




GQ: Building a Large-Scale Honeyfarm

• Honeyfarm: use a network telescope to route scan
traffic to a set of honeypots

• Goal: scale to 100,000s of monitored addresses …
• … at high fidelity
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GQ Architecture

• Controller: VM independent
• Aggressive filtering
• Containment and redirection
• Mapping and NAT: link incoming traffic to selected VM

• Honeypot Manager: VM dependent



       Filtering gain ≈ x15 (N=4)

Scan Filtering

• Our telescope: 250,000+ Internet addresses

• 10-20K probes/min: can’t answer each with a VM!
• Simple filter: each origin gets N probes answered
• Major gain, but still need ~ dozen VM’s/sec



⇒ SMB Negotiate Protocol Request
⇐ SMB Negotiate Protocol Response
⇒ SMB Session Setup AndX Request
⇐ SMB Session Setup AndX Response
⇒ SMB Tree Connect AndX Request

    Path:  \\XX.128.18.16\IPC$
⇐ SMB Tree Connect AndX Response
⇒ SMB NT Create AndX Req, Path: \samr
⇐ SMB NT Create AndX Response
⇒ DCERPC Bind: call_id: 1 UUID: SAMR
⇐ DCERPC Bind_ack:
⇒ SAMR Connect4 Request
⇐ SAMR Connect4 Reply
⇒ SAMR EnumDomains Request
⇐ SAMR EnumDomains Reply
⇒ SAMR LookupDomain Request
⇐ SAMR LookupDomain Reply
⇒ SAMR OpenDomain Request
⇐ SAMR OpenDomain Reply
⇒ SAMR EnumDomainUsers Request

Now start another session, connect
to SRVSVC pipe and issue Remote-
Time-of-Day Request

      (that stuff again)
⇒ SMB NT Create AndX Request,

    Path: \srvsvc
⇐ SMB NT Create AndX Response
⇒ DCERPC Bind: call_id: 1 UUID: SRVSVC
⇐ DCERPC Bind_ack: call_id: 1
⇒ SRVSVC NetrRemoteTOD Request
⇐ SRVSVC NetrRemoteTOD Reply
⇒ SMB Close Request
⇐ SMB Close Response
⇒ SMB Tree Connect AndX Request,

    Path: \\XX.128.18.16\ADMIN$
⇐ SMB Tree Connect AndX Response
⇒ SMB NT Create AndX Request,

    Path:\system32\msmsgri32.exe

       Only here do we find what file they’re modifying
⇐ SMB NT Create AndX Response,

    FID: 0x74ca
⇒ SMB Trans2Req SET_FILE_INFORMATION
⇐ SMB Trans2Resp SET_FILE_INFORMATION
⇒ SMB Trans2Req QUERY_FS_INFORMATION
⇐ SMB Trans2Resp QUERY_FS_INFORMATION

⇒ SMB Write Request

      And only here do we find what code they’re
injecting into it!
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Filtering Out
Complicated-But-Boring Probes

• Idea #1: for each such worm, craft a “script” that
codifies its network activity
♦ Doable in principle, but tedious: 1000s of both different

worms & message types

• Idea #2: automate construction of such scripts using
copies of the packet exchanges
♦ Problem: for many protocols, two semantically identical

sessions are not byte-wise identical
♦ They differ in:

• Embedded (known) network addresses & host names
• Transaction identifiers, “cookie” fields
• Length fields corresponding to these



Matching Protocol Dialog
In A New Setting

N4 = 4 bytes of NetBIOS
S26 = 26 bytes of SMB (Server Message Block)
R24 = 24 bytes of DCE-RPC
M32 = Security Account Manager



Matching Protocol Dialog
In A New Setting

Grey = embedded length field
Bold = transaction ID / “cookie” field
Bold Italic = embedded IP address or hostname

• How can we accurately identify & adjust all of these?



Two Dialogs for Matching Randex



Replaying the Server Side for Randex:

Replaying the Client Side for Randex:


