Stress from Swipes

Can we measure stress from mouse swipes?

Stress Challenges

- OBESITY: 51% of obese people eat too much due to stress; 33% eat to manage stress
- CARDIOVASCULAR HEALTH: 3x increase in hypertension & 2.2x increase in cardiovascular mortality in high stress jobs
- STRESS MANAGEMENT: 69% say it is important but only 32% do it well (lack of awareness/will power)

Affect Sensing

Stress

Pain

Depression/Mental Illness

Stress

"Stress/arousal" is a complex regulatory mechanism affecting almost every functional unit in the body.

There are two important chemical channels:

- Fast (seconds): (epinephrine or adrenaline), the "rush" we get from excitement, fear, surprise,... "fight or flight"
- Slow (minutes): (cortisol), what we typically feel when "stressing out" about a deadline, finances, health etc... not "rest and digest"

Effects:

- Fast: Heart rate increases, breathing speeds up, pupils dilate, memory retention improves, emotions intensified.
- **Slow:** Heart Rate Variability changes, GSR response, breathing changes, muscle tension.

Heart-Rate Variability (HRV)

Stress causes specific variability in the ECG inter-beat time

interval.

There are several measures of this, some more direct (RR variance) while others are more complex ("LF/HF ratio"). Biological arguments have been made that LF/HF ratio directly measures the SNS/PSNS activity ratio, or "fight-flight / rest-digest" ratio.

LF and HF are respectively the Low- and High-frequency energies of the inter-beat interval spectrum.

HRV is the (pseudo) "gold standard" non-chemical stress measure.

Stress from Arm Movement

 Can we determine stress from mouse usage data?

MouStress

D. Sun, P. Paredes and J. Canny CHI 2014

Stress-induced increases in muscle tension in neck/shoulder and arm muscles are well-known in the literature, and specifically while using a mouse [1], [2].

- [1] Wahlstr om, J., Hagberg, M., Johnson, P., Svensson, J., and Rempel, D. *Influence of time pressure and verbal provocation on physiological and psychological reactions during work with a computer mouse*. European journal of applied physiology 87, 3 (2002), 257–263.
- [2] Visser, B., De Looze, M. P., De Graaff, M. P., and Van Die en, J. H. Effects of precision demands and mental pressure on muscle activation and hand forces in computer mouse tasks.

 Ergonomics 47, 2 (2004), 202–217.

MouStress

Idea: stress affects muscle tension, which will change the dynamics of mouse movements. Analyze typical mouse movements like clicking, dragging, and steering.

MouStress Tasks

Actual tasks were pointing, dragging and steering on exponentially-spaced and sized rectangular targets:

Steering involves moving the mouse through a channel:

MouStress Tasks

Target size and distances were set factor-of-two increments.

		Distance (px)				Width (px)			
Pointing									64
Dragging	64	128	256	512	1024	8	16	32	64
Steering	64	128	256	512	1024	16	32	64	128

Mass-Spring-Damper Model

The Mass-Spring-Damper model treats the arm as a system with those three elements. This kind of system has a simple, second-order impulse response – at least locally.

LPC Model

We cant measure the arm parameters (mass, springs etc) directly, but if we observe the output from a second-order system, we can use a second-order LPC (Linear Predictive Coding) to get the system parameters.

Mouse x coordinates vs time for typical mouse motions

LPC Model

The parameters of the poles of the LPC model are related to the dynamic parameters via:

$$\omega_0 = \sqrt{\frac{k}{m}}, \ \zeta = \frac{c}{\sqrt{mk}}$$

So we can:

- Observe a trajectory
- Generate a second-order LPC polynomial from those observations
- Find the roots of the LPC polynomial
- Derive the Mass-Spring-Damper parameters from the roots In other words, we derive stiffness and damping values from the original trajectory.

MouStress Experiment

Subjects were tested in one of two counter-balanced conditions, with a stress phase and a calming phase:

MouStress

Mouse dynamic tests in detail:

Indicators	Conditions				
	mCalm	mStress	t(48)	p-value	
ω_x	0.126(0.001)	0.130 (0.001)	2.83	.003*	
ω_y	0.205(0.004)	0.215(0.004)	3.00	.002*	
ζ_x	0.532(0.0004)	0.534(0.0003)	3.11	.002*	
$\dot{\zeta}_y$	0.408(0.008)	0.414(0.008)	1.32	.097	
$\overset{\circ}{t}$	1.03(0.05)	1.03(0.07)	02	.490	

Where the Swipes come from?

 Collected Swipe data during a stress management longitudinal experiment involving an app and some machine learning algorithms

Pop-Therapy

Coping with Stress through Pop Culture
Pervasive Health 2014

Pablo E. Paredes, UC - Berkeley Ran Gilad-Bachrach, Microsoft Research Mary Czerwinski, Microsoft Research Asta Roseway, Microsoft Research Kael Rowan, Microsoft Research Javier Hernández, MIT - Media Lab

Microsoft Research, Redmond, WA

Personalized Stress Management Problem

What to do?

Interventions

When to do it?Sensing

Given that the USER perceives her/his own stress, WHAT is the best micro-intervention that matches her/his personal state?

2-Part Solution

Micro-Intervention Authoring

Repurposing Popular Web Apps

Intervention Recommender

Context-driven ML personalized policies

Intervention (Quick) Process

2

Recommender System

Context and Personal Features

Sensor/API	Feature		
Calendar	Number of (free, not free) calendar records (before, during and after an intervention)		
GPS (5s x 30min)	 Number of records (at home, at work, null) Time since GPS record at work Signal quality (average, last record) Location (distance to home, distance to work) Distance traveled 		
Time	Time of dayLunch or Night time		
Accelerometer (5s x 30min)	 X, Y, Z average, variance (jerk) (30, 120 min) Number of accelerometer record (20, 120 min) 		
Screen Lock	Number of eventsTime since last lock event		

Data Type	Feature
User Trait Data (Pre-Post and Weekly)	 Personality – BIG5 (agreeableness, conscientiousness, extraversion, neuroticism, openness) Positive and Negative Affect – PANAS Depression – PHQ-9 Coping Styles/Strategies – CSQ Demographics: gender, age, marital status, income, education, employment, professional level Social Network: Facebook usage, size of online social network and number of good friends
Self Report Data (ESM ~90min)	 Last reported energy and mood Time since last self report Energy and Mood (average and variance) Number of self reports

Maximize Stress Delta (Reduction)

Stress After Intervention

Methodology

- Longitudinal → 4 weeks
- N=94 \rightarrow N=20 (WP8 users)
- Compensation
 - Baseline Gratuity
 - Sweepstakes based on usage
- 2 x 2 Experiment

	Random recommendations	Machine Learning recommendations
Cannot self-select	22 users 1307 interventions	21 users 1176 interventions
Can self-select	26 users 1444 interventions	26 users 1550 interventions

Swipe Data

• Data: 12K swipes

• Users: 94

• Time: 4 weeks

• 1 minute before and 1 minute after swipes

Example of Swipe Data

00cc401f-f54e-b4cc-a62a-3f43ee5a2e92 8/29/2013 2:50:21 AM +00:00 DragStarted 0253.125,587.5D1

00cc401f-f54e-b4cc-a62a-3f43ee5a2e92 8/29/2013 2:49:45 AM +00:00

DragCompleted

O241.875,518.75D1T53.0967P236.25,518.75D1H-1.875V0T2.5001P234.375,518.75D1H-1.875V0T1.7976P232.5,518.75D1H-1.875V0T1.8371P230,518.75D1H-2.5V0T2.3325 P228.125,518.75D1H-1.875V0T2.805P226.25,518.75D1H...

00cc401f-f54e-b4cc-a62a-3f43ee5a2e92 8/29/2013 2:49:44 AM +00:00 DragStarted 0241.875,518.75D1

00cc401f-f54e-b4cc-a62a-3f43ee5a2e92 8/29/2013 2:49:26 AM +00:00

DragCompleted

O253.75,471.25D1T19.5851P257.5,470D1H1.875V-0.625T3.4684P258.75,469.375D1H 1.25V-0.625T2.4438P260,468.75D1H1.25V-0.625T18.2979P261.25,468.125D1H1.25V-0.625T25.3764P263.125,467.5D1H1.875V-...

00cc401f-f54e-b4cc-a62a-3f43ee5a2e92 8/29/2013 2:49:24 AM +00:00 DragStarted 0253.75,471.25D1

Swipe Data Structure

GestureData (string): Contains a compressed string representing the gesture. The exact string depends on the value of Action but is generally in the form O#,#D#T#P#,#D#H#V#T#P#D#H#V#T#P#D#H#V#... where the #'s following O and P are the X and Y coordinates of the (O)rigin or the subsequent (P)oints in the gesture, and the # following the T is the amount of time between points, and the # following the D is the direction at that point of the gesture (0=Vertical, 1=Horizontal), and the #'s following H and V are the (H)orizontal and (V)ertical changes to that point in the gesture.

No documentation of string end, but it seems it is:

- HV#VV#
- The last P value represents the last position (repeated number)

Swipe Meta Data

Participant Key

TimeStamp

StressReport

StressAfter

SwipeStart

SwipeStop

SwipeData

Swipe Additional Meta Data (not parsed at the moment)

```
Accelerometer
BackKeyPress
Button ['add tile', 'done', 'get activity', 'launch', 'next', 'ok', 'proceed', 'submit']
DoubleTap
DragComplmeted
DragStarted
Flick
GestureBegin
GestureCompleted
Hold
Tap
```

No data on screen pressure (i.e. finger surface activation) − SADLY! ⊗

Broad numbers

- Number of participants: 94
- Number of records: 3164
- Number of empty records: 2
- Number of swipes: 12196

Swipes per record user

• Min: 1

• Max: 242

• Mean: 33.66

• Median: 22

Let's look at some swipes

- Record 1 ... 13 Swipes ... Hum!
 - Device Independent Units \rightarrow 1 DIU = 1/96 in

Let's see the displacements

Displacement in x

Displacement in y

Swipes Revisited

- Record 1 ... 13 Swipes ... Much better
 - Although, the x-displacement seems a bit large!

Displacements Revisited

Displacement in x

Displacement in y

X-axis = ms Y-axis = in

What about stress metrics?

Stress Before (Low: 0.06 ... High: 0.94)

What about stress metrics?

• Stress After (Low: 0.06 ... High: 0.94)

Outliers??

- Lots of people without any stress?
- People playing with the app?
 - Remember we PAID them for usage
 - We had little time and small population
 - -0.06 stress before and after = 265
 - -0.06 stress before and 0.94 after = 2
 - -0.94 stress before and 0.06 after = 26
 - Time between begin and end of intervention?

What about stress metrics?

- Delta (StressBefore StressAfter)
 - Hum ... No change: 405/3164 (12.8%)

What about stress metrics?

Stress Reduction (Delta>0)

What about stress metrics?

Stress Increase (Delta<0)

Stress Before vs After

- Mostly diff on the right tail??
 - Wilcoxon rank test \rightarrow p=2.8364E-11

Stress Reduction vs. Increase

• Different distributions??

Back to Swipes – Duration

- Lost of tiny swipes...
 - but also huge duration ones?

Displacement X-axis

More than 3 inches???

Displacement Y-axis

More than 5 inches???

Displacement X vs Y

• 55

Displacement X vs Y

No outliers, normalized (maxX=3, maxY=5)

Trajectory X-axis

Some very long trajectories!

Trajectory Y-axis

Some very long trajectories!

Trajectory X vs Y

Some very long trajectories!

