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Abstract tions. Such models are easier both to convey and to analyze.
Two key questions are whether analytic models can describe
We analyze 3 million TCP connections that occurred duringhe diverse phenomena found in wide-area traffic as well as
15 wide-area traffic traces. The traces were gathered at fivémpirical models, and whether either type of model faitlyful
“stub” networks and two internetwork gateways, providing acaptures the essential characteristics of the traffic.
diverse look at wide-area traffic. We derive analytic models |n this paper we analyze 15 wide-area traffic traces gath-
describing the random variables associated wéthet nntp,  ered at seven different sites, five “stub” (end-point) nefso
smtp andftp connections. To assess these models we presegihd two internetwork gateways. We derive analytic models
a quantitative methodology for comparing their effectes®  describing the random variables associated wgthet nntp,
with that of empirical models such as Tcplib [DJ91]. Our smtp andftp connections, and present a methodology for
methodology also allows us to determine which random varicomparing the effectiveness of the analytic models with Tc-
ables show significant variation from site to site, over time plib and with another empirical model constructed from one
or between stub networks and internetwork gateways. Ovelpf the datasets. Our statistical methodology also allows us
all we find that the analytic models provide good descrifgjon to determine which random variables show significant vari-
and generally model the various distributions as well as emation from site to site, over time, or between stub networks
pirical models. and internetwork gateways. Table 1 summarizes our main re-
sults. Overall we find that the analytic models provide good
descriptions, generally modeling the various distribugias
well as the empirical models and in some cases better. We

In the last few vears a number of rs hav red iVindevelop each of the findings in the remainder of the paper.
€ lastiewyears anumberol papers have appeared giving Below, § 2 presents an overview of the traces used in the

E?;:itigigsmn;rgaéﬁgif vv\zfgs_gegk:rsagg]: 22 ii]pi:;g;?tf?r(;?study, and§ 3 gives a discussion of our statistical method-
step to chaytracte’rizing WAN traffic The n’ext steF;) in under-0|ogy' §.4 summarizes the model; we develqped aﬂd evalu-
standing wide-area traffic is to fo.rm models for simulatingates their effectiveness. Readers interested in partiputa
- . tocols will find more detailed summaries and discussions in
and predicting traffic. _ - 5 5 throughg 8.
One such model, Tcplib [DJ91, DICMESZ], is now avail- A longer, preliminary version of this paper is also avaitabl

able. Tcplib is arempirical model of wide-area traffic: it [P93]. In the remainder of this paper we note where, in the

models the d'Str'b.Ut'on of th.e randqm vgnables eg. Sigyteinterests of brevity, we have relegated details to thatntepo
transferred, duration) associated with different protediy instead

using the distributions actually measured for those ptoc
at an Internet site.

Ideally we would like to havanalytictraffic models: sim- 2 Qverview of Network Traffic Traces
ple mathematical descriptions rather than empirical itigtr

1 Introduction

*Appeared iHEEE/ACM Transactions on Networking(4), pp. 316-336, To develop and th,en evaluate our models we acquired a num-
August 1994. ber of traces of wide-area traffic. Our main data were from
seven month-long traces of all wide-area TCP connections



Random variables associated with wide-area network caiomsacan be described as wel
by analytic models as by empirical models.
When using either type of model, caution must be exercisedadrequent discrepancies
in the upper 1% tails.

Network traffic varies significantly, both over time and merefrom site-to-site, not only
in traffic mix but in connection characteristics. We belighies variation is the basis for
the success of the analytic models; there is enough varidiet any model, empirical or
analytic, must be a somewhat rough compromise.

The number of data bytes in bulk-transfer traffip@ata smtp andnntp) is best modeled
using log-normal distributions.

Bulk-transfer traffic is not strongly bidirectional; thesponses to bulk transfers show little
variation relative to the variation in the size of the tramsf
The ratio between bytes sent by the computer-sidetefieetconnection and bytes sent by
the user is about 20:1.

Of ftp sessions that are not “failures” (no data transferredj,treahsfer more than 32 KB
and a sixth transfer more than 500 KB.

The upper tail oftp “bursts” (§ 8.4) is so large that 2% of the bursts account for 50-80% of
all theftp data bytes.

Table 1: Major Findings

between the Lawrence Berkeley Laboratory (LBL) and the
rest of the world. With the help of colleagues we also were Dataset| Packets (days) Start | End |
able to study traces from Bellcore, the University of Catifo LBL-1 | 124M (36) 01Nov90 | 01Dec90
nia at Berkeley, the University of Southern California, Dig LBL-2 | ? 28Feb9l | 30Mar9l
ital's Western Research Laboratory, the United Kingdom-— tgtj ;%m Egg %'\NAZ‘Q; %26::21
United States academic network link, and traffic bgtween the LBL-5 | 337M (35) 24Sep92 230&92
coNCert network _an_d the rest of the world. We d|§cuss the LBL-6 | 447M (31) 24Feb93 | 26Mar93
general characteristics of each of these datasets in twn an LBL-7 | 560M (32) 16Sep93 | 150ct93
then provide summaries of their TCP traffic.

21 The LBL traces Table 2: Summary of LBL Datasets

All off-site communication at LBL funnels through a group
of gateways that reside on a network separate from the re§Xactly 30 days. Very few packets were dropped by the trac-
of the Laboratory. We recorded our seven LBL traces using"d Program (always< 15 per million).

the tcpdumppacket capture tool [JLM89] running the Berke- __ SINce the LBL datasets span three years at roughly regular
ley Packet Filter [MJ93]. We usedtepdumgfilter to capture  Intervals, they provide an opportunity to study how a site's
only those TCP packets with SYN or FIN flags in their head_wlde-area traffic evolves over time. Such a study is reported
ers, greatly reducing the volume and rate of data (but at th&’ [PO4].

cost of no analysis of intra-connection dynamics). From SYN

and FIN packets one can derive the connection’s TCP prota2.2 The additional traces

col, connection duration, number of bytes transferred ahea
direction (excluding TCP/IP overhead), participating tsps
and starting time.

As mentioned above, a number of colleagues generously pro-
vided access to traffic traces from other sites. The authors

Table 2 summarizes the LBL datasets. The second colum?lf [DICMEQZ] provided their traces of traffic from B?”'
gives the total number of network packets received by the kercOre: LfJ'C' ggéeﬁﬁfr\}s U.S.é:.; Jeffreydl\/!jogul prmgde?
nel for each dataset, along with the number of days spannetﬁ"’lces rom ) ; Wayne Sung provided traces of traf-

: . fic to/from the coNCert network in North Carolina; and the
by the entire tracd. Each dataset was then trimmed to span ’
y P authors of [WLC92] provided their traces of the UK-US aca-

LCommunications for North Carolina Education, Research and— - ) L . )
Technology. nation of the tracing program; this termination, howevéd, bt imply any

2The statistics missing for the LBL-2 dataset are due to ababtermi-  €xtra-ordinary loss of packets during the 30-day studyopieri




demic network. The first four traces all originate from “stub of the total due to particular TCP protocols. The mixes for
(endpoint) sites, while the latter two represent intemmoek ~ BC, UCB, and USC differ from those given in [DJCME92]
traffic (though the authors of [WLC92] characterize the UK because the latter report®nversationmixes, where mul-
side of the UK-US traffic as similar to a large stub site sincetiple related connections have been combined into single
it comprises only a few hosts). conversationg.

From the table it is immediately clear that traffic mixes for
all protocols vary substantially, both from site-to-sitelaver

|_Site | Starting Time | Duration | time (for LBL). Some of the variation in the mix is due to pe-
Bellcore (BC) | Tue 14:37 100ct89 | 13 days riodic traffic. For example, the large spike in the LBlfidger
UCB (UCB) | Tue 10:30 310ct89 | 24 hours connections, the large jump ther connections at LBL-3,
USC (USC) | Tue 14:24 22Jan91 | 26 hours the increasing proportion dtfpctrl traffic (i.e., the interactive,

DEC (DEC-1) | Tue 16:46 26Nov9l | 24 hours
DEC (DEC-2) | Wed 17:55 27Nov91| 24 hours
DEC (DEC-3) | Mon 15:02 02Dec91| 24 hours
coNCert (NC) | Wed 09:04 04Dec91] 24 hours
UK-US (UK) | Wed 05:00 21Aug91| 17 hours

control side of aritp session), and the large numbertelihet
connections in LBL-7, are all due to periodic traffic. [P94]
explores this phenomenon further.

Another factor affecting traffic mix over time (as seen in
the LBL datasets) is the large variance of thpmix, which
is due to changes in LBL'antppeer servers and differences

Table 3: Summary of Additional Datasets in the rate at which new network news arrives. Again, see
[P94] for a discussion.

The additional datasets are summarized in Table 3. Next Regarding the DEC datasets, DEC has a “firewall” in place
to the site name we give in parentheses the abbreviation wehich prohibits traffic other thamntp, smtp and ftp, and
will use to identify the dataset. In general the traces had nadomain The little remaining traffic due to other protocols
packet drops or an unknown number of drops (see [P93] fooriginated on the outside of the firewall. Finally, the DEC-2

specifics). dataset includes part of the Thanksgiving holiday, acdognt
for the depressed number of connections.
2.3 Filtering of non-WAN traffic Table 5 shows the total number of data megabytes trans-

ferred (in either direction) for each of the datasets, alwitly
Before proceeding with our analysis we filtered out non-the “byte mix"—the percentage of the total bytes due to each
wide-area traffic from the datasets: internal and trareifitc. ~ protocol. The LBL datasets show striking growth over time,
The details are given in [P93]. In addition, we removed fromexplored further in [P94].
the LBL datasets all traffic between LBL and U.C. Berkéley ~ We see immediately that, much as with the connection mix,
While traffic with the University forms a significant fractio the byte mix also varies considerably both from site-te-sit
of LBL's off-site traffic (20-40% of all connections), it is and over time. Some sites (the first three LBL datasets, BC,
atypical wide-area traffic due to the close administratiee t NC, and UK) are wholly dominated Wfyp traffic, while oth-
and the short, high-speed link between the institutions. ers (the last three LBL datasets, UCB, and the DEC datasets)
show more of a balance betweamntpandftp traffic; and USC
2.4 Traffic overview is dominated bynntp traffic. For some sites (UCB, DEC),
smtptraffic contributes a significant volume, and for others
We now turn to characterizing the different datasets in or{LBL, USC), traffic due toX11 andshell far outweighs the
der to gauge their large-scale similarities and differen@  almost negligible proportion of connections due to those pr
previous traffic studies, only [FJ70], the related [JS68H a tocols (see Table 4).
[DICME92] compare traffic from more than one institution.  We now turn to the development of the statistical method-
The first two papers found significant differences betweerplogy that we will use to characterize the individual connec
their four traffic sites, which they attributed to the fadtthe  tions making up the data shown in Tables 4 and 5.
different sites engaged in different applications and hi&d d
ferent hardware. The authors of [DJCME92] found that their .
three sites (which correspond to the USC and UCB datase®®  Statistical Methodology
in this paper, as well as part of the BC dataset) had quite dif-
ferent mixes of traffic, but that the characteristics of aayp As noted in [P89], one weakness of many network traffic
ticular protocol’s traffic were very similar. studies to date has been in their use of statistics. Often the
Table 4 shows the “connection mix” for each of the studies reportonly first or perhaps second moments, and dis-
datasets. The second column gives the total number of coritibutions are summarized by eye. Frequently they omit dis-
nections recorded, and the remaining columns the peroentag 4The authors also used twenty-minute silences to delimietiteof con-
nections, instead of FIN packets.

3Including nntp, unlike [P94], which keeps thentptraffic.



Dataset]| # Conn | nntp | smtp| ftpdata | ftpctrl | telnet | rlogin | finger | domain| X11] shell | other |

LBL-1 146,209 40 26 16 3 4 1 4 4| 0.2 0.5 0.5
LBL-2 170,718 34 30 16 3 4 1 5 4| 0.2 0.2 0.7
LBL-3 229,835 20 33 17 3 4 1 4 11| 04 0.3 5
LBL-4 || 449,357 16 21 15 3 2 1 32 5| 04 0.2 4
LBL-5 370,397 14 34 22 5 4 1 6 8| 09 0.2 5
LBL-6 528,784 11 40 23 6 3 0.8 5 5| 07 0.4 4
LBL-7 606,487 11 34 18 4 15 0.9 4 5| 09 0.4 6
BC 17,225 2 49 30 4 4 2 5 01| 01 0.5 2
ucB 37,624 18 45 18 2 2 0.9 12 0.1] 0.02 0.2 0.8
uscC 13,097 35 27 14 2 3 1 11 2| 0.09 0.3 3
DEC-1 72,821 33 35 11 1| 0.08| 0.05 0.1 20 0 | 0.001 0.8
DEC-2 49,050 38 22 8 1| 0.04| 0.06 0.2 29 0| 0.02 1
DEC-3 73,440 26 43 9 1| 0.07| 0.07 0.2 19 0 | 0.003 1
NC 62,819 1 42 30 4 5 0.3 5 0.8 | 0.03 0.3 5
UK 25,669 | 0.02 42 39 7 4 0.4 0.9 1(0.02| 0.02 4

Table 4: Percentage Connection Mixes for All Datasets

| Dataset] MB || nntp | smtp] ftpdata | ftpctrl | telnet | rlogin | finger | domain | X11 | shell [ other ]

LBL-1 2,852 19 5 65 0.2 6 0.8 0.1 1 3 1 0.1
LBL-2 3,785 14 6 67 0.2 5 1 0.1 0.9 1 3 2
LBL-3 6,710 7 4 67 0.1 4 1 0.1 0.7 3 11 1
LBL-4 11,398 21 4 52 0.1 4 0.9 0.0 0.6 6 10 1
LBL-5 19,269 17 3 57 0.1 3 0.7 0.1 04| 11 8 1
LBL-6 22,076 22 5 57 0.2 2 0.7 0.1 0.5 8 3 0.8
LBL-7 30,910 25 3 51 0.1 2 0.7 0.0 0.4 8 8 1.8
BC 346 4 8 78 0.3 4 2 0.2 01| 01 2 2
ucB 318 23 16 50 0.3 4 3 0.9 00| 0.2 0.6 1
usc 362 62 3 18 0.1 2 0.9 0.3 0.3 5 7 2
DEC-1 981 43 17 38 0.2 0.1 0.2 0.0 0.7 0.0 0.0 1
DEC-2 819 54 14 30 0.1 0.0 0.2 0.1 06| 0.0 0.0 2
DEC-3 1,379 52 16 30 0.1 0.1 0.2 0.1 06| 0.0 0.0 1
NC 1,553 9 8 68 0.3 5 0.3 0.1 03] 0.1 0.3 8
UK 625 0.5 11 80 0.4 3 0.5 0.0 03]0.1 0.5 4

Table 5: Percentage Byte Mixes for All Datasets

cussion of dealing with outliers, and rarely do they report3.1 Definitions and conventions

goodness-of-fit methodologies and results. The few cas . .
;&g will use a number of terms and concepts taken from statis-

where goodness-of-fit issues have been discussed are so e i thi tion we define the terms and convention d
what unsatisfying (the authors of [F370] developed thein,ow ues. s section we detine the terms and conventions use
in the remainder of the paper.

apparently never-published goodness-of-fit measure; mnd i
our own previous work [P91] we used the Kolmogorov- _
Smirnov goodness-of-fit test as a goodness-afiitric an ~ 3-1.1 Random variables

inferior choice). We endeavor in this work to address thesg-q. o purposes, we defineandom variableas a quantity
shortcomings and to present a general statistical methodol, ot each time itis measured takes on one of a range of values.
ogy that might serve future work as well. Particular values occur with different probabilities. Viédar
to each separate measurement agatanceof the random
variable.
An example of a random variable is the number of bytes
transferred during aftp session. Another (and closely re-



lated) random variable is the logarithm of this value. Thatis,F'(z) is the probability that an instance of the random
By convention X represents a generic random variable andvariable X takes on a value less than or equatto
x; theith instance ofX. Unless otherwise stated, we assume For our analytic models we draw upon a number of dis-
there are a total af instances. tributions commonly used in statistics. We assume that the
reader is familiar with the normal and exponential distribu
3.1.2 Models tions. Two other distributions we will use are tegtreme

distribution:
We define anodelof a random variable as a hypothesized dis-

tribution for what values the random variable might taked an F(z) = exp {_ exp (_ (z - @))] 1)
with what probability. This definition of model is quite sim- B

ple, as it assumes that instances of the random variable are ) o

independent and identically distributed. Ofteorrelations and the doubly-exponentigaretodistribution:

between instances of a random variable are very important,
meaning that instances of the random variable might be iden-

tically distributed, but noindependentFor example, previ-  The pareto distribution is noteworthy for having a very heav
ous work has found that lardggpdatabursts tend to arrive in upper tail, an important property when consideriseff-
clusters [PF94]. While incorporating correlations intodno similarity in network traffic [LTWW93].

els can be very important, doing so is beyond the scope of our \ye will be using variants of the normal and extreme dis-
study, so we limit ourselves to simple correlation sumnsarie ¢iputions calledog-normaland log-extreme these are dis-

(§ 3.9). ) . cussed ir§ 3.2 below.
Another important aspect of modeling network connec-

tions is modeling the connecticarrival process Here we
limit ourselves to briefly describing arrival phenomenoafsu
as periodicity. See [PF94] for a more detailed look at the conAll of the distributions mentioned in the previous sectioa a
nection arrival processes. parameterizedising one or more constants. A normal distri-

In this paper we distinguish betweampirical models  bution is parameterized by a mean,and a standard devia-
and analytic models. An empirical model, such as Tcplib tion, o,,; an exponential distribution, by a rale an extreme
[DJ91, DICME92], describes a random variable’s distrifouti ~ distribution, bya and3; and a Pareto distribution, by and
based on the observed distribution of an earlier samplesof thg, (% is the lower bound of().
variable. For example, the Tcplib models were constructed Sometimes when using an analytic model, the parameter-
from the UCB dataset. An analytic model, on the other handization constants are known in advance. Other times, they
attempts to capture a distribution in a simple mathematicaiust beestimatedrom the same data that we are trying to
form. We discuss the advantages of each type of model idescribe using the analytic model. For a normal distrilsytio
§ 3.4 below. the mean is estimated using:

For each of the random variables modeled in this paper, we
examine three models, one analytic and two empirical. The
empirical models were constructed from the UCB and LBL-2
datasets. We refer to these three modelsAa$/, and L,
respectively. As explained above, themodel reflects the and the standard deviation using:
behavior of Tcplib.

To know if a model is truly predictive, we must test it on
data other than that used to develop the model. To this end,
we developed all of our analytic models using the first half of
the LBL-1 through LBL-4 datasets. We refer to these below
as the “test datasets”. We then tested the models against thfée often use the anda,, estimates to evaluate a distribution
second half of these LBL datasets along with the entirety ofven if itis not normal.
the remaining datasets, except for UCB and LBL-2, since we For an exponential distribution,
used these to construct theand L empirical models. .

F(z) =1 (k/z)°. @)

3.1.4 Estimating parameters

T = xi/n 3)
1

(4)

A=1/z.
3.1.3 Distributions For an extreme distributiomy and 3 can be estimated using
We define thalistribution of a random variable as: an iterative method [DS86], and andk for a Pareto distri-
bution using a simple least-squares technique [CM80].
F(x) = P(X <) When estimating parameters, we will generally drop the

“hat” notation (e.g., user instead ofz). An exception is



when discussing tha? discrepancy measurg 8.5 below),  fromy, oro, froma,, then there is little hope that the empiri-

where the fact that we are only estimating its value becomesal model faithfully describeX’s distribution. But it may be

an important consideration. that if Y were adjusted to have the same mean and standard
Finally, sometimes when estimating parameters we want tdeviation asX, then it would also describ&’s distribution

ignore part of the distribution we are using to compute the eswell. This adjustment is easy to make. If we define a new

timation. For example, below we model the number of bytessmpirical distribution:

sent by &elnetresponder as a log-normal distribution, but the o

fit between the model and the dataset is only good for the up- Y =2Y -y +z (5)

per 80% of the distribution (se5.3). If we compute: from Ty

the entire dataset’s distribution, we will SpOil the Upm% then Y’ keeps the same genera' Shapé/asince we have
fit because of the disagreement between the model and thgerely applied a linear transformation9) but has the same
distribution in the lower 20%. Instead, veensorthe distri-  mean and standard deviation&s When discussing empiri-
bution by ignoring its lower 20%, and then estimatends.  cal models, we will use the terstalingto refer to the trans-

from the remainder using methods given in [DS86]. formation given in Equation 5.
When developing our unscaled analytic models, we picked
3.1.5 The notion of “scaling” for each model parameter a round value lying somewhere in

Wh ibl Id like t id having t timat the range the parameter exhibited in the LBL test dataseds (s
en ptos§| t.e’ we Wct)u ¢ 'f €to av0|d Iawgg 0 escliamate P93] for details regarding the parameter ranges). We chose
parameterization constants for our models (discussedein ound values as reminders that there is in general consildera

pregmlys stﬁcngnt). for efxamglz, gon3|der thg protS)Iem 0 ange in the possible values of the parameters, and that our
modeling the bytes transferred during #p session. Sup- choice was therefore not particularly exact.

pose Model-1 describes the distribution of bytes traneterr
as log-normal withz = 15 ando, = 4, but Model-2 sim-
ply describes the distribution as log-normal, with a not t
the values oft andO’w must be estimated from each dataset tOSuppose we have two estimated quan“ti‘eandi)' and we
which we want to apply the model. We would prefer Model-1ant to compare them to see which is smaller. Because the
because it tells um advancewhat to expect; Model-2 only  quantities are estimates, we would rather not make the com-
tells us the generahapeof what to expect, but not the exact parison on the basis of testing whettiex: b, since perhaps
quantities. We can use Model-1 to make quantitative predicthe error in estimating andb is large enough that the com-
tions of what we will measure in the future, but Model-2 can parison will be mis|eading_ We can make a more meaningfu|
only make qualitative predictions. comparison if we have a quantitative possible-error associ
We will refer to models like Model-1 asnscaled and  ated witha andb (this becomes relevant 3.5 below).
those like Model-2 ascaled In general, we use the term A natural measure of possible error in an estimate is a stan-
Scaling to refer to tailoring a model to fit a dataset by esti- dard deviation. Suppose in addmonamndg we have stan-
mating parameters of the model from the dataset. If we findjard deviationsr, and oy, which quantify the error in the

that an unscaled model gives us gOOd fits to many diﬁerenéstimates_ Then we can define a Comparison opetata@s
datasets, then we have reason to believe that the model cagyows:

tures an “invariant” distribution. Such models are pattcly a<,b iff a+o,<b—oy

powerful because they allow confident prediction of future ) ) ) A

distributions. Sometimes, however, a scaled model gives us USing this comparison operator, we will findless than
significantly better fits to different datasets than an ulesca © ©Nly when the difference betweénandb is greater than
version of the model. In this case, the distribution’s gaher What we can accountfor by the uncertainty in their estimates
shape (e.g., log-normal) might be invariant, but the pakiis ~ >imilarly, we definei >, biff b <, a.

of the shape vary. Scaled models are less powerful than un- T Néithera <, bnorb <, a then we say that andb are
scaled models because they allow less complete predigtiondnorderedrather than “equal’, to stress that one of them may
but are still valuable because with them we can explore pogh fact be smaller than the other, but we are unable to say so
sible behavior given separate hypotheses as to the values &fnclusively.

the model’s parameters.

In § 4 below we discuss how we chose whether to use th&.2 Logarithmic transformations
unscaled or scaled version of each of our models. . . .

While estimating parameters applies only to analytic mod-In this and.the next segtpn we 'd|scuss.how we transformed
els, we can perform an analogous operation on empiricaq1e data prlortq analysis, including dgahpg W'th outliers
models. Suppose we are modeling a random varibles- . When 'anallyzmg data drawn from distributions upbounded

in one direction and bounded in the other, often it helps to

[ irical distributio®y”. If  is significantly diff t . L .
g an empiricat cistributio 7 1S signincantly diteren re-express the data by applying a logarithmic transforonati

h 3.1.6 Comparing estimates



[MT77]. We found that for many of our models logarithmic with data values equal to zero, since after a logarithmitstra
transformations were required to discern patterns in tigla  formation these becomecco. Fortunately for us, in our data
range of values in the data. For convenience we developeslich values are rare, and confined to values representing num
and tested our models usind@, = transformation, which  ber of data bytes transferred, so we decided to eliminate any
we will sometimes write aks x. connections in which the number of bytes transferred in ei-
If the random variabl&@” = log X has a normal distribu- ther direction was zero. The appendices of [P93] report the
tion, thenX is said to have éog-normaldistribution. Sim-  number of connections thus eliminated for each dataset; in
ilarly, if Y has an extreme distributiotk’ has alog-extreme  the worst case they comprised 0.5% of the total connections.
distribution. (We will often write these distributions as  Some of our datasets also exhibited values so anomalously
log,-normal andlog,-extreme as a reminder that all loga- large that we removed their associated connections from our
rithms in this paper are taken base 2). study. These outliers were much rarer than those discussed
With a random variableX that has a large range of val- above. Often the values were clearly due to protocol errors
ues, the computed mean (Equation 3) and standard devi@or example, connections in which the sequence numbers in-
tion (Equation 4) are greatly skewed by the largest ofithe  dicated232 — 1 bytes transferred). Again, see [P93] for a
The mean and standard deviation of the transformed quantitgiscussion of these outliers.
Y = log, X do not have this problem, though, since the log- Finally, we restricted our analysis to datasets with attleas
arithmic transformation greatly reduces the range of value 100 connections of interest, to prevent small, anomalous
With these types of random variables, it is generally moredatasets from skewing our results.
meaningful to analyzg ando, thanz ando,.
We can then_attach interpreta.tions to the_quan.tiﬁés 3.4 Empirical vs. analytic models
and2°v. In particular, thegeometric meamf X is defined
as: In this section we look at the relative advantages of emgdiric
and analytic models, which motivates our subsequent pursui
(6)  of analytic models.
i=1 The main advantage of empirical models is that they are
known to fully reflect a portion of Real World behavior. If
there are consistent spikes in a distribution or even suletle
viations from “smooth” behavior, the empirical model will
capture these nuances if they were present in the dataset fro
which the model was derived. An analytic model might easily
Geometric std. de(X) = 27v (7)  Miss these characteristics.
There are, however, several advantages of analytic models
If Y is normally distributed, them, characterizes the range compared to empirical models:
of Y. For example, about 68% of the distribution fwill
reside in the rangg + o,,. We then can interpret the geomet-
ric standard deviation oK as giving an analogous range for
X. If X is log-normally distributed, then about 68% of the e analytic models are very concise and thus easily com-
distribution of X resides in the rang®+7v. More explicitly: municated:;

Geometric meafX) =

and it is easy to show that this is the sam&asThis equiv-
alence between the geometric mean ahduggests an anal-
ogous definition for thgeometric standard deviatipmhich
we define as:

e analytic models are often mathematically tractable,
lending themselves to greater understanding;

29 . e with an analytic model, different datasets can be easily
0, Yy Oy
(2%) < 68%oftherange ok < (27 x27)  (8) compared by comparing their corresponding estimates
for the analytic model’s parametefs3.1.4).

In the tables summarizing the different protocols below,
when we report quantities such asando,, they reflect2? While these advantages are certainly attractive, the akruci
and2°v; that is, they give values computed using Equations @ssue remains whether an analytic model truly captures the
and 7 and not values computed using Equations 3 and 4ssence of the quantity measured by a random variable. An
As a reminder of this fact, we precede al} values with  empirical model perfectly models the dataset from which it
a “x” symbol, in keeping with their interpretation given in was derived; the same cannot be said of an analytic model. If
Equation 8. So, for example, a value®f = x8 indicates  the analytic model strays too far from reality, then while th

Oy = Olgs = 188 = 3. above advantages remain true, the model no longer applies to
the underlying phenomena of interest, and it becomes isseles
3.3 Dealing with outliers (or, even worse, misleading, if one does not recognize ttieat t

model is inaccurate).
When applying a logarithmic transformation to non-negativ. = The key question then is how to tell that an analytic model
data, one immediately runs into the problem of what to doaccurately reflects reality as represented by a given datase



One approach is to require that the distribution predictedhe <, operator § 3.1.6) for comparing estimated discrepan-
by the analytic model and that actually measured from thesies. Given two models?; and Z,, we can then state in a
dataset be indiscernable in a statistical sense. A larggdfod meaningful way whethek; is a better description df than
literature examines techniques for testing for such s$tedis 7, (if we find that\?;, <, \?7,), or thatZ, is better than
exactness (an excellent reference is [DS86]). Z1 (\2z, <, A?z), or that the two models angnordered
In our earlier work we tried to find statistically exact mod- indicating that they are roughly equal.
els but failed (see [P93] for details). This failure, howeve  We now summarize how to compulé for assessing the
is not surprising: it is well known in the statistics commu- discrepancy between a random variablend a model dis-
nity that large datasets almost never have statisticalycex tribution Z. First, letE; = np; be the expected count for the
descriptions [M74]. The next section addresses how to dealith bin, andD; = Y; — E; be the discrepancy in th¢h bin.
with this failure. Then define:
N Di
K= ; 5 (9)

Even if a model is not statistically exact, we can still aggm (Note thatK is quite similar toX? except the numerator of
to gauge howcloseit is to the distributions it endeavors to the summation is not squared.) We then define:
describe. To do so, we turn to techniques for measudisg )
crepancy je_ XT K —df

One widely-used technique for doing so is based on a mod- n—1
ified x2 test [M84]. To understand it, we first review thé
test itself.

Suppose we have observednstances of a random vari-
ableY which we want to model using another model distri-
bution Z. We partition the distributior¥ into N bins Each
bin has a probability; associated with it, which is the pro-
portion of the distributior falling into theith bin. LetY; be
the number of observations &f that actually fell into theth 5(A2) = [2df + 4n2 + 4n)\* + AT /n?,
bin. Then one computes the statistic:

3.5 Measuring discrepancy

)

where “df” is the number oflegrees-of-freedoin computing
X?andK. For our purposeslf = N — 1 — Est, where “Est”
is the number of parameters estimated fior(0 for unscaled
models, 1 or 2 for scaled models; §£8.1.4-3.1.5 above).

The variance associated with this estimate of? is
given by:

N where:
xe=y o ) a 5.5, 3
; np; — 3 _ oL EZD2 L 2(D. ) 2
i=1 T= 2[Dl 2D;E; + 2D1 + Z(DZ"‘EZ)]/Ez'
The x? test for a statistically-exact fit involves testing where _ _ _ _
the X2 statistic falls in the range of a correspondipgydis- ~ ([PJ90] states that this expression fbris not quite exact
tribution (the exact details of the comparison are secondar When the parameters ¢f are estimated front”, but they

understanding the remainder of this section). found in practice the correction makes little difference.)
Thex? discrepancy measure is then simply /n. This is The standard deviation associated with estimatifgis

essentially the measure used in our preliminary work [P93].the”3 -

There is, however, a problem with usidg? /n as a discrep- ox =/ 0(A?).

ancy measure [PJ90]. In general, the optimal valu® ¢the
number of bins) to use when computiag’ varies with the 3.6 Considerations when measuring discrep-
size ofY” and its standard deviatian, (see§ 3.6 below). The ' 9 P

X2 /n discrepancy measure, however, cannot be used to com- ancy

pare discrepancies for different values'of There are a number of considerations when evaluating models

Pederson and Johnson [PJ90] describe a related discregsing a discrepancy measure suchashow to pick the num-
ancy measure)?, which corrects theX* /n measure so that per of bins to use; how to capture significant discrepanaies i
A? can be used to compare discrepancies for different vakhe distribution’s tails; what to do about significant “spék
ues of N. They also give a way to compute,, the stan-  that fall into a single bin; and how to deal with dataset value
dard deviation associated with estimatikigfor a particular  not falling into any of the bins. We address each of these in
datasef” and model distributior¥. Knowingo, lets us use tyrn.

5As well as giving a general discussion of this problem, [M@&p ana- When computlng\z, We are forced to ma}ke a chqlce asto
lyzes an experiment in which 26,306 throws of 12 dice failadaestforan ~NOW many bins to use (i.e., the value df in Equation 9).
exact fit to the predicted binomial distribution. If N is too small then we will be measuring discrepancies

only on a gross scale, and similarly/f is too large then we




will be sensitive to quite small discrepancies which peshap 3.7  Testing for significant differences
are of no real interest. Fortunately, statistics provideaes
guidance. Scott has shown that to minimize the mean-squa

a‘éhe/\2 discrepancy measure and thg operator allow us to
error in approximating a distribution using fixed-sizedsyin €

termine whether, given two datasets and a model, the model

the bin-width should be- is significantly better at modeling one of the datasets than t
' other. They also allow us to determine, given one dataset and
w = 3.496,n"1/3 (10) two models, which of the models (if either) is significantly

better at modeling the dataset.

whereg, is the estimated standard deviation of the distribu- In this section we build on these techniques to develop
tion (Equation 4)n is the number of instances in the distri- methods for comparing datasets and models in a general
bution, andw the bin-width [S79]. Given the range of the sense. The first method allows us to determine with high con-
distribution, it is straightforward to compute the value)éf fidence whether a given model is better at describing one set
to use such that each bin has width Fortunately, the value of datasets than it is at describing a second set. The second
of w is not strict; any value close to provides a satisfactory method allows us to determine with high confidence whether
estimate of the distribution, so we roundadto the nearest one model is better than another model at describing a set of
multiple of 5. datasets.

One important point we found, though, was to compute
o, after first applying the logarithmic transformation to 3.7.1 Method |
X (§ 3.2). That is, we used far, the geometric standard- , i . i
deviation (Equation 7) and not the value given in Equation 4!n this section we describe Method I, a method for determin-
In general, our untransformed data had such large ranges th29 Whether a given model is significantly better at modeling
using the untransformed values &fin Equation 10 resulted ©N€ set of datasets than at modeling another.
in a very large number of bins. Suppose we have a modgland two sets of datasetd;

One other point is that when using Equation 10 to computé‘”dDZ' with m andn datasets in each set, respectively. For

N for an empirical model, we had to decide between comput€*@mple,Y” might be a model of the number of bytes trans-
ing w usings., andn from the dataset being modeled, or from ferred during asmtpconnectionD; the set of LBL datasets,

the empirical model. We chose whichever had the smaller andD: the set of non-LBL datasets. We would like to deter-

The number of bins tested ranged from 5 to 240; the avernine whether model” does substantially better at modeling
age was around/ = 35. D, than at modeling),, because we suspect ttsamtpcon-

A related consideration with using theé discrepancy mea- nections may show considerable variation between network

sure is that when using constant-sized bins the measure dogi€s- If our suspicion is correct, and if modéwas derived
not give any particular emphasis to the distribution’sstail from some of the LBL datasets, then we would expect to find

which sometimes are the most important aspect of a distrithatY” is significantly better at modeling; thanD..
bution. We address this consideratior$i8.8 below. For each dataset i, and D, we can compute the corre-

. ; .
A third consideration is that the discrepancy measure doedP0nding value oy, the discrepancy between the model and
not inform us of interesting, localized spikes or clumps.he dataset. Itis not obvious, though, how to take this celle
Within a single bin we may miss considerable departure fron}ion of discrepancies and reduce it to a simple statement tha
amodel: the danger is particularly acute when testing icaly ¢ does or does not appear to mode| significantly better

models, since their continuous nature does not usuallyallo thanD,. )
for clumping. Empirical models, on the other hand, may ex- 1 n€ approach we take is as follows. We assume the null
actly predict the clumping. hypothesis that” performs equally well when modeling,

: i ;
We do not believe this consideration to be major becaus&S When modelind,.” We compare each datasgtin D,
in our studying of the LBL test datasets to form our models29@inst each datasétin D». Letl be the number of compar-

we rarely encountered consistent clumping (we make meriSOns for which we found, <, ds, g the number of times
tion below of those occasions when we did). d1 >, do, andu the number of times two datasets were un-

A final consideration is that since an empirical model hasordered. There are: datasets i), andn in Dy, so we have
bounds on the range of values it allows for, the tested datasét 9+« = mn. We nowrestrictourselves tojustthe= [ +g
may have values outside the range of any bin. We removegomparisons that were not. _unordered. If the null hypothess
such values from the dataset prior to computing its fit to thdS correct, then the probab|I!t¥ that intests we would find
model. We did, however, include these values when evaluaii'Stances for whicl, <, d; is:

ing the model’s tail discrepancy 8.8). 6Here “equally well’ means that given dataséisfrom D1 andds from
Do, if Y models one better than the other (ir<g sense), then the proba-
bility that it modelsd; better thands is 1/2.




We again generalize the above to find the probability that
A <, A% occurs at least times, and for Method Il pick a
)2‘t corresponding value of such that, given the null hypothe-
sis, the probability thad?. <, A% occurs at least times is
We can easily generalize the above to find the probabil< 5%. As before, this test, if successful, lets us state with
ity thatd; <, dy occurs at least times, rather than exactly 95% confidence that the null hypothesis is incorrect and that
I times. For Method I, then, we pick a value losuch that, Y doesinfact modeD better tharZ does. Ifthe testis incon-
given the null hypothesis, the probability thét <, d, oc-  clusive, however, we refrain from ruling out the null hypoth
curs at leask times is< 5%. We then test whether indeed esis thatt” andZ are equally good (or bad) at modelihy
d1 <. do occursk or more times. If so, then with 95% con-
fidence we declare that the null hypothesis is incorrect an@.7.3 A note on Methods | and Il

thatY does in fact modeD; better thanD,. If, however, . ) i .
d, <. do occurs fewer thak times, then the test is inconclu- One important point regarding Method | and Method Il is that

sive, and we refrain from ruling out the null hypothesis thatthey are fairly conservative. Their use of both thgcompar-

Y is equally good (or bad) at modeling bath andD.. ison and 95% conﬁdence Ievel_s assures thgt dlfference§ they
One concern when applying Method | is: whatif the ~uncover are very likely to be significant. It is quite possibl
number of timesd; and d» were unordered, is large rela- fOr the tests to fail to declare two unequal models as being

tive to ] + ¢g? For example, ifu = 95,1 = 5, andg = 0, different, but it is notllke'ly thgt they will erroneously dare

then Method | will declare that’ modelsD, better thanD,, WO equal models as being different.

even though it might be more reasonable to say that it basi-

cally models the two equally well. For our purposes, this did3.8 Evaluating deviation in the tails

not turn out to be a problem: when Method | (or Method II;
see below) declared a significant difference, we always ha

t

P(Inttrials, di <, d2 occurs timeg) = ( !

Pften a distribution’s behavior in its lower or upper taihca

u<i(i+g). be crucially important. For example, as mentioned in Table 1
3 and developed i3 8.4 below, for the distribution of bytes

H “ ” 0, il 1 -
372 Method Il in ftpdata“bursts”, the upper 2% tail is so heavy that large

though-rare bursts will often completely dominétetraffic.

In this section we describe Method II, a method for determin-As discussed iff 3.6 above, the? discrepancy measure does

ing whether one of two models is significantly better than thenot give any special weight to agreement with a distribusion

other at modeling a given set of datasets. It is quite sirdlar tails. In this section we present a simple way of qualitdyive

Method I. evaluating how well a model captures a distribution’s tails
Suppose we have a s&t of n datasets, and two models, Suppose we test the model againsiatasets. For théh

Y andZ. For exampleD might be all of the datasets listed dataset, let;; be the number of instances predicted to lie in

in Tables 2 and 3Y might be an analytic model for bytes a given tail, and; be the number actually found to do so.

transferred in asmtpconnection, and an empirical model ~ Define?

@
of the same random variable. We would like to determine & = log, b—l

whether either of the models is significantly better than the o ! ]

other for describingD. Positive values of; indicate that the modelverestimatethe

For each dataset if? we can compute two discrepancy t@il, and negative values thatlinderestimatethe tail.
values,\2 and\%. We want to take this collection of dis- With this definition, an underestimate by a factor of two

crepancies and reduce it to a statement ihatr Z (or nei-  (ai/bi = 1/2,& = —1) is considered just as bad as an over-
ther) appears significantly better than the other at mogelin €Stimate by the same factar; (b; = 2,&; = 1).
the datasets iiD. A value of§; = 0 indicates that the model perfectly cap-

We take a similar approach to that described for Method 1tures theith dataset's tail. With this in mind, we then com-
We assume the null hypothesis thaandZ perform equally ~ PUte:
well when modelingD. Now, however, for each of the n
datasets inD, we compare the corresponding values\gf O¢ = Zfz‘/"
and)\%. Let! be the number of times} <, A%, g the num- i=1
ber of times\{, >, A%, andu the number of times the com- ;. then represents the standard deviation, from a mean of 0,
parison is unordered. We consider just the comparisons thaj the model's accuracy in the tail. If we find < 1 then the
were not unordered. Lét= [ + u. If the null hypothesisis  model typically predicts the tail population within a factsd

(11)

correct, we have: two; we deem this “acceptable”. 1f < ¢ < log, 5, then the
2 2 _ —t One problem arises when using this definitionégf if b; is 0 then¢;
P(In t trials, Ay <o Az occursl tlmes) ( l >2 becomes undefined. We address this problem by replagingth 0.5.
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model typically errs in predicting the tail by a factor beame by a modified Method Il test), we considered the correlation

2 and 5; we deem this “bad”. Similarly, i > 5, then we to be positive. Otherwise (since they were never signiflgant

evaluate the model’s tail behavior as “very bad”. negative), we considered the correlation to be “undirécted
These definitions of “acceptable”, “bad”, and “very bad”

appear quite generous; after all, one might wonder how a .

model could possibly misrepresent a dataset’s tail by morél' Summafy and Evaluation of Models

than a factor of 5. Yet it turns out that for the extreme 1% . )
tails, a fair number of our models are evaluated as “bad” oMJSing the methodology described§r8, we constructed an-
“very bad”: see§ 4 below. alytic and empirical models of random variables associated

One final note in evaluating tails. For models describingith wide-areaeinef nntp, smtp andftp TCP connections.

bytes transferred, we only evaluate the upper tails, assiseth AS discussed ir§ 3.1.2, we generically refer to the analytic
cases disagreement in the lower tails is of little consegeen Model for a random varla.bl.e a$, the UCB-derived empiri-
while disagreement in the upper tails can result in large conc@! model (reflecting Teplib; [DJ91]) &8, and the empirical

nections that are megabytes too big or small. For other modn0del derived from LBL-2 ad..

els we summarize both the upper and lower tails. See [P93] Table 6 summarizes the rands)m yaria?les and the corre-
for more details concerning the models’ tail-behavior. Sponding analytic models. The “Variable” column lists the
random variable being modeled and the “Abbr.” columns the

. . label and short name we will use subsequently to identify the
3.9 Evaluating correlation variable. The §” column lists the section in the paper that

As noted in§ 3.1.2, it is often important to model the correla- deveIoE‘)s the ’I‘Ode| in detail. .

tions between instances of a random variable. While doingso The “model” column lists the analytic models used to de-

is beyond the scope of this paper,§id we present a simple scribe the random var.lables distribution. Almo§t all fmspt

summary of each random variable’s correlation, computed aBlY @log, transformation to the data, as described i8.2.

follows. One model idog,-extreme, where the “extreme” distribution
The autocorrelation function(which we abbreviate as IS defined by Equation 1; one is exponential; one is Pareto

~(1), but do not further define here) of a random variakile ~(EQuation 2); and the remainder aog,-normal.

measures the degree to which instanceX adre correlated. Five of the models have restrictions. Ttednetresponder

For a given value of (called the “lag"),,({) is a number bytes model describes only the upper 80% of the responses.
ranging from -1 to 1. A value of,,({) close to 1 indicates 1hetelnetE and F models describe the ratio of the responder

that if zj,, the kth instance ofX, is higher (lower) thare bytes to the connection’s duration. The first such model does
thenzy,., will also tend to be higher (lower). Avalue of (1) SO for those connections whose number of responder bytes
close to -1 indicates that, andzy., are anti-correlated; if;, fell into the lower 90% of altelnetconnections. The second
is high thenz;,.., will tend to be low, and vice versa. A value model describes this ratio for those connections in the uppe
of ,(1) close to 0 indicates that, andz;.; are not linearly ~ 10% of all responses. TteentpH model uses parts of two dif-
correlated:; to first order, knowing the value of does not ferentlog,-normal distributions in its description of the bytes
help in predicting the value af;.;. transferred by themtpconnection originator. The lower 80%
With many random variables, (1) is a particularly signif- of the originator distribution is modeled using the lowef80
icant value ofy,, because if a random variable is correlated,Of the firstlog,-normal distribution; similarly, the upper 20%
often the correlation is greatest at a lag of 1. For example, § Modeled using the upper 20% of the secang}-normal
high value ofy, (1) indicates that successive instancestof ~ distribution. Finally, as developed 8.4 below, forftpdata
tend to have comparable values. connection bursts it is crucial to accurately model the uppe
For our summary of correlation in Table 6 below, we com-t@il, S0 theftp K model describes only the upper 5% of the
puted, (1) for each random variable and dataset. We lookedlistribution of bytes irftp bWSt?-
at how often|y,(1)| > 2//n (wheren is the number of The “Parameters” column gives the parameters we used for
instances in the dataset), becausgifs uncorrelated then the unscaled§(3.1.5) version of the model, after applying
lv2 ()] will exceed this value only 5% of the time. If we log, transformations. Parameters listed u5|_ng _Tpstead of
found |, (1)] > 2//n occurred for more than half of the “=" correspond to models that performed significantly better
datasets, then we considered the random variable to be coftnen scaled than when unscaled (see below). For these mod-
related. (This happened for all but one of the random vari€lS, the parameters given in Table 6 should only be used with
ables.) We then looked at the magnitude of the mean lag-gonsiderable caution. o _
autocorrelation|y, (1)|. If it was < 0.1, we considered the ~ The final column in Table 6, “Corr, gives a simple sum-
random variable to be “weakly correlated”, otherwise “sig-mary of the correlations present in the datasets, using the
nificantly correlated”. Finally, we looked at the range ofva Methodologygivenif 3.9 above. A" sign indicates weak
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| Proto.| Variable | Abbr. | § | Model | Parameters | Corr. |

telnet | originator bytes || A | Ty, | 5.2 | logy-extreme (Eqn 1§ 3.2) a =~ log, 100; 6 ~ log, 3.5 +
responder bytes|| B | Tesp | 5.3 || logy,-normal, 80-100% Z = log, 4500; 0, = log, 7.2 +
duration secs. C | Taur 5.4 || log,-normal Z = log, 240; 0, = log, 7.8 +
resp. / orig. D | Tiatio | 5.5 logy-normal z = log, 21; 0, = log, 3.6 +
resp. / dur. E | Tra: 5.6 || exponential, 0-90% resp. A= 1/30 +
resp. / dur. F | Tra2 5.6 || log,-normal, 90-100% resp. | = 5.3; 0, = 1.5; +

nntp | originator bytes || G | Nowig | 6.2 || log,-normal T~ 1150, ~ 3; ++

smtp | originator bytes || H | Sqig | 7.2 || logy-normal + 300B, 0-80%; | = ~ 10; o, = log, 2.75

log,-normal + 300B, 80-100% z ~ 8.5; 0, ~ log, 3 ++
ftp connection bytes| | | Feonn | 8.2 | logy-normal z ~ log, 3000; 0, ~ 4 ++
session bytes J | Fiess 8.3 || log,-normal r=15;0, =4 no

burst bytes K | Foust | 8.4 | Pareto (Eqn 2), 95-100% a~1;k~10%5 ++, £

Table 6: Summary of Analytic Models of Connection Chardstis

Model Scaling Variation Ordering Range 1% Tall
AU ]| L | site] wide | time mean\? | analytic dev.
A | Touig NARVARVA IR v v || U< {A, L} | 0.05-0.09( w: ++
B Tresp \/ \/ \/ \/ {A, U} < L | 0.04-0.07{ u: +
C | Tqur Vv v Vv none 0.04-0.09|| I: +,u: +=+
D Tratio \/ \/ \/ U < {A, L} 0.08-0.19
E|Ta1 ||V v v | Vv || {UL<A]|0020.10
F | Tra2 ViV v none 0.06-0.10| I: +, u: +
G Norig \/ * \/ {U,L} < A 0.36-2.00(| w: ++
Hl Sorig [V IV IV] V U<{A/L}|0.15-0.34
I Fconn \/ \/ Jr J[ U< A 0.18-0.27|| u: +
J | Fiess J[ J[ none 0.09-0.14|| u: +
K| Fhurst \/ \/ \/ J[ L < {A, U} 0.16-0.47|| u: —|—i

Table 7: Evaluation of Models

relation, “+” indicates weak undirected correlation, and “no” rectory listings are substantially smaller than file transfso
indicates that the random variable does not appear to be capack-to-back directory listings will contribute to pogéicor-
related. Two values are given for tlig,.; variable; the first  relation. This effect will also contribute to correlatianthe
reflects the correlation of all of the instances of the vdeiab size offtp bursts, if directory listings occur more than 4 sec-
and the second, the correlation of just the top 5% tail. onds apart{ 8.4) and thus constitute separate bursts. That the
We see that successit&inetconnections are weakly cor- size offtp sessions does not appear correlated suggests that
related, perhaps due to small hour-to-hour variations é th ftp sessions are statistically independent, in line with the-fin
characteristics dtlnetconnections. Successive bulk-transfering in [PF94] thafftp session arrivals appear well-modeled as
connections, on the other hand, all tend to be significantlyPoisson processes.
correlated, except that the size of compligpesessions is not Table 7 summarizes our evaluation of the different models
correlated. These correlations are not hard to explaimip  we constructed. A check/) in one of the “Scaling” columns
connections will tend to be correlated as new network newsndicates that we found (using Method §,3.7.2) that the
first arrives in an inbound connection and then is propagatesgcaled version §( 3.1.5) of the corresponding model per-
soon afterward in an outbound connecti@mtpconnections  formed significantly better than the unscaled version. When
can be correlated due to mailing lists expansions generatinthis was the case, for the remainder of our evaluation we used
similar connections one after another, orinbound conaesti  the scaled version of the model; otherwise, we used the un-
spawning outbound connections due to mail forwardiftg-  scaled version. As noted i1 3.1.5, a successful unscaled
data connection sizes will tend to be correlated because dimodel suggests that the random variable being modeled is in
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some sense “invariant”, and we can make strong predictionsls, indicating that analytic models can perform as well as
about future behavior using such a model. empirical models for describing wide-area connection char
The “Variation” columns summarize three tests for signifi- acteristics.
cantvariation among the performance of the models. A check While the “ordering” column gives an indication as to the
in the “site” column means that th& and L models did sig- relative performance of the three models, the “Range” col-
nificantly better (as tested using Method 8.7.1) in model-  umn gives an indication as to absolute performance. Here we
ing the LBL datasets than in modeling the non-LBL datasetslist the range of\?, the average value of? for each of the
From this we infer that the associated random variable showthree models. For example, for variable A, the best model
significant site-to-site variation, as models derived from@  (which must have been eithet or L) had an averaga?
site reflect that site significantly better than other sites. value of 0.05, and the worst/), 0.09. Becausa? has the
A check in the “wide” column means that thé and L property that it can be meaningfully compared for different
models did significantly better (using Method 1) in modeling models, the variation in the “Range” column tells us a good
the “stub” sites than in modeling the internetwork gatewaydeal about how each model performs. For example, we see
sites (the UK and NC datasets). From this we infer that ther¢hat of the four protocolgelnetis consistently modeled the
is significant variation in the corresponding random vddab most successfully, even by the worst-performing of theghre
when modeling “very wide” traffic as opposed to “less wide” models.Nntp, on the other hand, is the most poorly modeled,
traffic, perhaps due to a richer degree of connection multinot at all surprising given the irregular distributionsroftp
plexing. originator bytes (se& 6.2 and Figure 4 below)Smtpis not
A check in the “time” column means that th& and L  well-modeled either, though considerably better timap.
models did significantly better (Method 1) modeling the sec-Finally, ftp connection and burst sizes are modeled about as
ond fifteen days of the LBL-1, LBL-3, and LBL-4 datasets, well assmtporiginator sizes, buftp session sizes appear as
than in modeling the complete LBL-5, LBL-6, and LBL-7 well modeled aselnetconnections.
datasets. From this we infer that the corresponding random The final column in Table 7 summarizes the deviation of
variable changes significantly over time, since thenodel the A model when describing the lower and upper 1% tails
was derived from the first fifteen days of the first four LBL of the random variable’s distribution. Here we have use the
datasets (the “test dataset§”3.1.2) and thel. model from  methodology discussed 3.8 above. A blank entry indi-
the LBL-2 dataset, one of the early LBL datasets. cates that thel model’s description of the upper (and lower,
We have marked the G variable’s site variation with«& “  if appropriate) 1% tail is “acceptable”. A+ indicates that
because while the Method | test did not indicate a signifi-the description is “bad” and that thé model consistently
cant difference between the LBL sites and the non-LBL sitespverestimateshe tail. A “+-+" indicates that the descrip-
we believe this is simply because there is so much variatiotion is “very bad” and also consistently an overestimation.
among the LBL datasets themselves (as indicated in part b%+" and “++" are analogous to+" and “+-+" except the
the “time” checkmark) that it exceeds the considerable sitemodel sometimes overestimates the tail and sometimes un-
to-site variation. See Figure 4 below for an illustratioriftd ~ derestimates it. Finally, the K variable’s tail is markedwa
large site-to-site variation. “1" as a reminder that théy,,.s; model only models the up-
We marked the I, J, and K variable’s “site” and “wide” en- per 5% offtpdataconnection bursts, so the upper 1% tail of
tries with “1”s because of the following curious phenomenon:this model reflects only on the upper 0.05% tail of the entire
we found that thed and L models did significantlyvorse(as  distribution.
indicated by a Method | test) modeling the LBL datasets than While we have only reported the tail of thé model, the
modeling the non-LBL datasets. We do not have a firm ex{/ andL models have similar sorts of problems. Of the three
planation for this behavior. Evidently the LBL datasets aremodels, thed model is not, overall, especially good or bad in
substantially “noisier” than the non-LBL datasets, pesghap describing the tails.
because there are unusually high variations or spikes in the We also tested the 10% tails using the same methodology.
size of files transferred by scientists, or perhaps becdgse t We found that all of the 10% tails were “acceptable”.
30-day length of the LBL dataset allows more opportunity for The next four sections develop in greater detail the models
rare phenomena to skew the distribution. summarized in Tables 6 and 7 above. One aspect of wide-
The “ordering” column gives the results of using Method Il area TCP connections we do not discuss in this paper is the
to compare the effectiveness of tHe U, andL models. An  connection arrival process (other than to note the presaince
entry like ‘U < {A, L} indicates that the Method Il test periodic patterns). Instead, we refer the reader to [PF94].
found that thé/ model performed significantly less well than
both theA and L models, but that thel and L models are
unordered. An entry of “none” indicates that all three medel
were unordered. We note that except for variable B, Ahe
model does as well as better than both of the empirical mod-
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Dataset|| # Conn | # Rej || Zorig | Oorig | MaXorig || Zresp | Oresp | MaXresp || Tdur | Odur | maxXdur |
LBL-1 5,734 9 || 199B | x4.4 207KB || 4.2KB X7.9 19MB || 266s| x6.8 90.5h
LBL-2 7,582 12 || 199B | x4.6 282KB || 4.3KB X 7.5 3.2MB || 237s| x6.8 78.2h
LBL-3 9,607 23 || 214B | x4.7 537KB || 4.1KB X7.6 55MB || 226s| x6.9 | 167.9h
LBL-4 10,897 58 || 237B | x4.3 613KB || 5.3KB xT7.4 | 86.6MB || 271s| x6.8 | 270.0 h
LBL-5 14,922 81 || 237B | x3.9 215KB || 5.2KB x6.8 | 19.3MB || 248s| x7.1 | 386.8h
LBL-6 15,437 52 || 242B | x4.5 777KB || 5.7KB x7.3 | 14.0MB || 270s| x7.7 | 102.9h
LBL-7 17,998 106 || 235B | x4.2 651KB || 5.7KB x6.9 | 3.10MB || 252s| x7.5 | 172.8h

BC 744 2 || 145B | x4.1 9.7KB || 2.9KB x8.7 0.6MB || 193s| x6.4 8.1h
ucB 655 4 || 155B | x4.7 27KB || 2.5KB x9.1 0.7MB || 166s| x6.9 7.9h
uscC 405 0 || 184B | x4.3 12KB || 4.1KB x7.2 0.6MB || 168s| x6.5 55h
NC 3,023 34 || 112B | x3.9 146KB || 2.6KB | x10.6 3.4MB || 106s| x7.4 6.8h
UK 962 35 || 143B | x3.6 30KB || 2.5KB %x9.3 0.7MB || 175s| x5.2 7.2h

Table 8: Summary of TELNET Connections

5 TELNET user”, so we appear to be seeing Jackson and Stubbs’ effect
rescaled to reflect today’s range of communication speeds.

We now turn to analyzing the characteristics of individual The LBL telnetconnections were on average substantially

protocols and developing models to describe them. We beonger and consisted of more bytes than those at other sites,

gin with telnet® even if we adjust for the fact that the LBL datasets span more
days and hence give an opportunity to detect long-lived con-
5.1 Overview of TELNET connections nections missed by the other datasets. We conclude that, at

least with regard to mean bytes transferred and duratien, th

Table 8 summarizes some basic statistics of the datdsets’ | g telnettraffic is significantly different from that at other
netconnections. The table is read as follows. sites (and this is what is shown in Table 7 above).

The second column gives the number of “valid” connec- \ve also note an apparent trend over the LBL datasets to-
tions recorded for the dataset and the third column the numbgyards increasing values f,;, andz,..,, indicating thatel-
of “rejected” connections§(3.3); [P93] details the rejected npetconnections are growing larger with time. Connection du-
connections. As discussed in [P94], the LBL-6 and LBL-7 rations, on the other hand, are not growing longer, sugugsti
telnettraffic included a large number of connections due tothat higher network bandwidths are enabling users to engage
periodic traffic. We removed those connections prior to oufin more work during each session (again reflected in Table 7).
analysis, and they do not appear in Table 8. Finally, we note that the data provide support for the obser-

The 4th through 6th columns summarize the number ofation in [DJCME92] that “interactive applications can gen
data bytes transmitted by the originator (the user end of th@rate 10 times more data in one direction than the other,” and
remote-terminal connection). The values given are the geoctyally suggest the factor is around 20:1. Marshall and-Mor
metric mean (Equation 6), the geometric standard deviatiogan found ratios as high as 35:1 for teletypewriters in tech-
(Equation 7), and the maximum. As noted§ir8.2, we ap-  pjcal use, with half that being a representative average, an

pliedlog, transformations to the data prior to analysis. as low as 3:1 for teletypewriters used for word processing
The 7th through 9th columns give the same summary fofvmgs).

the number of bytes transmitted by the responder (remote |n § 5.5 below we present a model for this ratio.
computer), and the 10th through 12th columns summarize the

duration of the connections, with ‘s’ used to indicate setson ..

and ' for hours. 5.2 TELNET originator bytes (A)

We note that the geometric mean duratiotedfietconnec-  with the bulk transfer protocols examined in subsequent sec
tions ranges from 2 to 4 minutes, while Jackson and Stubbgons, we usually are only interested in modeling the num-
[JS69] reported average connection lengths for local bgfn  ber of bytes transferred. With interactive applicationsttoe
17 to 34 minutes, and [B67] gives a local-login median of 20pther hand, we not only are interested in the bytes traresferr
minutes and a mean of 45-50 minutes. Jackson and Stubl$ both directions but also the connection duration and the
inferred that connection time “may be considerably reducegdelationships between these variables.
by providing a high-speed channel from the computer to the \We begin by modeling the number of bytes sent by the
originator of atelnetconnection (generally a human typing

8[P93] presents a similar overview fdogin traffic, along with results of
modeling it using theéelnetmodels developed in this section.
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Figure 1. TELNET Originator-Bytes Model for LBL-2: Figure 2: Censored LegNormal Fit to Upper 80% of LBL-4
Logs-Extreme Distribution TELNET Responder Bytes

at a keyboard). The best fit we found to the LBilnettest 5.4 TELNET duration (C)

datasets came using the,-extreme distribution§3.2). . . . .
g they, %3-2) We model telnet connection durations using a simple

Figure 1 shows the distribution for the first half of th R . .
gure 1 shows the distribution for the first half o elogQ-normaI distribution. An alternative is to simply not

LBL-2 dataset, along with the fitted model. We see appar-

ently good agreement except in the tails, where, as indjcatemOdel the duration at all, for the following reason: Pax-

in Table 7, the upper 1% tail is grossly overestimated. son and Floyd show that by using Poisson arrivals, log-

One important point regarding this model is that it is easwormal originator connection sizes (in packets), and the Tc

to assume that the number bytesgenerated by théeslnet frht;ﬁpa\;ﬁiethlr;ter?rgval dlfﬁnbu“;n’g nre t(i:r?n syntt rc]hef? B:s-re; "
originator equates to the number pécketsgenerated. As atic which reproduces the same burstiness a* aitie

mentioned in [PF94], this equation is erroneous. Often ar§cales as observed in actual traffic traces [PF94]. The dura-

originator packet holds more than a single keystroke. [H>F94.tlon of thewtelnetconngcnons |s.3|mplythe sumlof the pa.cket
interarrivals. That their model is successful without gsin

finds that the number gfacketsgenerated by the originator S ) :
o % y 9 eparate distribution for the connection duration suggést

appears better modeled using a log-normal distribution; ageP o . . o -
we did not have any intra-connection information, we Wereto simulateelnettraffic with realistic durations, it is sufficient

unable to test this finding. to use the Tcplib interarrival distribution.

53 TELNET responder bytes (B) 5.5 TELNET responder/originator ratio (D)

If we wish to use these models to generate or praeictet
traffic, then we also need models giving the relationships be
tween the various distributions. In particular, we wouldli
rFO know how many responder bytes to expect given a partic-
ular number of originator bytes, and how long a connection

We next model the bytes transferred by teetresponder.
As shown in Figure 2, the upper 80% of the distribution is
well-modeled using #g,-normal distribution, but the lower
20% (below the horizontal line, corresponding to less thal
1 KB transferred) is not smoothly distributed, making it un- = : :
likely we might find a simple analytic model encompassing it.WIII last given how many bytes it transfers.

No doubt this roughness is due to the varying sizes of log-in We model the ratio between the number of responder bytes

dialogs and message-of-the-day greetings. Fortunately, e_la_?]d orlgmﬁltor bytes ufst';'g a 5|mplil§2-nolrrpal dlso;mlb'“'.t'g' |
actly modeling the lower tail is of little importance, so we € overall success ol € unscaled analytic model gives So

limit ourselves to modeling just the upper 80% (in doing so evidence t_hat the ratio be;tween _the bytes generated by the
we apply datzensoring see§ 3.1.4) ‘computer in a remote login session and those generated by

the user is about 20:1, since the unscaled model uses a ratio

15



of 21:1.

When using the responder/originator ratio to genetelte
net traffic, a subtle point arises: one can either derive the
originator bytes and the ratio, and multiply to obtain the re 2 A
sponder bytes, or one can proceed in the opposite fashion,
generating the responder bytes and the ratio, and dividing t
obtain the originator bytes. While these two approaches ap- o
pear equivalent, they are not, and the former (deriving the
responder bytes from the originator) is preferable. The dif
ference arises because while both the responder bytes and<
the ratio ardog,-normal distributed, the originator bytes are
log,-extremedistributed. Multiplying the originator byte’s ~
log-extreme distribution by the ratio’s log-normal dibtrt oS
tion yields a distribution close to log-normal; but dividithe
responder byte’s log-normal distribution by the ratio'g-Ho o

1.0

normal distribution yieldsexactlya log-normal distribution it

(since the difference of two normal distributions is a nor- 0 200 400 600 800
mal distribution), and not a log-extreme distribution. ek

natively, we can think of the originator bytes as having a Responder (bytes) / Duration (secs)

somewhat skewed log-normal distribution. Multiplyingshi

distribution by another log-normal distribution smearsthe Figure 3: Responder/Duration Distributions for LBL-1; Ex-
deviations, and the result is close to log-normal; but ckanc ponential Fits

are dividing two log-normal distributions will never repro

duce the skewed distribution.

Thus, to generate traffic we should begin by generating the We find the bimodality shown in this figure a bit puzzling.
number of originator bytes and the responder/originatisra It says that very large connections (in terms of bytes trans-
and then multiply to derive the responder bytes. ferred) occur over relatively short durations: whilg, in

these large connections is 45 times that of the smaller lowe
5.6 TELNET responder/duration ratio (E 90%) connectionsgqy, is only 16 times that of the smaller
dF) connections. This phenomenon was also observed by the
an authors of [SC93], who found that “users transmitting large
Just as we want a way to relate the originator bytes sent witRmounts of data over a link tend to transmit that data within
the responder bytes, we also would like to relate these rando 15 minutes.” We do not have a good explanation for this phe-
variables to the connection duration. We investigatedyical nomenon.
models for three different ratios: originator bytes to diara, For the upper 10% of the responders we compared consid-
responder bytes to duration, and total bytes to duration. Werably fewer datasets. Our requirement that each dataset in
found the best fits came using the responder/duration modélude at least 100 measuremerit8(3) ruled out any dataset
(though see the last paragraph of this section). with fewer than 1,00Gelnet connections, leaving just the

For most connections the responder/duration ratio wa&BL and NC datasets. The fit remains good, though.
well modeled by an exponential distribution, but “large” The use of two separate models for the responder/duration
connections—those whose responder bytes were in the ujatio is not wholly satisfying, but was the best we could find.
per 10% of all connections—had a different distributionr Fo One other somewhat successful model for relatihigetcon-
these, the ratio was fairly well modeled by a log-normal dis-nection size and duration was the ratio between the duration
tribution. and the originator size. We found that when this ratio was

Figure 3 shows the responder/duration ratio for both the> 0.5 (about 80% of the connections), then it was well mod-
lower 90% of the LBL-1 connections (in terms of respon- €led using a Pareto distribution (Equation 2). But when the
der bytes) and the upper 10%. The distribution on the leffatio was< 0.5, we found no simple yet accurate analytic de-
is for the lower 90%; though it is hard to tell due to scaling, scription of the marginal distribution. Unlike when moahgji
an exponential with the same mean has been drawn and liéglnetresponder bytes, for the duration/originator ratio both
squarely on top of it. This fit is very good. To the right we the lower and upper parts of the distribution are important;
show the distribution of the upper 10%, plotted with an ex-We cannot simply model the upper 80% of the connections
ponential with the same mean. We see that the distribution ignd ignore the remainder. So we chose to use models E and F
qualitatively different, and the corresponding exporemtot ~ above instead.

a good fit.
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Dataset|| # Conn| #Rej | % Failures]|  Torig | Oorig | MaXorig || Tresp | Oresp | MaXresp

LBL-1 57,898 2 38 % 2.0KB x9.2 4.2MB 305B | x2.0 923KB
LBL-2 57,997 1 36 % 2.4KB x7.8 1.1MB 328B | x2.1 584KB
LBL-3 46,167 6 19 % 2.4KB x6.2 1.9MB 384B | x1.9 128KB
LBL-4 73,179 39 2% 6.0KB x8.5 5.6MB 398B | x2.2 1.4MB
LBL-5 50,969 | 161 8% || 14.5KB x8.5 | 16.5MB 633B | x2.9 9.5MB
LBL-6 55,176 | 1048 8% || 28.4KB x6.8 | 15.7MB 888B | x2.2 1.3MB
LBL-7 70,842 | 143 7% || 41.7KB x7.1 | 10.8MB || 1032B | x2.2 2.6MB
BC 345 116 25% || 15.5KB x6.2 2.4MB || 1005B | x3.0 81KB
ucB 6,899 0 1% 2.1KB x7.2 720KB 307B | x2.0 1.7MB
uscC 4,615 15 4% || 11.5KB | x10.3 3.6MB 709B | x2.3 74KB
DEC-1 || 23,864 5 2% 1.1KB | x11.6 5.8MB 264B | x2.2 75KB
DEC-2 || 18,819 88 3% 1.3KB | x11.7 26MB 292B | x24 356KB
DEC-3 | 19,244 7 7% 2.2KB | x14.1 18MB 339B | x2.7 223KB
NC 904 206 9% || 12.9KB | x12.3 12MB || 1182B | x4.5 3.2MB

Table 9: Summary of NNTP Connections

.0

6 NNTP

6.1 Overview of NNTP connections

Table 9 summarizesintp connections. Asnntp is non-
interactive, the connection duration is not of much interes
and has been omitted. [P93] discusses the connections Weg .
rejected due to protocol errors.

We expectntp connections to show considerable varia- .
tion because they can come in at least three modes: (1) ag T
server contacts a peer and is informed that the peer prgsentl
cannot talk to the server; (2) the server offers the peer news
articles but the peer already has the articles; (3) the sefve 0]
fers articles and the peer does not have the articles. Each of
these modes will result in significantly different distrilmns ol Y
of the bytes transferred during the connection. Furtheemnor © ‘
the second and third modes are somewhat indistinct, siece th
remote peer may have some but not all of the offered articles. 2 i 7 )

The first mode is easy to detect. If upon initially being
contacted a responder peer is unable to communicate with the
originating peer, it sends a message with response code 400
(“service discontinued”) as per [RFC977]. When the origi-
nating peer then replies with “QUIT” followed by a carriage-
retgrn and a Ilne-fged, it will have sgnt a total Of_ 6 bytesthe bytes transferred during non-failure connections. For
during the connection. Indeed, we find large spikes of 6

example, as can be seen by the large increase,in be-
originator bytes in theantp datasets, as did the authors of tweeanBL—3 and LBL-4 theyLBLnntpsgerver becif)n:g much

[DJCME92]. Thus we can recognize a connection in whichy, e effective in propagating news over a five month period.
the 0r|g|nat|pg host sent 6 bytes as a 'fa|lure ‘ ) LBL-5 and LBL-7 continue the impressive growthig,is. A

Not surprisingly, the failure rate varies greatly from gite similar effect can be seen between DEC-1 and DEC-3, only
site and from time to timg, since it is often due to tranfsient.a week apart. Such changes can be due in part to circum-
phepome_na sug:h as full disks. These failure rates are given kiances wholly outside of the local site. Whether the arti-
Fhe % Failures _column. To compgte the remaining Stastic jag 4 server attempts to propagate to its peers are accepted
in the table, we first removed all failure connections from th depends on whether those peers already have the articles; a

datasets. , o subtle change in thentp peer topology can swing a server's
Not only can the failure rate vary significantly, but so can position from one of holding mostly “stale” news to holding

NNTP Originator Bytes

Figure 4: Distribution of NNTP Originator Bytes

17



mostly “fresh” news. The steadily increasimg,;, value for X
the last four LBL datasets is most likely also a reflection of S | X
the global growth in USENETntptraffic, which increases in © X xX b%
volume about 75%/year [P94]. X 5
o X
s
. ol X X
6.2 NNTP originator bytes (G) x X N
T 8 X
s S XX
= X
g - g X X
X
o )§>(( X
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Figure 6: One-Minute Variation in DEC-2 NNTP Arrivals

2000
|

. The variation in the daily pattern may be due to the influ-

‘ ‘ ‘ ‘ ‘ ence of keynntpgateways either propagating news as soon as

° ° 0 s 20 it comes in (consistent with the LBL-4 case) or waiting tilet
Hour late-night hours to take advantage of minimal loads (LBL-1)

Figure 5: Daily Variation inog,-mean of LBL NNTP Origi- 6.3 NNTP responder bytes

nator Bytes . .. .
As seen in Table 9 above, there is in general much less varia-

Figure 4 shows the distributions of bytes sent by the origion in the bytes sent by amtpresponder than by the origina-
inator in non-failurenntp connections at LBL, DEC, and tor. For the majo'rlty of the datasets, the respon.der serdrfew
coNCert. The distributions show a huge degree of variancd'an 1500 bytes in 80% or more of the connections. Thus we
(recall that the X axis is scaled logarithmically). decided not to modeintpresponder bytes, as in general the

Given the great variation in originator bytes transferreel, datasets do not show interesting variations.
decided to simply use kbg,-normal model to describe the
connections, with the caveat that we do not expect the modd.4 NNTP duration

to perform well (we also do not expect empirical models to

do well). Indeed, as shown in Table 7, none of the models déincenntpis a bulk-transfer protocol and not interactive, we
well. ’ ' do not model connection durations, because these are pre-

One final important point regarding modelingtporigina- sumably dominated by networking latencies and not a funda-

tor bytes is that the distribution is not stationary but alesh mental aspect of thentp protocols. Similarly, below we do
over the course of a day. Figure 5 shows the houtdy, " modelsmtpor ftp durations.

for LBL-1 and LBL-4 non-failurenntp connections. We see

considerable but not consistent variation. The peak-akpe 6.5 NNTP arrival patterns

differences for both datasets is about a factor of 3.4; bu}\lnt arrivals have a definite one-minute periodicity about
LBL-1's connections tended to be largest in the middle of theh P 10 Fj 6 sh th ber of DE(F;HZIt y 3
night, with secondary peaks during “prime-time” work haurs them. "~ Figure 6 shows the number o pconnec

LBL-4's connections peaked during working hours and werg OnS that arrived during each second (i.e., ignoring méaut

lowest at precisely the time when LBL-1's were high®st. and larger units of the arrival time). Clearly, arrivalsded
to show up at about 19 seconds past the minute, though some

9The test datasets also showed a weekly pattern, with LBLd1L&1 -4 m - ) . . .
(and to a lesser extent LBL-2) having minimal,;, during weekends, while We also found three-, five-, fifteen-, and twenty-minute grat in vari-
LBL-3 had amaximumz,;, on Saturdays. ous datasets.

18



tended to arrive about 7 seconds past. All ofthgpdatasets ——

show this pattern to varying degrees exceptfor LBL-3; LBL-4 | | Lower 80% fit (f)
shows two distinct spikes. Sometimes the spike is quitgshar — — Upper20% ()
With the other datasets, it is broad, like in Figure 6. In gen-
eral, periodicity such as this can lead to global synchiniz
tion of network processes; see [FJ93].

1.0

0.8

0.6

7 SMTP

0.4
|

7.1 Overview of SMTP connections

Table 10 summarizes themtp connections. Again, [P93]
summarizes the reasons for removing the connections marked~ |
as rejects. Based on the valuesiorx,,;, it is clear thasmtp

is sometimes used to transfer quite large files.

There is quite a bit of variation i, (and just about -
none iNZ.esp). In [WLCO2] the authors note that the UK ° ‘ ‘ ‘ ‘
smtpdata show a substantially higher (arithmetig);, than 5 o A5 20
for the LBL-1 and LBL-2 datasets reported in [P91]. They Bytes
attribute this difference to the fact that since the U.K.-aca
demic network (JANET) was not at that time fully connectedFigure 7: Bimodal Log-Normal Fit to LBL-3 SMTP Origi-
to the Internet, U.K. users were more likely to usatpto ~ nator Bytes
transfer files. The large UK., variance supports their hy-
pothesis. The DEC traffic has similas,;, values, and Mogul
also states that an “FTP-by-mail” facility is responsibde f
about 150 rather lengthsmtpmessages at DEC-WRL each
day [M92].

Another explanation is that perhaps the NC and UK traf-
fic tends to make morsmtp“hops”, each of which adds a
Recei ved header to the mail message [RFC822], pushin
up the average number of bytés One would expect the
greater number of hops to be correlated with “wider” wide-
area traffic, presumably a property of the NC and UK traffic
asxeezgj I';ezlsfriflifg Itrrl;erlrdniit\fcvr?erkLgB?_tecﬁ?gsi.rldicating Iargerfﬁ;ﬁ;;?zggi?ég%\ge between using distributigr(below
and larger mail messages. As discussed in [P94], LBL's wide- As was the case famtp, for smipwe found that the orig-

area traffic did become “wider” during the three year period. ator bytes distribution is not stationary. Figure 8 shaes

spanned by the LBL datasets, in agreement with the “hop o i
overhead” explanation. %]ourly Zorig for LBL-1 and LBL-4 smtpconnections. Un-

like nntp, which suffered from inconsistent variations, here
o the pattern is more stable: connection sizes peak during off
7.2 SMTP originator bytes (H) hours, and reach minima during peak working hours. We
conjecture that uses aintpto transfer files tend to happen
off-hours and cause this pattern.

connections oK 300 bytes (anywhere from 0.6% to 2.3% of
all connections) and subtracted 300 bytes from the remginin
connections.

We found the distribution ofsmtp originator bytes to
be bimodal, not surprisingly given thamtpis sometimes
used to transfer files. We model the distribution using two
s%ogz-normal distributions, one (callefl here) for the lower
80% of the data, and one for the remaining 2@f6 Figure 7
shows this model’s fit to the LBL-3 test data after removing
'failures and subtracting 300 bytes; the horizontal lind-ind

When modeling the number of bytes sent by shetporigi-
nator, we found that nearly all connections transferredemor
than 300 bytes, while the connections transferring fewezdy
showed sporadic distributions. We hypothesize that the firs7.3 SMTP responder bytes

300 bytes of these connections constitute a more-or-less fix ,We did not model the distribution of the responder bytes in

overhead, and that connections with fewer total Originatosmtpconnections as the responder’s role shows little varia
bytes correspond to “failures”: either invalid email ackhes ° ’ . ]
y P tion. For the LBL test datasets, in about 75% of all connec-

or busy remote machines unable to accept mail at the ma: .
ment. In constructing our models we therefore removed antIonS the responder sent between 300 and 400 bytes, and in

)évery dataset more than 97% of the connections sent between
LA check of one of the author's mail folders revealed an awerag 100 and 1000 bytes. While reference [DJCME92] finds that
Recei ved header length of more than 100 bytes. smtpconnections are bidirectional, this finding must be inter-
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| Dataset|| #Conn| # Rej || Zorig | Oorig | MaXorig || Zresp | Oresp | MaXresp |
LBL-1 38,481 286 || 1.4KB | x2.8 2.1MB || 331B | x1.2 1.9KB
LBL-2 51,240 572 || 1.5KB | x2.9 7.2MB || 334B | x1.2 6.5KB
LBL-3 75,418 333 || 1.6KB | x2.6 1.6MB || 334B | x1.2 2.9KB
LBL-4 92,694 | 1583 || 1.7KB | x3.0 1.2MB || 335B | x1.3 | 2,980KB
LBL-5 123,741 446 || 1.7KB | x2.9 2.4MB || 320B | x1.3 8.0KB
LBL-6 207,485| 6,567 || 1.9KB | x3.0 | 37.0MB || 321B | x1.3 9.5KB
LBL-7 205,668 | 6,306 || 1.9KB | x2.9 8.0MB || 314B | x1.4 16.6KB
BC 8,428 121 || 1.3KB | x2.8 1.1MB || 324B | x1.3 10.2KB
ucCB 16,929 61 || 1.3KB | x3.0 0.5MB || 334B | x1.3 2.0KB
USC 3,498 3| 14KB | x2.3 0.1MB || 337B | x1.2 1.6KB
DEC-1 25,160 19 || 2.0KB | x3.1 2.5MB || 340B | x1.2 4.7KB
DEC-2 10,777 5| 2.1KB | x3.5 49MB || 341B | x1.2 4.7KB
DEC-3 31,631 70 || 2.0KB | x3.2 5.1MB || 338B | x1.2 3.5KB
NC 26,161 511 || 1.9KB | x2.9 1.8MB || 340B | x1.4 10.6KB
UK 10,729 129 || 1.9KB | x3.3 4.6MB || 319B | x1.3 6.0KB
Table 10: Summary of SMTP Connections
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Figure 8: Daily Variation irlog,-mean of LBL SMTP Origi-
nator Bytes

preted with the rather fixed nature of temtpresponder in
mind.

8 FTP

8.1 Overview of FTP connections

Table 11 summarizeftpdataconnections. Each connection
is unidirectional, with sometimes data flowing from the con-
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nection originator to the responder (corresponding tdtjan
get command) and sometimes in the other directiopya
command). The “Get” column shows the percentage of con-
nections that werget commands; the remainder wepat
commands. The next three columns show the (geometric)
mean, standard deviation, and maximum for the number of
bytes transferred. As before, [P93] gives details regarttie
connections we rejected.

A considerable portion of the UCB, LBL-5, LBL-6, and
LBL-7 ftp connections were due to periodic traffic, as dis-
cussed in [P94]. As with perioditelnet connections, we
eliminated these prior to analysis.

There clearly is quite a range if,ytes, and the uniformly
large values oty Shows that in general file sizes vary
widely.

Table 12 summarizes thHgpctrl connections. We have not
shown statistics for bytes transferred and duration offtire
ctrl connections themselves since the primary usépuitrl
connections is to spawftpdata connections, either for file
transfer or to list remote directories. Instead, we grouwpitid
eachftpctrl connection its associatégdataconnections. We
considered afftpdataconnection to belong to #ipctrl con-
nection if it occurred during the span of tfipctrl connection
and was between the same two hosts (see [P93] for details).
We refer to such a collection of dtpctrl connection and its
associatedftpdataconnections as diitp session

The fourth through seventh columns in Table 12 summa-
rize the number oftpdataconnections that occurred during
eachftp session. The “0 xfer” column lists the percentage of
all ftp sessions that did not haamy associatedtpdatacon-
nections, presumably due to failed attempts to providarog-
information. These numbers are somewhat lower than the
42.9% reported in [DHS93], but still surprisingly high.

TheZyfers @ndoysers COlUMNS give the geometric mean and



Dataset]| #Conn[ #Rej|  Get || Zuytes | Obytes | MaXbytes
LBL-1 23,555 287 | 80% || 2.3KB | x15.3 54MB
LBL-2 27917 | 335| 92% || 24KB | x174 124MB
LBL-3 39,552 | 349 | 91% | 3.3KB | x17.7 62MB
LBL-4 65,860 335| 86% || 3.8KB | x14.7 67MB
LBL-5 66,411 | 344 | 80% || 4.5KB | x16.0 177MB
LBL-6 86,464 | 464 | 91% || 2.1KB | x14.9 292MB
LBL-7 105,821 468 | 94% || 2.8KB | x15.2 223MB

BC 5,199 58 | 97% || 25KB | x12.6 16MB
ucB 4,529 77| 96% || 1.0KB | x13.5 22MB
uscC 1,870 29| 93% | 1.3KB | x14.5 5MB
DEC-1 7,970 6 | 100% || 2.2KB | x16.5 5MB
DEC-2 4,013 13 | 100% || 1.3KB | x17.1 7MB
DEC-3 6,775 25| 99% || 1.9KB | x16.7 13MB
NC 19,076 | 183 | 98% || 1.8KB | x19.0 44MB
UK 10,018 58 | 97% | 3.4KB | x14.2 7MB

Table 11: Summary of FTP Data Connections

Dataset|| # Conn| #Rej || Oxfer | Zyers | Oxfers | MaXssers || Toytes | Obytes |

LBL-1 3,757 51 || 19% 3.3 | x29 1,006 || 28KB | x15.2
LBL-2 5,312 72 || 25% 3.2 | x28 388 || 27KB | x17.0
LBL-3 6,916 90| 21% 3.1 | x29 612 || 30KB | x18.4
LBL-4 7,941 189 || 17% 33| x3.0 1,951 || 33KB | x17.6
LBL-5 9,968 | 1,227 || 26 % 3.0| x3.0 975 || 31KB | x16.7
LBL-6 12,470 535| 24% 3.1 | x29 2,996 || 31KB | x16.8
LBL-7 17,556 | 319 | 27% 3.0 x29 1,666 || 34KB | x16.8
BC 669 19 || 32% 3.3 | x2.7 426 || 13KB | x14.2
ucB 756 19 || 26% 39| x26 350 || 12KB | x14.9
usc 272 61| 22% 3.8 | x28 133 || 20KB | x14.5
DEC-1 727 8| 26% 54| x3.2 961 || 36KB | x15.6
DEC-2 491 8| 13% 50| x3.0 106 || 36KB | x17.8
DEC-3 811 17 || 25% 48| x29 232 || 36KB | x15.3
NC 2,500 5 || 31% 50| x29 392 || 26KB | x18.6
UK 1,733 35| 24% 34| x3.0 368 || 22KB | x16.0

Table 12: Summary of FTP Control Connections

standard deviation for the number of files transferred, mjive disparity is due to a typicdtp session including at least one
that at least one file was transferred. That the mean is sultrue file transfer. As files will tend to be significantly large
stantially higher than one is not surprising since we cfgissi than directory listings, the mean number of transferre@dyt
remote directory listings as file transfers (both resultriftp-  during anftp session will approach the mean file size, and not
dataconnection), and probably the most common usémf be held down, as are ttigpdataconnection summaries, by a
is to connect to a remote archive site, do several listings téarge number of smaller directory listings. Thigyes Values
find the file or files of interest, and then transfer those files. are quite large, again showing a wide range in transfer sizes
The Zpytes @ndonytes COluMNs show the geometric mean  One important point regarding ttigpdataconnections oc-
and standard deviation for the total number of bytes transeurring during arftp session is that they frequently arrive in
ferred viaftpdata connections during eactp session (for bursts[PF94]. Anftpdataconnection burst is defined as one
those connections with at least ditgdatatransfer). We note  or moreftpdata connections belonging to the same session
that these means are 5-10 times greater than those for indhat are spaced less than 4 seconds apart. That is, each con-
vidual ftpdataconnections, an increase larger than that duanection in the burst begins less than 4 seconds after the pre-
simply to the multiplying effect of.,;s. We suspect thatthis vious connection ended. A burst can be due to a “multiple-
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Dataset|| #Bursts || Zuytes | Obytes | Maxpyies || 2% Tail | 0.5% Tail || o | k]

LBL-1 13,055 || 2.0KB | x17.6 102MB 70 % 49 % || 1.00 | 375KB
LBL-2 16,111 || 1.8KB | x19.2 124MB 70 % 44 % || 1.01 | 445KB
LBL-3 22,388 || 2.3KB | x19.0 96MB 68 % 41 % || 1.03 | 624KB
LBL-4 27,084 || 2.5KB | x18.8 83MB 68 % 41 % || 1.05| 717KB
LBL-5 30,358 || 2.8KB | x19.1 754MB 79 % 61 % || 0.93 | 620KB
LBL-6 39,740 || 2.7KB | x16.7 465MB 77 % 58 % || 1.06 | 595KB
LBL-7 48,542 | 2.8KB | x17.1 200MB 67 % 44 % || 1.16 | 748KB
BC 2,077 || 1.4KB | x13.9 16MB 64 % 41 % || 1.21 | 290KB
ucB 2,804 || 0.9KB | x13.2 12MB 66 % 42 % || 1.11 | 148KB
uscC 830 || 1.1KB | x19.1 5MB 53 % 31% | 1.37 | 315KB
DEC-1 4,487 | 1.3KB | x13.9 32MB 70 % 48 % || 1.06 | 248KB
DEC-2 2,743 || 1.3KB | x13.5 12MB 66 % 37% || 1.18 | 374KB
DEC-3 4,276 || 1.3KB | x13.2 15MB 67 % 45 % || 1.09 | 244KB
NC 13,086 || 1.3KB | x17.7 44MB 57 % 37% || 1.34 | 308KB
UK 5,837 || 1.9KB | x14.6 8MB 54 % 29% || 1.40 | 375KB

Table 13: Summary of FTP Bursts

get” transfer, or to a user doing a remote directory listind a alone donothave nearly as heavy a tail. For example, in the
shortly after it completes, fetching a file. A key finding in DEC-1 dataset the upper 2% of tfipdataconnections holds
[PF94] regarding bursts is that the distribution of the nemb about 25% of the data bytes, vs. 70% for the bursts. It is the
of bytes in a burst has an extremely heavy tail: just a handfulact that largdtpdataconnections tend to arrive together that
of the largest bursts carry the majority @f of theftp data  leads to the very heawyp burst tail.
bytes. In § 8.4 below we model the upper 5% tail of thedata
Table 13 summarizes tHgpdatabursts. We see from the burst distribution using a Pareto distribution (Equation 2
second column that each dataset had roughly half as manihe Pareto distribution has an extremely heavy tail, heavie
bursts adtpdataconnections (Table 11). The third through than that of any of the other distributions discusseg 1.3
fifth columns summarize the number of bytes transferredr their logarithmic versions§(3.2). To this end, the final
per burst offtpdata connections. The values af,ys are  columns in Table 13 gives the estimated valuesvaind &
surprising—they are lower than the corresponding values fo(corresponding to Equation 2) for each dataset. That the val
ftpdataconnections! This appears paradoxical, because eaales ofa are smaller for the LBL datasets than for the oth-
ftpdata connection burst is made up of at least dipelata  ers, and the values far larger, indicates that the LBEp
connection, so we would expect the bursts on average to Haursts are significantly different than those found in theeot
at least as large as the individual connections. The key+to urdatasets. In particular, the LBL bursts have heavier tails.
derstanding this discrepancy is thatge ftpdata connections Probably this difference is due to the prevalence of LBL siser
tend to arrive together in single burst3his means that the exchanging large scientific datasets.
upper tail of the distribution of the number of bytes per burs
is hgavier than the correqunding upper tailftpdatacon- 8.2 FTP connection bytes (1)
nections; there are fewer big bursts, but those few are very
large. Becausepytes iS ageometricmean (Equation 6), and We model the bytes transferred duringfgpdataconnection
the geometric mean is relatively insensitive to outlierg, w using alog,-normal distribution. Figure 9 shows this model
find z1,ytes becomedower when we shift distribution weight fitted to the first half of the LBL-4 dataset. While the model
higher into the upper tail. appears to match the overall shape, a number of clumps and
The next two columns explore the tail-weight further. Thespikes make the actual distribution irregular. For example
“2% Tail” column gives the percentage of dip burst data LBL-4 has a spike of 1,269 connections, each transferring
bytes due to the 2% largest bursts, and similarly for the¥9.5 1,856 bytes. For the most part, unfortunately, these spikes
Tail” column. We see that the 2% upper tail in all cases acnot occur in predictable locations, making it difficult to-in
counts for more than 50% of all of the data bytes! Thps corporate them into our analytic model. Such unpredictabil
traffic is heavily dominated by a few rare but huge bursts. Agty also impairs the ability of empirical models to fit other
stated in [PF94], this finding means that modelftmtraffic ~ datasets. One spike stands out, however, being present in
should concentrate heavily on the upper tailfpfatabursts  all the DEC datasets, the NC dataset, LBL-4, LBL-5, and
(as is done irf 8.4 below). Note thaftpdataconnections LBL-7. This spike occurs at 524,288 bytes ¢£'9), a size of-
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Figure 9: Log-Normal Fit to LBL-4 FTP Data Bytes
exponential; Equation 2). As discussed further in [PF94],
that ftp burst sizes are Pareto-distributed suggests a mecha-
ten used when splitting a large distribution archive intmma nism by whichftp traffic might contribute to the presence of
ageable pieces. self-similarity ((LTWW93]) in wide-area network traffic.

8.3 FTP session bytes (J)

Figure 10 shows an example of the distribution of the total

number of bytes transferred durifig sessions, forthe LBL-1 We have presented a number of analytic models for describ-

test dataset, again fitted td@,-normal model. In this case ing the characteristics delnet nntp, smtp and ftp con-

the fit is visually fairly satisfying. nections, drawn from wide-area traces collected from seven
The authors of [DJCME92] reported that 80%ftyf ses-  different sites, comprising more than 3 million connection

sions transfer less than 10 KB. But once we remove thdVhile these models are inexact in a statistical sense, we de-

20-30% of sessions that do not transfer any data, half of theeloped a methodology for comparing their effectiveness to

remainder transfer more than 32 KB, and a sixth transfer morthat of other models. We found that in general the analytic

than 500 KB. Thus if a file transfer session is not a “failure”, models reflect the connection characteristics as well as or

9 Summary

it should not be assumed small. better than two empirical models, one corresponding to the
Teplib library [DJ91] and one corresponding to a one-month
8.4 FTP bursts (K) trace of traffic at the Lawrence Berkeley Laboratory. We also

found that wide-area connection characteristics exhigit s

As mentioned irf 8.1 above, modelin§ipdatabursts is par-  nificant variation from site to site and over time.
ticularly important. Not only does the distribution of byte ~ The essence of the argument presented in this paper is that
per burst have an extremely large tail, but because the intewhile wide-area traffic cannot be modeled exactly in a statis
connection spacing within a burst is (by definition} sec-  tical sense, we can usually construct simple analytic nsodel
onds, from a link-level (or queueing) viewpoint, there tléi  that are a good approximation. Furthermore, these analytic
difference between a burstftpdataconnections and a single models are as accurate as empirical models, meaning we can
large connection transferring the same total number ofshyte reap the benefits of using analytic models without losing ac-

Because the upper tail of this distribution is so domi-curacy in the process. We believe the methodology presented
nant, we decided to concentrate on modeling the size of thim this paper will prove beneficial for developing future ana
largest 5% of the bursts. We found that upper-tail bursfytic models and for gauging their effectiveness.
size is well-modeled using a Pareto distribution (doubly-
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