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The "Witty” Worm

Released March 19, 2004.

Exploited flaw in the passive analysis of
Internet Security Systems products

Worm fit in a single Internet packet

— Stateless: \When scanning, worm could “fire and
forget”

Vulnerable pop. (12K) attained in 75 minutes.
Payload: slowly corrupt random disk blocks.
Flaw had been announced the previous day.
Written by a Pro.



What Exactly Does Witty Do?

. Seed the PRNG using system uptime.

. Send 20,000 copies of self to randomly
selected destinations.

. Open physical disk chosen randomly
between 0 .. 7.

. |f success:

Overwrite a randomly chosen block on
this disk.

Goto line 1.

. Else:
Goto line 2.



Witty Telescope Data

« UCSD telescope recorded every Witty
packet seen on /8 (2%* addresses).

— But with unknown losses

* In the best case, we see =4 of every
1,000 packets sent by each Witty
infectee.

? What can we figure out about the worm?
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Generating (Pseudo-)Random Numbers

* Linear Congruential Generator (LCG)
proposed by Lehmer, 1948:

Xy =X*A+B modM

* Picking A, B takes care, e.g.:
A=214013
B=2,531,011
M = 232

* Theorem: the orbit generated by these is a
complete permutation of 0 .. 232-1

* Another theorem: we can invert this generator



srand(seed) { X < seed }
rand() { X <= X*214013 + 2531011; return X }

main()

srand(get_tick _count());

for(i=0;i<20,000;i++)
dest_ip <= rand(), 45 || rand()y 15
dest_port <= rand();y 15
packetsize <— 768 + rand();q_g;
packetcontents < top-of-stack
sendto()

if(open_physical_disk(rand();;3_+s5; ))
write(rand();y 14; || Ox4€20)

10. goto 1

11. else goto 2

©NO OO A

©



What Can We Do Seeing Just
4 Packets Per Thousand?

Each packet contains bits from 4 consecutive PRNGs:
3. dest_ip < rand(), 5 || rand() 45
4. dest_port <= rand(); ;5
5. packetsize <= 768 + rand()y g

If first call to rand() returns X; :
3. dest_ip < (X)o.15 Il (Xis1)o.15
4. dest port < (X|+2)[0__15]
Given top 16 bits of X, now brute force all possible

lower 16 bits to find which yield consistent top 16
bits for X,4 & X5

Single Witty packet suffices to extract infectee’s
complete PRNG state! Think of this as a
sequence number.



Cool, But So What?

* E.g., Individual Access Bandwidth Estimation

— Suppose two consecutively-observed packets
from source S arrive with states X; and X;

— Compute j-i by counting # of cranks forward from
X; to reach X;

— # packets sent between the two observed = (j-i)/4
— sendto call in Windows is blocking

— Ergo, access bandwidth of that infectee should be
(J-i)/4 * size-of-those-packets | AT

— Note: works even in the presence of very heavy
packet loss
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Inferred Access Bandwidth of
Individual Witty Infectees
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Precise Bandwidth Estimation vs.
Rates Measured by Telescope
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Systematic Telescope Loss
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CAIDA telescope (bits per sec.)

Telescope Comparison
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Telescope Bias

CAIDA > Wisc.*1.05

Wisc. >CAIDA*1.05

# Domains TLD # Domains TLD
53 .edu 64 .net
17 .net 35 . com
7 . Jp 9 .edu
5 .nl 7 .Cn
5 . com 5 .nl
5 .ca 4 .ru
3 tw 3 .Jp
3 .gov 3 . govVv
25 other 19 other
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srand(seed) { X < seed }
rand() { X < X*214013 + 2531011; return X'}

main()

1. srand(get_tick count());

2. for(i=0;i<20,000;i++)

3 dest_ip < rand();, 15 || rand();y 15
4 dest port rand()[o_15] 4 calls to rand()
5 packetsize <= 768 + rand();q g, perioop
6. packetcontents < top-of-stack

14 sendto()

8. if(open_physical_disk(rand();5 5 )) }
9 write(rand(),, 14 || 0x4€20)

1

1

0. goto 1 } ... Or complete reseeding if not
1. else goto 2

Plus one more every 20,000
packets, if disk open fails ...
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Witty Infectee Reseeding Events

* For packets with state X; and X;.
— If from the same batch of 20,000 then
*j-i=0 mod 4

— If from separate but adjacent batches, for
which Witty did not reseed, then

*/-1=1 mod 4

(but which of the 100s/1000s of intervening packets
marked the phase shift?)

— If from batches across which Witty
reseeded, then no apparent relationship.
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Permutation Space
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Permutation Space
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Permutation Space
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Permutation Space
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Permutation Space
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Permutation Space
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Permutation Space

ra -

Range where the seed must lie.

X .32

L |

Range where the seed must lie.

27



Permutation Space

Packets unrelated to predecessors
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We Know Intervals in Which Each
First-Seed Packet Occurs ....

... but which among the 1,000s of
candidates are the actual seeds?

Entropy isn't all that easy to come by ...

Consider
srand(get_tick_count())

l.e., uptime in msec

The values used in repeated calls
increase linearly with time
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Uptime of 750 Witty Infectees
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Uptime of 750 Witty Infectees
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Given Exact Values
of Seeds Used for Reseeding ...

e ... we know exact random # used at each
subsequent disk-wipe test:

if(open_physical_disk(rand();5_+s; )

e ... and its success, or failure, i.e., number of
drives attached to each infectee ...
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Disk Drives Per Witty Infectee
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Disk Drives Per Witty Infectee
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Given Exact Values
of Seeds Used for Reseeding ...

e ... we know exact random # used at each
subsequent disk-wipe test:

if(open_physical_disk(rand();;5 s )

e ... and its success, or failure, i.e., number of
drives attached to each infectee ...

* ... and, more, generally, every packet each
infectee sent

— Can compare this to when new infectees show up
— i.e. Who-Infected-Whom
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Time Between Scan by Known Infectee
and New Source Arrival At Telescope
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Infection Attempts That Were
Too Early, Too Late, or Just Right
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Witty is Incomplete

Recall that LCD PRNG generates a complete orbit over
a permutation of 0..232-1.

But: Witty author didn’t use all 32 bits of single PRNG
value

— dest_ip < (X)o.151 Il (Xi1)p0..15

— Knuth recommends top bits as having better pseudo-random
properties

But?: This does not generate a complete orbit!

— Misses 10% of the address space
— Visits 10% of the addresses (exactly) twice

So, were 10% of the potential infectees protected?



Time When Infectees Seen At Telescope
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How Can an Unscanned Infectee
Become Infected?

Multihomed host infected via another address

— Might show up with normal speed, but not early

DHCP or NAT aliasing

— Would show up /ate, certainly not early

Could they have been passively infected
extra quickly because they had large cross-
sections?

Just what are those hosts, anyway?
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Uptime of 750 Witty Infectees
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Time When Infectees Seen At Telescope
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Analysis of the Extra-Quick Hosts

« Initial infectees exhibit super-exponential growth =
they weren’t found by random scanning

* Hosts in prevalent /16 numbered x.y.z.4 in
consecutive /24 subnets

« “Lineage” analysis reveals that these subnets not
sufficiently visited at onset to account for infection

* One possibility: they monitored networks separate
from their own subnet

« But: if so, strange to number each .4 in adjacent
subnets ...

= Unlikely infection was due to passive monitoring ...
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Alternative:
Witty Started With A "Hit List”

...Unlikely infection was due to passive
monitoring ...

Prevalent /16 = U.S. military base

Attacker knew of |SS security software
installation at military site = ISS insider

(or ex-insider)

Fits with very rapid development of worm
after public vulnerability disclosure
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Are All The Worms In Fact
Executing Witty?

« Answer: No.

* There is one “infectee” that probes addresses
not on the orbit.

« Each probe contains Witty contagion, but lacks
randomized payload size.

* Shows up very near beginning of trace.

= Patient Zero - machine attacker used to launch
Witty. (Really, Patient Negative One.)

e European retail ISP.

e Information passed along to Law Enforcement.
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Summary of
Witty Telescope Forensics

* Understanding a measurement’s underlying
structure adds enormous analytic power

« Cuts both ways: makes anonymization much
harder than one would think

« With enough effort, worm “attribution” can be
possible

— But a /ot of work

— And no guarantee of success
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