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Abstract—In this paper we explore the use of end-to-end performance observed by multicast packets may differ signif-
unicast traffic as measurement probes to infer link-level loss jcantly from that observed by unicast packets, while unicast
rates. We leverage off of earlier work that produced efficient 5tiic constitutes the bulk of Internet traffic. This motivates

estimates for link-level loss rates based on end-to-end multicast . .
traffic measurements. We design experiments based on the INference methods for network internal performance that are

notion of transmitting stripes of packets (with no delay between based on end-to-end unicast measurements. A challenge here
transmission of successive packets within a stripe) to two or is that unicast does not exhibit the packet-level correlation at
more receivers. The purpose of these stripes is to ensure that different receivers that is possessed by multicast.

the correlation in receiver observations matches as closely as

possible what would have been observed if a multicast probe

followed the same path to the receivers. Measurements provide g contribution

good evidence that a packet pair to distinct receivers introduces

considerable correlation which can be further increased by In this paper we adapt the multicast inference techniques
simply considering longer stripes. Using an M/M/1/K model for proposed in [3] to perform inference of internal network

a link, we theoretically confirm this benefit for stripes. We also characteristics from unicast end-to-end measurements. The

use simulation to explore how well these stripes translate into data for the inf - d end-t dl f
accurate link-level loss estimates. We observe good accuracy with ala for the interence comprises measured end-to-end 10ss 0

packet pairS, with a typ|ca| error of about 1%’ which Significanﬂy unicast prObeS sent from a source to a number of destinations.

decreases as stripe length is increased. This is used to infer the loss characteristics of each logical link
Index Terms—End-to-end Measurement, Network Tomogra- of the source tree joining the source to the destinations, i.e., of
phy, Packet Loss Rates, Estimation, Correlation the composite paths between its branch points. We summarize

how multicast inference works; see [3] for further details.
Consider the tree shown in Figure 1. Suppose multicast

probes are dispatched from a source at nodewards the

A. Motivation leaves at nodes and r. The problem is to estimate the

As the Internet grows in size and diversity, its internallink transmission probabilities.., o anda. from end-to-end

performance is becoming more difficult to measure. Angueasure%m"en:s. Thdeee_ijCtEd proportl(;)r: of p:jobgs Zan_smltted
one organization has administrative access to only a fracti jccessiully to nodeis 4 = aca, and to noder s 4, =

of the network’s internal nodes, whereas commercial factar§®r These relations would also hqld for u_mcast packets sent
ependently to the leaves. But with multicast, the expected

often prevent organizations from sharing internal performan . )
P 9 g P proportion of probes that reach both nodesdis= a.q .

data.Multicast Inference of Network Characteristi@glINC), The f ing th lati b dt the link
avoids these problems by exploiting the inherent correlatiort1e oregoing three relations can be USed to recover the fin

in performance observed by multicast receivers to infer ”n%ansmssmn propab|llt|eac,q._and ar N te”;T_]s of the end-
level loss and delay statistics. These measurements requirécﬁgnd transmission probabilities;, Ar and A"
participation by internal nodes besides forwarding packets. ac=AAJA,  a=AJA, o =A/A (1)

The key intuition for inferring packet loss is that the arrival
of a packet at a given internal node can be directly inferreflibstituting the correspondimgeasurecend-to-end transmis-
from the packet’s arrival at one or more receivers reachswn probabilitiesA,, A,, and A’ into these relations yields
from the source by paths through that node; if it reachestimates of the link probabilities. These estimates can be
the receivers, it must have reached the node. By conditionisigown to be maximum likelihood estimators; moreover, the
on arrival at a descendent, we can determine the probabiltole approach generalizes to trees of arbitrary topology.
of successful transmission to and beyond the given node.
Inference algorithms are given in [3] for loss, [23] for delay
distributions, [11] for delay variances, and [10] for inferring
the logical multicast tree topology itself.

However, these methods suffer from two serious deficien-
cies. First, there remain significant portions of the Internet that
do not support network-level multicast. Second, the internal

I. INTRODUCTION
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The central idea in this paper is to construct composiiy conditioning on the measurable event that nearby packets
probes of unicast packets whose collective statistical propeeve been transmitted end-to-end, we raise the likelihood of
ties closely resemble those of a multicast packet. We shafinsmission of a given packet to an intermediate node. By
speak ofstriping a group of unicast packets across a seending the stripe packets to diverse addresses, we can infer
of destinations. This entails dispatching the packets back-tbe properties of internal network paths.
back from a source, each packet potentially having a differentThe rest of the paper is as follows. Section Il formulates
destination address. Our premise is that, when the duratitke stripe method for binary then general trees. We specify a
of network congestion events exceeds the temporal width fammily of striping methods. We state the assumption on packet
the stripe, packets experience very similar behavior when theyrrelations within stripes, construct a hierarchy amongst the
traverse common portions of their paths. If the experiencearious striping methods based on the correction made to the
were identical, the packets from a stripe that attempt to travetsias caused by imperfect correlations. Section 1ll shows that
a given link would either all be lost, or encounter identicahe correlation assumption is satisfied when the common path
delay. The packet loss and delays on a link would be perfecity modeled by an M/M/1/K queue. We also present some
correlated within a stripe; the composite probe would have themerical calculations that show the benefits for estimator
same statistical properties as an imaginary multicast packeturacy of conditioning in certain types of longer stripes.
that followed the same source tree. In this case the method§\Ve use two experimental approaches to evaluate the pro-
of [3], [11], [23] could be applied immediately to infer theposed method. Section IV uses end-to-end measurement on the
link loss and delay statistics of the logical source tree. National Internet Measurement Infrastructure (NIMI) [27] to

However, correlations within stripes may be less than pejather data from a diverse set of Internet paths. We transmitted
fect in practice. Congestion events may not affect packets usiripes between pairs of end-hosts and verified that their packet
formly, subjecting stripes to dispersion as they travel throughass statistics were consistent with the correlation assumptions.
network. Some mechanisms by which this can happen are (e estimated the likely accuracy of stripe-based inference in
following. Packet loss will not be uniform during loss eventshe actual network.
that are narrower than the stripe, or those that start or stoppe support this work in Section V using network level
while the stripe is in progress. Furthermore, delays will vaimulation withns [25]. By instrumenting the simulation we
due to interleaving of background traffic, e.g., when movingan trace the behavior of packets in the network interior. This
from a low to a high capacity link. Although such effectsillows us to study the correlation properties of packets within
should be small for sufficiently narrow stripes, they will b%’[ripes on links (as opposed to paths), and to compare the
cumulative. Packet-dropping on the basis of Random Eaihyferred link loss rates with actual link loss rates. For the most
Detection (RED) [14] is another mechanism by which packetcurate choice of striping method the typical absolute error
loss may become decorrelated. However, this mechanisminsoss rate inference is below 1%. We conclude in Section VI.
seldom used in the Internet. On the other hand, the usembofs of the Theorems are in Section VII.

RED to merely mark packets will not break correlations.
This motivates four strands of work in this paper:
(i) developing a theory with which to develop measuremeft Related Work
procedures to reduce the impact of imperfect correlations;Several tools and methodologies can characterizing link-
(i) finding the impact of these procedures on the accuragvel behavior from end-to-end unicast measurements. One of
of inference methods that assume perfect correlationsthe first methodologies focuses on identifying the bottleneck
(iii) determining the magnitude of imperfect correlationdandwidth on a unicast route. The key idea [18], [20] is
through experiments on real networks; that, in an uncongested network, two packets (packet pair)
(iv) verifying the accuracy of the approach in simulations. sent back-to-back will arrive at the receiver with a spacing

We extend the packet loss model of [3] by incorporatinthat is inversely proportional to the lowest link bandwidth on
an additional parameter for each link that describes the ctite path. The idea was embodied in a number of tools; see
relation of loss between different packets of the same strigg], [21], [26]. Although these methods focus on bandwidth
These additional parameters cannot themselves be determi@gtimation, they are based on the same idea, namely to send
by end-to-end measurements, at least not without additiopeicket pairs (or stripes) so as to introduce correlation in
assumptions relating them to each other, or to the existing I@sscontrolled manner. These methodologies have also been
rate parameters. Calculations show that the error in using #yeplied successfully to estimate cross traffic characteristics;
loss estimator from [3] is small provided that the conditionalee [17], [29]. Packet pair probing has been applied to the
probability of theloss of one packet in the stripe given therelated problem is to determine whether two flows share a
transmission(i.e., non-loss) of the other, is small comparedommon congestion bottleneck; see [16], [30]. This problem
with the marginal loss rate in the stripe. This is a conditiols substantially different than that of estimating link loates
that we will verify for single paths through measurement. [6] uses end-to-end measurements of packet pairs in a tree

By using appropriate stripes of composite probes, we aennecting a single sender to several receivers. Experiments
able to enhance correlations within data used for inferena@mnsist of a number of packet pairs where the packets are
This is possible when packet transmissions are correlatedsent to different receivers so that all pairs of receivers are
the sense that packet transmission is more likely given thevered. The metrics of interest are transmission probabilities
successful transmission of other packets within the stripaf. all links in the tree. Conditional transmission probabilities



are introduced as unknown nuisance variables. The infereratesets of receivers. Fdp C D, define the binary variable
of the link transmission probabilities is formulated as a maxi-

mum likelihood estimation problem which is solved using the Zp = H Xry(d). @)
Expectation Maximization (EM) algorithm. deD

Our approach differs from [6]: we consider a more generdlp = 1 if all packets inD reach their destinations, arid
form of striping which yields significantly higher correlation.otherwise. It is convenient to writ&;, . 4,y aSZy,... d,,-
Thus we are able to continue to rely on the maximum We specify a loss model for the stripes. We assume that
likelihood estimates derived for the multicast case for whidasses are independent between different stripes, and for
we have closed form expressions which are readily computabpigckets of the same stripe on different links. Farc D(k),
without need for iteration. In network simulations, our methk € V, let a;(D) denote the probability that all packets in
ods suffered an absolute error of about 1% in estimating lidk are transmitted across link to nodek, conditioned upon
loss rates in a 7 receiver tree, down to about 0.3% in largeaving reached the parent nodék). We do not assume that
trees, errors being smaller for longer stripes. Results with ttiee marginal probabilitiesy, (d) are equal for alld € D(k).
EM-based approach appear to be comparable, with worst ci¢e will refer to the variouswy, as the linkk transmission
absolute error of about 2% in estimating loss; see [31].  probabilities and to the complement— «; as the linkk

Potentially all other multicast based inference techniqudess probabilities. For disjoint subsefs, D' C D(k), let
the estimators for delay distributions [23], for delay variance®.(D|D’) denote the conditional probability that packets in
[11], and logical multicast topology [10] can be adapte® are successfully transmitted across linko nodek, given
to unicast measurements. Similar developments have bd&eat those inD’ are also successfully transmitted across link
performed for the EM-based approaches; see [7]. k, all packets having reached the parent ngdg). This is

Finally, pathchar  [8], [19] triggers ICMP messages atexpressed in terms of the probabilities as
successive routers on a unicast path in order derive link N / ,
bandwidth, round trip link loss rate, and round trip link delay B(DID') = ax(D U D) [y (D). (3)
statistics. It accurately estimates link bandwidth provided th@ihe 3, are the linkk conditional transmission probabilities.
it is low. It has not been well validated in the case of losses With perfect correlations thg;, would bel. The multicast
and delays. Moreover, it requires considerable time to conveliges model of [3] is statistically equivalent to the special case
and loses accuracy with asymmetric round trip paths. Br(D|D’) =1 and hencey(d) all equal someyy.

For a given link and substripe width, the structure of
the probabilitiesa, 3 should depend on the times between
successive packets. If the packets are widely separated, the
A. Models for Trees, Stripes, and Packet Loss marginal probabilitiesy. (d) will be equal (or nearly so) while
the conditional probabilitieg will be close to the marginal

robabilities«. Here, we concentrate on the other extreme

ith back-to-back packets in order to makeclose tol. In

s case the marginal transmission probabilities will depend
on the position of a packet within a stripe, particularly when
the stripe width is not negligible compared with buffer sizes.
For each linkk, we focus on estimating the transmission
probability ;. (1) of the first probe in the substripe traversing
k. However, our methods can be adapted to focus on other
ff)\’aeckets: within the stripe. This could be useful if it is desired
to infer transmission probabilities for packets in traffic bursts.

Il. INFERENCEMETHODOLOGY

We first develop the framework in which to describe th
propagation of stripes of unicast packets through the netwo
We represent the underlying physical network as a gra
Gphys = (Vpnys, Lpnys) comprising the physical noddg, s
(e.g. routers and switches) and the links,,s between them.
We consider a single source of prolies V., and a set of
receiversR C Vnys. We assume that the set of paths from
to eachr € R is fixed and form a tre@ s in (Vpnys, Lphys);
thus two such paths never intersect again once they h
diverged. We form the logical source trge= (V, L) whose
verticesV comprise0, R, and the branch points @,ys. The
link set L contains the link(j, k) if one or more of the probe
paths in7,,,s pass through and thenk without encountering B. Inference with Binary Stripes on the Two-Leaf Tree
another element of’ in between. We will sometimes refer to  We first investigate the performance of the inference algo-
link (j,k) € L simply as linkk. For k # 0, f(k) denotes the rithms from [3] under imperfect correlations. We start with the
parent ofk. We write j > k if j is an ancestor ok in 7. two-leaf tree shown in Figure 1, having leaf nodesidr with

We will use the notation(ry, ...,rq4,) to refer to a stripe common parent whose own parent is the ro6t Consider
comprising packets dispatched to destination nodes in ordee binary stripgl, r). The link probabilities are related to the
r1,...,7r4,. FOr eachk € V. we will denote D(k) C Dy = probabilities of leaf events as follows:
{1,...,do} the set of packets that transit across lin&n route
to their destinations. We will refer té)(k) as the substripe EZ1EZy _ o EZiz aB(1)2), EZ1
to node k. We describe the progress of the stripeZnby EZ12 Be(1]2)” EZy EZ,
the variablesXy,(d), d € D(k), taking the valuel if packet where Zp, is as defined in (2) andy, k € {c,|,r}, is the
d reaches nodé;, and zero otherwise. Not&’, ,(d) = 1 iff transmission probability of the first probe in the substripe
packetd reaches its destination node. traversing linkk, i.e,, ac = a.(1), o = (1) anda, = a,(2).

It is useful to have a notation describing composite everiixpressions (4) are obtained by expandiify, e.g.,EZ5 =

= arfe(2[1),



ac(12)ay (1) (2) = ac(2)Bc(112) (1) (2), with similar ex- ~ The simplest example is theéaree-packet stripe (I, r,r).

pressions foEZ; andEZ,. With perfect correlationsg. = 1, Provided that transmission of packets within the stripe is

the o may be recovered directly from the leaf probabilities. strongly correlated (as specified in Definition 1 below) it
These expressions are used to estimate d¢hfrom the should be more likely that packétreaches:, upon reception

leaf eventsZ(" associated with multiple identical stripesof packets2 and3 at receiver, rather with than reception of

i = 1,2,...n. We replace each expectation in (4) by theacket2 alone. Conditioning on reception of packets 2 and 3,

corresponding empirical mean, defined here in general:  the analogs of the first and second relations in (4) are

. n . EZ1EZy3 Qe EZ 93

— (@) = = 1|23). 6
Zp=n"'>"7Z}. @) EZis  G(123)) Eay _ CWE(23). (®)
i=1

The parametersy. and oy are estimated byZ,Zos/Zi23
o s o Z123/ Z23 respectivelyp, can be estimated similarly using the
Qc = 7173/ Zv2, O\ = Z12/Z>, Qv = Z12/Z1.  (5) complementary stripér, 1, 1). Comparing with (5), these esti-
o . . mates introduce less bias than those from two-packet stripes
This is the estimator from [3] applied to the two-leaf tree. provided thatfc(1]2,3) > (c(1]2). This is the case provided

o s a4 WgEnSMissions satisy h flaning coreialon propery
P y P ' Definition 1: We say that stripe transmission at a ndde

io_lentifi:_able_; this was obs_erve_d in [6]. Sinde < 1 es_timation is coalescentf for each stripe(ry,...,rq) routed throught,
via (5) is biased, overestimating and underestimating, c,. L ,
. ) . and disjointD, D’ C D(k),

1) The complementary stripé,l): We now consider the
complementary binary stripg, I) obtained by exchanging the Br(D|D") > B (D|D") for all D" c D'. )
order of packet destinations. The link probabilities are no@oalescence states that a set of packets is more likely to
related to the probabilities of leaf events as follows: be transmitted on a link after other packets from the stripe
EZ,EZ, e EZys EZs hav<_e b_ee_n tran_smitteo! over that link. Coale_gce_nce rgal network

B2 0D 2 afBe(2[1), £, = aB(1]2). traffic is investigated in Section V. Conditioning with more

12 ¢ 2 ! packets, the effect is to decrease the estimate..ofind to
To estimatea from measurements, we take the expectatiofngcrease the estimate of or a,. Thus, we can counteract the
in (6). With 3. = 1, we obtain again (5). Note that, how-bias in the two-leaf stripe (see (4)) with wider stripes.
ever, despite having identical expressions, the estimators argheorem 1:Assume transmission is coalescent on the two-
different. The conditional probabilities in the second and thindaf tree and consider a strig®(c)) and two disjoint subsets
expressions in (4) and (6) are exchanged as a consequenc® 0b’ of D(c) such that packets i have destination and
the the destinations of the two probes being inverted. Wiiackets inD’ have destination. Then for anyD” c I,
perfect correlation, either stripe yields unbiased estimates.
With imperfect correlation, both estimates are biased, the

:Jé?astivbeeIcg|uaessyr:)]]‘mge(til|(;?| ;gg' 6a?2d| Sr gigig?r;nga?\gl tzii (8) says that extending the stripe reduces the estimate of the
c < ) 9 y transmission rate,. and so counteracts the bias duejto< 1.

(Section IIl) and network experiments (Section V) suggest . S
; - . Example: the 4-packet stripe: Theorem 1 suggests that
that @C(Hz)/&(z‘l) = 1 with the ratio increasing as thewe can further reduce bias by lengthening the stripe length.
marginal loss probability does. Therefore we expagtto ider for i h . d ;
have a larger bias tha® (anda.) for the stripe(l, r) and the CO.nSI er, for mstgnce,.t e stripé, a r) an compare its
N ’ estimation properties with those of its substrigés, r) and

reverse for the stripér,1). To avoid this mherent. asymmetryél_ ). By Theorem 1 we have the following ordering:
in estimator accuracy, we use both types of stripes and retain

Taking 8. = 1 then yields the estimates

EZpup _ EZpupr )
EZD/ - EZD”

the estimates from each set of results. Their bias will depend EZ1BZy34  BZ1BEZy;  BEZ1EZ, ©)
only on the conditional probability closer to ile., 5.(1]2). EZiosa — EZias — EZin

The estimators are obtained by replacing e&ch by the
C. Enhancing Stripe Correlations corresponding empirical meati from n stripes. By the Law

)of Large Numbers, the same inequalities hold for the estimates

Uncertainty in3(1|2) undermines confidence in using (5 ith probability 1 asn grows to infinity.

directly. We propose a modified stripe for which the effectivé
value of 3 is closer to 1. For the stripél,r) with perfect )
correlations,EZ;»/EZ, (the conditional probability for the D- Extension to General Trees

first packet of the stripe to readlyiven that its second packet We describe estimators that extend the foregoing method to
reaches) is actually equal to the probability of transmissionreat general logical source trees. Consider first the case of a
of a packet along the linkc, 1), conditional upon reaching. depth2 tree with an arbitrary number of leaves. One approach
This is because packetmust have been presentaif present is to stripe across all receivers and then to adapt the estimator
at r. With imperfect correlations, packétmay not have been from [3] for nodes with arbitrary numbers of offspring in order
also present at, leading to underestimation of. Our remedy to estimate the link probabilities. A potential problem with is

is to use longer stripes, conditioning on an event athich that the statistical properties of stripes may not reflect those of
makes it more likely that packdtwas present at. general traffic if their width is not negligible compared with



buffer sizes. Instead, here we focus on combining inferendaiss for a leaf link depends on the conditional transmission
from fixed-width stripe measurements on embedded subtregmbabilities along the entire end-to-end path from the source.
Consider an arbitrary tree with leaf s&t For each node Since these conditional probabilities typically decrease with
k € V \ R let R(k) denote the subset of leaves descendgéth length, the bias should grow with the size of the tree.
from k. Let Q(k) denote the set of ordered pairs of nodes ifihe estimator bias of a non-leaf link, instead, only depends
R(k) descended through different children lofand M (k) a on the transmission probabilities of that link, not the tree size.
subset ofQ (k) such that(s, j) € M (k) iff (j,7) € M (k). For The analysis of the asymptotic varianeg¢ can be per-
each(i,j) € M(k), consider the embedded two-leaf binarformed along the same lines used for that for multicast
tree spanned by the nodésk, i, j. By combining estimates inference [3]. Here we will focus for simplicity on the regime
from measurements of stripes down each such tree, we sl@lvhich all loss rategy;, = 1 — oy, are close to zero. In this
estimate the characteristics of the common path ftota k.  regime it is not difficult to show that
Each stripe will follow the same pattern. We fix a template s(k) s(f(k))
for a stripe ofd, packets by partitionindg1,...,dy} into two o = +
setsDy, D». For each ordered pair;, , r;, ) in M (k) we form a #M(k) — #M(f(k))
stripe that sends packets in positions/¥ to r;, and packets where ||a|| = maxgey @, and s(k) = Zj>kak is the loss
in positions in Dy to r;,. More formally, this is the stripe rate along the path frond to nodek (it is easy to verify
S(riysriy) = (r1,...,74,) Wherery =r;, whend € D,. that in this regimed(k) = 1 — s(k) + O(||@||*)). To leading
The relation between the leaf and transmission probabilitiegder, o7 is proportional to the loss rate from the source to

N k
on the composite path frofito & are expressed through  nodek, and inversely proportional to the number of subtrees

+o(lall’) (@5

EZp,EZp, used in estimatingl;, and Ay ). '_rhus the estimator variance_
oon, Ai(D1)/Br(D1]Ds) (10) ' depends on the topology and size of the tree and grows with
the distance from the probe source. This differs from the
where Ay(D) = [, 05(D) and By(Di|Ds) = analogous result for multicast inference (see [3]), where to

[1;-4 Bj(D1|D2). Henceforth, we omit the dependencedn |eading order the variance is independent of topology.
Dy, and D, when the context is clear. Here, we consider

the same type of stripes described in Section II: for the

ordered pair(r;,,r;,), we assumeD; = {1} and D, = F Measurement Approaches

{2,...,do}, i.e, the stripeS(r;,,ri,) = (riysFig,e--sFiy)- Inference for general logical tree works by combining es-
The pair (r;,,r;,) corresponds to the complementary stripgmates from measurements on embedded 2 receiver subtrees.
S(riy,riy) = (rig,riy, ..., rs,) sent down the same subtreein the exhaustive striping strateggneasurements are taken
For each non-leaf and non-root nodleand each pai(i, j) € across all binary subtrees, i.e., by takidg(k) = Q(k).

M (k), the measurements with stripes of typeS(i,j) give In the minimal striping strategymeasurements are limited to
rise to an estimate ofl, =[], «; a single subtree passing through each nédéaking, e.g.,

. M(k) = {(i,7), (j,4)} for some receivers, j depending on

gkm = M' (11) k- (It can be shown that measurement must be made on at
ZD,uDs least one such subtree per node in order to estimate all the

In this paper we use arithmetic mean of estimates link probabilitigs; see [9]). The minimal strategy has several
R . L advantages. First, it scales better: if we fix the number of
Ap=#ME)H > AN (12) stripes sent down each subtree, it requires a total number of

(4,)€M (k) stripes which grows linearly with the number of nodes while

2 complete set of measurements requires a number of probes
proportional to the square of the number of nodes. Second,
it provides estimates with lower variance. To see this, we
compare the asymptotic estimator variangefor a fixed total

For each leaf nodé, take Ek as the measured transmissio
probability over all stripes of packets tg and setdq = 1 by
convention. The link probability estimates are the quotients

ap = Ek/ﬁf(k), k # 0. (13) number of stripesn. Assume a binary topology of depth
each type stripe is then transmittgdR(#R — 1)m/2 times
E. Asymptotic behavior of loss estimates in the complete case andRm/2 in the single subtree case,

~ ith =2¢-1 Theninth [ [ f I
Theorem 2:For k # 0, \/ii - (G — ax — my,) CONVErges, as with #R en in the asymptotic regime of small loss

n — oo, to @ mean zero Gaussian r.v. of variance where  Var[ai]single 1 s(k)+s(f(k)) 2
! S +o(lal) <1
ag Var[ak]complete 2 28<k) + S(f(k))
e — 51— Br) k¢ R (14)
ap(Byy —1) keR. for k # 0, where d(k) denotes the depth of node and

Var[@g|compiete @andVar[a]singie denote the variances in the
Theorem 2 shows that with imperfect correlatian,, £ # two cases. Thus, for each, the single subtree approach
0, computed via (13), are biased. We define the estimatlivays yields a smaller variance with the ratio decreasing
bias asb, := |E[ar — ag]|, ¥ # 0. For largen we can exponentially with the depth of in the tree. So reduction
use the approximation, ~ |mg|. From (14), the estimator of measurement subtrees is more than compensated by the
bias depends on the position of the link in the tree. THarger number of probes sent down each subtree.



G. Sampling and Statistical Issues with parameterkbibkp, it immediately follows that
We now make two further observations of the statistical e 1 )\p/\g

implications of using the stripe approach. First, network char- B = Z a Ay + Ap)i L (16)

acteristics may not be uniform across a stripe e.g., if stripe J=0 i

width is comparable in size to that of a buffer. The expected N (I N P )1 7

loss rate of a packet at a given node can depend on the TN N+ A,

occurrence of losses closer to the source of packets in earlier

stripe positions. These cause the packet to advance its posidiere ! denotes thé K + 2) x (K + 2) identity matrix.

in the stripe and consequently experience a different loss ratelet m; = (7;(0),...,m;(K + 1)), m;(i) = P[N; = 1],
Second, there is a phenomenon during TCP slow start, Jire 1 - - ,dg, denote the vector of state probabilities seen by

which every other or every third packet being lost due € j-th probe of a stripe. Foj = 2,....do, mj = m - PJ.
specific buffer-filling patterns; see Figure 2 of [13]. These ma§|nce As < Ay, We can assume that the queue reaches its

impart particular loss patterns on the elements of a stripe. Steady state between two consecutive stripes sorffiatand,
hence,r is given by the steady state distribution of the queue

fed by the background traffic only. 11'hen, standard results for
1 Y — ot P —
[1l. COALESCENCE IN THEM/M/1/K QUEUE itgihl\g/gﬂf/f::/rl;dqugig%gﬁé(tzr)afﬁcp, 17PK+2,wherep v/
Loss occurs when a probe packet finds the system full. The
In this section we analyze coalescence in the context of gfarginal probability of successful transmission for tji¢h
M/M/1/K queue. While our proof does not extend to genergrobe within a stripe is then(j) = Zfio 7;(i). For D =
queuing systems, the analysis of this simple case provides, ... d,,} C D, the probability of joint successful trans-
useful insights on probe transmission characteristics. mission of all probes imD, a(D), is a(D) = P[Ng, < K,l =
We model a network node as an M/M/1/K queue with @, ..., m]. To computea(D), we write a(D) = S5 (i),
Drop Tail discard policy. The queue is offered backgroungthere we denote (i) = P[N,;, < K,l =1,...,m, Ny = i].
traffic according to a Poisson process with ratg The It is easy to verify that) = (¢(0),...,¢(K + 1)) obeys
gueue also receives a stream of (non Poisson) probe traffic o~ ~
comprising packets stripes. We assume the interarrival times p=mPp2Ppd,, a7
between stripes are i.i.d. with medn\;, \; < \;; each where
stripe comprisesl, probes with exponential interarrival time ~ m if le D
of meanl/)\,. Last, we assume all packet service times are = { [mi)k+1 ifF1¢D
i.i.d. exponential random variables with meafy..

To study the probe transmission probabilities we analyze the P .= By ?f 3 €D 19
. . . . . p,J P if D ( )
transient behavior of the queue in the interval of time from [Py)rc+1 J ¢

the arrival of the first probe of a stripe until the arrival of theynd [ ], denotes the same vector (matrix) with ther 1-th
last. the queue is offered aggregate Poisson traffic with ratRment (row and column) replaced with a zero. The condi-

Aa = Ap + Ap. The number of packets found in the queue biyonal probabilities are obtained by the appropriate quotients.
successive arrivals (either background or probe traffic) is then

a Markov chain with one step transition probability matrix

(18)

A. Structure ofo and g and Coalescence Property

1—ap ao 0 0 o0 For this model, we can establish the structure of the prob-
l—ap—a1 @ ao 0 e 0 abilities o and g by studying the stochastic order relations
among theNy, d € Dy, as detailed in Section VII.
X : : 0 Theorem 3:In a M/M/1/K queue the stripe transmission is
1=2>2i20aj ax Gkx—1 GaK-2 -+ Qo coalescent. Moreover,
() a(1) > a(2) > - > a(do);
where a; is the probability thatj packets left the queue (i) g(1]2) > 8(2/1).
between two consecutive arrivals. For exponentially distributedTheorem 3 establishes the coalescence property for the
interarrival and service times one sees the number of departjff/1/K queue. In addition, (i) states that the marginal
between arrivals is geometrically distributed with succeggnsmission probability decreases with the packet position in

oy J .
probability x2«; thus, a; = 7(%&15)“1, J=0,... K. the stripe. Intuitively, if probes arrive in rapid succession to a
Consider now the number of packeds;, d = 1,...,dy, finite buffer so that there is no arrival or service completion in

found in the queue by théth probe in a stripe. It is easy to seehe interval of time between the first and last probe, probe loss
that Ny, is also a Markov chain. Its transition probability matrixoccurs when there is insufficient buffer space to accommodate
P, can be computed fron®, by conditioning on the number the entire stripe; under Drop Tail discard, the last probes are
of background arrivals between two consecutive probe arrivalsose more likely to experience loss. Moreover, (ii) shows that,
By observing that the number of background arrivals betweef the two conditional probabilities affecting the behavior of
two consecutive probe arrivals is geometrically distributetthe two packet stripe3(1]2) is closer to one.
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B. Numerical Examples r 5 e Y o
We now evaluate the M/M/1/K model to illustrate the depen-| 3> = 1500 [ a5 | & | oome | 1 o :
. . agege P . N N
dence of the transmission probabilities on system parameters,», = 10 8.55% | 0.9983 || 1.35% | 0.9997 || 0.26% | 0.9999
. —_ 0, 0, 0,
and the consequences for estimator accuracy. Ap =1 39.0% | 0.9924 || 22.0% | 0.9957 || 13.8% | 0.9973
1) Structure of the Transmission Probabilities Figure 2 TABLE |

we plot«a and 5 as function of the offered background traffic
Ioad p = )\b/,LL, for dlﬁerent prObe arrlval rates When theESTIMATES OF THE LINK LOSS PERCENTAGE IN STRIPES OF WIDTH = 2

b“ﬁer Sllze ISK = 5.0' we tbaks.f.t.: 1& so thath, .:hp.hThe kToGFOR DIFFERENT VALUES OF PROBE INTERARRIVAL RATETOGETHER
marginal transmission probablilities decrease with the packet WITH conditional probabilities3(1]2. .. w — 1)

position in the stripe, the difference becoming more marked
asp increases, i.e. when the link is congested. of traversing a bottleneck link. This could affect the accuracy
The main observations concern the dependence on the probéhe estimates. Nevertheless, it is possible to counteract the
arrival rate),. For A\, = 1000, probes arrive practically back correlation decrease by using longer stripes. Kkpr= 10,
to back since the probe arrival rate is three orders of magnitughe increase of the stripe width from 2 to 4 reduces the bias,
higher than both background traffic arrival and service rateghich would be otherwise as high as 10%, to below 1%. Bias
The conditional probabilities show that loss of different probds affected, but to a smaller extent, by the traffic load; because
in the stripe is highly correlatedi(1(2), 5(1|23) and/3(1|234)  of the smaller value o}, bias increases witp, the difference
are practically equal to one irrespective of the traffic loadheing more significant for longer stripes.
The conditional probability3(2|1) is also very close ta(1),
although smaller tha(1|2), especially as load increases. IV. NETWORK EXPERIMENTS
As interarrival times increase, probe correlation decreasesThe techniques described in Section Il rely on conditional

When A, = 0.1, probe interarrival times are large and wi robabilities of packet transmission within stripes being close

expect the congestion events experienced by probes to be p 8%ne, and the coalescence property in order to produce low

tically independent. Al margina}l and conQitionaI probabilitie%ias estimators. In this section we investigate conformance of
are ﬁlgse t0a(1) ap}d Iengdt.h.enlnlg thi st':_rlllp.e leads to only Both of these assumptions to measurements of stripes trans-
small increase in the conditional probabilities. itted across a number of end-to-end paths in the Internet.

For ir_f[e_rmediate probe arriyal rates (not shpwn) conditionﬁ though these experiments did not access the transmission
probabilities are reduced, witi(1|2) decreasing fastest as roperties of individual links, they would be able to detect

the loady Increases. This |r_1d|cates t_hat we can counteract tfig \yise departures from the assumptions, since these would
decrease in probe correlation by using longer stripes.

In general, we expecB(1]2) to be smaller than3(2|1) also be reflected in the properties of end-to-end paths.

because, while it is likely that the first probe of a stripe
will find a non-full queue if succeeding probes do also, th@- Measurement Infrastructure and Datasets
reverse is not true. For example, when a probe occupiesVe conducted the experiments using the National Internet
the last available position in the queue all the successiMeasurement Infrastructure (NIMI) [27]. NIMI consists of
probes are lost at least until the first probe is processed. Wenumber of measurement platforms deployed across the
also considered other buffer sizes and observed the relatigternet (primarily in the U.S.) that can be used to perform
behavior of @ and 3 to be insensitive to the buffer size:end-to-end measurements. We made the measurements using
increasing (decreasingX only results in shifting the onsetthe zing utility, which sends UDP packets in selectable
of congestion to a higher (lower) load. patterns, recording the time of transmission and reception.
2) Estimator Bias: We now illustrate the dependence oking was extended to transmit unicast stripes to multiple
the inference method accuracy on the stripe structure. Tthestinations with minimal spacing between packets. This is
setting is the two-leaf tree in Figure 1 with an M/M/1/K queuelone by precomputing the packets to send (including their
with buffer K = 50 at the common link; in this topology MD5 integrity checksum, the most computationally expensive
bias arises only through imperfect correlations at the commpart of constructing azing packet) and then transmitting
link. To quantify the accuracy of the estimates we compatleem with back-to-back system calls, resulting in inter-packet
the estimated loss probability of the common lihk— a. spacings of aboutOusec. The packet size was 60 bytes. A
with the actual loss probability — ac b%/ computing the key point is that all packets in a stripe are sent to the same
estimator relative bias as the rat@% = g—% In destination, with the goal being to assess the conditional loss
Table | we display the relative bias, expressed as a percentggepability and coalescence properties of paths.
for different stripe widthsw, probe interarrival rates and link A total of 83 successful measurements were made between
loads, together with the conditional probabilifif1]2...w). 35 NIMI sites, each measurement being recorded at both
The main observation is the dramatic decrease in the beender and receiver. The measurement transmissions were of
for longer stripes and higher probe interarrival rates. To ensutgee types (i) 100,000 flights of stripes of 3 packets, with
maximum correlation, probes should be transmitted back $eparations exponentially distributed with a mean of 100 msec;
back: in these examples, far, = 1000, the bias is practically (ii) 20,000 flights of stripes of 3 packets, separated by a
zero. In practice, this may not be sufficient since probes carean of 500 msec; (iii) 6000 flights of stripes of 10 packets
be spaced apart, resulting in a smaller value\gfas a result separated by a mean of 100 msec; (iv) 10,000 flights of stripes

ESTIMATOR BIAS AND CONDITIONAL PROBABILITIES. BIAS OF THE
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Fig. 2. TRANSMISSIONPROBABILITIES: M/M/1/K QUEUE. Transmission probabilities and3 as function of the offered background traffic loag= A\, /1
(1 = 1) for different values of\,. Buffer length isK = 50.

BA2,...,w)/BA]2,...,w—1)
w=2 | w=3 | w=4|w=>5|w=6
0.9999 e ® e e ®© 1 min. | 1.0000| 1.0000| 1.0000| 1.0000| 1.0000
e o mean| 1.0318 | 1.0017 | 1.0006 | 1.0005| 1.0003
. ® . OOO e © max. | 1.1812 | 1.0103| 1.0051| 1.0031 | 1.0020
o 0.999 f e S%h 9
= cs o TABLE I
< COALESCENCE OF TRANSMISSION IN NETWORK EXPERIMENT.SRATIOS
§ 0.99 © OF END-TO-END CONDITIONAL TRANSMISSION PROBABILITIES IN STRIPES
OF WIDTH 2 TO 6.
[0]]
09 B ve AL) o transmiss_,ipn probabilitie_s within a .s.tripe. A scatter plot of
09 009 0999 09999 the conditional vs. marginal probabilities for 2 and 3 packet

A1) stripes is shown in Figure 3. (Only 36 points are apparent in
the figure due to the occurrence of two pairs of identical loss

Fig. 3. SCATTER PLOT OF TRANSMISSION PROBABILITIES IN 38 NET-  rates)  Higher points represent smaller estimates of relative
WORK EXPERIMENTS. Conditional vs. marginal end-to-end transmission

probabilities. Probabilities for 3-packet stripes mostly meet or exceed thd38Or; conversely for Pomts near the ”n.e the error_i.s of the
for 2-packet stripes. same order of magnitude as the marginal probability to be

estimated. For both 2 and 3 packet stripes, the end-to-end
conditional transmission probabilities are noticeably larger
of 10 packets, separated by a mean of 300 msec. In @ the marginal transmission probabilitieswith those for
latter two cases, we also counted the first 3 packets in €368 3 packet stripe being at least as large as those for the 2
stripe as another dataset of 3-packet stripes. All measuremesyet stripes in almost all cases. A conditional probability
were made at either 2PM EDT (a busy period) or 2AM ED k¢ one signifies perfect correlations. We characterize the error
(a period of light load). The worst case average probe Iogqsing from3 < 1 through the ratio1 — 8)/(1 — «) when
was 100 packets per second. There was no noticeable cha@gg 1. This represents the proportion of the reported loss
in measured transmission rates as we varied the inter-strigés which is in error due to imperfect correlations. For 2-
spacing from 100 msec to 500 msec. packet stripes, the median value vias2. (So, for example, an
estimated loss rate df% would be in error by abou?.12%).
B. Measured Transmission Probabilities The median ratio fell to t@.10 for 3 packet stripes.

a) Marginal Probabilities.: Packet loss rate ranged be- We also verified that(2|1)/5(1|2) > 1 in practice. For the
tween zero and4%. Of the 83 traces, 13 exhibited no lossame 38 experiments we computed the ratio using the end-to-
whatsoever, and consequently were eliminated as they coalttl conditional probabilitie§(2|1) and(1]2). The ratio was
not be used to study loss inference. The marginal pack®ete in 19 experiments and overall no greater than 1.0052 in
loss rates for different positions in the stripe displayed som3% of the traces; in seven instances, it was even smaller than
heterogeneity. The heterogeneity was most pronounced at ¢ine (but always larger than 0.999); the maximum value was
start of the stripe, with the loss rate for the second packet iflaé3 (corresponding to the trace with a loss rate of 14%). The
stripe being typically 1.15 times greater than that of the firdiact that the ratio was very close to one can be justified in terms
Moving further along the stripe, loss rates differed betweend the traces exhibiting small loss probabilities (26 experiments
successive positions typically by up to a factor of 1.02. had loss rates smaller than 1%) for which we expect 1

b) Conditional Probabilities.:Of 70 traces that did ex- in any case. For a finer comparison of the two conditional
hibit packet loss, 32 had conditional transmission probabilitigsobabilities, we also computed the rafio— 5(2[1))/(1— ),
of 1, reflecting perfect loss correlation just as would occur if # 1. The median of this ratio was 0.2, about 66% larger
the probes had been multicast instead of unicast. than that due tg3(1|2). Despite being very similar in these

For the remaining 38 traces, we estimate the error involveaperiments, the likely impact on estimator accuracy of the
in the stripe method by comparing conditional and marginako conditional probabilities differs substantially.



suitable as probes for inference. However, the experiments
do not corroborate the accuracy of the estimators for real
network traffic. Instead, we employ simulation to illustrate
the estimator accuracy that would likely be obtained in a real
network setting. We used thes simulation environment [25];
this enables the representation of transport-protocol detail of

* IMbises, 10ms packet transmissions, with packet loss due to buffer overflows
— at nodes as stripes compete with background traffic.
5Mb/sec, 50 ms

A. Simulation Methodology

Fig. 4. FIRST TOPOLOGY USED IN SIMULATIONS COMPRISING 39 NODES We conducted simulations using two topologies. The first
was the 39-node topology of Figure 4. Link speeds and delays
characterize low speed/low delay links at a network edge con-
nected by high speed/high delay links in the network interior.
Each link buffer accommodates 20 packets. Background traffic
of width w = 1,...,6. (Whenw = 1 this just denotes c@Me from a mixture of TCP sessions and exponential and

the marginal probabilitya(1)). A necessary condition for Pareto on-off UDP sources with shape parameter 1.5. The
coalescence is tha(1]2, ..., w)/3(1]2, ..., w—1) > 1 for all on-off sources had mean burst time 0.5s. The simulation ran

w. We determined the ratios over 19 experiments with stripfy 800 seconds, giving ample time for equilibration on the
of width 10. In only two instances were the ratios less the{ﬁ?‘m_c sources. Slmulgtlons were performed using two logical
1, and in these cases by a magnitude of only aki@uts. multicast trees spanning 7 and 15 receivers. ,

This is a far smaller magnitude than that by which the ratio 1h€ Second topology was generated using gm

typically exceeds 1, as is seen from the statistics displayed!@P°09y generator [15]. It comprised 156 nodes arranged as a
Table II: the minimum. mean. and maximum for eactover hierarchical transit-stub network in which 24 stub networks are

the 19 experiments. The ratios are largestdoe= 2, falling interconnected via a 12 node transit network. Links between
off close to one asv increases beyond. This suggests that transit nodes have 50Mb/s capacity and propagation delay cho-

the additional bias correction obtained by increasing strig€" randomly in the interval [8ms,20ms]. The other links have
width is almost negligible for stripes wider than 3 packet@ 10MD/s capacity and a delay chosen randomly in the interval

at least under the network conditions and the range of \dd4ns,10ms]. Without randomized link delays, we would open
probabilities exhibited in these traces. up the chance for synchronization between traffic flows on

different end-to-end paths with identical round trip times [12].
This could potentially lead to violation of the independent loss
model. The buffer on each link accommodates 100 packets.
The network experiments show unicast-based inferencewif selected a 38 receiver multicast tree comprising 62 nodes.
be promising. First, the stripes exhibited perfect loss cothe number of hops between the source and a receiver ranges
relation in nearly half of the traces where there was ametween 5 and 11 with an average of 7.34. Background traffic
loss. If this property were to hold in stripes to multipleyas similar to that used in the 39-node topology.
destinations, their statistical properties would be identical t0 Although other choices of topology could be considered
that of multicast traffic for the purposes of link loss inferencqe_g_, those generated by BRITE [2]), since the inference
Second, in traces with imperfect correlations, the conditiongethod makes no reference to topology, we do not expect the
transmission probabilities within the stripe were higher thamsuits to be sensitive to topology, except as follows. Firstly,
the marginal probabilities, slightly more for the three packeirger topologies require more measurements in order to cover
stripe than the two packet stripe. This indicates that the bigg§ch node as a branch point. Secondly, diversity in larger
due to ignoring the imperfection in correlations is relativelyppologies is expected to reduce loss synchronization between
small. Third, traces exhibited coalescence for the stripe widtfysks, and hence improve the quality of inference.
considered, indicating that bias can be compensated for by hoth topologies, measurement probes comprised 4 packet
using wider stripes, although the incremental benefit grewripes with a Lsec interpacket time. The inter-stripe time
smaller for longer stripes. Concluding, we have describgghs 16 msec, cycling through stripei, j) over pairs of
a method that can be used to determine, via end to egdiinct receivers, j. The number of cycles was chosen so
measurements, whether packet loss correlation within striggst the total number of stripes sent was the same in all
is sufficiently strong (and, in particular, coalescent) for thgmuyations. This enables us to compare performance for the
unicast inference method to be accurate. We found that Ieggne measurement traffic load. Here, we chase 42, 000.

c) Coalescence.:We calculated the end-to-end condi
tional transmission probabilitieg(1]2,3,...w) for stripes

C. Interpretation

correlation was strong in the network under study. Since the stripe width is far shorter than the burst length
of the on-off sources, we expect loss within a stripe due to
V. SIMULATION RESULTS congestion arising from bursting of these source to be strongly

The experiments of Section IV give us confidence thabrrelated, as desired. Congestion periods may encompass
the statistical properties of stripe transmission make stripesiltiple stripes, leading to dependence of packet loss between
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different stripes. But, similarly to the multicast case analyzddr w = 2,3,4. The statistics are displayed in Table Ill. The

in [3], this effect is not expected to alter the limiting value obehavior is similar to that observed in the network experiments

the loss estimate as the number of stripes grows large, althougtere the ratio is largest fap = 2 and decreases for larger

it can increase estimator variance relative to a model in whighlues ofw. For the 38 receiver topology, the ratios practically

losses across different stripes are independent. equal 1 forw > 2. The larger values observed in the 15
What is the load on the network from probing? Assuming f@ceiver tree are due to the larger spread in the conditional

60 byte packet size as in Section IV-A, the average probe rgmobabilities, which correspond to the higher loss rates. In

at the source would be 15 KB/sec, i.e, about 1% of the slowestme cases the ratio was smaller than 1: one ratiavfer 2,

link rate, and roughly equivalent to a high quality Voice-over% of the ratios forw = 3, and 25% of the ratios for

IP call. Furthermore, the rate reduces away from the sourge= 4; in these cases, though, the ratios were always very

due to branching of the distribution tree. The maximum burstose to 1, and the smaller of the two probabilities larger

size is 4, i.e., only 4% of the simulated buffer size in ththan 0.99. This behavior is expected since the observed ratios

larger topology, and likely an even smaller quantity relative will exhibit some statistical variability. Modeling the observed

buffers in deployed equipment. Altogether, we expect probiregnditional probability ratior,(w) as a Gaussian random

to have only a small effect on other network traffic. variable for eachu, we ask whether the observed mean value
How do the durations of measurement compare with typical(w) is consistent with a population value less than 1. If

periods of constancy for loss rates? In our experiments, the, we cannot conclude that the coalescence property holds.

42,000 stripes would take just over 11 minutes to dispatchlsing the sample standard deviation of the observed ratios

In one study on the dynamics of packet loss, 1 minuwver 100 independent simulations, ), we found the test

averaged loss rates over 11 minute intervals were found statistic7y,(w) — 2o, (x)/ V98 exceeded for all k # 0, and

be roughly constant (in the operational sense that they didajt= 2, 3,4, wherez was the99'" percentile of the standard

move between bands of a few percent width) about 80% of thermal distribution. Hence the observations are consistent with

time; see [32]. But even the absence of such constancy n@alescent transmissions, at a 99% confidence level.

well not affect the accuracy of the method greatly. Comparison

of directly measured and inferred loss rate in the multicast case \jeasures of Inference Accuracy

shows that when the loss rate fluctuates by a few percent ove[

. L . . In order to quantify the accuracy of our estimates, we
the measurement interval, averaging in the loss inference quc%em uted, for each logical link, the estimator bias and standard
closely reflects the average measured loss rate; see [4]. P ' 9 '

iati . (4) ~(4)
To compare the estimator performance under different striﬁ‘fv'at'ton'l Fo(rj 9"’]1°h n(;)? root r_m@ deno;ebb?./tak agﬁ?hat’%
lengths we considered the 2- and 3-packet substripes obtai eﬂaq ual "’;!" 'nfer,re_ 1ransn]1\|fsiolnogro|: akl ' y(;)n N
using the first two and three packets in each stripe. In ordEF simuiation, fory =4, ..., 11N 85 Zé(j)’ we com-

- pufe the estimator bias &g := ~| >, ap ' —ay’| and stan-
to evaluate the method, the inferred loss rates were compa NI Z4j

with internal link loss rates as determined by instrumentatig L _ 1 N ( () A(j)>2 2
of the simulation. Link loss rates were computed considerirggard deviationoy = 4/ =1 (Zj_l “ “ b )
only the first probe in the stripe. As a robust summary statistic of the typical bias and standard

deviation across the different links, we used the two-sided

B. Transmission Probabilities and Coalescence quartile-weighted median (QWM)

We first examine the statistical properties of the underlying (Qa5 +2Qs50 + Q75) /4, (20)

link loss processes. Marginal and conditional link transmissiq\r,herer denotes the!" quantile of the set of link estimator
rates were determined during 100 experiments on the 7 agdg {br } 0, OF standard deviationgs } ..
15 receiver topologies, and 10 experiments on the 38 receiver

topologies. Link loss rates in these three sets of experimeBts
ranged from 0% to 18%, from 0% to 27% and 0% to"
2.6% respectively. Scatter plots of conditional vs. marginal For the 7 receiver tree, we compare two probing strategies.
transmission probabilities are shown in Figure 5. ConditionH) the exhaustive striping strategywe run a complete set of
probabilities are considerably higher than marginal probabiffeasurements down all embedded two-receiver subtrees. In
ties, and mostly strictly increasing in stripe width. Note that

Accuracy and Probing Strategy

unlike 5(1|23) and 5(1]234), which are always very close to w=2 | w=3] w=4 w=2 | w=3 | w=4
1, 3(1)2) falls considerably below 1 as the loss rate increases. g-gg?g 2-882‘3‘ 2’3832 i-gggg 1-888(1) 1-8888
This behavior is in agreement with the analysis in Section Il || ;4755 | 10573 | 10189 10427 | 1.0043 | 1.0022

where we observed that, among the conditional probabilities,

B3(1|2) decreases fastest at higher loads. For the 38 receiver TABLE I
. COALESCENCE OF TRANSMISSION IN SIMULATIONS MINIMUM , MEAN
tree, 5(1|234) exceeds3(1]23) in only a few cases; mostly
AND MAXIMUM OF RATIO B(1]2,...,w)/B(1]2,...,w — 1) ACROSS ALL

they are equal. Thus we expect small benefit in accuracy from
increasing the stripe width beyond 3 in this topology.

To summarize the conditional probability structure, we
computed the ratiog(w) = 5(1]2,...,w)/ B(1|2,...,w—1)

LINKS AND SIMULATIONS: (LEFT) 15 RECEIVER TREE (RIGHT) 38
RECEIVER TREE



Fig. 5. CONDITIONAL TRANSMISSION PROBABILITIES IN SIMULATIONS. Scatter-plot of conditional vs. marginal link transmission probabilities for 2, 3
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and 4 packet stripes: (left) 7 receiver tree; (middle) 15 receiver tree; (right) 38 receiver tree. Conditional probabilities increase with stripe width.
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Fig. 6. 7 RECEIVERLOGICAL TREE; EXHAUSTIVE STRIPING STRATEGY. Fig. 7. 7 RECEIVER LOGICAL TREE; MINIMAL STRIPING STRATEGY.

INFERRED VS ACTUAL LINK LOSS RATES. 3 and 2 packet substripes. INFERRED VS ACTUAL LINK LOSS RATES. 3 and 2 packet substripes.

stripe width stripe width
H 2 3 4 2 3 4
th|_s tree there are 21 such subltrees, qnq SO0 we gsed all 425t o58% 0356 T 031% | [ bas (| 0.68% | 0.47% | 0.41%
stripes S(i,j) over (ordered) pairs of disjoint receivers. In ||_s.d. |[0.66% | 053% | 0.53% s.d. |[[047% | 0.29% | 0.29%
accordance with the choice af = 42,000 total stripes, each TABLE IV

stripe was transmitted 1,000 times. In th@nimal striping EsTiMATION ERROR IN SIMULATIONS AS FUNCTION OF STRIPEWIDTH. 7
strategy we select (at random) one subtree through eacdikceiver TREEQWM OF ESTIMATOR BIAS AND STANDARD DEVIATION:
branch point. In the example there are 5 subtrees and hence 10 (LerT) EXHAUSTIVE STRIPING, (RIGHT) MINIMAL STRIPING.
ordered pairs of receivers; each stripe was transmitted 4,200
times. We want to determine the trade-off in accuracy betweenComparing the two striping strategies it appears that points
employing more subtrees (in the exhaustive strategy) and mare more tightly clustered about the lipe= = for the minimal
stripes per subtree (in the minimal strategy) for the sarmg@ategy (Figure 7) than for the exhaustive strategy (Figure 6).
number of total stripes. To quantify this, we display bias and standard deviation of the
For the different sets of experiments, we display scatter pld8VM in Table IV. Increasing the stripe width reduces bias for
of inferred vs. actual loss probabilities for 2 and 3 packdioth strategies, although most of the benefit is already obtained
stripes in Figures 6 for the exhaustive strategy, and Figureuging a 3 packet stripe. This is not surprising since the largest
for the minimal strategy. From the figures we observe thaicrease in conditional probabilities occurs when stripe width
accuracy increases with wider packet stripes as exhibited iByincreased from 2 to 3. We also performed experiments with
the clustering about the ling = z. Accuracy is apparently 4 stripes and found no further reduction in standard deviation
worse when the actual link loss probability is zero. Howeveuapon increasing the stripe width from 3 to 4. Returning to the
this is a visual effect arising from the large proportion ofomparison of the probing strategies, we see that for larger
points (about to 60% of the total) for which the actual losstripe widths, the standard deviation for the minimal strategy
probability was zero. The standard deviation of the estimatissoughly half that of the exhaustive strategy, although the bias
corresponding to zero and non zero loss are actually very closea little larger. In each strategy the typical absolute error in
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stripe width stripe width

5 3 7 5 3 7 transmissions of a stripe’s probes on a given link are perfectly

bias || 1.51% | 0.39% | 0.26% 0.08% | 0.07% | 0.06% correlated. Imperfect correlations lead to bias, but this can
sd. || 1.33% ] 1.16% [ 1.16% 0.18% [ 0.17% | 0.17% be compensated for by using wider stripes, provided that the
TABLE V stripe transmissions obey a certain correlation property that
ESTIMATION ERROR IN SIMULATIONS As FUNCTION OF STRIPEWIDTH.  We call coalescence. This is the property that successful trans-
QWM OF ESTIMATOR BIAS AND STANDARD DEVIATION. (LEFT) 15 mission of a given packet in the stripe becomes more likely
RECEIVER TREE (RIGHT) 38 RECEIVER TREE when other packets from the stripe have been successfully
transmitted. We proved that coalescence is satisfied for stripes
loss rate estimation is less than 1%. traversing a M/M/1/K queue.

Our network experiments show that for end-to-end transmis-
sion, correlations within stripes are very high, even perfect in

E. Larger Topologies
) ) o some cases. Moreover, the coalescence property was found to
In Table V we display bias and standard deviation of thg,|q in virtually all cases examined. Together these properties

QWM for simulations on the 15 receiver and 38 receivgfaq ys to expect that inference from striped unicast probes
topologies; these simulations used the minimal striping strafi| pe effective in estimating link loss rates.

egy. Compared with the 7 receiver tree, the bias in the 15p;ect assessment of the method requires corroborative
receiver tree is noticeably larger far= 2 but roughly similar o455 rements in the network interior. This entails taking
to that observed in the smaller tree otherwise. We verified thabasurements on paths over which probe traffic flows; then
the higher value for = 2 is due to larger estimator bias for o mharing actual and inferred loss rates on internal paths.
leaf links. This can be explained by observing that since thg, rently such corroboration is available to us only in simula-
bias for receiver links depends on the conditional probability,, experiments. Thas simulations showed good agreement
along the entire path from the probe source (see the sec@jilyeen inferred and actual loss rates; the typical bias in these
relation in (14)), even small departures from unity can resyl{,eriments was in the worst case about 1.5% in the reported
in large bias as the depth of the tree increases. This effgels rate for the 2-packet stripe, falling to 0.3% with a 4-packet
is not noticeable for larger stripe widths sing€l|2,3) and gyine We believe the accuracy is sufficient to identify the
f(1]234) are, most of the time, equal to one, thus reducingqs performing links down to loss rates of some fraction of
the effect of topology size on the estimator bias of receivgey, in most cases. Most of the benefit in accuracy was obtained
links. The standard dewayon was higher for the 15 receVgLing 3 packet stripes; the marginal benefit using 4 packet
topﬁlogy than the 7 receiver topology as a consequence fines was relatively small, especially in larger topologies.
both the larger size and fewer stripes per subtree. In this paper we concentrated on estimation of link probabil-

The smaller underlying loss rates in the 38 receiver Ugg.q tor the first packet of a stripe. Due to heterogeneity of loss
make it difficult to draw a direct comparison with the smalle5|ong the stripe

with the pattern that increasing the stripe width from 2 1@ o onapilities for packet in positions other than the first.

3 noticeably reduces bias and standard deviation, but furtherFinally other multicast-based estimators—namely those for
stripe lengthening achieves little or no further gain in accuragyg 5y, distributions [23], for delay variances [11], and logical
Since the conditional probabilities are all very close to 1, hefg, icast topology [10]-have the potential to be adapted in the
we obtain good accuracy for any stripe length. In d|st|nct|o§1ame manner as was done for loss estimators in this paper.
with the experiments on smaller topologies, we found that

estimation of zero loss rate was noticeably less accurate than

that of non-zero loss rates. (This was determined by analyAigknowledgment

of the corresponding estimator standard deviations for the twowe thank Ramon &ceres for his help withs . Many thanks
types of link). The large errors in estimation of zero losg Andrew Adams, Matt Mathis and Jamshid Mahdavi, and the
rates can be explained by the fact that zero loss occurig@ny NIMI volunteers who host NIMI measurement servers,
mostly at receiver links. This, given the larger variance that wWer facilitating our Internet measurements.

expect for receiver link estimates (as discussed in Section II-

E), especially for larger topologies, accounts for the larger VII
variability that we observed.

. PROOFS OFTHEOREMS

Proof of Theorem 1. EZpup = B(D]|D")a(D’)
a(D)a, (D) while EZp = (D), (D). Hence

VI. CONCLUSIONS AND FURTHER WORK £ £ 5.(D|D (D iﬁ D DD (D
In this paper we have proposed a method of using enﬁ'ZﬁjZ,//EZ[;n = GDIDen(D) 2 Be(DID")eu(D) ;

to-end unicast probing to infer the loss characteristics of the _
network interior. The method relies on using collections dfroof of Theorem 2: Since the random variablegp
unicast probes, called stripes, dispatched back-to-back to dife the average of i.i.d. random variabl@;), for any
ferent destinations, in order to mimic the effect of a multicag? C Dy, any nodek # 0 and stripe S(r;,,r;,),
packet following the same path. We infer internal loss rates Iy, ,ri,) € Q(k), then by Central Limit Theorem,/n -
applying an estimator developed for multicast inference to th& — Z), where Z = {ZD}DcDO,(”l,,iz)eQ(k),k;ﬁo and
unicast receiver traces. This estimator is unbiased when the= {ZD}DcDU,(,il’,iz)eQ(k),,#o, converges in distribution



13

to a multivariate Gaussian random variable ias— oo. completion event with probabilitie), /(A +/) and/(Xy+11)
Since ay is a differentiable functionF, of Z, F.(Z) = respectively. The systems now behave as follows. If there is

1 Zp,Zp n arrival at timer;, then
M(k) Z(i,j)EM(k) ﬁ the Delta method (see Chapter 2 i

of [28]) ensures the convergence ¢f(a, — Fx(EZ)) to a Q(r;) = min(Q(ri_1) +1,K)
multivariate Gaussian random variable with mean 0. Theo- Q'(r) = min(Q'(r1)+1,K)
rem 2 follows from the stated convergence and because for v 1 ’

k & R, Fi(EZ) = (Ax/Bx)/(Asx)/Brxy)) = ox/Br, and  Similarly, if there is a service completion, then
that fork € R, ]:k(EZ) = Ak/(Af(k:)/Bf(k:)) = aka(k)- |
. Q) = max(Q(ri-1) —1,0)
Proof of Theorem 3: The proof is based on the result below , B , 10
which establishes the stochastic order relations among the Q'(r) = max(Q'(ri-1) - 1,0)
number of packets in the queue seen by the different probessimple induction argument on the event times allows us
upon arrival. For _random ve_ctonk’ andY, we say that)_( to show thatQ(t) > Q'(t) for t, < t < t». (Note that
is smaller thanY” in stochastic order(denotedX <, Y), if hq exponential time assumption is needed to ensure that

E[n(X)] < E[2(Y)] for any function/, nondecreasing in eachyrival and service completions can be coupled to the Poisson

argument, for which expectation exists. In cagY” € R, this gy ent process in the manner indicated). Thus, tfoe t.,

is equivalent to the conditioR[X < z| > P[Y < z] V. N, = Q(t;) > N(t;). Removing the conditioning on
Let NV denote the steady state number of packets in thes injtial queue lengths, arrivals, and service completions

M/M/1/K queue fed by background traffic only. L&t; denote yields N (t; ) <y N. Since the second queue is a M/M/1/K

the number of users in the system seen bydttle probe upon queue in steady statel(t; )=, N(t;) =, N. Therefore,

arrival given the set of probeS C D, are not lost and let Ny =4 N <4 N». Similar arguments can be used to establish

N® ={N?,...,Nj }. The following holds. the remaining stochastic inequalities in (i).
Theorem 4:In a M/M/1/K queue, (ii). We establish (ii) by first showing thaV <,; N} and
(i) Ni<ot No<gt ... <st Nay; then thatN? <,, N. It is easy to verify that
(i) NP <o Ng;
(i) forany R c S C Dy, NR <, N*. PIN <m] > P[Q(t1) <m|Q(t;) < K], m < K + 1. (22)

Theorem 3 is then an immediate consequence of Theore
To prove the coalescence property, for any disjdintD’ C
Dy we can writel — 8(D|D’) = E[l{vdepN{f’/>K}L where
1;; denotes the indicator function. Then, Theorem A4(iii
implies that for D” c D' C D,, NP <, NP" which,

coupled with the fact thatl,,,_, o'~y IS nonincreasing o, qidar now the relatiotV? <,; N. We make use of the

H 1 / 1
In eac?) aDr/gugentbyllje/I/dST— ﬁ(D‘,D_) S 1h_ 6(D|ID ): fact that N7 <.; N, and that the M/M/1/K queue is modeled
e, 5(D|D") > B(D|D"). Transmission is thus coa escentby a time-reversible Markov chain. Consider our original sys-

Theorem 3 parts (i) and (ii) follow from (i) and (ii) albove SINC&em with probes arriving at exponentially distributed intervals
a(d) = P[Ng < K], d € Dy, and that5(2[1) = P[N; < K]. starting att; and ending at,,. The system behaves as an
Proof of Theorem 4: The proof proceeds through samplg\/1/k queue in the intervalt,, ty,]. We focus on the time
path arguments. In the following, |€¢(t) denote the queue o\ ersed hehavior during the interval, t.]. We consider two

length a;] timet. Iflan ak:r!val oc;:urs ?t t'm?' Q(ﬁ_) will systems, one where the second probe is known to have been
denote the queue length just before the arrivel, the queue accepted 2 < K) and the other where no information is

Ien_gth seen by the arriving packe_t._l__ast, {e];l}g(’:_1 be the | hown about the second probe. NORN2 < m] = P[Ny <
arrlyal t|mgs of the probes. By definitio; = Q(t;). m|Ns < K]. Therefore, N2 <., N». We now couple the
(|).'We first shqw thatV; <, Ns. .Recall that we assumequeue lengths of the two systems so ttt;) < Q'(t5),
the _flrst probe finds the queue in steady stdte, that | nore {Q(t)} and {Q'(t)} are the queue length processes
Q(t;) =st N1 =4 N. Then, it immediately follows that of these systems. We then couple the time-reversed systems
PIN <m]>P[Q(t;) <m] m=0,...K +1. 1) whgre departures (resp. arriva!s) within the original sys_tems
during [t1, t2] are coupled to arrivals (resp. departures) within
We now consider a second, benchmark, M/M/1/K queue withe reversed systems. Using reverse inductionrgn. ., 7,
only background traffic arrivals. Le’(¢) denote the queue and the arguments used to establish (i), we can conclude that
length at time: and assume that it has reached steady state @yt~ 1) < Q’(¢7). Coupled with the fact thaf)(t; ) = N,
t = t1. We now couple the two systems, the first where the firthe queue length of an M/M/1/K queue without probes, we
probe arrives to the queuetat t;, the second the benchmarkconclude thatVy <., N; = N.
M/M/1/K queue. The inequality in (21) allows us to couple the (iii). It suffices to show the inequality faR, S such thatS =
systems so thaf)(t;) > Q'(t;). We now create a sequenceR U {i}. First, P[N’ < m] = P[Nf* < m|NF < K]J; thus,
of event times from a Poisson process with rage+ 1 from Nis <st NiR. To establish the result, we couple two M/M/1/K
t =t up untilt = t,. Let these times be;, < 5 < --- < 7. queues at = t; where the probes ¥ make it into the first
Associate with each of these either an arrival event or servigeeue, and probes iR make it into the second queue. Since

mV\?é now couple the two systems, the first where the first probe

successfully made it into the queuetat ¢, the second the
enchmark M/M/1/K queue as above. The inequality in (22)
llows us to couple the systems so thHt1) > Q’(¢1). Using

the same arguments as above, it thér<,; N;.
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NP <. NE, we can couple the systems so that their queugs] F. Lo Presti, N.G. Duffield, J. Horowitz, D. Towsley, “Multicast-
lengths, denoted b®* (t) andQ%(t), obeyQ®(t;) < QT (t;).

It remains to show what happens for- ¢, andt¢ < ¢;. We

now couple arrivals and service completions (conditioned on

successful arrivals of the probes thn {i + 1,...,dp}) for
the two systems until the first timethat Q% (s) = Qf(s). At

that point in time, the Markov property allows us to couple the
two systems so thaD®(t) = Q*(t) for t > s thus yielding

Q5(t
during the intervalfty, t4,] behaves like an M/M/1/K queue
and (i) the M/M/1/K queue is modeled by a time-reversible

) < QF(t) for t > t;. Again, the facts thafi) the system

Markov chain, allow us to use a similar argument to show that

Q(t

the arrivals and service completions yield® <, N%®. H
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