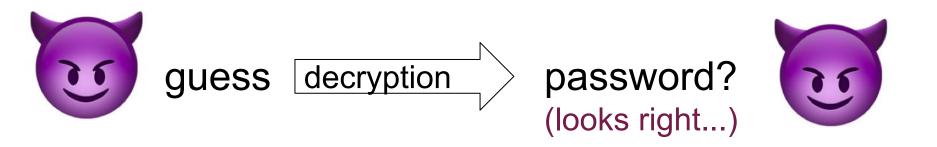
- Analyzed 16 password managers
 - iOS & Blackberry
- Goal: brute force master passwords
 - attacker has password database

Belenko and Sklyarov (2012)

• Findings: takes only <u>one day</u> to brute force master passwords up to 10-15 characters

Name	Password verification	Password ra sec	Password length			
	complexity	CPU	GPU			
Keeper® Password & Data Vault	1x MD5	60 M	6000 M	14.7		
Password Safe - iPassSafe free version	1x AES-256	20 M	N/A	12.2		
Strip Lite - Password Manager	4000x PBKDF2-SHA1 + 1x AES-256	5000	160 K	10.1		

Belenko, Andrey, and Dmitry Sklyarov. ""Secure Password Managers" and "Military-Grade Encryption" on Smartphones: Oh, Really?." *Blackhat Europe* (2012): 56.


Belenko and Sklyarov (2012)

- Relationship to our work
 - offline brute force attacks
 - attacker has ciphertext

Chatterjee et al. (2015)

 Proposed a novel defense scheme of "Plausible looking decoys"

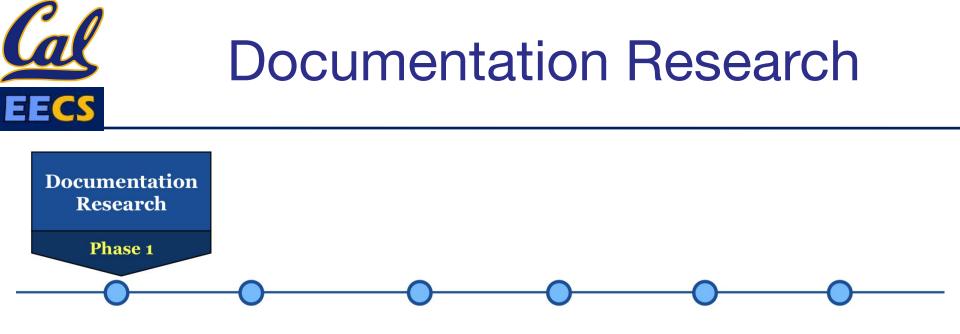
Bonneau's Authentication Framework

Cal

EECS

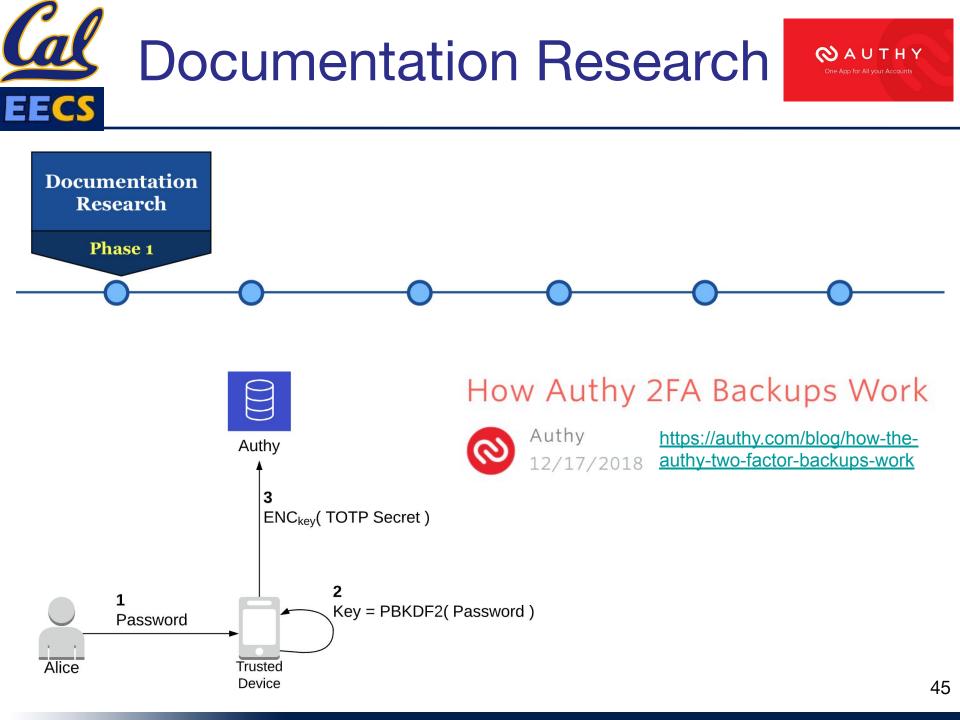
	Firefox	IV-A	[22]	0		0 0					•			•		0 0	>					•	-	
Password managers	LastPass	1 V-A	[42]	1.001	1.001	0 0				0						0 0		0		0				
	URRSA	IV-B			1991				0	-				-		<u> </u>	1.6		0	1941	-	-		
Proxy		IV-D	[23]	0					Ĭ										ō					
•	Impostor OnemID	IV-C				-				-					-		-	0 0	1.001			-		
	OpenID Minimum fr Deserved	IV-C	-	0										-										
	Microsoft Passport		[43]	0										-	_								= -	1 =
Federated	Facebook Connect		[44]	0		-					-			-	_			0						
	BrowserID		[45]				1				-		0	0	-									
	OTP over email		[46]	0		-	_			•	•		•	Ξ	•	0 0	1.0	0 (•	•		
Graphical	PCCP	IV-D				•		0	•	•			•		•)				• •		••
orupinicui	PassGo		[47]			•		0	0	•			•	0	•							•		
		IV-E				•	•	0	0	•			•									• •		•
Cognitive	Weinshall		[48]			•							•		-	0 (•	• •	•	•
Cognitive	Hopper Blum		[49]			•					•		•		•	0				۲	•	• •		•
	Word Association		[50]			•		•	0	0	• •		•		•							• •		•
	OTPW	IV-F	[33]							•			٠	۲	•				۲	۲	۲	• •		
Paper tokens	S/KEY		[32]	۲					ο	•			٠	•	•				۲	۲	ο		•	•
1	PIN+TAN		[51]						ο	0		0	•	•	•				۲	۲	•	0		•
Visual crypto	PassWindow		[52]	۲								0	٠	٠		0 (0	۲	•			
	RSA SecurID	IV-G	[34]					0	0				•	۲		• (۲	۲	۲	•		
	YubiKey		[53]					0	ο		•		•	•		• (۲	۲	۲	•	•	•
Hardware tokens	IronKey		[54]	0	۲	(0	0 0	ο		•	•	•	•		• (>		0		•	• •		•
	CAP reader		[55]					0	ο				٠	•		• •			۲	۲	۲	• •	•	•
	Pico		[8]		۲			0	ο						•	• •			۲	۲	•	0	•	•
	Phoolproof	IV-H	[36]			0		0	0		0	0 0)		•	• (0	۲	•	•		
	Cronto		[56]			0		0	ο			0	•	•		• •			0	۲	•	•	•	•
Phone-based	MP-Auth		[6]			0		0		0	0	0			•	(>				•	•	• •	•
	OTP over SMS				۲	0			ο	0	0		•	•	•	• •			0	۲	•	0	•	•
	Google 2-Step		[57]			0		0	ο	0	0		•	•		0 0		•		۲	•	•	• •	•
Biometric	Fingerprint	IV-I	[38]		۲	• (0			0			0		•								
	Iris		[39]		۲	• (0			0			0		•							• •	>
	Voice		[40]			• 0		0			0	0	0	0		•	C	>						
	Personal knowledge		[58]			•			0	•	•	•	•	•	•							• •	• •	
Recovery	Preference-based		[59]	0		•		0		0	•		•	=		C	2				•	•		
iterovery	Social re-auth.		[60]			•					•			0		0			0	0	•	•	•	0
	Social le addi.		[00]			-				_	-	_		-	_				1000			-		

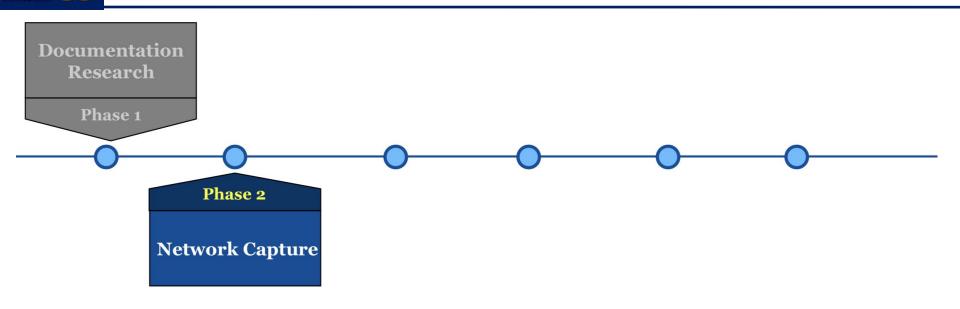
Bonneau, Joseph, et al. "The quest to replace passwords: A framework for comparative evaluation of web authentication schemes." 2012 IEEE Symposium on Security and Privacy.



Analysis Workflow

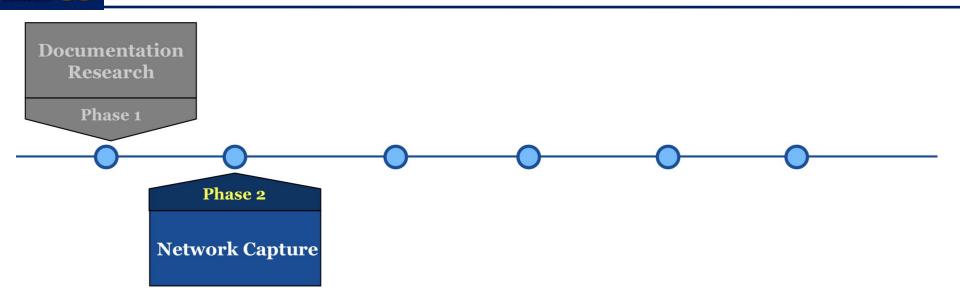
Case-Study: Authy 2FA

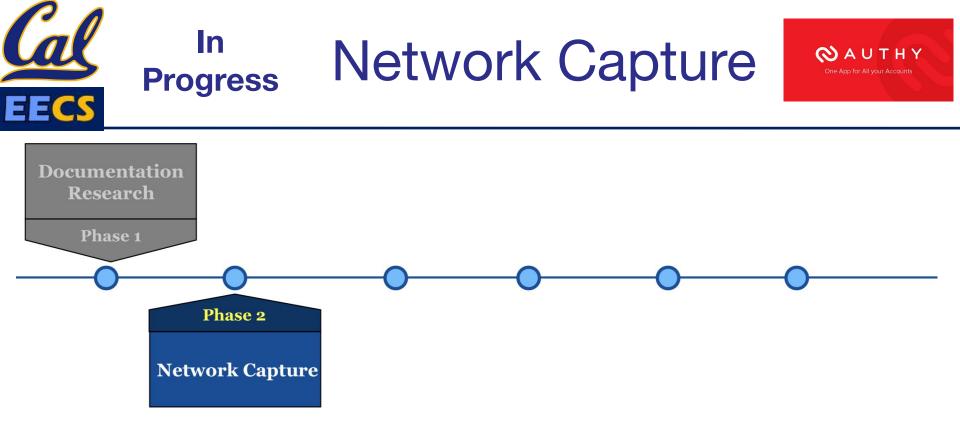

One App for All your Accounts


<u>Goals</u>

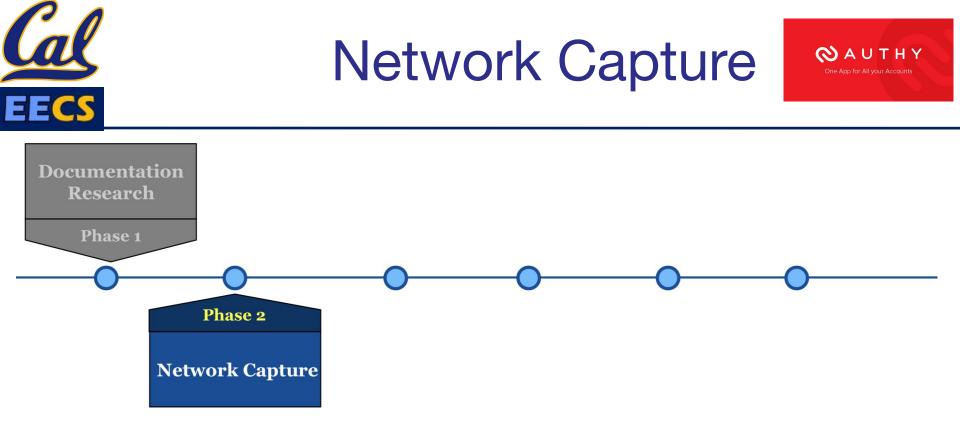
1. Gather published technical details

a. Do not start analysis blind

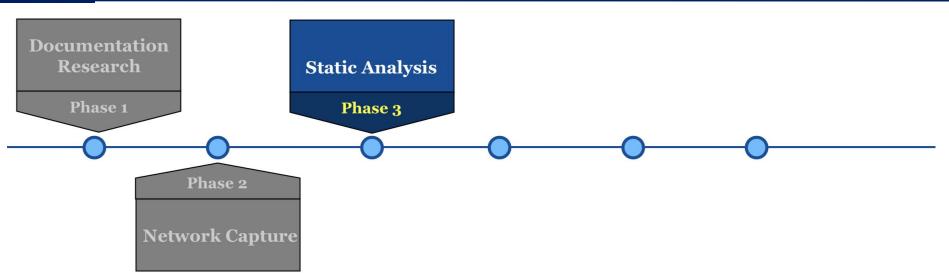

Network Capture


<u>Goals</u>

- 1. Obtain ciphertext.
- 2. Which fields are not encrypted?
- 3. Personal information required?

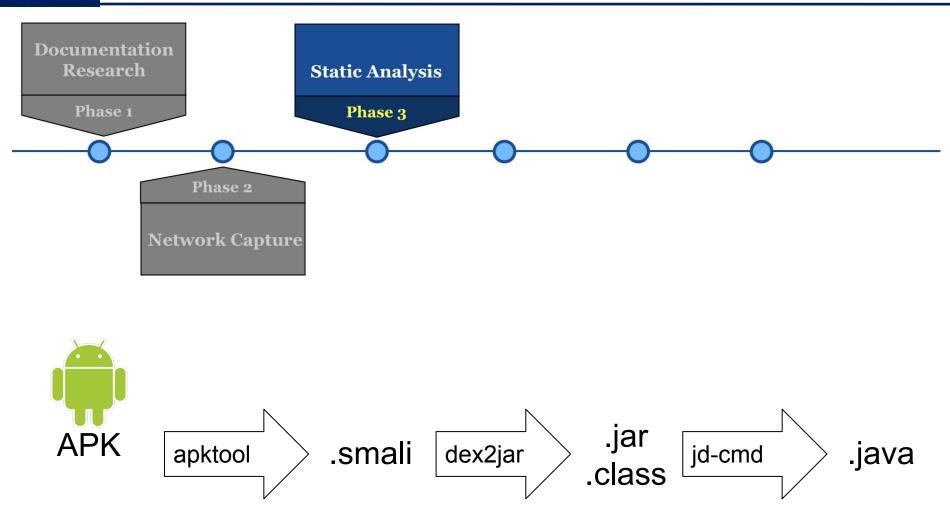

Network Capture

- Take specific actions using the app
 - Add 1st TOTP secret
 - Enable backup
 - Add 2nd TOTP secret

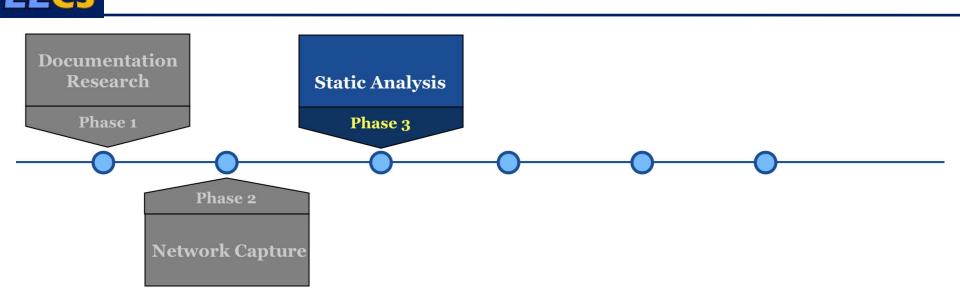

- Authy requires phone & email
 - Even if backup is not enabled

- mitmproxy + cert pinning = 🙁
- Used lab-built Android image
 - Lesson learned: communicate early and clearly!

Static Analysis

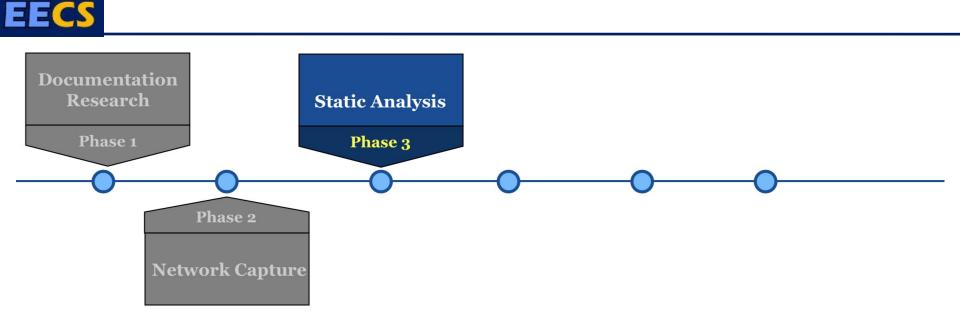


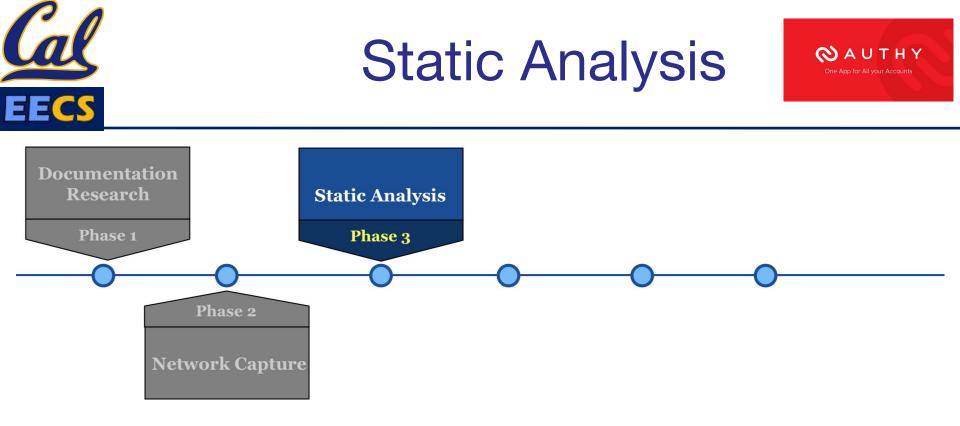
<u>Goals</u>


- 1. Which crypto is used?
 - a. cipher, mode, etc
- 2. How is <u>decryption</u> verified?
 - a. "Sorry, wrong recovery password!"

Static Analysis

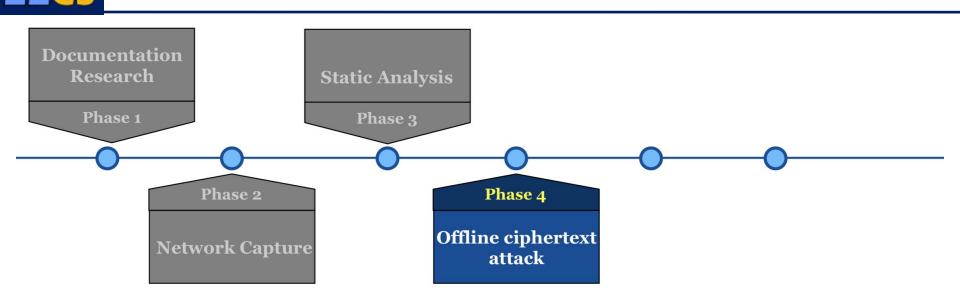
Challenge: Obfuscation



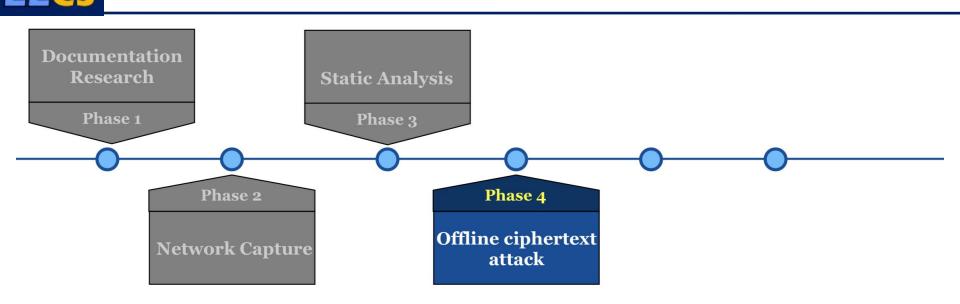

Duo Mobile

Duo Security, Inc.

Challenge: Obfuscation



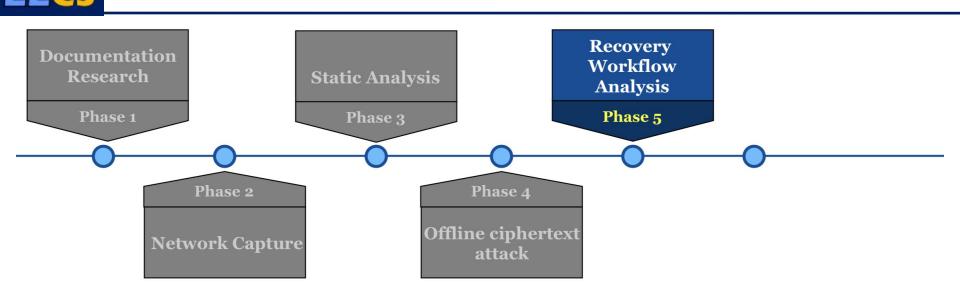
E	ncrypted	?	Key derivation	Cipher & mode	Decryption verification?
secret	name	issuer			
Yes	No	No	- PBKDF2 - 1k rounds	AES-CBC	Heuristic: Valid Base32?


Attack Ciphertext Offline

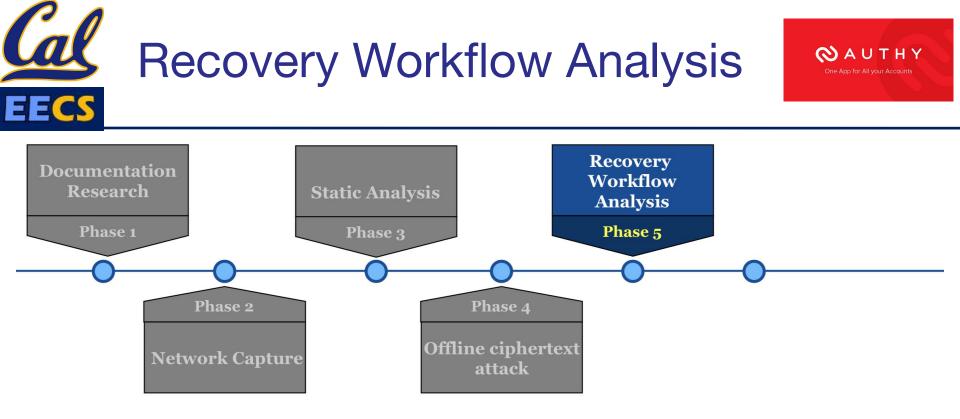
<u>Goals</u>

1. Difficulty of ciphertext => plaintext?

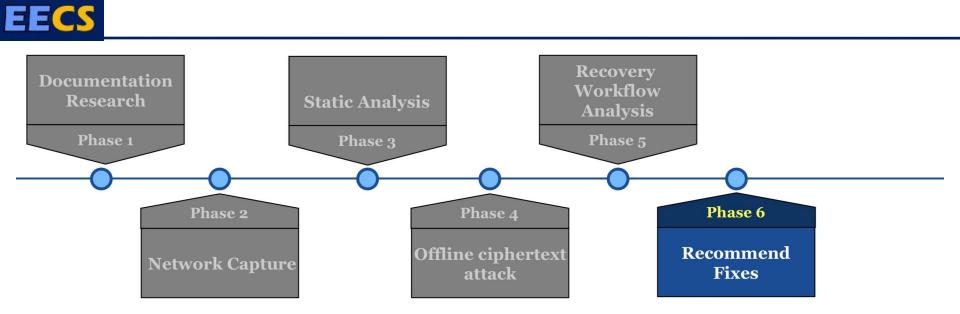
Attack Ciphertext Offline

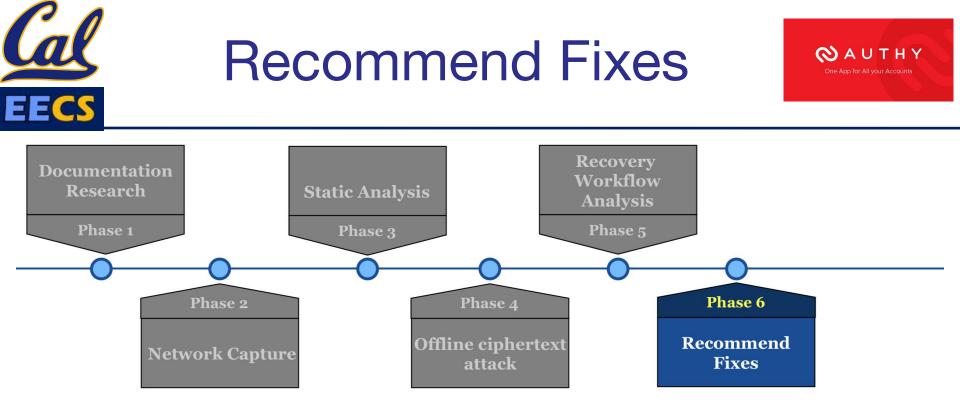


- Adapt password cracking tools to "crack" ciphertexts
 - e.g. Hashcat module framework


- How many possible TOTP secrets?
 - base32 format will match many key guesses
 - attacker forced into an online attack

Recovery Workflow Analysis


<u>Goals</u>


- 1. Diagram the recovery workflow
 - a. How could an attacker access the ciphertext?
 - b. Opportunities for user to identify/stop the attack?

- Authy claims a 24 hour delay
 - User sent SMS and email
 - Recovery available after only ~10 hours

Recommend Fixes

- Encrypt name and issuer fields
- Strengthen key derivation

Thank you!

Please, ask us questions!