Table 3: Geographic Distribution of Results

Percantof Chent Tasts

| Continent | Spoofing Successes | Spoofing Rate |
N. America 498 18.2%
S. America 44 19.4%
Europe 389 19.1%
Asia 289 32.6%
Oceania 40 25.6%
Africa 15 17.4%
Client Claze Statistics
100 T Dlocked =21

B0 -

20 -

Table 5:

distinct clients respectively.

Longitudinal comparison between three-
month periods in 2005 and 2009 with 1,100 and 400

Proportion Spoofable

Metric 2005 2009 2009

(dest. MIT) | (dest. MIT) | (all dests.)
Sessions 18.84+3.2% 29.9+6.0% 31.2+6.0
Netblocks | 20.0£3.5% 30.24+6.4% 31.7+6.5
Addresses | 5.0+1.8% 11.0£4.1% 11.1+4.1
ASes 23.4+5.0% 31.8+7.6% 34.1+7.6
14 _I T T T T T T T T T T T T T -I LI L]
12| s
10 .

Percentage

Figure 8: Spoofing neighboring addresses: Proba-

bility mass of filtering policy granularity

Address Hash(Address)

"
Bitinterleave

Send k fragments into network

Combine k fragments)from network
N —
k-1
—A A A A A

—

BitDeinterleave

[I]]]]]]]]]]IﬂI[III]]Iﬂ]]]]]II]I]]]]Iﬂ]]]]]Iﬂ]]]]]]]]]]]]]I[I]}

0
—
LA

Address? Hash(Address)?

%

Hash(Address?)

Address

Diffuse DDoS: Reflector Attack

Request: src = victim Reply: src = reflector
dst = reflector Reflector 1 dst = victim

Victim

Reflector 11
Reflector 9

Reflector 10

Con_trc_:l traffic directs slaves Reflectors send streams of
at victim & reflectors but unsolicited traffic to victim

Marking procedure at router R:
for each packet w
let & be a random number from [0..1)
if & < pthen
write K into w.start and 0 into w.distance
else
if w.distance = 0 then
write K into w.end
increment u.distance

Path reconstruction procedure at victim v:
let (7 be a tree with root »
let edges in (& be mples (start,end distance)
for each packet w from attacker
if w .distance = 0 then
insert edge (w .start,»,0) into &
else
insert edge (w .start,w.end,w .distance) into (&
remove any edge (. .1) with d # distance from = to v in &
extract path (F;..F;) by enumerating acyclic paths in &

Marking procedure at router R:
let R' = BitIntereave(R?, Hash(R))
let k& be the number of non-overlapping fragments in /i
for each packet w
let & be a random number from [0..1)
if & < p then
let o be a random integer from [0..k — 1]
let f be the fragment of R’ at offset o
write f into w.frag
write 0 into w.distance
write o into w.offset
else
if w.distance = 0 then
let f be the fragment of R’ at offset w.offset
write f & w.frag into w.frag
increment v .distance

Path reconstruction procedure at victim v:
let F'ragI'hl be a table of tuples (frag.offset.distance)
let & be a tree with root v
let edges in (& be tuples (start,end.distance)
let mawd =0
let last ==w
for each packet w from attacker
FragI'hl Insert(w.frag,us .offset.w.distance)
if w.distance > mawxd then
mawxd = w.distance
for d := 0 to maxd
for all ordered combinations of fragments at distance d
construct edge =
if i # O then
z =z B last
if Hash(EvenBits(z)) = OddBits(z) then
insert edge (z.EvenBits(z).d) into &
last == EvenBits(z):
remove any edge (r.y.d) with d # distance from « to v in ¢
extract path (F;..R;) by enumerating acyclic paths in &

