

GQ: Building a Large-Scale Honeyfarm

• Honeyfarm: use a network telescope to route scan
traffic to a set of honeypots

• Goal: scale to 100,000s of monitored addresses …
• … at high fidelity

Global
Internet

Advertised
Dark Space

Physical Honeyfarm Servers

 VM VM VM

 VM VM VM

 VM VM VM

MGMT
Gateway

If redirected traffic again tries to communicate
outbound, then we have found a worm

GRE Tunnels
or direct routing

GQ Architecture

• Controller: VM independent
• Aggressive filtering
• Containment and redirection
• Mapping and NAT: link incoming traffic to selected VM

• Honeypot Manager: VM dependent

 Filtering gain ≈ x15 (N=4)

Scan Filtering

• Our telescope: 250,000+ Internet addresses

• 10-20K probes/min: can’t answer each with a VM!
• Simple filter: each origin gets N probes answered
• Major gain, but still need ~ dozen VM’s/sec

⇒ SMB Negotiate Protocol Request
⇐ SMB Negotiate Protocol Response
⇒ SMB Session Setup AndX Request
⇐ SMB Session Setup AndX Response
⇒ SMB Tree Connect AndX Request

 Path: \\XX.128.18.16\IPC$
⇐ SMB Tree Connect AndX Response
⇒ SMB NT Create AndX Req, Path: \samr
⇐ SMB NT Create AndX Response
⇒ DCERPC Bind: call_id: 1 UUID: SAMR
⇐ DCERPC Bind_ack:
⇒ SAMR Connect4 Request
⇐ SAMR Connect4 Reply
⇒ SAMR EnumDomains Request
⇐ SAMR EnumDomains Reply
⇒ SAMR LookupDomain Request
⇐ SAMR LookupDomain Reply
⇒ SAMR OpenDomain Request
⇐ SAMR OpenDomain Reply
⇒ SAMR EnumDomainUsers Request

Now start another session, connect
to SRVSVC pipe and issue Remote-
Time-of-Day Request

 (that stuff again)
⇒ SMB NT Create AndX Request,

 Path: \srvsvc
⇐ SMB NT Create AndX Response
⇒ DCERPC Bind: call_id: 1 UUID: SRVSVC
⇐ DCERPC Bind_ack: call_id: 1
⇒ SRVSVC NetrRemoteTOD Request
⇐ SRVSVC NetrRemoteTOD Reply
⇒ SMB Close Request
⇐ SMB Close Response
⇒ SMB Tree Connect AndX Request,

 Path: \\XX.128.18.16\ADMIN$
⇐ SMB Tree Connect AndX Response
⇒ SMB NT Create AndX Request,

 Path:\system32\msmsgri32.exe

 Only here do we find what file they’re modifying
⇐ SMB NT Create AndX Response,

 FID: 0x74ca
⇒ SMB Trans2Req SET_FILE_INFORMATION
⇐ SMB Trans2Resp SET_FILE_INFORMATION
⇒ SMB Trans2Req QUERY_FS_INFORMATION
⇐ SMB Trans2Resp QUERY_FS_INFORMATION

⇒ SMB Write Request

 And only here do we find what code they’re
injecting into it!

`

Replay Proxy
Attacker Proxy Honeypot

1
2

3

4’’
5

1
2’

3’
4’

5’

?

Infected!

Roleplayer translates
new response from
attacker and sends to
honeypot, which
becomes infected by it

Filtering Out
Complicated-But-Boring Probes

• Idea #1: for each such worm, craft a “script” that
codifies its network activity
♦ Doable in principle, but tedious: 1000s of both different

worms & message types

• Idea #2: automate construction of such scripts using
copies of the packet exchanges
♦ Problem: for many protocols, two semantically identical

sessions are not byte-wise identical
♦ They differ in:

• Embedded (known) network addresses & host names
• Transaction identifiers, “cookie” fields
• Length fields corresponding to these

Matching Protocol Dialog
In A New Setting

N4 = 4 bytes of NetBIOS
S26 = 26 bytes of SMB (Server Message Block)
R24 = 24 bytes of DCE-RPC
M32 = Security Account Manager

Matching Protocol Dialog
In A New Setting

Grey = embedded length field
Bold = transaction ID / “cookie” field
Bold Italic = embedded IP address or hostname

• How can we accurately identify & adjust all of these?

Two Dialogs for Matching Randex

Replaying the Server Side for Randex:

Replaying the Client Side for Randex:

