Demand patterns in
bikeshare systems




Data summary

+ Station data (static)[Boston: , Bay Area: ]
Lat/Lng
Capacity
« Station status (every sec, some systems)
Timestamp
nBikes, nEmptySlots, Capacity
* Trip data (when trips start or end)
Start station, End station
Start datetime, End datetime
Bike number

Demographic info, varies by system

————— Meeting Notes (10/7/14 16:22) -----
Data summary: numbers for all of these



Station status data quality

* Precision: Milliseconds (nanoseconds are reported but are
always zero)

* Are station updates regular?

No, they jump around, are almost interleaved
12375805,91,2012-08-30 12:08:59.042-04,7,8,15
12375806,3,2012-09-02 17:15:19.077-04,3,12,15

12375828,25,2012-09-02 17:15:19.077-04,6,8,14
12375829,3,2012-08-29 13:17:09.168-04,11,3,14

12376084,91,2012-08-30 12:09:59.438-04,7,8,15
12376085,26,2012-09-02 17:15:19.077-04,0,14,14

12376142,84,2012-09-02 17:15:19.077-04,0,15,15
12376143,3,2012-08-29 13:19:09.964-04,12,2,14




Interarrival time of updates

* Mental model:
~ 90 zeros, ~ 1 minute, ~ 90 zeros.
Non-zero values -> constant distribution at around 60 secs.
Values > 60-65 secs, almost nothing (< 5%)
* Reality:
Non-zero deltas (jumps) > 65 secs = 42%
Backward jumps = 16%
Jumps > 65 secs in either direction = 52%
Jumps > 1 day =32%
Max jump in days = 235
Number of jumps > 150 days = 21




Verify from the raw data

* Let’s look at the raw data to confirm that our scripts are
correct

station_id update ts nbBikes nbEmptyDocks capacity
2154632 4 633 5! 8 7

2154633
2154634

16667220
18

16667221 18115475
L]

16667222 18115476 2012-05-14
15

16667891 18116145
19

16667892 18116146
L]

16667893 18116147 2011-11-09 .849000
14




Interleaved writes?

+ Every jump > 100 days involves the date 2012-05-14, writes of which
appear to be interleaved with writes from Nov 2011 —Jan 2012, so
that the timestamps keep jumping back and forth.

Jump 2011 9 2.211000 -> 2012-05-14 3 . 30 inclu
Jump 2012-10-01 9 1000 12-05-14 02 2 0 includ
Jump 2012-05-14 0 48000 2011-11-09 . includes

Jump 2011-11-24 .566000 2-05-14 7 0C includes
Jump 2012-05-14 07.371000 2011-11-2 B inclu
Jump 2 1-24 391000 il includ
Jump 2012-05-14 .371000 11-11-24 2 6. 0, inclu
Jump 2 0 0 2012-05-14 03 7 0 includes
Jump . 00 -> 2011-11-24 8 )0 includ
Jump g : 0 2012 0 720 includes
Jump 3 o1 includes
Jump 2 - 3 0 Tt , includes
Jump ) 772 > 2 0 3 00, includes
Jump 2 21:2 00 8.1600 inclu
Jumg 3

Jump

Jump 2 D :08.56300 > 01-3 .887000, includes
Jump . 5000 2012-05-14 03 8 000, includ
Jump 2012 .563000 2012-01-31 .319000, i

Jump 2012 : 4 3000,

Jump 2012-05-14 03 5 0 -> 2 3 J 9000, includes

Meeting Notes (10/7/14 16:22)
Throw out bad data until you get to good data



Are all jumps interleaving?

* Mental model
Equivalent numbers of positive and negative jumps

* Reality (has a positive bias ©)
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Assume interleaving, so sort

* Sort by update timestamp, then calculate diffs

* Mental model: everything is fixed now, no jumps > 65 secs

* Reality:
© Backward jumps = 0 (as expected, since we sort)
* Non-zero jumps > 65 secs = 0.5% (not bad!)
© Max jump = 4234082 secs (WTF!!!)
* Number of very long jumps (secs): > 100,000 = 3, > 10,000 = 6 (WTF!)
* Duration of jumps > 10k compared to total duration of data: 19.24%
* Confirm against raw data:

S shmisah

19783600 2011-12-01 :18:01.636000
19783601 2011-12-15 :44:42.895000

24635666 2012-02-03 $28:53.465000
24635832 2012-02-14 :40:11.207000

----- Meeting Notes (10/7/14 16:22) -----
Go back to data provider
Check if ids were missing



[s every update complete?

* Mental model: We get ~ 90 — 100 updates for every
timestamp
* Reality:
Min updates in a single timestamp =1
Max updates in a single timestamp = 966656 (no typo)
Number of timestamps with updates from > 1000 stations = 5




Max updates

Confirm that there are 966656 updates for a particular
timestamp from the raw data

shankari$ grep "2012-02-03 04:28" stationstatus.csv | wc -1
966656

Could this be the missing data from the jumps earlier?!?!

No, there are 59 unique stations and exactly 16384 records for
each

Are the values the same?

No, the values for the number of bikes and number of empty
slots are the same across all 16384 records. It looks like they just
dumped the same data over and over.

Are they intentionally trying to mess with us?

10



Min updates

* There are 7679 timestamps that have less than 10 updates.
* There are 38 timestamps that have a single update.
* Mental model: Maybe the updates are just trickling in more slowly
due to network delays. Let’s look at the raw data.
< Reality: Initially, all the updates are from the same two stations (44
and 41). Then 41 stops.
© We are getting the same 1 minute interval updates as always, but
they contain information about only one station.
© We get an update from station 44, and only station 44, for an entire
two hours during the afternoon commute on 1%t Dec 2011.

* Abandon station status -> focus on station trips!

2011'=1'2=01' :50:28.822000 19783569
2011-12-01 8 .153000 19783570
2011-12-01 :52:29.532000 19783571

.603000 19783597
2011-12-01 :16:00.960000 19783598
2011-12-01 :17:01.287000 19783599




Switch to station trips

* For all trips, start time > end time: Yes

* Precision of times: minute (seconds are provided but are
always zero)

* Can the same bike be in use simultaneously by two different
users?

Mental model: No

Reality: Yes, but only one set of trips in all of Sept

Trip 1: 2012-09-06 22:41:00 (stn 12) -> 2012-09-06 22:54:00 (stn 36)
using T01328

Trip 2: 2012-09-06 22:51:00 (stn 36) -> 2012-09-07 00:17:00 (stn 36)
using T01328
» Are start and end stations within the range of valid stations
(from the station table)? Yes

----- Meeting Notes (10/7/14 16:22) -----
Are trip durations reasonable?

end station is empty

bike numbers W343435 v/s 0x343
weather

how often do people forget to return trips
Model trips with long durations separately
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BASIC STATS
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Basic trip characteristics
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Bikeshare rebalancing

* Imbalanced demand
Can lead to system being unavailable
Station with no bikes
Station with no empty slots
* Generate recommendations to move bikes around using
Rebalancing vans
Rebalancing bike trailers
* Rebalancing types
Static: Assume no user trips during rebalancing (easy, set up ILP,
solve)
Dynamic: Allow user trips during rebalancing (hard, only heuristics)

* Very frustrating if it doesn’t work correctly
Browseby Neightrhood» Topic

winetzn | The real Alta problem? Not enough rebalancing crews

It's really not the number of concurrent NotSpots that best shows how Alta is

Scarcity of Capital Bikeshare Bikes during the Morning ;“?‘8 g 1o meet ke sharr’ s,

It's the length of time that it takes to get a station operating after it runs out of
Commute? SEICESIARE  bikes. And worse, it that Alta knows that the same stations, week in and
' week out, go out of balance at roughly the same time of day.

23



Are the arrival rates poisson?

* Existing techniques are based on package pick up and delivery

Assume poisson arrival rates, set up constraints, use ILP, CP or
similar heuristics to solve

Citation Rebal Type | Technique Demand assumptions

[RTIF13] Static MIP (LP) non-homogenous poisson processes for arrivals and departures at
every station.

[SCLT13] Static MIP (LP) poisson process for trips between pairs of stations. assume all
rides can be completed within a single time period. problem is
intractable if not.

T[RURHPI13] | Static MIP (greedy, | poisson process with demand based on 8 random time points.
max flow, LP)

[SHvH13] Static MIP (CP) time-independent poisson processes. “while some users arrive
simultaneously, we assume that this effect is negligible”..., as-
sume that user behaviour during observation is stationary. . . exact
MIPs for vehicle routing problems are intractable for realistic in-
stances, so model a clustering problem as a MIP.

[CMR12] Dynamic MIP (LP, col- | randomly generated using a number generated between 1 and 5,

umn generation | scaled using station-specific constants.
+ benders de-
composition)
[CMPT13] Dynamic Heuristics, with | poisson process for arrival rates, constant travel time between
and without | every pair of stations
forecast
[PL13] User-based Game theoretic None - Motivates problem and proposes a graphical user interface

(GUI) to display economic incentives to the user.

Table 2: Summary of prior work
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As we can see, there is a giant spike around 0, which drowns almost everything out, but
there is a really long tail where the max inter-arrival times are really long. Part of the
reason that max time is so high in the Boston case is because the entire system is shut
down during the winter months.

This combination of high peak around zero and long tail indicates a strong peak load
pattern — during “rush hours”, there are a lot of requests to the system, and during the
night, there are long stretches where there are no trips. We can see this from the
graphs in slide 18 as well.
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Here are the cdfs for the same data.

This is pretty useless, so let’s switch to log scales. Unfortunately, as we can see from
the pdf, a lot of the inter-arrival times are zero, so we need to strip them out first.
Question: is that OK? How do we address zero values in a log plot?
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That at least shows some differentiation, but the majority of trips are still around O,
which corresponds to an inter-arrival time of 1.
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This is the complementary log plot. Per vern: This plots the *complementary* CDF (1-
F(x)) with the Y axis log-scaled. For that, an exponential distribution will be a straight
line. As we can see, for the Boston case, the outlier effect is so strong that the plot is
almost a straight vertical line. How do we deal with this? log-log plot?

The Bay Area case has a nicer curve, but still really concentrated around short
interarrival times.
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EQp Ml trips, Q-Q plot of the interarrival time against an exponential distribution
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If it is poisson, we would expect the Q-Q plot of the inter-arrival times to match the
exponential distribution. As we can see, we are not even close.



eder All trips, Q-Q plot of the interarrival time against a pareto distribution
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sl All trips, Q-Q plot of the interarrival time against a pareto distribution
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There is a much better match for the pareto distribution, except at the tails. The
comparison is also distorted by a couple of extreme outliers. | could replot after
removing them, but they appear to be legitimate trips, so | decided to move to station
specific plots anyway.



Taking logs helps reduce the effect of the outlier, but there are still no good matches

here.

For All trips, Q-Q plot of the log interarrival time against a normal distribution
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Since most models assume station specific poisson rates, let’s look at station specific
arrival rates rather than the arrival rate of the whole system.

Here, we look at the busiest stations in the entire system — station 22 for boston and
station 70 for the bay area.



For,Stn 22 trips, Q-Q plot of the interarrival time against an exponential distribution ~ For Stn 22 trips, Q-Q plot of the log interarrival time against a normal distribution
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For Stn 70 trips, Q-Q plot of the interarrival time against an exponential distribution  For Stn 70 trips, Q-Q plot of the log interarrival time against a normal distribution
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There is no match for the poisson (top gqg-plot), but the middle part of the pareto looks
pretty good. The pareto doesn’t match at either of the tails, though. Note that the
lower tail is actually more pronounced because we had to strip out the zeros for the log

plot.



12 » 0.0
3
o
E > -0.5
30 - g
3 2-1.0
208 7 ]
: iy g -1.5
v o
H @
506 | € -2.0
: / 5
. ’ g -25
] ) c
g I3 g -3.0
202 b | &
13 L o -35
e b=
og 240
00 05 10 15 20 25 30 35 0 20000 40000 60000 8000010000012000a.40000160000
For Stn 15 trips, log10 of non-zero inter-arrival time (mins) For Stn 15 trips, inter-arrival time (mins)
12 o 0.0
3
H g -0.2
510 . o
3 ‘ 8-0.4
K] r ©
Zo8 - 8§ —0.6
: f 5
¢ r S -os8
50§ = £
¢ i) 5 -1.0
- i ]
%04 ! g-12
g ; g
£ ; o -1.4
202 S &
z -~ S -1.6
o>
o 218
0 1 2 3 4 5 (o] 5000 10000 15000 20000 25000 30000 35000 40000
For Stn 24 trips, log10 of non-zero inter-arrival time (mins) For Stn 24 trips, inter-arrival time (mins)

These are the plots for station 15, a station with one of the lowest loads. We can see a
very differently shaped cdf here, much less steep around zero inter arrival time.



For St 15 trips, Q-Q plot of the interarrival time against an exponential distribution For S¢n 15 trips, Q-Q plot of the log interarrival time against a normal distribution
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For this station, the poisson is not a bad fit, although the pareto is still a bit better.
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These are the curves for station 67, which | picked randomly using the randrange
function. It is a lot closer to the busy station than the idle station in terms of inter
arrivals.



For Stn 67 trips, Q-Q plot of the interarrival time against an exponential distribution
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For Sn 67 trips, Q-Q plot of the log interarrival time against a normal distribution
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And this is reflected in the Q-Q plots as well.
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MORE COMPLEXITY AT SMALLER
SCALES

So far, we have been looking at all the data, across large time scales.
However, building algorithms based on smoothed data across large time scales can run
into issues with local perturbations that don’t match the smoothed data.

So | look a look at smaller scale data as well and saw how well the curves matched.
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Variation across hours on each day of the month
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Here’s the variation across hours on each day of Sep 2012 (the busiest month) of the
Boston data. We can see that although the two humped pattern is prety consistent, the
magnitude of the peaks varies — sometimes, the first one is much smaller than the
second one and sometimes it is not. Even the shape can be different sometimes —
check out day 3 or day 5 versus the same day in other weeks.
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Going to an even smaller scale, here’s the variation over hours per day for a single
station (22) in Boston in Sept 2012. As we can see, the curves seem a lot less consistent
here. Not just the curves, but also the magnitudes are very different. Consider day of
week = 4. The peak appears to range between 7 and 40. Planning for the mean will fail
miserably since the pool of bikes and slots is not infinite — an unexpected surge will

lead to exhaustion.
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A final note on static versus dynamic rebalancing. If you recall the material from slide
23 —in static rebalancing, the rebalancing trucks run overnight, and the system is
assumed to be in stasis, with no load, during the run. In dynamic rebalancing, there is
ongoing load in the system. There is an interesting mix of arrival demand assumptions
and algorithms. The dynamic algorithms either assume homogenous poisson, or (I
think) a uniform distribution. The static algorithms assume either homogenous or non-
homogenous poission.

Number of trips

What | wanted to show in this slide was that in the San Francisco case, static
rebalancing looks like it will help. There are certain sections that are clearly trip sources
and certain sections that are trip sinks, and so you would want to rebalance between
them. But in the Boston case, we don’t see such a pattern. Incoming and outgoing trips
seem pretty evenly balanced at all stations. So in this case, the unavailability is
primarily caused by an insufficiently large buffer, and dynamic rebalancing is needed to
handle availability. | think that there is the opportunity to come up with an algorithm
for this case that doesn’t rely on homogenous poisson.
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Questions that I had

* Some of the papers assume non-homogenous processes. How
do you check if your distribution fits a non-homogenous
process?

* Do vyou look at all the data? Or look at subsets?
If at subsets, how to select them?

* It is not enough to look at arrival rates of users, we also need
to look at arrival rates of bikes. If a particular station has a
user arrival rate (bike departure rate) of n, but a bike arrival
and return rate also of n, then it doesn’t need any
rebalancing. So we really need to look at flow. But flow
implies a time period for the flow. How do we deal with that?
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