Table 3: Geographic Distribution of Results

Table 5. Geographic Distribution of Results				
Continent	Spoofing Successes	Spoofing Rate		
N. America	498	18.2%		
S. America	44	19.4%		
Europe	389	19.1%		
Asia	289	32.6%		
Oceania	40	25.6%		
Africa	15	17.4%		

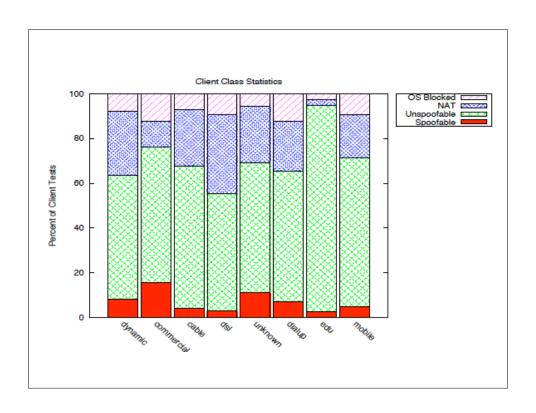


Table 5: Longitudinal comparison between three-month periods in 2005 and 2009 with 1,100 and 400 distinct clients respectively.

	Proportion Spoofable		
Metric	2005	2009	2009
	(dest. MIT)	(dest. MIT)	(all dests.)
Sessions	$18.8 {\pm} 3.2\%$	$29.9{\pm}6.0\%$	$31.2{\pm}6.0$
Netblocks	$20.0{\pm}3.5\%$	$30.2{\pm}6.4\%$	$31.7{\pm}6.5$
Addresses	$5.0{\pm}1.8\%$	$11.0{\pm}4.1\%$	$11.1{\pm}4.1$
ASes	$23.4{\pm}5.0\%$	$31.8{\pm}7.6\%$	$34.1{\pm}7.6$

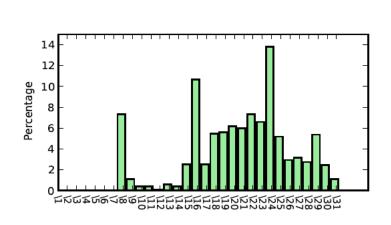
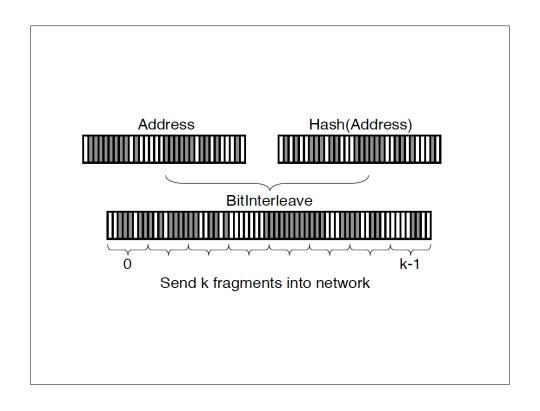
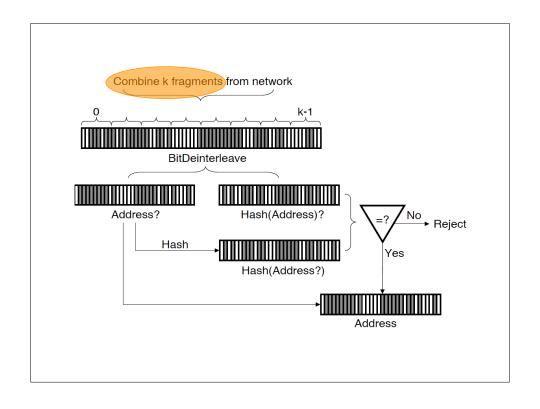
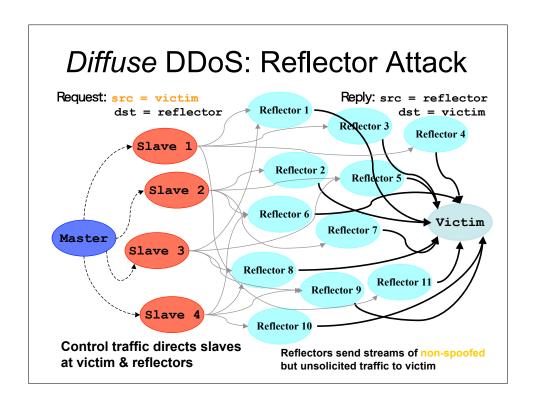





Figure 8: Spoofing neighboring addresses: Probability mass of filtering policy granularity


```
\begin{tabular}{ll} \textit{Marking procedure at router $R$:} \\ & \text{for each packet $w$} \\ & \text{let $x$ be a random number from [0..1)} \\ & \text{if $x < p$ then} \\ & \text{write $R$ into $w$.start and $0$ into $w$.distance} \\ & \text{else} \\ & \text{if $w$.distance} = 0 \text{ then} \\ & \text{write $R$ into $w$.end} \\ & \text{increment $w$.distance} \\ \end{tabular}
```

```
Path reconstruction procedure at victim v:
let G be a tree with root v
let edges in G be tuples (start,end,distance)
for each packet w from attacker
if w.distance = 0 then
insert edge (w.start,v,0) into G
else
insert edge (w.start,w.end,w.distance) into G
remove any edge (x,y,d) with d \neq distance from x to v in G
extract path (R_i ... R_j) by enumerating acyclic paths in G
```

```
Marking procedure at router R:
    let R' = BitIntereave(R, Hash(R))
    let k be the number of non-overlapping fragments in R'
    for each packet w
        let x be a random number from [0..1)
        if x < p then
          let o be a random integer from [0..k-1]
          let f be the fragment of R' at offset o
          write f into w.frag
          write 0 into w.distance
          write o into w.offset
        else
          if w.distance = 0 then
             let f be the fragment of R' at offset w.offset
             write f \oplus w.frag into w.frag
          increment w.distance
```

```
Path reconstruction procedure at victim v:
    let FragTbl be a table of tuples (frag,offset,distance)
    let G be a tree with root v
    let edges in G be tuples (start,end,distance)
    let maxd := 0
    let last := v
    for each packet \boldsymbol{w} from attacker
        FragTbl.Insert(w.frag,w.offset,w.distance)
        if w.distance > maxd then
          maxd := w.distance
    for d := 0 to maxd
        for all ordered combinations of fragments at distance \boldsymbol{d}
          construct edge z
          if d \neq 0 then
             z := z \oplus last
          if Hash(EvenBits(z)) = OddBits(z) then
             insert edge (z, \text{EvenBits}(z), d) into G
             last := EvenBits(z);
    remove any edge (x,y,d) with d \neq distance from x to v in G
    extract path (R_i..R_j) by enumerating acyclic paths in G
```