

Real-Time Detection

Expected Time Until Decision

$$E[N|H_0] = \frac{\alpha \ln \frac{\beta}{\alpha} + (1 - \alpha) \ln \frac{1 - \beta}{1 - \alpha}}{\theta_0 \ln \frac{\theta_1}{\theta_0} + (1 - \theta_0) \ln \frac{1 - \theta_1}{1 - \theta_0}},$$

$$E[N|H_1] = \frac{\beta \ln \frac{\beta}{\alpha} + (1 - \beta) \ln \frac{1 - \beta}{1 - \alpha}}{\theta_1 \ln \frac{\theta_1}{\theta_0} + (1 - \theta_1) \ln \frac{1 - \theta_1}{1 - \theta_0}}.$$

RB-SHT: Rate-Based Detection

- FCC's interarrival times follow exponential dist. with mean $\frac{1}{\lambda_1}$ (scanner) or $\frac{1}{\lambda_0}$ (benign host). $\frac{1}{\lambda_1} < \frac{1}{\lambda_0}$
- T_n: elapsed time until n FCC arrivals follows n-Erlang distribution

$$\Lambda(n, T_n) = \frac{f_n(T_n \mid H_{\text{scanning}})}{f_n(T_n \mid H_{\text{benign}})} = \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp^{-(\lambda_1 - \lambda_0)T_n}$$

