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Abstract— In this paper we explore the use of end-to-end
unicast traffic as measurement probes to infer link-level loss
rates. We leverage off of earlier work that produced efficient
estimates for link-level loss rates based on end-to-end multicast
traffic measurements. We design experiments based on the
notion of transmitting stripes of packets (with no delay between
transmission of successive packets within a stripe) to two or
more receivers. The purpose of these stripes is to ensure that
the correlation in receiver observations matches as closely as
possible what would have been observed if a multicast probe
followed the same path to the receivers. Measurements provide
good evidence that a packet pair to distinct receivers introduces
considerable correlation which can be further increased by
simply considering longer stripes. Using an M/M/1/K model for
a link, we theoretically confirm this benefit for stripes. We also
use simulation to explore how well these stripes translate into
accurate link-level loss estimates. We observe good accuracy with
packet pairs, with a typical error of about 1%, which significantly
decreases as stripe length is increased.

Index Terms— End-to-end Measurement, Network Tomogra-
phy, Packet Loss Rates, Estimation, Correlation

I. I NTRODUCTION

A. Motivation

As the Internet grows in size and diversity, its internal
performance is becoming more difficult to measure. Any
one organization has administrative access to only a fraction
of the network’s internal nodes, whereas commercial factors
often prevent organizations from sharing internal performance
data.Multicast Inference of Network Characteristics(MINC),
avoids these problems by exploiting the inherent correlation
in performance observed by multicast receivers to infer links
level loss and delay statistics. These measurements require no
participation by internal nodes besides forwarding packets.

The key intuition for inferring packet loss is that the arrival
of a packet at a given internal node can be directly inferred
from the packet’s arrival at one or more receivers reached
from the source by paths through that node; if it reaches
the receivers, it must have reached the node. By conditioning
on arrival at a descendent, we can determine the probability
of successful transmission to and beyond the given node.
Inference algorithms are given in [3] for loss, [23] for delay
distributions, [11] for delay variances, and [10] for inferring
the logical multicast tree topology itself.

However, these methods suffer from two serious deficien-
cies. First, there remain significant portions of the Internet that
do not support network-level multicast. Second, the internal
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performance observed by multicast packets may differ signif-
icantly from that observed by unicast packets, while unicast
traffic constitutes the bulk of Internet traffic. This motivates
inference methods for network internal performance that are
based on end-to-end unicast measurements. A challenge here
is that unicast does not exhibit the packet-level correlation at
different receivers that is possessed by multicast.

B. Contribution

In this paper we adapt the multicast inference techniques
proposed in [3] to perform inference of internal network
characteristics from unicast end-to-end measurements. The
data for the inference comprises measured end-to-end loss of
unicast probes sent from a source to a number of destinations.
This is used to infer the loss characteristics of each logical link
of the source tree joining the source to the destinations, i.e., of
the composite paths between its branch points. We summarize
how multicast inference works; see [3] for further details.

Consider the tree shown in Figure 1. Suppose multicast
probes are dispatched from a source at node0 towards the
leaves at nodesl and r. The problem is to estimate the
link transmission probabilitiesαc, αl andαr from end-to-end
measurements. The expected proportion of probes transmitted
successfully to nodel is Al = αcαl, and to noder is Ar =
αcαr. These relations would also hold for unicast packets sent
independently to the leaves. But with multicast, the expected
proportion of probes that reach both nodes isA′ = αcαlαr.
The foregoing three relations can be used to recover the link
transmission probabilitiesαc, αl and αr in terms of the end-
to-end transmission probabilitiesAl, Ar andA′:

αc = AlAr/A
′, αl = A′/Ar, αr = A′/Al (1)

Substituting the correspondingmeasuredend-to-end transmis-
sion probabilitiesÂl, Âr, and Â′ into these relations yields
estimates of the link probabilities. These estimates can be
shown to be maximum likelihood estimators; moreover, the
whole approach generalizes to trees of arbitrary topology.
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Fig. 1. TWO-LEAF TREE, with marginal link transmission probabilities
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The central idea in this paper is to construct composite
probes of unicast packets whose collective statistical proper-
ties closely resemble those of a multicast packet. We shall
speak ofstriping a group of unicast packets across a set
of destinations. This entails dispatching the packets back-to-
back from a source, each packet potentially having a different
destination address. Our premise is that, when the duration
of network congestion events exceeds the temporal width of
the stripe, packets experience very similar behavior when they
traverse common portions of their paths. If the experiences
were identical, the packets from a stripe that attempt to traverse
a given link would either all be lost, or encounter identical
delay. The packet loss and delays on a link would be perfectly
correlated within a stripe; the composite probe would have the
same statistical properties as an imaginary multicast packet
that followed the same source tree. In this case the methods
of [3], [11], [23] could be applied immediately to infer the
link loss and delay statistics of the logical source tree.

However, correlations within stripes may be less than per-
fect in practice. Congestion events may not affect packets uni-
formly, subjecting stripes to dispersion as they travel through a
network. Some mechanisms by which this can happen are the
following. Packet loss will not be uniform during loss events
that are narrower than the stripe, or those that start or stop
while the stripe is in progress. Furthermore, delays will vary
due to interleaving of background traffic, e.g., when moving
from a low to a high capacity link. Although such effects
should be small for sufficiently narrow stripes, they will be
cumulative. Packet-dropping on the basis of Random Early
Detection (RED) [14] is another mechanism by which packet
loss may become decorrelated. However, this mechanism is
seldom used in the Internet. On the other hand, the use of
RED to merely mark packets will not break correlations.

This motivates four strands of work in this paper:
(i) developing a theory with which to develop measurement

procedures to reduce the impact of imperfect correlations;
(ii) finding the impact of these procedures on the accuracy

of inference methods that assume perfect correlations;
(iii) determining the magnitude of imperfect correlations

through experiments on real networks;
(iv) verifying the accuracy of the approach in simulations.

We extend the packet loss model of [3] by incorporating
an additional parameter for each link that describes the cor-
relation of loss between different packets of the same stripe.
These additional parameters cannot themselves be determined
by end-to-end measurements, at least not without additional
assumptions relating them to each other, or to the existing loss
rate parameters. Calculations show that the error in using the
loss estimator from [3] is small provided that the conditional
probability of the loss of one packet in the stripe given the
transmission(i.e., non-loss) of the other, is small compared
with the marginal loss rate in the stripe. This is a condition
that we will verify for single paths through measurement.

By using appropriate stripes of composite probes, we are
able to enhance correlations within data used for inference.
This is possible when packet transmissions are correlated in
the sense that packet transmission is more likely given the
successful transmission of other packets within the stripe.

By conditioning on the measurable event that nearby packets
have been transmitted end-to-end, we raise the likelihood of
transmission of a given packet to an intermediate node. By
sending the stripe packets to diverse addresses, we can infer
the properties of internal network paths.

The rest of the paper is as follows. Section II formulates
the stripe method for binary then general trees. We specify a
family of striping methods. We state the assumption on packet
correlations within stripes, construct a hierarchy amongst the
various striping methods based on the correction made to the
bias caused by imperfect correlations. Section III shows that
the correlation assumption is satisfied when the common path
is modeled by an M/M/1/K queue. We also present some
numerical calculations that show the benefits for estimator
accuracy of conditioning in certain types of longer stripes.

We use two experimental approaches to evaluate the pro-
posed method. Section IV uses end-to-end measurement on the
National Internet Measurement Infrastructure (NIMI) [27] to
gather data from a diverse set of Internet paths. We transmitted
stripes between pairs of end-hosts and verified that their packet
loss statistics were consistent with the correlation assumptions.
We estimated the likely accuracy of stripe-based inference in
the actual network.

We support this work in Section V using network level
simulation withns [25]. By instrumenting the simulation we
can trace the behavior of packets in the network interior. This
allows us to study the correlation properties of packets within
stripes on links (as opposed to paths), and to compare the
inferred link loss rates with actual link loss rates. For the most
accurate choice of striping method the typical absolute error
in loss rate inference is below 1%. We conclude in Section VI.
Proofs of the Theorems are in Section VII.

C. Related Work

Several tools and methodologies can characterizing link-
level behavior from end-to-end unicast measurements. One of
the first methodologies focuses on identifying the bottleneck
bandwidth on a unicast route. The key idea [18], [20] is
that, in an uncongested network, two packets (packet pair)
sent back-to-back will arrive at the receiver with a spacing
that is inversely proportional to the lowest link bandwidth on
the path. The idea was embodied in a number of tools; see
[5], [21], [26]. Although these methods focus on bandwidth
estimation, they are based on the same idea, namely to send
packet pairs (or stripes) so as to introduce correlation in
a controlled manner. These methodologies have also been
applied successfully to estimate cross traffic characteristics;
see [17], [29]. Packet pair probing has been applied to the
related problem is to determine whether two flows share a
common congestion bottleneck; see [16], [30]. This problem
is substantially different than that of estimating link lossrates.

[6] uses end-to-end measurements of packet pairs in a tree
connecting a single sender to several receivers. Experiments
consist of a number of packet pairs where the packets are
sent to different receivers so that all pairs of receivers are
covered. The metrics of interest are transmission probabilities
of all links in the tree. Conditional transmission probabilities
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are introduced as unknown nuisance variables. The inference
of the link transmission probabilities is formulated as a maxi-
mum likelihood estimation problem which is solved using the
Expectation Maximization (EM) algorithm.

Our approach differs from [6]: we consider a more general
form of striping which yields significantly higher correlation.
Thus we are able to continue to rely on the maximum
likelihood estimates derived for the multicast case for which
we have closed form expressions which are readily computable
without need for iteration. In network simulations, our meth-
ods suffered an absolute error of about 1% in estimating link
loss rates in a 7 receiver tree, down to about 0.3% in larger
trees, errors being smaller for longer stripes. Results with the
EM-based approach appear to be comparable, with worst case
absolute error of about 2% in estimating loss; see [31].

Potentially all other multicast based inference techniques,
the estimators for delay distributions [23], for delay variances
[11], and logical multicast topology [10] can be adapted
to unicast measurements. Similar developments have been
performed for the EM-based approaches; see [7].

Finally, pathchar [8], [19] triggers ICMP messages at
successive routers on a unicast path in order derive link
bandwidth, round trip link loss rate, and round trip link delay
statistics. It accurately estimates link bandwidth provided that
it is low. It has not been well validated in the case of losses
and delays. Moreover, it requires considerable time to converge
and loses accuracy with asymmetric round trip paths.

II. I NFERENCEMETHODOLOGY

A. Models for Trees, Stripes, and Packet Loss

We first develop the framework in which to describe the
propagation of stripes of unicast packets through the network.
We represent the underlying physical network as a graph
Gphys = (Vphys, Lphys) comprising the physical nodesVphys

(e.g. routers and switches) and the linksLphys between them.
We consider a single source of probes0 ∈ Vphys and a set of
receiversR ⊂ Vphys. We assume that the set of paths from0
to eachr ∈ R is fixed and form a treeTphys in (Vphys, Lphys);
thus two such paths never intersect again once they have
diverged. We form the logical source treeT = (V, L) whose
verticesV comprise0, R, and the branch points ofTphys. The
link set L contains the link(j, k) if one or more of the probe
paths inTphys pass throughj and thenk without encountering
another element ofV in between. We will sometimes refer to
link (j, k) ∈ L simply as linkk. For k 6= 0, f(k) denotes the
parent ofk. We write j Â k if j is an ancestor ofk in T .

We will use the notation〈r1, . . . , rd0〉 to refer to a stripe
comprising packets dispatched to destination nodes in order
r1, . . . , rd0 . For eachk ∈ V we will denoteD(k) ⊂ D0 =
{1, . . . , d0} the set of packets that transit across linkk en route
to their destinations. We will refer toD(k) as the substripe
to nodek. We describe the progress of the stripe inT by
the variablesXk(d), d ∈ D(k), taking the value1 if packet
d reaches nodek, and zero otherwise. NoteXrd

(d) = 1 iff
packetd reaches its destination node.

It is useful to have a notation describing composite events

at sets of receivers. ForD ⊂ D0 define the binary variable

ZD =
∏

d∈D

Xrd
(d). (2)

ZD = 1 if all packets inD reach their destinations, and0
otherwise. It is convenient to writeZ{d1,..., dm} asZd1... dm

.
We specify a loss model for the stripes. We assume that

losses are independent between different stripes, and for
packets of the same stripe on different links. ForD ⊂ D(k),
k ∈ V , let αk(D) denote the probability that all packets in
D are transmitted across linkk to nodek, conditioned upon
having reached the parent nodef(k). We do not assume that
the marginal probabilitiesαk(d) are equal for alld ∈ D(k).
We will refer to the variousαk as the linkk transmission
probabilities and to the complement1 − αk as the link k
loss probabilities. For disjoint subsetsD, D′ ⊂ D(k), let
βk(D|D′) denote the conditional probability that packets in
D are successfully transmitted across linkk to nodek, given
that those inD′ are also successfully transmitted across link
k, all packets having reached the parent nodef(k). This is
expressed in terms of the probabilitiesαk as

βk(D|D′) = αk(D ∪D′)/αk(D′). (3)

The βk are the linkk conditional transmission probabilities.
With perfect correlations theβk would be1. The multicast

loss model of [3] is statistically equivalent to the special case
βk(D|D′) = 1 and henceαk(d) all equal someαk.

For a given link and substripe width, the structure of
the probabilitiesα, β should depend on the times between
successive packets. If the packets are widely separated, the
marginal probabilitiesαk(d) will be equal (or nearly so) while
the conditional probabilitiesβ will be close to the marginal
probabilitiesα. Here, we concentrate on the other extreme
with back-to-back packets in order to makeβ close to1. In
this case the marginal transmission probabilities will depend
on the position of a packet within a stripe, particularly when
the stripe width is not negligible compared with buffer sizes.
For each linkk, we focus on estimating the transmission
probability αk(1) of the first probe in the substripe traversing
k. However, our methods can be adapted to focus on other
packets within the stripe. This could be useful if it is desired
to infer transmission probabilities for packets in traffic bursts.

B. Inference with Binary Stripes on the Two-Leaf Tree

We first investigate the performance of the inference algo-
rithms from [3] under imperfect correlations. We start with the
two-leaf tree shown in Figure 1, having leaf nodesl andr with
common parentc whose own parent is the root0. Consider
the binary stripe〈l, r〉. The link probabilities are related to the
probabilities of leaf events as follows:

EZ1EZ2

EZ12
=

αc

βc(1|2)
,

EZ12

EZ2
= αlβc(1|2),

EZ12

EZ1
= αrβc(2|1),

where ZD is as defined in (2) andαk, k ∈ {c, l, r}, is the
transmission probability of the first probe in the substripe
traversing linkk, i.e., αc = αc(1), αl = αl(1) andαr = αr(2).
Expressions (4) are obtained by expandingEZD, e.g.,EZ12 =
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αc(12)αl(1)αr(2) = αc(2)βc(1|2)αl(1)αr(2), with similar ex-
pressions forEZ1 andEZ2. With perfect correlations,βc = 1,
the α may be recovered directly from the leaf probabilities.

These expressions are used to estimate theα from the
leaf eventsZ(i) associated with multiple identical stripes
i = 1, 2, . . . n. We replace each expectation in (4) by the
corresponding empirical mean, defined here in general:

Z̃D = n−1
n∑

i=1

Z
(i)
D . (4)

Taking βc = 1 then yields the estimates

α̂c = Z̃1Z̃2/Z̃12, α̂l = Z̃12/Z̃2, α̂r = Z̃12/Z̃1. (5)

This is the estimator from [3] applied to the two-leaf tree.
With imperfect correlations,βc cannot be recovered in-

dependently from the leaf expectations. The model is not
identifiable; this was observed in [6]. Sinceβc ≤ 1, estimation
via (5) is biased, overestimatingαc and underestimatingαl, αr.

1) The complementary stripe〈r, l〉: We now consider the
complementary binary stripe〈r, l〉 obtained by exchanging the
order of packet destinations. The link probabilities are now
related to the probabilities of leaf events as follows:

EZ1EZ2

EZ12
=

αc

βc(1|2)
,

EZ12

EZ2
= αlβc(2|1),

EZ12

EZ1
= αrβc(1|2).

To estimateα from measurements, we take the expectations
in (6). With βc = 1, we obtain again (5). Note that, how-
ever, despite having identical expressions, the estimators are
different. The conditional probabilities in the second and third
expressions in (4) and (6) are exchanged as a consequence of
the the destinations of the two probes being inverted. With
perfect correlation, either stripe yields unbiased estimates.
With imperfect correlation, both estimates are biased, the
bias being asymmetrical for̂αl and α̂r depending on the
relative values ofβc(1|2) and βc(2|1). Queueing analysis
(Section III) and network experiments (Section IV) suggest
that βc(1|2)/βc(2|1) ≥ 1 with the ratio increasing as the
marginal loss probability does. Therefore we expectα̂r to
have a larger bias than̂αl (andα̂c) for the stripe〈l, r〉 and the
reverse for the stripe〈r, l〉. To avoid this inherent asymmetry
in estimator accuracy, we use both types of stripes and retain
the estimates from each set of results. Their bias will depend
only on the conditional probability closer to 1,i.e., βc(1|2).

C. Enhancing Stripe Correlations

Uncertainty inβ(1|2) undermines confidence in using (5)
directly. We propose a modified stripe for which the effective
value of β is closer to 1. For the stripe〈l, r〉 with perfect
correlations,EZ12/EZ2 (the conditional probability for the
first packet of the stripe to reachl given that its second packet
reachesc) is actually equal to the probability of transmission
of a packet along the link(c, l), conditional upon reachingc.
This is because packet2 must have been present atc if present
at r. With imperfect correlations, packet1 may not have been
also present atc, leading to underestimation ofαl. Our remedy
is to use longer stripes, conditioning on an event atr which
makes it more likely that packet1 was present atc.

The simplest example is thethree-packet stripe 〈l, r, r〉.
Provided that transmission of packets within the stripe is
strongly correlated (as specified in Definition 1 below) it
should be more likely that packet1 reachesc, upon reception
of packets2 and3 at receiverr, rather with than reception of
packet2 alone. Conditioning on reception of packets 2 and 3,
the analogs of the first and second relations in (4) are

EZ1EZ23

EZ123
=

αc

βc(1|23)
,

EZ123

EZ23
= αlβc(1|23). (6)

The parametersαc and αl are estimated byZ̃1Z̃23/Z̃123

Z̃123/Z̃23 respectively;αr can be estimated similarly using the
complementary stripe〈r, l, l〉. Comparing with (5), these esti-
mates introduce less bias than those from two-packet stripes
provided thatβc(1|2, 3) > βc(1|2). This is the case provided
transmissions satisfy the following correlation property.

Definition 1: We say that stripe transmission at a nodek
is coalescentif for each stripe〈r1, . . . , rd〉 routed throughk,
and disjointD, D′ ⊂ D(k),

βk(D|D′) ≥ βk(D|D′′) for all D′′ ⊂ D′. (7)
Coalescence states that a set of packets is more likely to
be transmitted on a link after other packets from the stripe
have been transmitted over that link. Coalescence real network
traffic is investigated in Section IV. Conditioning with more
packets, the effect is to decrease the estimate ofαc and to
increase the estimate ofαl or αr. Thus, we can counteract the
bias in the two-leaf stripe (see (4)) with wider stripes.

Theorem 1:Assume transmission is coalescent on the two-
leaf tree and consider a stripe〈D(c)〉 and two disjoint subsets
D, D′ of D(c) such that packets inD have destinationl and
packets inD′ have destinationr. Then for anyD′′ ⊂ D′,

EZD∪D′

EZD′
≥ EZD∪D′′

EZD′′
. (8)

(8) says that extending the stripe reduces the estimate of the
transmission rateαc and so counteracts the bias due toβc < 1.

Example: the 4-packet stripe: Theorem 1 suggests that
we can further reduce bias by lengthening the stripe length.
Consider, for instance, the stripe〈l, r, r, r〉 and compare its
estimation properties with those of its substripes〈l, r, r〉 and
〈l, r〉. By Theorem 1 we have the following ordering:

EZ1EZ234

EZ1234
≥ EZ1EZ23

EZ123
≥ EZ1EZ2

EZ12
. (9)

The estimators are obtained by replacing eachEZ by the
corresponding empirical meañZ from n stripes. By the Law
of Large Numbers, the same inequalities hold for the estimates
with probability 1 asn grows to infinity.

D. Extension to General Trees

We describe estimators that extend the foregoing method to
treat general logical source trees. Consider first the case of a
depth2 tree with an arbitrary number of leaves. One approach
is to stripe across all receivers and then to adapt the estimator
from [3] for nodes with arbitrary numbers of offspring in order
to estimate the link probabilities. A potential problem with is
that the statistical properties of stripes may not reflect those of
general traffic if their width is not negligible compared with
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buffer sizes. Instead, here we focus on combining inferences
from fixed-width stripe measurements on embedded subtrees.

Consider an arbitrary tree with leaf setR. For each node
k ∈ V \ R let R(k) denote the subset of leaves descended
from k. Let Q(k) denote the set of ordered pairs of nodes in
R(k) descended through different children ofk and M(k) a
subset ofQ(k) such that(i, j) ∈ M(k) iff (j, i) ∈ M(k). For
each(i, j) ∈ M(k), consider the embedded two-leaf binary
tree spanned by the nodes0, k, i, j. By combining estimates
from measurements of stripes down each such tree, we shall
estimate the characteristics of the common path from0 to k.

Each stripe will follow the same pattern. We fix a template
for a stripe ofd0 packets by partitioning{1, . . . , d0} into two
setsD1, D2. For each ordered pair(ri1 , ri2) in M(k) we form a
stripe that sends packets in positions inD1 to ri1 and packets
in positions inD2 to ri2 . More formally, this is the stripe
S(ri1 , ri2) = 〈r1, . . . , rd0〉 whererd = ri`

whend ∈ D`.
The relation between the leaf and transmission probabilities

on the composite path from0 to k are expressed through

EZD1EZD2

EZD1∪D2

= Ak(D1)/Bk(D1|D2) (10)

where Ak(D) =
∏

jºk αj(D) and Bk(D1|D2) =∏
jºk βj(D1|D2). Henceforth, we omit the dependence onD,

D1, and D2 when the context is clear. Here, we consider
the same type of stripes described in Section II: for the
ordered pair(ri1 , ri2), we assumeD1 = {1} and D2 =
{2, . . . , d0}, i.e., the stripe S(ri1 , ri2) = 〈ri1 , ri2 , . . . , ri2〉.
The pair (ri2 , ri1) corresponds to the complementary stripe
S(ri2 , ri1) = 〈ri2 , ri1 , . . . , ri1〉 sent down the same subtree.
For each non-leaf and non-root nodek and each pair(i, j) ∈
M(k), the measurements withn stripes of typeS(i, j) give
rise to an estimate ofAk =

∏
jºk αj

Â i,j
k =

Z̃D1Z̃D2

Z̃D1∪D2

. (11)

In this paper we use arithmetic mean of estimates

Âk = #M(k)−1
∑

(i,j)∈M(k)

Â i,j
k . (12)

For each leaf nodek, take Âk as the measured transmission
probability over all stripes of packets tok, and setÂ0 = 1 by
convention. The link probability estimates are the quotients

α̂k = Âk/Âf(k), k 6= 0. (13)

E. Asymptotic behavior of loss estimates

Theorem 2:For k 6= 0,
√

n · (α̂k−αk−mk) converges, as
n →∞, to a mean zero Gaussian r.v. of varianceσ2

k, where

mk =
{ αk

βk
(1− βk) k 6∈ R

αk(Bf(k) − 1) k ∈ R.
(14)

Theorem 2 shows that with imperfect correlation,α̂k, k 6=
0, computed via (13), are biased. We define the estimator
bias asbk := |E[α̂k − αk]|, k 6= 0. For large n we can
use the approximationbk ≈ |mk|. From (14), the estimator
bias depends on the position of the link in the tree. The

bias for a leaf link depends on the conditional transmission
probabilities along the entire end-to-end path from the source.
Since these conditional probabilities typically decrease with
path length, the bias should grow with the size of the tree.
The estimator bias of a non-leaf link, instead, only depends
on the transmission probabilities of that link, not the tree size.

The analysis of the asymptotic varianceσ2
k can be per-

formed along the same lines used for that for multicast
inference [3]. Here we will focus for simplicity on the regime
in which all loss ratesαk = 1− αk are close to zero. In this
regime it is not difficult to show that

σ2
k =

s(k)
#M(k)

+
s(f(k))

#M(f(k))
+ O(‖α‖2) (15)

where‖α‖ = maxk∈V αk and s(k) =
∑

jºk αk is the loss
rate along the path from0 to nodek (it is easy to verify
that in this regimeA(k) = 1− s(k) + O(‖α‖2)). To leading
order, σ2

k is proportional to the loss rate from the source to
nodek, and inversely proportional to the number of subtrees
used in estimatinĝAk andÂf(k). Thus the estimator variance
depends on the topology and size of the tree and grows with
the distance from the probe source. This differs from the
analogous result for multicast inference (see [3]), where to
leading order the variance is independent of topology.

F. Measurement Approaches

Inference for general logical tree works by combining es-
timates from measurements on embedded 2 receiver subtrees.
In the exhaustive striping strategymeasurements are taken
across all binary subtrees, i.e., by takingM(k) = Q(k).
In the minimal striping strategymeasurements are limited to
a single subtree passing through each nodek, taking, e.g.,
M(k) = {(i, j), (j, i)} for some receiversi, j depending on
k. (It can be shown that measurement must be made on at
least one such subtree per node in order to estimate all the
link probabilities; see [9]). The minimal strategy has several
advantages. First, it scales better: if we fix the number of
stripes sent down each subtree, it requires a total number of
stripes which grows linearly with the number of nodes while
a complete set of measurements requires a number of probes
proportional to the square of the number of nodes. Second,
it provides estimates with lower variance. To see this, we
compare the asymptotic estimator varianceσ2

k for a fixed total
number of stripesm. Assume a binary topology of depthd;
each type stripe is then transmitted#R(#R − 1)m/2 times
in the complete case and#R m/2 in the single subtree case,
with #R = 2d−1. Then in the asymptotic regime of small loss

Var[α̂k]single

Var[α̂k]complete
=

1
2d(k)−1

s(k) + s(f(k))
2s(k) + s(f(k))

+ O(‖α‖2) < 1

for k 6= 0, where d(k) denotes the depth of nodek and
Var[α̂k]complete andVar[α̂k]single denote the variances in the
two cases. Thus, for eachk, the single subtree approach
always yields a smaller variance with the ratio decreasing
exponentially with the depth ofk in the tree. So reduction
of measurement subtrees is more than compensated by the
larger number of probes sent down each subtree.
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G. Sampling and Statistical Issues

We now make two further observations of the statistical
implications of using the stripe approach. First, network char-
acteristics may not be uniform across a stripe e.g., if stripe
width is comparable in size to that of a buffer. The expected
loss rate of a packet at a given node can depend on the
occurrence of losses closer to the source of packets in earlier
stripe positions. These cause the packet to advance its position
in the stripe and consequently experience a different loss rate.

Second, there is a phenomenon during TCP slow start, in
which every other or every third packet being lost due to
specific buffer-filling patterns; see Figure 2 of [13]. These may
impart particular loss patterns on the elements of a stripe.

III. C OALESCENCE IN THEM/M/1/K QUEUE

In this section we analyze coalescence in the context of an
M/M/1/K queue. While our proof does not extend to general
queuing systems, the analysis of this simple case provides
useful insights on probe transmission characteristics.

We model a network node as an M/M/1/K queue with a
Drop Tail discard policy. The queue is offered background
traffic according to a Poisson process with rateλb. The
queue also receives a stream of (non Poisson) probe traffic
comprising packets stripes. We assume the interarrival times
between stripes are i.i.d. with mean1/λs, λs ¿ λb; each
stripe comprisesd0 probes with exponential interarrival time
of mean1/λp. Last, we assume all packet service times are
i.i.d. exponential random variables with mean1/µ.

To study the probe transmission probabilities we analyze the
transient behavior of the queue in the interval of time from
the arrival of the first probe of a stripe until the arrival of the
last. the queue is offered aggregate Poisson traffic with rate
λa = λp + λb. The number of packets found in the queue by
successive arrivals (either background or probe traffic) is then
a Markov chain with one step transition probability matrix

Pa =




1− a0 a0 0 0 · · · 0
1− a0 − a1 a1 a0 0 · · · 0

...
...

...
. . . 0

1−∑K
j=0 aj aK aK−1 aK−2 · · · a0




where aj is the probability thatj packets left the queue
between two consecutive arrivals. For exponentially distributed
interarrival and service times one sees the number of departure
between arrivals is geometrically distributed with success
probability λa

λa+µ ; thus,aj = λaµj

(λa+µ)j+1 , j = 0, . . . , K.
Consider now the number of packetsNd, d = 1, . . . , d0,

found in the queue by thed-th probe in a stripe. It is easy to see
thatNd is also a Markov chain. Its transition probability matrix
Pp can be computed fromPa by conditioning on the number
of background arrivals between two consecutive probe arrivals.
By observing that the number of background arrivals between
two consecutive probe arrivals is geometrically distributed

with parameter λb

λb+λp
, it immediately follows that

Pp =
∞∑

j=0

P j+1
a

λpλ
j
b

(λp + λb)j+1
(16)

=
λp

λb

[(
I − λb

λb + λp
Pa

)−1

− I

]

whereI denotes the(K + 2)× (K + 2) identity matrix.
Let πj = (πj(0), . . . , πj(K + 1)), πj(i) = P[Nj = i],

j = 1, . . . , d0, denote the vector of state probabilities seen by
the j-th probe of a stripe. Forj = 2, . . . , d0, πj = π1 · P j

p .
Since λs ¿ λb, we can assume that the queue reaches its
steady state between two consecutive stripes so thatπ(1) and,
hence,π1 is given by the steady state distribution of the queue
fed by the background traffic only. Then, standard results for
the M/M/1/K queue yieldπ1(i) = ρi 1−ρ

1−ρK+2 , whereρ = λb/µ
is the offered background traffic.

Loss occurs when a probe packet finds the system full. The
marginal probability of successful transmission for thej-th
probe within a stripe is thenα(j) =

∑K
i=0 πj(i). For D =

{d1, . . . , dm} ⊆ D0, the probability of joint successful trans-
mission of all probes inD, α(D), is α(D) = P[Ndl

≤ K, l =
1, . . . ,m]. To computeα(D), we write α(D) =

∑K+1
i=0 φ(i),

where we denoteφ(i) = P[Ndl
≤ K, l = 1, . . . ,m, N1 = i].

It is easy to verify thatφ = (φ(0), . . . , φ(K + 1)) obeys

φ = π̃1 · P̃p,2 · · · P̃p,dm , (17)

where

π̃1 =
{

π1 if 1 ∈ D
[π1]K+1 if 1 6∈ D

(18)

P̃p,j =
{

Pp if j ∈ D
[Pp]K+1 if j 6∈ D

(19)

and[.]K+1 denotes the same vector (matrix) with theK +1-th
element (row and column) replaced with a zero. The condi-
tional probabilities are obtained by the appropriate quotients.

A. Structure ofα and β and Coalescence Property

For this model, we can establish the structure of the prob-
abilities α and β by studying the stochastic order relations
among theNd, d ∈ D0, as detailed in Section VII.

Theorem 3:In a M/M/1/K queue the stripe transmission is
coalescent. Moreover,

(i) α(1) ≥ α(2) ≥ · · · ≥ α(d0);
(ii) β(1|2) ≥ β(2|1).

Theorem 3 establishes the coalescence property for the
M/M/1/K queue. In addition, (i) states that the marginal
transmission probability decreases with the packet position in
the stripe. Intuitively, if probes arrive in rapid succession to a
finite buffer so that there is no arrival or service completion in
the interval of time between the first and last probe, probe loss
occurs when there is insufficient buffer space to accommodate
the entire stripe; under Drop Tail discard, the last probes are
those more likely to experience loss. Moreover, (ii) shows that,
of the two conditional probabilities affecting the behavior of
the two packet stripe,β(1|2) is closer to one.
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B. Numerical Examples

We now evaluate the M/M/1/K model to illustrate the depen-
dence of the transmission probabilities on system parameters,
and the consequences for estimator accuracy.

1) Structure of the Transmission Probabilities:In Figure 2
we plot α andβ as function of the offered background traffic
load ρ = λb/µ, for different probe arrival rates when the
buffer size isK = 50. We takeµ = 1, so thatλb = ρ. The
marginal transmission probabilities decrease with the packet
position in the stripe, the difference becoming more marked
asρ increases, i.e. when the link is congested.

The main observations concern the dependence on the probe
arrival rateλp. For λp = 1000, probes arrive practically back
to back since the probe arrival rate is three orders of magnitude
higher than both background traffic arrival and service rates.
The conditional probabilities show that loss of different probes
in the stripe is highly correlated:β(1|2), β(1|23) andβ(1|234)
are practically equal to one irrespective of the traffic load.
The conditional probabilityβ(2|1) is also very close toα(1),
although smaller thanβ(1|2), especially as load increases.

As interarrival times increase, probe correlation decreases.
When λp = 0.1, probe interarrival times are large and we
expect the congestion events experienced by probes to be prac-
tically independent. All marginal and conditional probabilities
are close toα(1) and lengthening the stripe leads to only a
small increase in the conditional probabilities.

For intermediate probe arrival rates (not shown) conditional
probabilities are reduced, withβ(1|2) decreasing fastest as
the loadρ increases. This indicates that we can counteract the
decrease in probe correlation by using longer stripes.

In general, we expectβ(1|2) to be smaller thanβ(2|1)
because, while it is likely that the first probe of a stripe
will find a non-full queue if succeeding probes do also, the
reverse is not true. For example, when a probe occupies
the last available position in the queue all the successive
probes are lost at least until the first probe is processed. We
also considered other buffer sizes and observed the relative
behavior of α and β to be insensitive to the buffer size:
increasing (decreasing)K only results in shifting the onset
of congestion to a higher (lower) load.

2) Estimator Bias: We now illustrate the dependence of
the inference method accuracy on the stripe structure. The
setting is the two-leaf tree in Figure 1 with an M/M/1/K queue
with buffer K = 50 at the common link; in this topology
bias arises only through imperfect correlations at the common
link. To quantify the accuracy of the estimates we compare
the estimated loss probability of the common link1 − α̂c

with the actual loss probability1 − αc by computing the
estimator relative bias as the ratioE[bαc−αc]

1−αc
= αc

βc

1−βc

1−αc
. In

Table I we display the relative bias, expressed as a percentage,
for different stripe widthsw, probe interarrival rates and link
loads, together with the conditional probabilityβ(1|2 . . . w).

The main observation is the dramatic decrease in the bias
for longer stripes and higher probe interarrival rates. To ensure
maximum correlation, probes should be transmitted back to
back: in these examples, forλp = 1000, the bias is practically
zero. In practice, this may not be sufficient since probes can
be spaced apart, resulting in a smaller value ofλp, as a result

ρ = 1 stripe widthw
2 3 4

λp = 1000 0.10% 1 0% 1 0% 1
λp = 100 1.00% 0.9998 0.02% 1 0% 1
λp = 10 8.55% 0.9983 1.35% 0.9997 0.26% 0.9999
λp = 1 39.0% 0.9924 22.0% 0.9957 13.8% 0.9973

TABLE I

ESTIMATOR BIAS AND CONDITIONAL PROBABILITIES. BIAS OF THE

ESTIMATES OF THE LINK LOSS PERCENTAGE IN STRIPES OF WIDTHw = 2

TO 6 FOR DIFFERENT VALUES OF PROBE INTERARRIVAL RATE, TOGETHER

WITH conditional probabilitiesβ(1|2 . . . w − 1)

of traversing a bottleneck link. This could affect the accuracy
of the estimates. Nevertheless, it is possible to counteract the
correlation decrease by using longer stripes. Forλp = 10,
the increase of the stripe width from 2 to 4 reduces the bias,
which would be otherwise as high as 10%, to below 1%. Bias
is affected, but to a smaller extent, by the traffic load; because
of the smaller value ofβ, bias increases withρ, the difference
being more significant for longer stripes.

IV. N ETWORK EXPERIMENTS

The techniques described in Section II rely on conditional
probabilities of packet transmission within stripes being close
to one, and the coalescence property in order to produce low
bias estimators. In this section we investigate conformance of
both of these assumptions to measurements of stripes trans-
mitted across a number of end-to-end paths in the Internet.
Although these experiments did not access the transmission
properties of individual links, they would be able to detect
link-wise departures from the assumptions, since these would
also be reflected in the properties of end-to-end paths.

A. Measurement Infrastructure and Datasets

We conducted the experiments using the National Internet
Measurement Infrastructure (NIMI) [27]. NIMI consists of
a number of measurement platforms deployed across the
Internet (primarily in the U.S.) that can be used to perform
end-to-end measurements. We made the measurements using
the zing utility, which sends UDP packets in selectable
patterns, recording the time of transmission and reception.
zing was extended to transmit unicast stripes to multiple
destinations with minimal spacing between packets. This is
done by precomputing the packets to send (including their
MD5 integrity checksum, the most computationally expensive
part of constructing azing packet) and then transmitting
them with back-to-back system calls, resulting in inter-packet
spacings of about40µsec. The packet size was 60 bytes. A
key point is that all packets in a stripe are sent to the same
destination, with the goal being to assess the conditional loss
probability and coalescence properties of paths.

A total of 83 successful measurements were made between
35 NIMI sites, each measurement being recorded at both
sender and receiver. The measurement transmissions were of
three types (i) 100,000 flights of stripes of 3 packets, with
separations exponentially distributed with a mean of 100 msec;
(ii) 20,000 flights of stripes of 3 packets, separated by a
mean of 500 msec; (iii) 6000 flights of stripes of 10 packets
separated by a mean of 100 msec; (iv) 10,000 flights of stripes
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Fig. 2. TRANSMISSIONPROBABILITIES: M/M/1/K QUEUE. Transmission probabilitiesα andβ as function of the offered background traffic loadρ = λb/µ
(µ = 1) for different values ofλp. Buffer length isK = 50.
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Fig. 3. SCATTER PLOT OF TRANSMISSION PROBABILITIES IN 38 NET-
WORK EXPERIMENTS. Conditional vs. marginal end-to-end transmission
probabilities. Probabilities for 3-packet stripes mostly meet or exceed those
for 2-packet stripes.

of 10 packets, separated by a mean of 300 msec. In the
latter two cases, we also counted the first 3 packets in each
stripe as another dataset of 3-packet stripes. All measurements
were made at either 2PM EDT (a busy period) or 2AM EDT
(a period of light load). The worst case average probe load
was 100 packets per second. There was no noticeable change
in measured transmission rates as we varied the inter-stripe
spacing from 100 msec to 500 msec.

B. Measured Transmission Probabilities

a) Marginal Probabilities.: Packet loss rate ranged be-
tween zero and14%. Of the 83 traces, 13 exhibited no loss
whatsoever, and consequently were eliminated as they could
not be used to study loss inference. The marginal packet
loss rates for different positions in the stripe displayed some
heterogeneity. The heterogeneity was most pronounced at the
start of the stripe, with the loss rate for the second packet in a
stripe being typically 1.15 times greater than that of the first.
Moving further along the stripe, loss rates differed between
successive positions typically by up to a factor of 1.02.

b) Conditional Probabilities.:Of 70 traces that did ex-
hibit packet loss, 32 had conditional transmission probabilities
of 1, reflecting perfect loss correlation just as would occur if
the probes had been multicast instead of unicast.

For the remaining 38 traces, we estimate the error involved
in the stripe method by comparing conditional and marginal

β(1|2, . . . , w)/β(1|2, . . . , w − 1)
w = 2 w = 3 w = 4 w = 5 w = 6

min. 1.0000 1.0000 1.0000 1.0000 1.0000
mean 1.0318 1.0017 1.0006 1.0005 1.0003
max. 1.1812 1.0103 1.0051 1.0031 1.0020

TABLE II

COALESCENCE OF TRANSMISSION IN NETWORK EXPERIMENTS. RATIOS

OF END-TO-END CONDITIONAL TRANSMISSION PROBABILITIES IN STRIPES

OF WIDTH 2 TO 6.

transmission probabilities within a stripe. A scatter plot of
the conditional vs. marginal probabilities for 2 and 3 packet
stripes is shown in Figure 3. (Only 36 points are apparent in
the figure due to the occurrence of two pairs of identical loss
rates). Higher points represent smaller estimates of relative
error; conversely for points near the line the error is of the
same order of magnitude as the marginal probability to be
estimated. For both 2 and 3 packet stripes, the end-to-end
conditional transmission probabilitiesβ are noticeably larger
than the marginal transmission probabilitiesα, with those for
the 3 packet stripe being at least as large as those for the 2
packet stripes in almost all cases. A conditional probability
of one signifies perfect correlations. We characterize the error
arising fromβ < 1 through the ratio(1 − β)/(1 − α) when
α 6= 1. This represents the proportion of the reported loss
rate which is in error due to imperfect correlations. For 2-
packet stripes, the median value was0.12. (So, for example, an
estimated loss rate of1% would be in error by about0.12%).
The median ratio fell to to0.10 for 3 packet stripes.

We also verified thatβ(2|1)/β(1|2) ≥ 1 in practice. For the
same 38 experiments we computed the ratio using the end-to-
end conditional probabilitiesβ(2|1) andβ(1|2). The ratio was
one in 19 experiments and overall no greater than 1.0052 in
90% of the traces; in seven instances, it was even smaller than
one (but always larger than 0.999); the maximum value was
1.83 (corresponding to the trace with a loss rate of 14%). The
fact that the ratio was very close to one can be justified in terms
of the traces exhibiting small loss probabilities (26 experiments
had loss rates smaller than 1%) for which we expectβ ≈ 1
in any case. For a finer comparison of the two conditional
probabilities, we also computed the ratio(1−β(2|1))/(1−α),
α 6= 1. The median of this ratio was 0.2, about 66% larger
than that due toβ(1|2). Despite being very similar in these
experiments, the likely impact on estimator accuracy of the
two conditional probabilities differs substantially.
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5Mb/sec, 50 ms

1Mb/sec, 10 ms

Fig. 4. FIRST TOPOLOGY USED IN SIMULATIONS, COMPRISING39 NODES

c) Coalescence.:We calculated the end-to-end condi-
tional transmission probabilitiesβ(1|2, 3, . . . w) for stripes
of width w = 1, . . . , 6. (When w = 1 this just denotes
the marginal probabilityα(1)). A necessary condition for
coalescence is thatβ(1|2, . . . , w)/β(1|2, . . . , w−1) ≥ 1 for all
w. We determined the ratios over 19 experiments with stripes
of width 10. In only two instances were the ratios less than
1, and in these cases by a magnitude of only about10−6.
This is a far smaller magnitude than that by which the ratio
typically exceeds 1, as is seen from the statistics displayed in
Table II: the minimum, mean, and maximum for eachw over
the 19 experiments. The ratios are largest forw = 2, falling
off close to one asw increases beyond3. This suggests that
the additional bias correction obtained by increasing stripe
width is almost negligible for stripes wider than 3 packets,
at least under the network conditions and the range of loss
probabilities exhibited in these traces.

C. Interpretation

The network experiments show unicast-based inference to
be promising. First, the stripes exhibited perfect loss cor-
relation in nearly half of the traces where there was any
loss. If this property were to hold in stripes to multiple
destinations, their statistical properties would be identical to
that of multicast traffic for the purposes of link loss inference.
Second, in traces with imperfect correlations, the conditional
transmission probabilities within the stripe were higher than
the marginal probabilities, slightly more for the three packet
stripe than the two packet stripe. This indicates that the bias
due to ignoring the imperfection in correlations is relatively
small. Third, traces exhibited coalescence for the stripe widths
considered, indicating that bias can be compensated for by
using wider stripes, although the incremental benefit grew
smaller for longer stripes. Concluding, we have described
a method that can be used to determine, via end to end
measurements, whether packet loss correlation within stripes
is sufficiently strong (and, in particular, coalescent) for the
unicast inference method to be accurate. We found that loss
correlation was strong in the network under study.

V. SIMULATION RESULTS

The experiments of Section IV give us confidence that
the statistical properties of stripe transmission make stripes

suitable as probes for inference. However, the experiments
do not corroborate the accuracy of the estimators for real
network traffic. Instead, we employ simulation to illustrate
the estimator accuracy that would likely be obtained in a real
network setting. We used thens simulation environment [25];
this enables the representation of transport-protocol detail of
packet transmissions, with packet loss due to buffer overflows
at nodes as stripes compete with background traffic.

A. Simulation Methodology

We conducted simulations using two topologies. The first
was the 39-node topology of Figure 4. Link speeds and delays
characterize low speed/low delay links at a network edge con-
nected by high speed/high delay links in the network interior.
Each link buffer accommodates 20 packets. Background traffic
came from a mixture of TCP sessions and exponential and
Pareto on-off UDP sources with shape parameter 1.5. The
on-off sources had mean burst time 0.5s. The simulation ran
for 800 seconds, giving ample time for equilibration on the
traffic sources. Simulations were performed using two logical
multicast trees spanning 7 and 15 receivers.

The second topology was generated using thegt-itm
topology generator [15]. It comprised 156 nodes arranged as a
hierarchical transit-stub network in which 24 stub networks are
interconnected via a 12 node transit network. Links between
transit nodes have 50Mb/s capacity and propagation delay cho-
sen randomly in the interval [8ms,20ms]. The other links have
a 10Mb/s capacity and a delay chosen randomly in the interval
[1ms,10ms]. Without randomized link delays, we would open
up the chance for synchronization between traffic flows on
different end-to-end paths with identical round trip times [12].
This could potentially lead to violation of the independent loss
model. The buffer on each link accommodates 100 packets.
We selected a 38 receiver multicast tree comprising 62 nodes.
The number of hops between the source and a receiver ranges
between 5 and 11 with an average of 7.34. Background traffic
was similar to that used in the 39-node topology.

Although other choices of topology could be considered
(e.g., those generated by BRITE [2]), since the inference
method makes no reference to topology, we do not expect the
results to be sensitive to topology, except as follows. Firstly,
larger topologies require more measurements in order to cover
each node as a branch point. Secondly, diversity in larger
topologies is expected to reduce loss synchronization between
links, and hence improve the quality of inference.

In both topologies, measurement probes comprised 4 packet
stripes with a 1µsec interpacket time. The inter-stripe time
was 16 msec, cycling through stripesS(i, j) over pairs of
distinct receiversi, j. The number of cyclesn was chosen so
that the total number of stripesm sent was the same in all
simulations. This enables us to compare performance for the
same measurement traffic load. Here, we chosem = 42, 000.

Since the stripe width is far shorter than the burst length
of the on-off sources, we expect loss within a stripe due to
congestion arising from bursting of these source to be strongly
correlated, as desired. Congestion periods may encompass
multiple stripes, leading to dependence of packet loss between
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different stripes. But, similarly to the multicast case analyzed
in [3], this effect is not expected to alter the limiting value of
the loss estimate as the number of stripes grows large, although
it can increase estimator variance relative to a model in which
losses across different stripes are independent.

What is the load on the network from probing? Assuming a
60 byte packet size as in Section IV-A, the average probe rate
at the source would be 15 KB/sec, i.e, about 1% of the slowest
link rate, and roughly equivalent to a high quality Voice-over-
IP call. Furthermore, the rate reduces away from the source
due to branching of the distribution tree. The maximum burst
size is 4, i.e., only 4% of the simulated buffer size in the
larger topology, and likely an even smaller quantity relative to
buffers in deployed equipment. Altogether, we expect probing
to have only a small effect on other network traffic.

How do the durations of measurement compare with typical
periods of constancy for loss rates? In our experiments, the
42, 000 stripes would take just over 11 minutes to dispatch.
In one study on the dynamics of packet loss, 1 minute
averaged loss rates over 11 minute intervals were found to
be roughly constant (in the operational sense that they didn’t
move between bands of a few percent width) about 80% of the
time; see [32]. But even the absence of such constancy may
well not affect the accuracy of the method greatly. Comparison
of directly measured and inferred loss rate in the multicast case
shows that when the loss rate fluctuates by a few percent over
the measurement interval, averaging in the loss inference quite
closely reflects the average measured loss rate; see [4].

To compare the estimator performance under different stripe
lengths we considered the 2- and 3-packet substripes obtained
using the first two and three packets in each stripe. In order
to evaluate the method, the inferred loss rates were compared
with internal link loss rates as determined by instrumentation
of the simulation. Link loss rates were computed considering
only the first probe in the stripe.

B. Transmission Probabilities and Coalescence

We first examine the statistical properties of the underlying
link loss processes. Marginal and conditional link transmission
rates were determined during 100 experiments on the 7 and
15 receiver topologies, and 10 experiments on the 38 receiver
topologies. Link loss rates in these three sets of experiments
ranged from 0% to 18%, from 0% to 27% and 0% to
2.6% respectively. Scatter plots of conditional vs. marginal
transmission probabilities are shown in Figure 5. Conditional
probabilities are considerably higher than marginal probabili-
ties, and mostly strictly increasing in stripe width. Note that
unlike β(1|23) andβ(1|234), which are always very close to
1, β(1|2) falls considerably below 1 as the loss rate increases.
This behavior is in agreement with the analysis in Section III
where we observed that, among the conditional probabilities,
β(1|2) decreases fastest at higher loads. For the 38 receiver
tree, β(1|234) exceedsβ(1|23) in only a few cases; mostly
they are equal. Thus we expect small benefit in accuracy from
increasing the stripe width beyond 3 in this topology.

To summarize the conditional probability structure, we
computed the ratiork(w) = β(1|2, . . . , w)/ β(1|2, . . . , w−1)

for w = 2, 3, 4. The statistics are displayed in Table III. The
behavior is similar to that observed in the network experiments
where the ratio is largest forw = 2 and decreases for larger
values ofw. For the 38 receiver topology, the ratios practically
equal 1 for w > 2. The larger values observed in the 15
receiver tree are due to the larger spread in the conditional
probabilities, which correspond to the higher loss rates. In
some cases the ratio was smaller than 1: one ratio forw = 2,
7% of the ratios for w = 3, and 25% of the ratios for
w = 4; in these cases, though, the ratios were always very
close to 1, and the smaller of the two probabilities larger
than 0.99. This behavior is expected since the observed ratios
will exhibit some statistical variability. Modeling the observed
conditional probability ratiork(w) as a Gaussian random
variable for eachw, we ask whether the observed mean value
r̂k(w) is consistent with a population value less than 1. If
so, we cannot conclude that the coalescence property holds.
Using the sample standard deviation of the observed ratios
over 100 independent simulationsσrk(w), we found the test
statistic r̂k(w)− zσrk(w)/

√
98 exceeded1 for all k 6= 0, and

w = 2, 3, 4, wherez was the99th percentile of the standard
normal distribution. Hence the observations are consistent with
coalescent transmissions, at a 99% confidence level.

C. Measures of Inference Accuracy

In order to quantify the accuracy of our estimates, we
computed, for each logical link, the estimator bias and standard
deviation. For each non-root nodek, denote byα(j)

k and α̂
(j)
k

the actual and inferred transmission probability on linkk in the
j-th simulation, forj = 1, . . . , N = 100. For k 6= 0, we com-
pute the estimator bias asbk := 1

N |
∑N

j=1 α
(j)
k −α̂

(j)
k | and stan-

dard deviationσk =

√
1

N−1

(∑N
j=1

(
α

(j)
k − α̂

(j)
k

)2

− b2
k

)
.

As a robust summary statistic of the typical bias and standard
deviation across the different links, we used the two-sided
quartile-weighted median (QWM)

(Q25 + 2Q50 + Q75)/4, (20)

whereQp denotes thepth quantile of the set of link estimator
bias{bk}k 6=0, or standard deviations{σk}k 6=0.

D. Accuracy and Probing Strategy

For the 7 receiver tree, we compare two probing strategies.
In the exhaustive striping strategywe run a complete set of
measurements down all embedded two-receiver subtrees. In

w = 2 w = 3 w = 4
0.9999 0.9994 0.9983
1.0379 1.0043 1.0006
1.4725 1.0573 1.0189

w = 2 w = 3 w = 4
1.0000 1.0000 1.0000
1.0034 1.0001 1.0000
1.0427 1.0043 1.0022

TABLE III

COALESCENCE OF TRANSMISSION IN SIMULATIONS. M INIMUM , MEAN

AND MAXIMUM OF RATIO β(1|2, . . . , w)/β(1|2, . . . , w − 1) ACROSS ALL

LINKS AND SIMULATIONS : (LEFT) 15 RECEIVER TREE; (RIGHT) 38

RECEIVER TREE.
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Fig. 5. CONDITIONAL TRANSMISSION PROBABILITIES IN SIMULATIONS . Scatter-plot of conditional vs. marginal link transmission probabilities for 2, 3
and 4 packet stripes: (left) 7 receiver tree; (middle) 15 receiver tree; (right) 38 receiver tree. Conditional probabilities increase with stripe width.
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this tree there are 21 such subtrees, and so we used all 42
stripes S(i, j) over (ordered) pairs of disjoint receivers. In
accordance with the choice ofm = 42, 000 total stripes, each
stripe was transmitted 1,000 times. In theminimal striping
strategy, we select (at random) one subtree through each
branch point. In the example there are 5 subtrees and hence 10
ordered pairs of receivers; each stripe was transmitted 4,200
times. We want to determine the trade-off in accuracy between
employing more subtrees (in the exhaustive strategy) and more
stripes per subtree (in the minimal strategy) for the same
number of total stripes.

For the different sets of experiments, we display scatter plots
of inferred vs. actual loss probabilities for 2 and 3 packet
stripes in Figures 6 for the exhaustive strategy, and Figure 7
for the minimal strategy. From the figures we observe that
accuracy increases with wider packet stripes as exhibited by
the clustering about the liney = x. Accuracy is apparently
worse when the actual link loss probability is zero. However,
this is a visual effect arising from the large proportion of
points (about to 60% of the total) for which the actual loss
probability was zero. The standard deviation of the estimates
corresponding to zero and non zero loss are actually very close.
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stripe width
2 3 4

bias 0.58% 0.35% 0.31%
s.d. 0.66% 0.53% 0.53%

stripe width
2 3 4

bias 0.68% 0.47% 0.41%
s.d. 0.47% 0.29% 0.29%

TABLE IV

ESTIMATION ERROR IN SIMULATIONS AS FUNCTION OF STRIPE WIDTH . 7

RECEIVER TREEQWM OF ESTIMATOR BIAS AND STANDARD DEVIATION:

(LEFT) EXHAUSTIVE STRIPING; (RIGHT) MINIMAL STRIPING .

Comparing the two striping strategies it appears that points
are more tightly clustered about the liney = x for the minimal
strategy (Figure 7) than for the exhaustive strategy (Figure 6).
To quantify this, we display bias and standard deviation of the
QWM in Table IV. Increasing the stripe width reduces bias for
both strategies, although most of the benefit is already obtained
using a 3 packet stripe. This is not surprising since the largest
increase in conditional probabilities occurs when stripe width
is increased from 2 to 3. We also performed experiments with
4 stripes and found no further reduction in standard deviation
upon increasing the stripe width from 3 to 4. Returning to the
comparison of the probing strategies, we see that for larger
stripe widths, the standard deviation for the minimal strategy
is roughly half that of the exhaustive strategy, although the bias
is a little larger. In each strategy the typical absolute error in
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stripe width
2 3 4

bias 1.51% 0.39% 0.26%
s.d. 1.33% 1.16% 1.16%

stripe width
2 3 4

0.08% 0.07% 0.06%
0.18% 0.17% 0.17%

TABLE V

ESTIMATION ERROR IN SIMULATIONS AS FUNCTION OF STRIPE WIDTH .

QWM OF ESTIMATOR BIAS AND STANDARD DEVIATION. (LEFT) 15

RECEIVER TREE; (RIGHT) 38 RECEIVER TREE.

loss rate estimation is less than 1%.

E. Larger Topologies

In Table V we display bias and standard deviation of the
QWM for simulations on the 15 receiver and 38 receiver
topologies; these simulations used the minimal striping strat-
egy. Compared with the 7 receiver tree, the bias in the 15
receiver tree is noticeably larger forw = 2 but roughly similar
to that observed in the smaller tree otherwise. We verified that
the higher value forw = 2 is due to larger estimator bias for
leaf links. This can be explained by observing that since the
bias for receiver links depends on the conditional probability
along the entire path from the probe source (see the second
relation in (14)), even small departures from unity can result
in large bias as the depth of the tree increases. This effect
is not noticeable for larger stripe widths sinceβ(1|2, 3) and
β(1|234) are, most of the time, equal to one, thus reducing
the effect of topology size on the estimator bias of receiver
links. The standard deviation was higher for the 15 receiver
topology than the 7 receiver topology as a consequence of
both the larger size and fewer stripes per subtree.

The smaller underlying loss rates in the 38 receiver tree
make it difficult to draw a direct comparison with the smaller
trees concerning accuracy. Nevertheless, we find conformance
with the pattern that increasing the stripe width from 2 to
3 noticeably reduces bias and standard deviation, but further
stripe lengthening achieves little or no further gain in accuracy.
Since the conditional probabilities are all very close to 1, here
we obtain good accuracy for any stripe length. In distinction
with the experiments on smaller topologies, we found that
estimation of zero loss rate was noticeably less accurate than
that of non-zero loss rates. (This was determined by analysis
of the corresponding estimator standard deviations for the two
types of link). The large errors in estimation of zero loss
rates can be explained by the fact that zero loss occurred
mostly at receiver links. This, given the larger variance that we
expect for receiver link estimates (as discussed in Section II-
E), especially for larger topologies, accounts for the larger
variability that we observed.

VI. CONCLUSIONS ANDFURTHER WORK

In this paper we have proposed a method of using end-
to-end unicast probing to infer the loss characteristics of the
network interior. The method relies on using collections of
unicast probes, called stripes, dispatched back-to-back to dif-
ferent destinations, in order to mimic the effect of a multicast
packet following the same path. We infer internal loss rates by
applying an estimator developed for multicast inference to the
unicast receiver traces. This estimator is unbiased when the

transmissions of a stripe’s probes on a given link are perfectly
correlated. Imperfect correlations lead to bias, but this can
be compensated for by using wider stripes, provided that the
stripe transmissions obey a certain correlation property that
we call coalescence. This is the property that successful trans-
mission of a given packet in the stripe becomes more likely
when other packets from the stripe have been successfully
transmitted. We proved that coalescence is satisfied for stripes
traversing a M/M/1/K queue.

Our network experiments show that for end-to-end transmis-
sion, correlations within stripes are very high, even perfect in
some cases. Moreover, the coalescence property was found to
hold in virtually all cases examined. Together these properties
lead us to expect that inference from striped unicast probes
will be effective in estimating link loss rates.

Direct assessment of the method requires corroborative
measurements in the network interior. This entails taking
measurements on paths over which probe traffic flows; then
comparing actual and inferred loss rates on internal paths.
Currently, such corroboration is available to us only in simula-
tion experiments. Thens simulations showed good agreement
between inferred and actual loss rates; the typical bias in these
experiments was in the worst case about 1.5% in the reported
loss rate for the 2-packet stripe, falling to 0.3% with a 4-packet
stripe. We believe the accuracy is sufficient to identify the
worst performing links down to loss rates of some fraction of
1% in most cases. Most of the benefit in accuracy was obtained
using 3 packet stripes; the marginal benefit using 4 packet
stripes was relatively small, especially in larger topologies.

In this paper we concentrated on estimation of link probabil-
ities for the first packet of a stripe. Due to heterogeneity of loss
along the stripe, such estimates may not be representative of
all packets. The present method could be extended to estimate
link probabilities for packet in positions other than the first.

Finally, other multicast-based estimators–namely those for
delay distributions [23], for delay variances [11], and logical
multicast topology [10]–have the potential to be adapted in the
same manner as was done for loss estimators in this paper.
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VII. PROOFS OFTHEOREMS

Proof of Theorem 1: EZD∪D′ = βc(D|D′)αc(D′)
αl(D)αr(D′) while EZD′ = αc(D′)αr(D′). Hence
EZD∪D′/EZD′ = βc(D|D′)αl(D) ≥ βc(D|D′′)αl(D) =
EZD∪D′′/EZD′′ .

Proof of Theorem 2: Since the random variables̃ZD

are the average of i.i.d. random variablesZ
(i)
D , for any

D ⊂ D0, any node k 6= 0 and stripe S(ri1 , ri2),
(ri1 , ri2) ∈ Q(k), then by Central Limit Theorem

√
n ·

(Z̃ − Z), where Z̃ = {Z̃D}D⊂D0,(ri1 ,ri2 )∈Q(k),k 6=0 and
Z = {ZD}D⊂D0,(ri1 ,ri2 )∈Q(k),k 6=0, converges in distribution



13

to a multivariate Gaussian random variable asn → ∞.
Since α̂k is a differentiable functionFk of Z̃, Fk(Z̃) =

1
M(k)

∑
(i,j)∈M(k)

eZD1
eZD2eZD1∪D2

, the Delta method (see Chapter 7

of [28]) ensures the convergence of
√

n(α̂k − Fk(EZ)) to a
multivariate Gaussian random variable with mean 0. Theo-
rem 2 follows from the stated convergence and because for
k 6∈ R, Fk(EZ) = (Ak/Bk)/(Af(k)/Bf(k)) = αk/βk, and
that for k ∈ R, Fk(EZ) = Ak/(Af(k)/Bf(k)) = αkBf(k).

Proof of Theorem 3: The proof is based on the result below
which establishes the stochastic order relations among the
number of packets in the queue seen by the different probes
upon arrival. For random vectorsX and Y , we say thatX
is smaller thanY in stochastic order(denotedX ≤st Y ), if
E[h(X)] ≤ E[h(Y )] for any functionh, nondecreasing in each
argument, for which expectation exists. In caseX, Y ∈ R, this
is equivalent to the conditionP[X ≤ x] ≥ P[Y ≤ x] ∀x.

Let N denote the steady state number of packets in the
M/M/1/K queue fed by background traffic only. LetNS

d denote
the number of users in the system seen by thed-th probe upon
arrival given the set of probesS ⊆ D0 are not lost and let
NS = {NS

1 , . . . , NS
d0
}. The following holds.

Theorem 4:In a M/M/1/K queue,

(i) N1≤st N2≤st . . . ≤st Nd0 ;
(ii) N2

1 ≤st N1
2 ;

(iii) for any R ⊂ S ⊆ D0, NR≤st NS .
Theorem 3 is then an immediate consequence of Theorem 4.

To prove the coalescence property, for any disjointD, D′ ⊂
D0 we can write1 − β(D|D′) = E[1{∨d∈DND′

d >K}], where
1{.} denotes the indicator function. Then, Theorem 4(iii)
implies that for D′′ ⊂ D′ ⊆ D0, ND′ ≤st ND′′

which,
coupled with the fact that1{∨d∈DND′>K} is nonincreasing
in each argument, yields1 − β(D|D′) ≤ 1 − β(D|D′′),
i.e., β(D|D′) ≥ β(D|D′′). Transmission is thus coalescent.
Theorem 3 parts (i) and (ii) follow from (i) and (ii) above since
α(d) = P[Nd ≤ K], d ∈ D0, and thatβ(2|1) = P[N1

2 ≤ K].
Proof of Theorem 4: The proof proceeds through sample
path arguments. In the following, letQ(t) denote the queue
length at timet. If an arrival occurs at timet, Q(t−) will
denote the queue length just before the arrival,i.e., the queue
length seen by the arriving packet. Last, let{td}d0

d=1 be the
arrival times of the probes. By definition,Ni = Q(t−i ).

(i). We first show thatN1≤st N2. Recall that we assume
the first probe finds the queue in steady state,i.e. that
Q(t−1 )=st N1 =st N . Then, it immediately follows that

P[N ≤ m] ≥ P[Q(t1) ≤ m] m = 0, . . . K + 1. (21)

We now consider a second, benchmark, M/M/1/K queue with
only background traffic arrivals. LetQ′(t) denote the queue
length at timet and assume that it has reached steady state by
t = t1. We now couple the two systems, the first where the first
probe arrives to the queue att = t1, the second the benchmark
M/M/1/K queue. The inequality in (21) allows us to couple the
systems so thatQ(t1) ≥ Q′(t1). We now create a sequence
of event times from a Poisson process with rateλb + µ from
t = t1 up until t = t2. Let these times beτ1 < τ2 < · · · < τk.
Associate with each of these either an arrival event or service

completion event with probabilitiesλb/(λb+µ) andµ/(λb+µ)
respectively. The systems now behave as follows. If there is
an arrival at timeτi, then

Q(τi) = min(Q(τi−1) + 1,K)
Q′(τi) = min(Q′(τi−1) + 1, K)

Similarly, if there is a service completion, then

Q(τi) = max(Q(τi−1)− 1, 0)
Q′(τi) = max(Q′(τi−1)− 1, 0)

A simple induction argument on the event times allows us
to show thatQ(t) ≥ Q′(t) for t1 ≤ t < t2. (Note that
the exponential time assumption is needed to ensure that
arrival and service completions can be coupled to the Poisson
event process in the manner indicated). Thus, fort = t2,
N2 = Q(t−2 ) ≥ N(t−2 ). Removing the conditioning on
the initial queue lengths, arrivals, and service completions
yields N(t−2 )≤st N2. Since the second queue is a M/M/1/K
queue in steady state,N(t−2 )=st N(t1)=st N . Therefore,
N1 =st N ≤st N2. Similar arguments can be used to establish
the remaining stochastic inequalities in (i).

(ii). We establish (ii) by first showing thatN ≤st N1
2 and

then thatN2
1 ≤st N . It is easy to verify that

P[N ≤ m] ≥ P[Q(t1) ≤ m|Q(t−1 ) ≤ K], m ≤ K + 1. (22)

We now couple the two systems, the first where the first probe
successfully made it into the queue att = t1, the second the
benchmark M/M/1/K queue as above. The inequality in (22)
allows us to couple the systems so thatQ(t1) ≥ Q′(t1). Using
the same arguments as above, it thenN ≤st N1

2 .
Consider now the relationN2

1 ≤st N . We make use of the
fact thatN2

2 ≤st N2 and that the M/M/1/K queue is modeled
by a time-reversible Markov chain. Consider our original sys-
tem with probes arriving at exponentially distributed intervals
starting att1 and ending attd0 . The system behaves as an
M/M/1/K queue in the interval[t1, td0 ]. We focus on the time
reversed behavior during the interval[t1, t2]. We consider two
systems, one where the second probe is known to have been
accepted (N2

2 < K) and the other where no information is
known about the second probe. Now,P[N2

2 ≤ m] = P[N2 ≤
m|N2 ≤ K]. Therefore,N2

2 ≤st N2. We now couple the
queue lengths of the two systems so thatQ(t−2 ) ≤ Q′(t−2 ),
where {Q(t)} and {Q′(t)} are the queue length processes
of these systems. We then couple the time-reversed systems
where departures (resp. arrivals) within the original systems
during [t1, t2] are coupled to arrivals (resp. departures) within
the reversed systems. Using reverse induction onτ1, . . . , τk,
and the arguments used to establish (i), we can conclude that
Q(t−1) ≤ Q′(t−1 ). Coupled with the fact thatQ(t−1 )=st N ,
the queue length of an M/M/1/K queue without probes, we
conclude thatN1

2 ≤st N1 = N .
(iii). It suffices to show the inequality forR, S such thatS =

R ∪ {i}. First, P[NS
i ≤ m] = P[NR

i ≤ m|NR
i ≤ K]; thus,

NS
i ≤st NR

i . To establish the result, we couple two M/M/1/K
queues att = t1 where the probes inS make it into the first
queue, and probes inR make it into the second queue. Since
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NS
i ≤st NR

i , we can couple the systems so that their queue
lengths, denoted byQS(t) andQR(t), obeyQS(ti) ≤ QR(ti).

It remains to show what happens fort > ti and t < ti. We
now couple arrivals and service completions (conditioned on
successful arrivals of the probes inS ∩ {i + 1, . . . , d0}) for
the two systems until the first times thatQS(s) = QR(s). At
that point in time, the Markov property allows us to couple the
two systems so thatQS(t) = QR(t) for t > s thus yielding
QS(t) ≤ QR(t) for t ≥ ti. Again, the facts that(i) the system
during the interval[t1, td0 ] behaves like an M/M/1/K queue
and (ii) the M/M/1/K queue is modeled by a time-reversible
Markov chain, allow us to use a similar argument to show that
QS(t) ≤ QR(t) for t < ti. Removal of the conditioning on
the arrivals and service completions yieldsNS ≤st NR.
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