Exploiting Underlying Structure for
Detailed Reconstruction of an
Internet-scale Event

Abhishek Kumar (Georgia Tech / Google)
Vern Paxson (ICSI)
Nicholas Weaver (ICSI)

Proc. ACM Internet Measurement Conference 2005

Enhancing Telescope Imagery

NGC6543: Chandra X-ray Observatory Center (http://chandra.harvard.edu)

Enhancing Telescope Imagery

NGC6543: Chandra X-ray Observatory Center (http://chandra.harvard.edu)

The "Witty” Worm

Released March 19, 2004.

Exploited flaw in the passive analysis of
Internet Security Systems products

Worm fit in a single Internet packet

— Stateless: \When scanning, worm could “fire and
forget”

Vulnerable pop. (12K) attained in 75 minutes.
Payload: slowly corrupt random disk blocks.
Flaw had been announced the previous day.
Written by a Pro.

What Exactly Does Witty Do?

. Seed the PRNG using system uptime.

. Send 20,000 copies of self to randomly
selected destinations.

. Open physical disk chosen randomly
between 0 .. 7.

. |f success:

Overwrite a randomly chosen block on
this disk.

Goto line 1.

. Else:
Goto line 2.

Witty Telescope Data

« UCSD telescope recorded every Witty
packet seen on /8 (2%* addresses).

— But with unknown losses

* In the best case, we see =4 of every
1,000 packets sent by each Witty
infectee.

? What can we figure out about the worm?

6

Generating (Pseudo-)Random Numbers

* Linear Congruential Generator (LCG)
proposed by Lehmer, 1948:

Xy =X*A+B modM

* Picking A, B takes care, e.g.:
A=214013
B=2,531,011
M = 232

* Theorem: the orbit generated by these is a
complete permutation of 0 .. 232-1

* Another theorem: we can invert this generator

srand(seed) { X < seed }
rand() { X <= X*214013 + 2531011; return X }

main()

srand(get_tick _count());

for(i=0;i<20,000;i++)
dest_ip <= rand(), 45 || rand()y 15
dest_port <= rand();y 15
packetsize <— 768 + rand();q_g;
packetcontents < top-of-stack
sendto()

if(open_physical_disk(rand();;3_+s5;))
write(rand();y 14; || Ox4€20)

10. goto 1

11. else goto 2

©NO OO A

©

What Can We Do Seeing Just
4 Packets Per Thousand?

Each packet contains bits from 4 consecutive PRNGs:
3. dest_ip < rand(), 5 || rand() 45
4. dest_port <= rand(); ;5
5. packetsize <= 768 + rand()y g

If first call to rand() returns X; :
3. dest_ip < (X)o.15 Il (Xis1)o.15
4. dest port < (X|+2)[0__15]
Given top 16 bits of X, now brute force all possible

lower 16 bits to find which yield consistent top 16
bits for X,4 & X5

Single Witty packet suffices to extract infectee’s
complete PRNG state! Think of this as a
sequence number.

Cool, But So What?

* E.g., Individual Access Bandwidth Estimation

— Suppose two consecutively-observed packets
from source S arrive with states X; and X;

— Compute j-i by counting # of cranks forward from
X; to reach X;

— # packets sent between the two observed = (j-i)/4
— sendto call in Windows is blocking

— Ergo, access bandwidth of that infectee should be
(J-i)/4 * size-of-those-packets | AT

— Note: works even in the presence of very heavy
packet loss

10

Inferred Access Bandwidth of
Individual Witty Infectees

9000

8000

7000

6000

5000

Rank

4000

3000

2000
1000 F

O n P | M " | " M | M " | M " M
10000 100000 1e+06 1e+07 1e+08 1e+09
Estimated access bandwidth (bits per sec.)

Precise Bandwidth Estimation vs.
Rates Measured by Telescope

1e+09
8 1e+08
w
2 [
Q_ -
@
a 1e+07
_C -
S
= !
S 1e+06 |
L0 L
()]
=
B [)
£ 100000 | T
L ! e
I A “.‘a“‘\l-’ | . SR
10000 L———1 — —

10000 100000 1e+06 1e+07 1e+08 1e+09
Access bandwidth (bits per sec.)

Systematic Telescope Loss

12000

10000 .

8000 r .

6000 .

4000 r .

Packets per second

2000 t .

0 | | 1 | 1 | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (sec)

13

CAIDA telescope (bits per sec.)

Telescope Comparison

1e+09_ v T Y T Y 1 Y T

1e+08 [

1e+07

1e+06

100000 ¢

1 1 1

10000 Lot L s s
10000 100000 1e+06 1e+07 1e+08 1e+09
Wisconsin telescope (bits per sec.)

14

Telescope Bias

CAIDA > Wisc.*1.05

Wisc. >CAIDA*1.05

Domains TLD # Domains TLD
53 .edu 64 .net
17 .net 35 . com
7 . Jp 9 .edu
5 .nl 7 .Cn
5 . com 5 .nl
5 .ca 4 .ru
3 tw 3 .Jp
3 .gov 3 . govVv
25 other 19 other

15

srand(seed) { X < seed }
rand() { X < X*214013 + 2531011; return X'}

main()

1. srand(get_tick count());

2. for(i=0;i<20,000;i++)

3 dest_ip < rand();, 15 || rand();y 15
4 dest port rand()[o_15] 4 calls to rand()
5 packetsize <= 768 + rand();q g, perioop
6. packetcontents < top-of-stack

14 sendto()

8. if(open_physical_disk(rand();5 5)) }
9 write(rand(),, 14 || 0x4€20)

1

1

0. goto 1 } ... Or complete reseeding if not
1. else goto 2

Plus one more every 20,000
packets, if disk open fails ...

16

Witty Infectee Reseeding Events

* For packets with state X; and X;.
— If from the same batch of 20,000 then
*j-i=0 mod 4

— If from separate but adjacent batches, for
which Witty did not reseed, then

*/-1=1 mod 4

(but which of the 100s/1000s of intervening packets
marked the phase shift?)

— If from batches across which Witty
reseeded, then no apparent relationship.

17

Permutation Space

- i

X .32

Seed

18

Permutation Space

- . -

X .32

20,000 packets

Seed

19

Permutation Space

X .32

20,000 packets

Seed

D

Failed Disk Write

20

Permutation Space

X .32

20,000 packets

Seed

20,000 packets

Failed Disk Write

21

Permutation Space

- . -

X .32

4z+1

Pkt Pkt Pkt Pkt

22

Permutation Space

-

X .32

First
Pkt after
Reseeding

23

Permutation Space

-

X .32

First
Pkt after
Reseeding

Translate back by 20,000

24

Permutation Space

-

X .32

First
Pkt after
Reseeding

25

Permutation Space

" 4 -

X .32

Range where the seed must lie.

26

Permutation Space

ra -

Range where the seed must lie.

X .32

L |

Range where the seed must lie.

27

Permutation Space

Packets unrelated to predecessors

X .32

28

ol
o
o

~ (10801 11q 7€) SPI9S [BNUDIOG

-

Possible reseeding events (time)

29

(s10891u1 11q 7€) SPas [BNUAOJ

1.1¥1¢

1.0%1¢

Possible reseeding events (time)

30

We Know Intervals in Which Each
First-Seed Packet Occurs

... but which among the 1,000s of
candidates are the actual seeds?

Entropy isn't all that easy to come by ...

Consider
srand(get_tick_count())

l.e., uptime in msec

The values used in repeated calls
increase linearly with time

31

™

1.1¥1¢

(s10891u1 11q 7€) SPas [BNUAOJ

1.0%1¢

Possible reseeding events (time)

32

o
- - - =g . -

1.1¥1¢

(s10891u1 11q 7€) SPas [BNUAOJ

1.0%1¢

Possible reseeding events (time)

33

1.1¥1¢

(s10891u1 11q 7€) SPas [BNUAOJ

1.0%1¢

Possible reseeding events (time)

34

- - - - - - - -

1.1¥1¢

(s10891u1 11q 7€) SPas [BNUAOJ

1.0%1¢

Possible reseeding events (time)

35

1.1#¥16

Potential seeds (32 bit integers)

1.0%1¢

Possible reseeding events (time)

36

1.1#¥16

Potential seeds (32 bit integers)

1.0%1¢

Possible reseeding events (time)

37

1.

[—
*

[o—

=N

Potential seeds (32 bit integers)

1.0%1¢

Slope = 1000/sec

Time back to X-intercept
= uptime

Possible reseeding events (time)

38

Uptime of 750 Witty Infectees

Number of hosts

160 [
140
120 1
100 H
80 H
60 H
40 H

20

?

—

10

20 30
Uptime (days)

40

50

39

Uptime of 750 Witty Infectees

Number of hosts

160 [

140

120 +

100

80 -

60

40 |

20

[l

Uptlme days

50

40

Given Exact Values
of Seeds Used for Reseeding ...

e ... we know exact random # used at each
subsequent disk-wipe test:

if(open_physical_disk(rand();5_+s;)

e ... and its success, or failure, i.e., number of
drives attached to each infectee ...

41

Disk Drives Per Witty Infectee

60 -

501

40 4

30+

201

101

0O % Infectees w/ # Drives

42

Disk Drives Per Witty Infectee

60 -

501

40 4

30+

201

101

0O % Infectees w/ # Drives

|1|H|H|,,|,,|
3 4 5 6 7

43

Given Exact Values
of Seeds Used for Reseeding ...

e ... we know exact random # used at each
subsequent disk-wipe test:

if(open_physical_disk(rand();;5 s)

e ... and its success, or failure, i.e., number of
drives attached to each infectee ...

* ... and, more, generally, every packet each
infectee sent

— Can compare this to when new infectees show up
— i.e. Who-Infected-Whom

44

Time Between Scan by Known Infectee
and New Source Arrival At Telescope

tinfe«:tion'tscan (sec.)

4000
300
200
100

0

-1000
-200
-300

-4000

Scans b)'/ Infectee A
Scans by Infectee C
Scans by Infectee B

T
b

LS
a}

x xx
|| Too s
Early % _. « Be g
| o oo b3
X X o a *
ol - td 0 ®
2 e - b . . *
[é’:*gﬁ%%mg " o Right on Time *
o ,?(:-c of O g ¥ *’*
p® © ¥* * *
-1 Too e’ ¥ g
¥ & ¥
) Late Tk
A
i 1 1 1 1 | 1 ;& |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

tscan (S€C.)

45

Infection Attempts That Were
Too Early, Too Late, or Just Right

450 T T T T T

400 +
350 r
300 r
250

200

Number of scans

150 |

100

. MWM

0

-5000 -4000 -3000 -2000 -1000 1000 2000 3000 4000 5000
tmf tlont can (sec)

Witty is Incomplete

Recall that LCD PRNG generates a complete orbit over
a permutation of 0..232-1.

But: Witty author didn’t use all 32 bits of single PRNG
value

— dest_ip < (X)o.151 Il (Xi1)p0..15

— Knuth recommends top bits as having better pseudo-random
properties

But?: This does not generate a complete orbit!

— Misses 10% of the address space
— Visits 10% of the addresses (exactly) twice

So, were 10% of the potential infectees protected?

Time When Infectees Seen At Telescope

100 | _
90 | infected faster). e _
80 [~ /,‘"/ ;'_.._,w";.-; 1
o+ S 77 |
o 60 | _
()] y
6 /,f'
"GEJ 50 - normal victims i
0 doubly scanned victims --—---
> unscanned victims - |

| | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec.)

How Can an Unscanned Infectee
Become Infected?

Multihomed host infected via another address

— Might show up with normal speed, but not early

DHCP or NAT aliasing

— Would show up /ate, certainly not early

Could they have been passively infected
extra quickly because they had large cross-
sections?

Just what are those hosts, anyway?

49

Uptime of 750 Witty Infectees

Number of hosts

160 [

140

120 +

100

80 -

60

40 |

20

[l

Uptlme days)

50

50

Time When Infectees Seen At Telescope

100

90 — e /’ |
80 - | " .
70 |

b= 60 - _

D y

(&) /'I . g

L 50 - Iy normal victims .

£ doubly scanned victims -

¥ 40 - unscanned victims -~ .
30 - Yy |
20 + , .
10 — .”:._,-;,')",i" _

0 / i | 1 I | 1 | |

O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec.)

Analysis of the Extra-Quick Hosts

« Initial infectees exhibit super-exponential growth =
they weren’t found by random scanning

* Hosts in prevalent /16 numbered x.y.z.4 in
consecutive /24 subnets

« “Lineage” analysis reveals that these subnets not
sufficiently visited at onset to account for infection

* One possibility: they monitored networks separate
from their own subnet

« But: if so, strange to number each .4 in adjacent
subnets ...

= Unlikely infection was due to passive monitoring ...

52

Alternative:
Witty Started With A "Hit List”

...Unlikely infection was due to passive
monitoring ...

Prevalent /16 = U.S. military base

Attacker knew of |SS security software
installation at military site = ISS insider

(or ex-insider)

Fits with very rapid development of worm
after public vulnerability disclosure

53

Are All The Worms In Fact
Executing Witty?

« Answer: No.

* There is one “infectee” that probes addresses
not on the orbit.

« Each probe contains Witty contagion, but lacks
randomized payload size.

* Shows up very near beginning of trace.

= Patient Zero - machine attacker used to launch
Witty. (Really, Patient Negative One.)

e European retail ISP.

e Information passed along to Law Enforcement.
54

Summary of
Witty Telescope Forensics

* Understanding a measurement’s underlying
structure adds enormous analytic power

« Cuts both ways: makes anonymization much
harder than one would think

« With enough effort, worm “attribution” can be
possible

— But a /ot of work

— And no guarantee of success

55

