Consequences of Compromise: Characterizing Account Hijacking on Twitter

Frank Li UC Berkeley

With: **Kurt Thomas** (UCB → Google), **Chris Grier** (UCB/ICSI → Databricks), **Vern Paxson** (UCB/ICSI)

Accounts on Social Networks

- Accounts are valuable!
 - Precursor for abuse (spam, phishing, malware)
 - Twitter accounts are attractive

Accounts on Social Networks

- Accounts are valuable!
 - Precursor for abuse (spam, phishing, malware)
 - Twitter accounts are attractive
- Two ways for attackers to get accounts:
 - Fraudulent accounts
 - Compromised accounts

Prior Works

- Fraudulent accounts
 - Lots of prior work on detecting and preventing fake accounts
- Compromise accounts
 - COMPA (NDSS '13)
 - PCA-based Anomaly Detection (USENIX Security '14)

Compromise on Social Networks

- Is compromise occurring at large scales?
- What do miscreants do with compromised accounts?
- Who are being victimized?
- How do users react to compromise?
- What is causing compromise?

Detecting Compromise

• We take an external perspective of Twitter

- Looked at 8.7B tweets with URLs gathered from Jan – Oct 2013
 - 168M users in data set

Spam Tweets

Meme Tweets

•

SEMrush @semrush · Oct 4 Hahaha! I didn't know Harry spoke Python :D #fun #itjokes #python

...

1 53 🛨 24

Analysis Pipeline

Identifying Compromised Users

Identifying Compromised Users

Twitter Stream Data

("created at":Fri Oct 10 00:0024 +0000 2014","hd":520363179210072065,"d str1":520363179210072065,"d str1":S20363179210072065,"d str1":S2036317900,"d str1":S2036317900,"d str1":S2036317900,"d str1":S203631790,"d str1":S203631790,"d str1":S203631790,"d str1":S203631790,"d str1":S203631790,"d str1":S203631790,"d str1":S203631790,"d str1":S

("d":1912894320,"id_str":191299,"id_str":19129

Twitter Stream Data

- created_at (UTC, seconds)
- id (>53 bits)
- **text** (UTF-8, <140 char)
- source
- lang (machine-detected, BPC-47)
- in_reply_to_status_id
- in_reply_to_user_id
- in_reply_to_screen_name
- entities
 - hashtags
 - urls (both URL and domain)
 - user_mentions

- user
 - id (>53 bits)
 - name (<=20 char)</pre>
 - screen_name (<=15 char)</pre>
 - description (<=160 char)</pre>
 - protected
 - verified
 - followers_count
 - friends_count
 - statuses_count
 - created_at (UTC, seconds)
 - lang (user self-declared, BPC-47)

Filtered Stream

- Access to a filtered stream of URLs
- ~200 GB of data per day,

compressed to ~20 GB per day

 In total, 4.1 TB of compressed data for 2013.

Data Collection

Infrastructure Issues

- Twitter feed outage
- EC2 reboot
- EC2 feed application crash
- Low disk space
- Disk failures
- Updates break things

Filtered Stream

Roughly 61% of all Tweets with URLs

Sampling Error

Under-estimate size of clusters

 Any graph analysis will under-represent social connectivity

Identifying Compromised Users

Similar Content Example

Clustering Tweets

- Cluster on same URLs
- Cluster on similar content
 - Split text into n-grams

- Want Jaccard circulation coefficient:

$$J(M_i, M_j) = \frac{|M_i \cap M_j|}{|M_i \cup M_j|}$$

- To avoid $O(n^2)$, where n = O(billion), use minhash estimation

Set A = {a1,..., aN}
 Set B = {b1,..., bN}

- Set A = {a1,..., aN}
 Set B = {b1,..., bN}
- Hash all elements:

 $A' = \{h(a1),...,h(aN)\}$ $B' = \{h(b1),...,h(bN)\}$

- Set A = {a1,..., aN}
 Set B = {b1,..., bN}
- Hash all elements:

 $A' = \{h(a1),...,h(aN)\}$ $B' = \{h(b1),...,h(bN)\}$

• Sort hashes for each set:

 $A'' = \{h(a3), h(a7),...\} B'' = \{h(b9\}, h(b2),...\}$

- Set A = {a1,..., aN}
 Set B = {b1,..., bN}
- Hash all elements:

 $A' = \{h(a1),...,h(aN)\}$ $B' = \{h(b1),...,h(bN)\}$

• Sort hashes for each set:

 $A'' = \{h(a3), h(a7),...\} B'' = \{h(b9\}, h(b2),...\}$

• Key for each set is the k smallest hashes: Key_A = h(a3)||h(a7) Key_B = h(b9)||h(b2)

- Set A = {a1,..., aN}
 Set B = {b1,..., bN}
- Hash all elements:

 $A' = \{h(a1),...,h(aN)\} B' = \{h(b1),...,h(bN)\}$

• Sort hashes for each set:

 $A'' = \{h(a3), h(a7),...\} B'' = \{h(b9\}, h(b2),...\}$

• Key for each set is the k smallest hashes:

 $Key_A = h(a3)||h(a7) Key_B = h(b9)||h(b2)|$

• The probability keys are equal for two sets is proportional to their Jaccard similiarity.

Minhash Parameters

Grid search on sample of 19 M tweets

 Observation 1: Users delete tweets from compromise.

- Observation 1: Users delete tweets from compromise.
- Observation 2: Twitter suspends fraudulent accounts.

- Observation 1: Users delete tweets from compromise.
- Observation 2: Twitter suspends fraudulent accounts.

Deletions and Suspensions as Features

Manually labeled 1700 random clusters

Deletions and Suspensions as Features

Manually labeled 1700 random clusters

Other Features

- Fraction of tweets in a cluster that were retweets
- Average # of tweets per user in the cluster
- # of distinct tweet sources per cluster
- # of distinct languages per cluster

Classification

- Multi-class logistic regression
- 10-fold cross-validation: 99.4% accuracy
- Most important features:
 - Ratio of suspended users, ratio of deleted tweets, number of distinct languages

Identifying Compromised Users

Identifying Compromised Users

Scale of Compromise

Scale of Compromise

Measurement	Value
Meme clusters	10,792
Compromise clusters	2,661
Fraudulent account clusters	2,753
Meme participants	17.3 million
Compromised victims	13.9 million
Fraudulent accounts	4.7 million
Meme tweets	130 million
Spam tweets via compromised accounts	81 million
Spam tweets via fraudulent accounts	44 million

Monetizing Compromised Accounts

Monetizing Compromised Accounts

- Largest single campaign advertised Garcinia
 - 1.1M accounts
 - 70k distinct URLs
 - Lasted 23 days
- Nutraceutical campaigns were largest source
 - 4.7M accounts total (34% of all we detect)

sid bishop @sustainablesid · 7h

Dr. Oz **Garcinia** Cambogia Where To Buy Natural And Organic Food That Burns ... - Amersham People tinyurl.com/lq9wa5l

Expand

Other Leading Monetization Vectors

- Gain followers and retweets
 - 3.7M users
 - 779 distinct clusters advertising free followers
- Generating Leads
 - 1M users, 1 cluster, lasting 31 days

benny blanco @bennyblanco523 · Mar 21 Aweesomeee! I earned \$102.46 this week just doing a couple of surveys. apps.facebook.com/162827083864702

Expand

Compromise Demographics

Compromise Demographics

Sources of Compromise

- Potential sources
 - Password brute-force
 - Database dumps
 - Social contagion (i.e. spread via your friends)
 - External contagion (i.e. driveby download site)

Compromise Can Spread

Compromise Can Spread

Sources of Compromise

- Potential sources
 - Password brute-force
 - Database dumps

Social contagion (i.e. spread via your friends)

- External contagion (i.e. driveby download site)

Sources of Compromise

- Potential sources
 - Password brute-force
 - Database dumps

Social contagion (i.e. spread via your friends)

- External contagion (i.e. driveby download site)
- Defense: Early victims are indicators. If spread is on Twitter, quarantining can help.

• Is compromise occurring at a large scale?

YES! 14 million victims!

• Is compromise occurring at a large scale?

YES! 14 million victims!

• What do miscreants do with compromised accounts?

• Is compromise occurring at a large scale?

YES! 14 million victims!

• What do miscreants do with compromised accounts?

\$\$\$ Profit! \$\$\$

• How do users react to compromise?

Bad! 21% of victims quit, 57% lost followers

• Is compromise occurring at a large scale?

YES! 14 million victims!

• What do miscreants do with compromised accounts?

\$\$\$ Profit! \$\$\$

• How do users react to compromise?

Bad! 21% of victims quit, 57% lost followers

• How might compromise be occurring?

Highly potent social contagions

frankli@cs.berkeley.edu