
Empirically-Derived Analytic Models of
Wide-Area TCP Connections∗

Vern Paxson
Lawrence Berkeley Laboratory and

EECS Division, University of California, Berkeley
1 Cyclotron Road

Berkeley, CA 94720
vern@ee.lbl.gov

Revised March 1, 1994

Abstract

We analyze 3 million TCP connections that occurred during
15 wide-area traffic traces. The traces were gathered at five
“stub” networks and two internetwork gateways, providing a
diverse look at wide-area traffic. We derive analytic models
describing the random variables associated withtelnet, nntp,
smtp, andftp connections. To assess these models we present
a quantitative methodology for comparing their effectiveness
with that of empirical models such as Tcplib [DJ91]. Our
methodology also allows us to determine which random vari-
ables show significant variation from site to site, over time,
or between stub networks and internetwork gateways. Over-
all we find that the analytic models provide good descriptions,
and generally model the various distributions as well as em-
pirical models.

1 Introduction

In the last few years a number of papers have appeared giving
statistical summaries of wide-area traffic on a per-protocol
basis [C89, H90, CW91, WLC92, DHS93], an important first
step to characterizing WAN traffic. The next step in under-
standing wide-area traffic is to form models for simulating
and predicting traffic.

One such model, Tcplib [DJ91, DJCME92], is now avail-
able. Tcplib is anempirical model of wide-area traffic: it
models the distribution of the random variables (e.g., bytes
transferred, duration) associated with different protocols by
using the distributions actually measured for those protocols
at an Internet site.

Ideally we would like to haveanalytictraffic models: sim-
ple mathematical descriptions rather than empirical distribu-

∗Appeared inIEEE/ACM Transactions on Networking, 2(4), pp. 316-336,
August 1994.

tions. Such models are easier both to convey and to analyze.
Two key questions are whether analytic models can describe
the diverse phenomena found in wide-area traffic as well as
empirical models, and whether either type of model faithfully
captures the essential characteristics of the traffic.

In this paper we analyze 15 wide-area traffic traces gath-
ered at seven different sites, five “stub” (end-point) networks
and two internetwork gateways. We derive analytic models
describing the random variables associated withtelnet, nntp,
smtp, and ftp connections, and present a methodology for
comparing the effectiveness of the analytic models with Tc-
plib and with another empirical model constructed from one
of the datasets. Our statistical methodology also allows us
to determine which random variables show significant vari-
ation from site to site, over time, or between stub networks
and internetwork gateways. Table 1 summarizes our main re-
sults. Overall we find that the analytic models provide good
descriptions, generally modeling the various distributions as
well as the empirical models and in some cases better. We
develop each of the findings in the remainder of the paper.

Below, § 2 presents an overview of the traces used in the
study, and§ 3 gives a discussion of our statistical method-
ology. § 4 summarizes the models we developed and evalu-
ates their effectiveness. Readers interested in particular pro-
tocols will find more detailed summaries and discussions in
§ 5 through§ 8.

A longer, preliminary version of this paper is also available
[P93]. In the remainder of this paper we note where, in the
interests of brevity, we have relegated details to that report
instead.

2 Overview of Network Traffic Traces

To develop and then evaluate our models we acquired a num-
ber of traces of wide-area traffic. Our main data were from
seven month-long traces of all wide-area TCP connections
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Random variables associated with wide-area network connections can be described as well
by analytic models as by empirical models.
When using either type of model, caution must be exercised due to frequent discrepancies
in the upper 1% tails.
Network traffic varies significantly, both over time and moreso from site-to-site, not only
in traffic mix but in connection characteristics. We believethis variation is the basis for
the success of the analytic models; there is enough variation that any model, empirical or
analytic, must be a somewhat rough compromise.
The number of data bytes in bulk-transfer traffic (ftpdata, smtp, andnntp) is best modeled
using log-normal distributions.
Bulk-transfer traffic is not strongly bidirectional; the responses to bulk transfers show little
variation relative to the variation in the size of the transfer.
The ratio between bytes sent by the computer-side of atelnetconnection and bytes sent by
the user is about 20:1.
Of ftp sessions that are not “failures” (no data transferred), half transfer more than 32 KB,
and a sixth transfer more than 500 KB.
The upper tail offtp “bursts” (§ 8.4) is so large that 2% of the bursts account for 50-80% of
all the ftp data bytes.

Table 1: Major Findings

between the Lawrence Berkeley Laboratory (LBL) and the
rest of the world. With the help of colleagues we also were
able to study traces from Bellcore, the University of Califor-
nia at Berkeley, the University of Southern California, Dig-
ital’s Western Research Laboratory, the United Kingdom–
United States academic network link, and traffic between the
coNCert1 network and the rest of the world. We discuss the
general characteristics of each of these datasets in turn and
then provide summaries of their TCP traffic.

2.1 The LBL traces

All off-site communication at LBL funnels through a group
of gateways that reside on a network separate from the rest
of the Laboratory. We recorded our seven LBL traces using
thetcpdumppacket capture tool [JLM89] running the Berke-
ley Packet Filter [MJ93]. We used atcpdumpfilter to capture
only those TCP packets with SYN or FIN flags in their head-
ers, greatly reducing the volume and rate of data (but at the
cost of no analysis of intra-connection dynamics). From SYN
and FIN packets one can derive the connection’s TCP proto-
col, connection duration, number of bytes transferred in each
direction (excluding TCP/IP overhead), participating hosts,
and starting time.

Table 2 summarizes the LBL datasets. The second column
gives the total number of network packets received by the ker-
nel for each dataset, along with the number of days spanned
by the entire trace.2 Each dataset was then trimmed to span

1Communications for North Carolina Education, Research and
Technology.

2The statistics missing for the LBL-2 dataset are due to abnormal termi-

Dataset Packets (days) Start End

LBL-1 124M (36) 01Nov90 01Dec90
LBL-2 ? 28Feb91 30Mar91
LBL-3 207M (47) 07Nov91 07Dec91
LBL-4 210M (36) 19Mar92 18Apr92
LBL-5 337M (35) 24Sep92 23Oct92
LBL-6 447M (31) 24Feb93 26Mar93
LBL-7 560M (32) 16Sep93 15Oct93

Table 2: Summary of LBL Datasets

exactly 30 days. Very few packets were dropped by the trac-
ing program (always< 15 per million).

Since the LBL datasets span three years at roughly regular
intervals, they provide an opportunity to study how a site’s
wide-area traffic evolves over time. Such a study is reported
in [P94].

2.2 The additional traces

As mentioned above, a number of colleagues generously pro-
vided access to traffic traces from other sites. The authors
of [DJCME92] provided their traces of traffic from Bell-
core, U.C. Berkeley, and U.S.C.; Jeffrey Mogul provided
traces from DEC-WRL; Wayne Sung provided traces of traf-
fic to/from the coNCert network in North Carolina; and the
authors of [WLC92] provided their traces of the UK–US aca-

nation of the tracing program; this termination, however, did not imply any
extra-ordinary loss of packets during the 30-day study period.
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demic network. The first four traces all originate from “stub”
(endpoint) sites, while the latter two represent inter-network
traffic (though the authors of [WLC92] characterize the UK
side of the UK–US traffic as similar to a large stub site since
it comprises only a few hosts).

Site Starting Time Duration

Bellcore (BC) Tue 14:37 10Oct89 13 days
UCB (UCB) Tue 10:30 31Oct89 24 hours
USC (USC) Tue 14:24 22Jan91 26 hours
DEC (DEC-1) Tue 16:46 26Nov91 24 hours
DEC (DEC-2) Wed 17:55 27Nov91 24 hours
DEC (DEC-3) Mon 15:02 02Dec91 24 hours
coNCert (NC) Wed 09:04 04Dec91 24 hours
UK-US (UK) Wed 05:00 21Aug91 17 hours

Table 3: Summary of Additional Datasets

The additional datasets are summarized in Table 3. Next
to the site name we give in parentheses the abbreviation we
will use to identify the dataset. In general the traces had no
packet drops or an unknown number of drops (see [P93] for
specifics).

2.3 Filtering of non-WAN traffic

Before proceeding with our analysis we filtered out non-
wide-area traffic from the datasets: internal and transit traffic.
The details are given in [P93]. In addition, we removed from
the LBL datasets all traffic between LBL and U.C. Berkeley3.
While traffic with the University forms a significant fraction
of LBL’s off-site traffic (20-40% of all connections), it is
atypical wide-area traffic due to the close administrative ties
and the short, high-speed link between the institutions.

2.4 Traffic overview

We now turn to characterizing the different datasets in or-
der to gauge their large-scale similarities and differences. Of
previous traffic studies, only [FJ70], the related [JS69], and
[DJCME92] compare traffic from more than one institution.
The first two papers found significant differences between
their four traffic sites, which they attributed to the fact that the
different sites engaged in different applications and had dif-
ferent hardware. The authors of [DJCME92] found that their
three sites (which correspond to the USC and UCB datasets
in this paper, as well as part of the BC dataset) had quite dif-
ferent mixes of traffic, but that the characteristics of any par-
ticular protocol’s traffic were very similar.

Table 4 shows the “connection mix” for each of the
datasets. The second column gives the total number of con-
nections recorded, and the remaining columns the percentage

3Includingnntp, unlike [P94], which keeps thenntp traffic.

of the total due to particular TCP protocols. The mixes for
BC, UCB, and USC differ from those given in [DJCME92]
because the latter reportsconversationmixes, where mul-
tiple related connections have been combined into single
conversations.4

From the table it is immediately clear that traffic mixes for
all protocols vary substantially, both from site-to-site and over
time (for LBL). Some of the variation in the mix is due to pe-
riodic traffic. For example, the large spike in the LBL-4finger
connections, the large jump inother connections at LBL-3,
the increasing proportion offtpctrl traffic (i.e., the interactive,
control side of anftp session), and the large number oftelnet
connections in LBL-7, are all due to periodic traffic. [P94]
explores this phenomenon further.

Another factor affecting traffic mix over time (as seen in
the LBL datasets) is the large variance of thenntpmix, which
is due to changes in LBL’snntppeer servers and differences
in the rate at which new network news arrives. Again, see
[P94] for a discussion.

Regarding the DEC datasets, DEC has a “firewall” in place
which prohibits traffic other thannntp, smtp, and ftp, and
domain. The little remaining traffic due to other protocols
originated on the outside of the firewall. Finally, the DEC-2
dataset includes part of the Thanksgiving holiday, accounting
for the depressed number of connections.

Table 5 shows the total number of data megabytes trans-
ferred (in either direction) for each of the datasets, alongwith
the “byte mix”—the percentage of the total bytes due to each
protocol. The LBL datasets show striking growth over time,
explored further in [P94].

We see immediately that, much as with the connection mix,
the byte mix also varies considerably both from site-to-site
and over time. Some sites (the first three LBL datasets, BC,
NC, and UK) are wholly dominated byftp traffic, while oth-
ers (the last three LBL datasets, UCB, and the DEC datasets)
show more of a balance betweennntpandftp traffic; and USC
is dominated bynntp traffic. For some sites (UCB, DEC),
smtptraffic contributes a significant volume, and for others
(LBL, USC), traffic due toX11 andshell far outweighs the
almost negligible proportion of connections due to those pro-
tocols (see Table 4).

We now turn to the development of the statistical method-
ology that we will use to characterize the individual connec-
tions making up the data shown in Tables 4 and 5.

3 Statistical Methodology

As noted in [P89], one weakness of many network traffic
studies to date has been in their use of statistics. Often the
studies report only first or perhaps second moments, and dis-
tributions are summarized by eye. Frequently they omit dis-

4The authors also used twenty-minute silences to delimit theend of con-
nections, instead of FIN packets.
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Dataset # Conn nntp smtp ftpdata ftpctrl telnet rlogin finger domain X11 shell other

LBL-1 146,209 40 26 16 3 4 1 4 4 0.2 0.5 0.5
LBL-2 170,718 34 30 16 3 4 1 5 4 0.2 0.2 0.7
LBL-3 229,835 20 33 17 3 4 1 4 11 0.4 0.3 5
LBL-4 449,357 16 21 15 3 2 1 32 5 0.4 0.2 4
LBL-5 370,397 14 34 22 5 4 1 6 8 0.9 0.2 5
LBL-6 528,784 11 40 23 6 3 0.8 5 5 0.7 0.4 4
LBL-7 606,487 11 34 18 4 15 0.9 4 5 0.9 0.4 6
BC 17,225 2 49 30 4 4 2 5 0.1 0.1 0.5 2
UCB 37,624 18 45 18 2 2 0.9 12 0.1 0.02 0.2 0.8
USC 13,097 35 27 14 2 3 1 11 2 0.09 0.3 3
DEC-1 72,821 33 35 11 1 0.08 0.05 0.1 20 0 0.001 0.8
DEC-2 49,050 38 22 8 1 0.04 0.06 0.2 29 0 0.02 1
DEC-3 73,440 26 43 9 1 0.07 0.07 0.2 19 0 0.003 1
NC 62,819 1 42 30 4 5 0.3 5 0.8 0.03 0.3 5
UK 25,669 0.02 42 39 7 4 0.4 0.9 1 0.02 0.02 4

Table 4: Percentage Connection Mixes for All Datasets

Dataset MB nntp smtp ftpdata ftpctrl telnet rlogin finger domain X11 shell other

LBL-1 2,852 19 5 65 0.2 6 0.8 0.1 1 3 1 0.1
LBL-2 3,785 14 6 67 0.2 5 1 0.1 0.9 1 3 2
LBL-3 6,710 7 4 67 0.1 4 1 0.1 0.7 3 11 1
LBL-4 11,398 21 4 52 0.1 4 0.9 0.0 0.6 6 10 1
LBL-5 19,269 17 3 57 0.1 3 0.7 0.1 0.4 11 8 1
LBL-6 22,076 22 5 57 0.2 2 0.7 0.1 0.5 8 3 0.8
LBL-7 30,910 25 3 51 0.1 2 0.7 0.0 0.4 8 8 1.8
BC 346 4 8 78 0.3 4 2 0.2 0.1 0.1 2 2
UCB 318 23 16 50 0.3 4 3 0.9 0.0 0.2 0.6 1
USC 362 62 3 18 0.1 2 0.9 0.3 0.3 5 7 2
DEC-1 981 43 17 38 0.2 0.1 0.2 0.0 0.7 0.0 0.0 1
DEC-2 819 54 14 30 0.1 0.0 0.2 0.1 0.6 0.0 0.0 2
DEC-3 1,379 52 16 30 0.1 0.1 0.2 0.1 0.6 0.0 0.0 1
NC 1,553 9 8 68 0.3 5 0.3 0.1 0.3 0.1 0.3 8
UK 625 0.5 11 80 0.4 3 0.5 0.0 0.3 0. 1 0.5 4

Table 5: Percentage Byte Mixes for All Datasets

cussion of dealing with outliers, and rarely do they report
goodness-of-fit methodologies and results. The few cases
where goodness-of-fit issues have been discussed are some-
what unsatisfying (the authors of [FJ70] developed their own,
apparently never-published goodness-of-fit measure; and in
our own previous work [P91] we used the Kolmogorov-
Smirnov goodness-of-fit test as a goodness-of-fitmetric, an
inferior choice). We endeavor in this work to address these
shortcomings and to present a general statistical methodol-
ogy that might serve future work as well.

3.1 Definitions and conventions

We will use a number of terms and concepts taken from statis-
tics. In this section we define the terms and conventions used
in the remainder of the paper.

3.1.1 Random variables

For our purposes, we define arandom variableas a quantity
that each time it is measured takes on one of a range of values.
Particular values occur with different probabilities. We refer
to each separate measurement as aninstanceof the random
variable.

An example of a random variable is the number of bytes
transferred during anftp session. Another (and closely re-
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lated) random variable is the logarithm of this value.
By convention,X represents a generic random variable and

xi theith instance ofX . Unless otherwise stated, we assume
there are a total ofn instances.

3.1.2 Models

We define amodelof a random variable as a hypothesized dis-
tribution for what values the random variable might take, and
with what probability. This definition of model is quite sim-
ple, as it assumes that instances of the random variable are
independent and identically distributed. Oftencorrelations
between instances of a random variable are very important,
meaning that instances of the random variable might be iden-
tically distributed, but notindependent. For example, previ-
ous work has found that largeftpdatabursts tend to arrive in
clusters [PF94]. While incorporating correlations into mod-
els can be very important, doing so is beyond the scope of our
study, so we limit ourselves to simple correlation summaries
(§ 3.9).

Another important aspect of modeling network connec-
tions is modeling the connectionarrival process. Here we
limit ourselves to briefly describing arrival phenomenon such
as periodicity. See [PF94] for a more detailed look at the con-
nection arrival processes.

In this paper we distinguish betweenempirical models
and analytic models. An empirical model, such as Tcplib
[DJ91, DJCME92], describes a random variable’s distribution
based on the observed distribution of an earlier sample of the
variable. For example, the Tcplib models were constructed
from the UCB dataset. An analytic model, on the other hand,
attempts to capture a distribution in a simple mathematical
form. We discuss the advantages of each type of model in
§ 3.4 below.

For each of the random variables modeled in this paper, we
examine three models, one analytic and two empirical. The
empirical models were constructed from the UCB and LBL-2
datasets. We refer to these three models asA, U , andL,
respectively. As explained above, theU model reflects the
behavior of Tcplib.

To know if a model is truly predictive, we must test it on
data other than that used to develop the model. To this end,
we developed all of our analytic models using the first half of
the LBL-1 through LBL-4 datasets. We refer to these below
as the “test datasets”. We then tested the models against the
second half of these LBL datasets along with the entirety of
the remaining datasets, except for UCB and LBL-2, since we
used these to construct theU andL empirical models.

3.1.3 Distributions

We define thedistributionof a random variable as:

F (x) = P (X ≤ x)

That is,F (x) is the probability that an instance of the random
variableX takes on a value less than or equal tox.

For our analytic models we draw upon a number of dis-
tributions commonly used in statistics. We assume that the
reader is familiar with the normal and exponential distribu-
tions. Two other distributions we will use are theextreme
distribution:

F (x) = exp

[

− exp

(

− (x − α)

β

)]

(1)

and the doubly-exponentialParetodistribution:

F (x) = 1 − (k/x)α. (2)

The Pareto distribution is noteworthy for having a very heavy
upper tail, an important property when consideringself-
similarity in network traffic [LTWW93].

We will be using variants of the normal and extreme dis-
tributions calledlog-normaland log-extreme; these are dis-
cussed in§ 3.2 below.

3.1.4 Estimating parameters

All of the distributions mentioned in the previous section are
parameterizedusing one or more constants. A normal distri-
bution is parameterized by a mean,x̄, and a standard devia-
tion, σx; an exponential distribution, by a rateλ; an extreme
distribution, byα andβ; and a Pareto distribution, byα and
k (k is the lower bound ofX).

Sometimes when using an analytic model, the parameter-
ization constants are known in advance. Other times, they
must beestimatedfrom the same data that we are trying to
describe using the analytic model. For a normal distribution,
the mean is estimated using:

ˆ̄x =

n
∑

i=1

xi/n (3)

and the standard deviation using:

σ̂x =

√

√

√

√

n
∑

i=1

(xi − ˆ̄x)2

(n − 1)
(4)

We often use thê̄x andσ̂x estimates to evaluate a distribution
even if it is not normal.

For an exponential distribution,

λ̂ = 1/ˆ̄x.

For an extreme distribution,α andβ can be estimated using
an iterative method [DS86], andα andk for a Pareto distri-
bution using a simple least-squares technique [CM80].

When estimating parameters, we will generally drop the
“hat” notation (e.g., usēx instead ofˆ̄x). An exception is
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when discussing theλ2 discrepancy measure (§ 3.5 below),
where the fact that we are only estimating its value becomes
an important consideration.

Finally, sometimes when estimating parameters we want to
ignore part of the distribution we are using to compute the es-
timation. For example, below we model the number of bytes
sent by atelnetresponder as a log-normal distribution, but the
fit between the model and the dataset is only good for the up-
per 80% of the distribution (see§ 5.3). If we computê̄x from
the entire dataset’s distribution, we will spoil the upper-80%
fit because of the disagreement between the model and the
distribution in the lower 20%. Instead, wecensorthe distri-
bution by ignoring its lower 20%, and then estimateˆ̄x andσ̂x

from the remainder using methods given in [DS86].

3.1.5 The notion of “scaling”

When possible, we would like to avoid having to estimate
parameterization constants for our models (discussed in the
previous section). For example, consider the problem of
modeling the bytes transferred during anftp session. Sup-
pose Model-1 describes the distribution of bytes transferred
as log-normal with̄x = 15 andσx = 4, but Model-2 sim-
ply describes the distribution as log-normal, with a note that
the values of̄x andσx must be estimated from each dataset to
which we want to apply the model. We would prefer Model-1
because it tells usin advancewhat to expect; Model-2 only
tells us the generalshapeof what to expect, but not the exact
quantities. We can use Model-1 to make quantitative predic-
tions of what we will measure in the future, but Model-2 can
only make qualitative predictions.

We will refer to models like Model-1 asunscaled, and
those like Model-2 asscaled. In general, we use the term
scaling to refer to tailoring a model to fit a dataset by esti-
mating parameters of the model from the dataset. If we find
that an unscaled model gives us good fits to many different
datasets, then we have reason to believe that the model cap-
tures an “invariant” distribution. Such models are particularly
powerful because they allow confident prediction of future
distributions. Sometimes, however, a scaled model gives us
significantly better fits to different datasets than an unscaled
version of the model. In this case, the distribution’s general
shape (e.g., log-normal) might be invariant, but the particulars
of the shape vary. Scaled models are less powerful than un-
scaled models because they allow less complete predictions,
but are still valuable because with them we can explore pos-
sible behavior given separate hypotheses as to the values of
the model’s parameters.

In § 4 below we discuss how we chose whether to use the
unscaled or scaled version of each of our models.

While estimating parameters applies only to analytic mod-
els, we can perform an analogous operation on empirical
models. Suppose we are modeling a random variableX us-
ing an empirical distributionY . If x̄ is significantly different

from ȳ, orσx fromσy, then there is little hope that the empiri-
cal model faithfully describesX ’s distribution. But it may be
that if Y were adjusted to have the same mean and standard
deviation asX , then it would also describeX ’s distribution
well. This adjustment is easy to make. If we define a new
empirical distribution:

Y ′ =
σx

σy
(Y − ȳ) + x̄ (5)

thenY ′ keeps the same general shape asY (since we have
merely applied a linear transformation toY ) but has the same
mean and standard deviation asX . When discussing empiri-
cal models, we will use the termscalingto refer to the trans-
formation given in Equation 5.

When developing our unscaled analytic models, we picked
for each model parameter a round value lying somewhere in
the range the parameter exhibited in the LBL test datasets (see
[P93] for details regarding the parameter ranges). We chose
round values as reminders that there is in general considerable
range in the possible values of the parameters, and that our
choice was therefore not particularly exact.

3.1.6 Comparing estimates

Suppose we have two estimated quantities,â and b̂, and we
want to compare them to see which is smaller. Because the
quantities are estimates, we would rather not make the com-
parison on the basis of testing whetherâ < b̂, since perhaps
the error in estimatinĝa andb̂ is large enough that the com-
parison will be misleading. We can make a more meaningful
comparison if we have a quantitative possible-error associ-
ated withâ andb̂ (this becomes relevant in§ 3.5 below).

A natural measure of possible error in an estimate is a stan-
dard deviation. Suppose in addition toâ andb̂ we have stan-
dard deviationsσa andσb, which quantify the error in the
estimates. Then we can define a comparison operator<σ as
follows:

â <σ b̂ iff â + σa < b̂ − σb

Using this comparison operator, we will finda less than
b only when the difference between̂a and b̂ is greater than
what we can account for by the uncertainty in their estimates.
Similarly, we definêa >σ b̂ iff b̂ <σ â.

If neither â <σ b̂ nor b̂ <σ â then we say thata andb are
unordered, rather than “equal”, to stress that one of them may
in fact be smaller than the other, but we are unable to say so
conclusively.

3.2 Logarithmic transformations

In this and the next section we discuss how we transformed
the data prior to analysis, including dealing with outliers.

When analyzing data drawn from distributions unbounded
in one direction and bounded in the other, often it helps to
re-express the data by applying a logarithmic transformation
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[MT77]. We found that for many of our models logarithmic
transformations were required to discern patterns in the large
range of values in the data. For convenience we developed
and tested our models using alog2 x transformation, which
we will sometimes write aslg x.

If the random variableY = log X has a normal distribu-
tion, thenX is said to have alog-normaldistribution. Sim-
ilarly, if Y has an extreme distribution,X has alog-extreme
distribution. (We will often write these distributions as
log2-normal andlog2-extreme as a reminder that all loga-
rithms in this paper are taken base 2).

With a random variableX that has a large range of val-
ues, the computed mean (Equation 3) and standard devia-
tion (Equation 4) are greatly skewed by the largest of thexi.
The mean and standard deviation of the transformed quantity
Y = log2 X do not have this problem, though, since the log-
arithmic transformation greatly reduces the range of values.
With these types of random variables, it is generally more
meaningful to analyzēy andσy thanx̄ andσx.

We can then attach interpretations to the quantities2ȳ

and2σy . In particular, thegeometric meanof X is defined
as:

Geometric mean(X) = n

√

√

√

√

n
∏

i=1

xi (6)

and it is easy to show that this is the same as2ȳ. This equiv-
alence between the geometric mean and2ȳ suggests an anal-
ogous definition for thegeometric standard deviation, which
we define as:

Geometric std. dev.(X) = 2σy (7)

If Y is normally distributed, thenσy characterizes the range
of Y . For example, about 68% of the distribution ofY will
reside in the rangēy ± σy . We then can interpret the geomet-
ric standard deviation ofX as giving an analogous range for
X . If X is log-normally distributed, then about 68% of the
distribution ofX resides in the range2ȳ±σy . More explicitly:

(
2ȳ

2σy

) ≤ 68% of the range ofX ≤ (2ȳ × 2σy) (8)

In the tables summarizing the different protocols below,
when we report quantities such asx̄ andσx, they reflect2ȳ

and2σy ; that is, they give values computed using Equations 6
and 7 and not values computed using Equations 3 and 4.
As a reminder of this fact, we precede allσx values with
a “×” symbol, in keeping with their interpretation given in
Equation 8. So, for example, a value ofσx = ×8 indicates
σy = σlg x = lg 8 = 3.

3.3 Dealing with outliers

When applying a logarithmic transformation to non-negative
data, one immediately runs into the problem of what to do

with data values equal to zero, since after a logarithmic trans-
formation these become−∞. Fortunately for us, in our data
such values are rare, and confined to values representing num-
ber of data bytes transferred, so we decided to eliminate any
connections in which the number of bytes transferred in ei-
ther direction was zero. The appendices of [P93] report the
number of connections thus eliminated for each dataset; in
the worst case they comprised 0.5% of the total connections.

Some of our datasets also exhibited values so anomalously
large that we removed their associated connections from our
study. These outliers were much rarer than those discussed
above. Often the values were clearly due to protocol errors
(for example, connections in which the sequence numbers in-
dicated232 − 1 bytes transferred). Again, see [P93] for a
discussion of these outliers.

Finally, we restricted our analysis to datasets with at least
100 connections of interest, to prevent small, anomalous
datasets from skewing our results.

3.4 Empirical vs. analytic models

In this section we look at the relative advantages of empirical
and analytic models, which motivates our subsequent pursuit
of analytic models.

The main advantage of empirical models is that they are
known to fully reflect a portion of Real World behavior. If
there are consistent spikes in a distribution or even subtlede-
viations from “smooth” behavior, the empirical model will
capture these nuances if they were present in the dataset from
which the model was derived. An analytic model might easily
miss these characteristics.

There are, however, several advantages of analytic models
compared to empirical models:

• analytic models are often mathematically tractable,
lending themselves to greater understanding;

• analytic models are very concise and thus easily com-
municated;

• with an analytic model, different datasets can be easily
compared by comparing their corresponding estimates
for the analytic model’s parameters (§ 3.1.4).

While these advantages are certainly attractive, the crucial
issue remains whether an analytic model truly captures the
essence of the quantity measured by a random variable. An
empirical model perfectly models the dataset from which it
was derived; the same cannot be said of an analytic model. If
the analytic model strays too far from reality, then while the
above advantages remain true, the model no longer applies to
the underlying phenomena of interest, and it becomes useless
(or, even worse, misleading, if one does not recognize that the
model is inaccurate).

The key question then is how to tell that an analytic model
accurately reflects reality as represented by a given dataset.
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One approach is to require that the distribution predicted
by the analytic model and that actually measured from the
dataset be indiscernable in a statistical sense. A large body of
literature examines techniques for testing for such statistical
exactness (an excellent reference is [DS86]).

In our earlier work we tried to find statistically exact mod-
els but failed (see [P93] for details). This failure, however,
is not surprising: it is well known in the statistics commu-
nity that large datasets almost never have statistically exact
descriptions [M74].5 The next section addresses how to deal
with this failure.

3.5 Measuring discrepancy

Even if a model is not statistically exact, we can still attempt
to gauge howclose it is to the distributions it endeavors to
describe. To do so, we turn to techniques for measuringdis-
crepancy.

One widely-used technique for doing so is based on a mod-
ified χ2 test [M84]. To understand it, we first review theχ2

test itself.
Suppose we have observedn instances of a random vari-

ableY which we want to model using another model distri-
butionZ. We partition the distributionZ into N bins. Each
bin has a probabilitypi associated with it, which is the pro-
portion of the distributionZ falling into theith bin. LetYi be
the number of observations ofY that actually fell into theith
bin. Then one computes the statistic:

X2 =

N
∑

i=1

(Yi − npi)
2

npi

Theχ2 test for a statistically-exact fit involves testing where
theX2 statistic falls in the range of a correspondingχ2 dis-
tribution (the exact details of the comparison are secondary to
understanding the remainder of this section).

Theχ2 discrepancy measure is then simplyX2/n. This is
essentially the measure used in our preliminary work [P93].
There is, however, a problem with usingX2/n as a discrep-
ancy measure [PJ90]. In general, the optimal value ofN (the
number of bins) to use when computingX2 varies with the
size ofY and its standard deviationσy (see§ 3.6 below). The
X2/n discrepancy measure, however, cannot be used to com-
pare discrepancies for different values ofN .

Pederson and Johnson [PJ90] describe a related discrep-
ancy measure,λ2, which corrects theX2/n measure so that
λ2 can be used to compare discrepancies for different val-
ues ofN . They also give a way to computeσλ, the stan-
dard deviation associated with estimatingλ̂2 for a particular
datasetY and model distributionZ. Knowingσλ lets us use

5As well as giving a general discussion of this problem, [M74]also ana-
lyzes an experiment in which 26,306 throws of 12 dice failed aχ2 test for an
exact fit to the predicted binomial distribution.

the<σ operator (§ 3.1.6) for comparing estimated discrepan-
cies. Given two models,Z1 andZ2, we can then state in a
meaningful way whetherZ1 is a better description ofY than
Z2 (if we find thatλ2

Z1
<σ λ2

Z2
), or thatZ2 is better than

Z1 (λ2
Z2

<σ λ2
Z1

), or that the two models areunordered,
indicating that they are roughly equal.

We now summarize how to computeλ2 for assessing the
discrepancy between a random variableY and a model dis-
tributionZ. First, letEi = npi be the expected count for the
ith bin, andDi = Yi − Ei be the discrepancy in theith bin.
Then define:

K =

N
∑

i=1

Di

Ei
. (9)

(Note thatK is quite similar toX2 except the numerator of
the summation is not squared.) We then define:

λ̂2 =
X2 − K − df

n − 1
,

where “df” is the number ofdegrees-of-freedomin computing
X2 andK. For our purposes,df = N −1−Est, where “Est”
is the number of parameters estimated fromY (0 for unscaled
models, 1 or 2 for scaled models; see§ 3.1.4-3.1.5 above).

The variance associated with this estimate ofλ2 is
given by:

v̂(λ̂2) = [2df + 4nλ̂2 + 4nλ̂4 + 4T ]/n2,

where:

T =
N

∑

i=1

[D3
i − 2DiEi +

5

2
D2

i +
3

2
(Di + Ei)]/E2

i .

([PJ90] states that this expression forT is not quite exact
when the parameters ofZ are estimated fromY , but they
found in practice the correction makes little difference.)

The standard deviation associated with estimatingλ2 is
then:

σλ =

√

v̂(λ̂2).

3.6 Considerations when measuring discrep-
ancy

There are a number of considerations when evaluating models
using a discrepancy measure such asλ2: how to pick the num-
ber of bins to use; how to capture significant discrepancies in
the distribution’s tails; what to do about significant “spikes”
that fall into a single bin; and how to deal with dataset values
not falling into any of the bins. We address each of these in
turn.

When computingλ2, we are forced to make a choice as to
how many bins to use (i.e., the value ofN in Equation 9).
If N is too small then we will be measuring discrepancies
only on a gross scale, and similarly ifN is too large then we
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will be sensitive to quite small discrepancies which perhaps
are of no real interest. Fortunately, statistics provides some
guidance. Scott has shown that to minimize the mean-square
error in approximating a distribution using fixed-sized bins,
the bin-width should be:

w = 3.49σ̂xn−1/3 (10)

whereσ̂x is the estimated standard deviation of the distribu-
tion (Equation 4),n is the number of instances in the distri-
bution, andw the bin-width [S79]. Given the range of the
distribution, it is straightforward to compute the value ofN
to use such that each bin has widthw. Fortunately, the value
of w is not strict; any value close tow provides a satisfactory
estimate of the distribution, so we roundedN to the nearest
multiple of 5.

One important point we found, though, was to compute
σx after first applying the logarithmic transformation to
X (§ 3.2). That is, we used forσx the geometric standard-
deviation (Equation 7) and not the value given in Equation 4.
In general, our untransformed data had such large ranges that
using the untransformed values ofX in Equation 10 resulted
in a very large number of bins.

One other point is that when using Equation 10 to compute
N for an empirical model, we had to decide between comput-
ingw usingσ̂x andn from the dataset being modeled, or from
the empirical model. We chose whichever had the smallern.

The number of bins tested ranged from 5 to 240; the aver-
age was aroundN = 35.

A related consideration with using theλ2 discrepancy mea-
sure is that when using constant-sized bins the measure does
not give any particular emphasis to the distribution’s tails,
which sometimes are the most important aspect of a distri-
bution. We address this consideration in§ 3.8 below.

A third consideration is that the discrepancy measure does
not inform us of interesting, localized spikes or clumps.
Within a single bin we may miss considerable departure from
a model; the danger is particularly acute when testing analytic
models, since their continuous nature does not usually allow
for clumping. Empirical models, on the other hand, may ex-
actly predict the clumping.

We do not believe this consideration to be major because
in our studying of the LBL test datasets to form our models
we rarely encountered consistent clumping (we make men-
tion below of those occasions when we did).

A final consideration is that since an empirical model has
bounds on the range of values it allows for, the tested dataset
may have values outside the range of any bin. We removed
such values from the dataset prior to computing its fit to the
model. We did, however, include these values when evaluat-
ing the model’s tail discrepancy (§ 3.8).

3.7 Testing for significant differences

Theλ2 discrepancy measure and the<σ operator allow us to
determine whether, given two datasets and a model, the model
is significantly better at modeling one of the datasets than the
other. They also allow us to determine, given one dataset and
two models, which of the models (if either) is significantly
better at modeling the dataset.

In this section we build on these techniques to develop
methods for comparing datasets and models in a general
sense. The first method allows us to determine with high con-
fidence whether a given model is better at describing one set
of datasets than it is at describing a second set. The second
method allows us to determine with high confidence whether
one model is better than another model at describing a set of
datasets.

3.7.1 Method I

In this section we describe Method I, a method for determin-
ing whether a given model is significantly better at modeling
one set of datasets than at modeling another.

Suppose we have a modelY and two sets of datasets,D1

andD2, with m andn datasets in each set, respectively. For
example,Y might be a model of the number of bytes trans-
ferred during ansmtpconnection,D1 the set of LBL datasets,
andD2 the set of non-LBL datasets. We would like to deter-
mine whether modelY does substantially better at modeling
D1 than at modelingD2, because we suspect thatsmtpcon-
nections may show considerable variation between network
sites. If our suspicion is correct, and if modelY was derived
from some of the LBL datasets, then we would expect to find
thatY is significantly better at modelingD1 thanD2.

For each dataset inD1 andD2 we can compute the corre-
sponding value ofλ2

Y , the discrepancy between the model and
the dataset. It is not obvious, though, how to take this collec-
tion of discrepancies and reduce it to a simple statement that
Y does or does not appear to modelD1 significantly better
thanD2.

The approach we take is as follows. We assume the null
hypothesis thatY performs equally well when modelingD1

as when modelingD2.6 We compare each datasetd1 in D1

against each datasetd2 in D2. Let l be the number of compar-
isons for which we foundd1 <σ d2, g the number of times
d1 >σ d2, andu the number of times two datasets were un-
ordered. There arem datasets inD1 andn in D2, so we have
l+g+u = mn. We now restrict ourselves to just thet = l+g
comparisons that were not unordered. If the null hypothesis
is correct, then the probability that int tests we would findl
instances for whichd1 <σ d2 is:

6Here “equally well” means that given datasetsd1 from D1 andd2 from
D2, if Y models one better than the other (in a<σ sense), then the proba-
bility that it modelsd1 better thand2 is 1/2.
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P(In t trials,d1 <σ d2 occursl times) =

(

t
l

)

2−t

We can easily generalize the above to find the probabil-
ity that d1 <σ d2 occurs at leastl times, rather than exactly
l times. For Method I, then, we pick a value ofk such that,
given the null hypothesis, the probability thatd1 <σ d2 oc-
curs at leastk times is≤ 5%. We then test whether indeed
d1 <σ d2 occursk or more times. If so, then with 95% con-
fidence we declare that the null hypothesis is incorrect and
that Y does in fact modelD1 better thanD2. If, however,
d1 <σ d2 occurs fewer thank times, then the test is inconclu-
sive, and we refrain from ruling out the null hypothesis that
Y is equally good (or bad) at modeling bothD1 andD2.

One concern when applying Method I is: what ifu, the
number of timesd1 and d2 were unordered, is large rela-
tive to l + g? For example, ifu = 95, l = 5, andg = 0,
then Method I will declare thatY modelsD1 better thanD2,
even though it might be more reasonable to say that it basi-
cally models the two equally well. For our purposes, this did
not turn out to be a problem: when Method I (or Method II;
see below) declared a significant difference, we always had
u < 4

3
(l + g).

3.7.2 Method II

In this section we describe Method II, a method for determin-
ing whether one of two models is significantly better than the
other at modeling a given set of datasets. It is quite similarto
Method I.

Suppose we have a setD of n datasets, and two models,
Y andZ. For example,D might be all of the datasets listed
in Tables 2 and 3,Y might be an analytic model for bytes
transferred in ansmtpconnection, andZ an empirical model
of the same random variable. We would like to determine
whether either of the models is significantly better than the
other for describingD.

For each dataset inD we can compute two discrepancy
values,λ2

Y andλ2
Z . We want to take this collection of dis-

crepancies and reduce it to a statement thatY or Z (or nei-
ther) appears significantly better than the other at modeling
the datasets inD.

We take a similar approach to that described for Method I.
We assume the null hypothesis thatY andZ perform equally
well when modelingD. Now, however, for each of then
datasets inD, we compare the corresponding values ofλ2

Y

andλ2
Z . Let l be the number of timesλ2

Y <σ λ2
Z , g the num-

ber of timesλ2
Y >σ λ2

Z , andu the number of times the com-
parison is unordered. We consider just the comparisons that
were not unordered. Lett = l + u. If the null hypothesis is
correct, we have:

P(In t trials,λ2
Y <σ λ2

Z occursl times) =

(

t
l

)

2−t

We again generalize the above to find the probability that
λ2

Y <σ λ2
Z occurs at leastl times, and for Method II pick a

corresponding value ofk such that, given the null hypothe-
sis, the probability thatλ2

Y <σ λ2
Z occurs at leastk times is

≤ 5%. As before, this test, if successful, lets us state with
95% confidence that the null hypothesis is incorrect and that
Y does in fact modelD better thanZ does. If the test is incon-
clusive, however, we refrain from ruling out the null hypoth-
esis thatY andZ are equally good (or bad) at modelingD.

3.7.3 A note on Methods I and II

One important point regarding Method I and Method II is that
they are fairly conservative. Their use of both the<σ compar-
ison and 95% confidence levels assures that differences they
uncover are very likely to be significant. It is quite possible
for the tests to fail to declare two unequal models as being
different, but it is not likely that they will erroneously declare
two equal models as being different.

3.8 Evaluating deviation in the tails

Often a distribution’s behavior in its lower or upper tail can
be crucially important. For example, as mentioned in Table 1
and developed in§ 8.4 below, for the distribution of bytes
in ftpdata“bursts”, the upper 2% tail is so heavy that large-
though-rare bursts will often completely dominateftp traffic.
As discussed in§ 3.6 above, theλ2 discrepancy measure does
not give any special weight to agreement with a distribution’s
tails. In this section we present a simple way of qualitatively
evaluating how well a model captures a distribution’s tails.

Suppose we test the model againstn datasets. For theith
dataset, letai be the number of instances predicted to lie in
a given tail, andbi be the number actually found to do so.
Define:7

ξi = log2

ai

bi

Positive values ofξi indicate that the modeloverestimatesthe
tail, and negative values that itunderestimatesthe tail.

With this definition, an underestimate by a factor of two
(ai/bi = 1/2, ξi = −1) is considered just as bad as an over-
estimate by the same factor (ai/bi = 2, ξi = 1).

A value of ξi = 0 indicates that the model perfectly cap-
tures theith dataset’s tail. With this in mind, we then com-
pute:

σξ =

√

√

√

√

n
∑

i=1

ξi/n (11)

σξ then represents the standard deviation, from a mean of 0,
of the model’s accuracy in the tail. If we findσξ < 1 then the
model typically predicts the tail population within a factor of
two; we deem this “acceptable”. If1 ≤ σξ < log2 5, then the

7One problem arises when using this definition ofξi: if bi is 0 thenξi

becomes undefined. We address this problem by replacingbi with 0.5.
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model typically errs in predicting the tail by a factor between
2 and 5; we deem this “bad”. Similarly, ifσξ ≥ 5, then we
evaluate the model’s tail behavior as “very bad”.

These definitions of “acceptable”, “bad”, and “very bad”
appear quite generous; after all, one might wonder how a
model could possibly misrepresent a dataset’s tail by more
than a factor of 5. Yet it turns out that for the extreme 1%
tails, a fair number of our models are evaluated as “bad” or
“very bad”; see§ 4 below.

One final note in evaluating tails. For models describing
bytes transferred, we only evaluate the upper tails, as in these
cases disagreement in the lower tails is of little consequence,
while disagreement in the upper tails can result in large con-
nections that are megabytes too big or small. For other mod-
els we summarize both the upper and lower tails. See [P93]
for more details concerning the models’ tail-behavior.

3.9 Evaluating correlation

As noted in§ 3.1.2, it is often important to model the correla-
tions between instances of a random variable. While doing so
is beyond the scope of this paper, in§ 4 we present a simple
summary of each random variable’s correlation, computed as
follows.

The autocorrelation function(which we abbreviate as
γx(l), but do not further define here) of a random variableX
measures the degree to which instances ofX are correlated.
For a given value ofl (called the “lag”),γx(l) is a number
ranging from -1 to 1. A value ofγx(l) close to 1 indicates
that if xk, the kth instance ofX , is higher (lower) than̄x,
thenxk+l will also tend to be higher (lower). A value ofγx(l)
close to -1 indicates thatxk andxk+l are anti-correlated; ifxk

is high thenxk+l will tend to be low, and vice versa. A value
of γx(l) close to 0 indicates thatxk andxk+l are not linearly
correlated; to first order, knowing the value ofxk does not
help in predicting the value ofxk+l.

With many random variables,γx(1) is a particularly signif-
icant value ofγx, because if a random variable is correlated,
often the correlation is greatest at a lag of 1. For example, a
high value ofγx(1) indicates that successive instances ofX
tend to have comparable values.

For our summary of correlation in Table 6 below, we com-
putedγx(1) for each random variable and dataset. We looked
at how often|γx(1)| > 2/

√
n (wheren is the number of

instances in the dataset), because ifX is uncorrelated then
|γx(l)| will exceed this value only 5% of the time. If we
found |γx(1)| > 2/

√
n occurred for more than half of the

datasets, then we considered the random variable to be cor-
related. (This happened for all but one of the random vari-
ables.) We then looked at the magnitude of the mean lag-1
autocorrelation,|γ̄x(1)|. If it was ≤ 0.1, we considered the
random variable to be “weakly correlated”, otherwise “sig-
nificantly correlated”. Finally, we looked at the range of val-
ues ofγx(1). If they were significantly positive (measured

by a modified Method II test), we considered the correlation
to be positive. Otherwise (since they were never significantly
negative), we considered the correlation to be “undirected”.

4 Summary and Evaluation of Models

Using the methodology described in§ 3, we constructed an-
alytic and empirical models of random variables associated
with wide-areatelnet, nntp, smtp, andftp TCP connections.
As discussed in§ 3.1.2, we generically refer to the analytic
model for a random variable asA, the UCB-derived empiri-
cal model (reflecting Tcplib; [DJ91]) asU , and the empirical
model derived from LBL-2 asL.

Table 6 summarizes the random variables and the corre-
sponding analytic models. The “Variable” column lists the
random variable being modeled and the “Abbr.” columns the
label and short name we will use subsequently to identify the
variable. The “§” column lists the section in the paper that
develops the model in detail.

The “model” column lists the analytic models used to de-
scribe the random variable’s distribution. Almost all firstap-
ply a log2 transformation to the data, as described in§ 3.2.
One model islog2-extreme, where the “extreme” distribution
is defined by Equation 1; one is exponential; one is Pareto
(Equation 2); and the remainder arelog2-normal.

Five of the models have restrictions. Thetelnetresponder
bytes model describes only the upper 80% of the responses.
ThetelnetE and F models describe the ratio of the responder
bytes to the connection’s duration. The first such model does
so for those connections whose number of responder bytes
fell into the lower 90% of alltelnetconnections. The second
model describes this ratio for those connections in the upper
10% of all responses. ThesmtpH model uses parts of two dif-
ferentlog2-normal distributions in its description of the bytes
transferred by thesmtpconnection originator. The lower 80%
of the originator distribution is modeled using the lower 80%
of the firstlog2-normal distribution; similarly, the upper 20%
is modeled using the upper 20% of the secondlog2-normal
distribution. Finally, as developed in§ 8.4 below, forftpdata
connection bursts it is crucial to accurately model the upper
tail, so theftp K model describes only the upper 5% of the
distribution of bytes inftp bursts.

The “Parameters” column gives the parameters we used for
the unscaled (§ 3.1.5) version of the model, after applying
log2 transformations. Parameters listed using “≈” instead of
“=” correspond to models that performed significantly better
when scaled than when unscaled (see below). For these mod-
els, the parameters given in Table 6 should only be used with
considerable caution.

The final column in Table 6, “Corr.”, gives a simple sum-
mary of the correlations present in the datasets, using the
methodology given in§ 3.9 above. A “+” sign indicates weak
positive correlation, “++” indicates significant positive cor-
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Proto. Variable Abbr. § Model Parameters Corr.

telnet originator bytes A Torig 5.2 log2-extreme (Eqn 1;§ 3.2) α ≈ log2 100; β ≈ log2 3.5 +
responder bytes B Tresp 5.3 log2-normal, 80-100% x̄ = log2 4500; σx = log2 7.2 +
duration secs. C Tdur 5.4 log2-normal x̄ = log2 240; σx = log2 7.8 +
resp. / orig. D Tratio 5.5 log2-normal x̄ = log2 21; σx = log2 3.6 +
resp. / dur. E Trd1 5.6 exponential, 0-90% resp. λ ≈ 1/30 +
resp. / dur. F Trd2 5.6 log2-normal, 90-100% resp. x̄ = 5.3; σx = 1.5; ±

nntp originator bytes G Norig 6.2 log2-normal x̄ ≈ 11.5; σx ≈ 3; ++
smtp originator bytes H Sorig 7.2 log2-normal + 300B, 0-80%; x̄ ≈ 10; σx ≈ log2 2.75

log2-normal + 300B, 80-100% x̄ ≈ 8.5; σx ≈ log2 3 ++
ftp connection bytes I Fconn 8.2 log2-normal x̄ ≈ log2 3000; σx ≈ 4 ++

session bytes J Fsess 8.3 log2-normal x̄ = 15; σx = 4 no
burst bytes K Fburst 8.4 Pareto (Eqn 2), 95-100% α ≈ 1; k ≈ 105.5 ++,±

Table 6: Summary of Analytic Models of Connection Characteristics

Model Scaling Variation Ordering Range 1% Tail
A U L site wide time meanλ2 analytic dev.

A Torig

√ √ √ √ √ √
U < {A, L} 0.05-0.09 u: ++

B Tresp

√ √ √ √ {A, U} < L 0.04-0.07 u: +
C Tdur

√ √ √
none 0.04-0.09 l: +, u: ±±

D Tratio

√ √ √
U < {A, L} 0.08-0.19

E Trd1

√ √ √ √ {U, L} < A 0.02-0.10
F Trd2

√ √ √
none 0.06-0.10 l: ±, u: ±

G Norig

√ ∗ √ {U, L} < A 0.36-2.00 u: ++
H Sorig

√ √ √ √
U < {A, L} 0.15-0.34

I Fconn

√ √ † † U < A 0.18-0.27 u: +
J Fsess † † none 0.09-0.14 u: +
K Fburst

√ √ √ † L < {A, U} 0.16-0.47 u: +‡

Table 7: Evaluation of Models

relation, “±” indicates weak undirected correlation, and “no”
indicates that the random variable does not appear to be cor-
related. Two values are given for theFburst variable; the first
reflects the correlation of all of the instances of the variable,
and the second, the correlation of just the top 5% tail.

We see that successivetelnetconnections are weakly cor-
related, perhaps due to small hour-to-hour variations in the
characteristics oftelnetconnections. Successive bulk-transfer
connections, on the other hand, all tend to be significantly
correlated, except that the size of completeftp sessions is not
correlated. These correlations are not hard to explain:nntp
connections will tend to be correlated as new network news
first arrives in an inbound connection and then is propagated
soon afterward in an outbound connection.Smtpconnections
can be correlated due to mailing lists expansions generating
similar connections one after another, or inbound connections
spawning outbound connections due to mail forwarding.Ftp-
data connection sizes will tend to be correlated because di-

rectory listings are substantially smaller than file transfers, so
back-to-back directory listings will contribute to positive cor-
relation. This effect will also contribute to correlation in the
size offtp bursts, if directory listings occur more than 4 sec-
onds apart (§ 8.4) and thus constitute separate bursts. That the
size of ftp sessions does not appear correlated suggests that
ftp sessions are statistically independent, in line with the find-
ing in [PF94] thatftp session arrivals appear well-modeled as
Poisson processes.

Table 7 summarizes our evaluation of the different models
we constructed. A check (

√
) in one of the “Scaling” columns

indicates that we found (using Method II,§ 3.7.2) that the
scaled version (§ 3.1.5) of the corresponding model per-
formed significantly better than the unscaled version. When
this was the case, for the remainder of our evaluation we used
the scaled version of the model; otherwise, we used the un-
scaled version. As noted in§ 3.1.5, a successful unscaled
model suggests that the random variable being modeled is in
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some sense “invariant”, and we can make strong predictions
about future behavior using such a model.

The “Variation” columns summarize three tests for signifi-
cant variation among the performance of the models. A check
in the “site” column means that theA andL models did sig-
nificantly better (as tested using Method I;§ 3.7.1) in model-
ing the LBL datasets than in modeling the non-LBL datasets.
From this we infer that the associated random variable shows
significant site-to-site variation, as models derived fromone
site reflect that site significantly better than other sites.

A check in the “wide” column means that theA and L
models did significantly better (using Method I) in modeling
the “stub” sites than in modeling the internetwork gateway
sites (the UK and NC datasets). From this we infer that there
is significant variation in the corresponding random variable
when modeling “very wide” traffic as opposed to “less wide”
traffic, perhaps due to a richer degree of connection multi-
plexing.

A check in the “time” column means that theA and L
models did significantly better (Method I) modeling the sec-
ond fifteen days of the LBL-1, LBL-3, and LBL-4 datasets,
than in modeling the complete LBL-5, LBL-6, and LBL-7
datasets. From this we infer that the corresponding random
variable changes significantly over time, since theA model
was derived from the first fifteen days of the first four LBL
datasets (the “test datasets”;§ 3.1.2) and theL model from
the LBL-2 dataset, one of the early LBL datasets.

We have marked the G variable’s site variation with a “∗”
because while the Method I test did not indicate a signifi-
cant difference between the LBL sites and the non-LBL sites,
we believe this is simply because there is so much variation
among the LBL datasets themselves (as indicated in part by
the “time” checkmark) that it exceeds the considerable site-
to-site variation. See Figure 4 below for an illustration ofthe
large site-to-site variation.

We marked the I, J, and K variable’s “site” and “wide” en-
tries with “†”s because of the following curious phenomenon:
we found that theA andL models did significantlyworse(as
indicated by a Method I test) modeling the LBL datasets than
modeling the non-LBL datasets. We do not have a firm ex-
planation for this behavior. Evidently the LBL datasets are
substantially “noisier” than the non-LBL datasets, perhaps
because there are unusually high variations or spikes in the
size of files transferred by scientists, or perhaps because the
30-day length of the LBL dataset allows more opportunity for
rare phenomena to skew the distribution.

The “ordering” column gives the results of using Method II
to compare the effectiveness of theA, U , andL models. An
entry like “U < {A, L} indicates that the Method II test
found that theU model performed significantly less well than
both theA andL models, but that theA andL models are
unordered. An entry of “none” indicates that all three models
were unordered. We note that except for variable B, theA
model does as well as better than both of the empirical mod-

els, indicating that analytic models can perform as well as
empirical models for describing wide-area connection char-
acteristics.

While the “ordering” column gives an indication as to the
relative performance of the three models, the “Range” col-
umn gives an indication as to absolute performance. Here we
list the range of̄λ2, the average value ofλ2 for each of the
three models. For example, for variable A, the best model
(which must have been eitherA or L) had an averageλ2

value of 0.05, and the worst (U ), 0.09. Becauseλ2 has the
property that it can be meaningfully compared for different
models, the variation in the “Range” column tells us a good
deal about how each model performs. For example, we see
that of the four protocols,telnet is consistently modeled the
most successfully, even by the worst-performing of the three
models.Nntp, on the other hand, is the most poorly modeled,
not at all surprising given the irregular distributions ofnntp
originator bytes (see§ 6.2 and Figure 4 below).Smtpis not
well-modeled either, though considerably better thannntp.
Finally, ftp connection and burst sizes are modeled about as
well assmtporiginator sizes, butftp session sizes appear as
well modeled astelnetconnections.

The final column in Table 7 summarizes the deviation of
the A model when describing the lower and upper 1% tails
of the random variable’s distribution. Here we have use the
methodology discussed in§ 3.8 above. A blank entry indi-
cates that theA model’s description of the upper (and lower,
if appropriate) 1% tail is “acceptable”. A “+” indicates that
the description is “bad” and that theA model consistently
overestimatesthe tail. A “++” indicates that the descrip-
tion is “very bad” and also consistently an overestimation.
“±” and “±±” are analogous to “+” and “++” except the
model sometimes overestimates the tail and sometimes un-
derestimates it. Finally, the K variable’s tail is marked with a
“‡” as a reminder that theFburst model only models the up-
per 5% offtpdataconnection bursts, so the upper 1% tail of
this model reflects only on the upper 0.05% tail of the entire
distribution.

While we have only reported the tail of theA model, the
U andL models have similar sorts of problems. Of the three
models, theA model is not, overall, especially good or bad in
describing the tails.

We also tested the 10% tails using the same methodology.
We found that all of the 10% tails were “acceptable”.

The next four sections develop in greater detail the models
summarized in Tables 6 and 7 above. One aspect of wide-
area TCP connections we do not discuss in this paper is the
connection arrival process (other than to note the presenceof
periodic patterns). Instead, we refer the reader to [PF94].
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Dataset # Conn # Rej x̄orig σorig maxorig x̄resp σresp maxresp x̄dur σdur maxdur

LBL-1 5,734 9 199B ×4.4 207KB 4.2KB ×7.9 1.9MB 266 s ×6.8 90.5 h
LBL-2 7,582 12 199B ×4.6 282KB 4.3KB ×7.5 3.2MB 237 s ×6.8 78.2 h
LBL-3 9,607 23 214B ×4.7 537KB 4.1KB ×7.6 5.5MB 226 s ×6.9 167.9 h
LBL-4 10,897 58 237B ×4.3 613KB 5.3KB ×7.4 86.6MB 271 s ×6.8 270.0 h
LBL-5 14,922 81 237B ×3.9 215KB 5.2KB ×6.8 19.3MB 248 s ×7.1 386.8 h
LBL-6 15,437 52 242B ×4.5 777KB 5.7KB ×7.3 14.0MB 270 s ×7.7 102.9 h
LBL-7 17,998 106 235B ×4.2 651KB 5.7KB ×6.9 3.10MB 252 s ×7.5 172.8 h
BC 744 2 145B ×4.1 9.7KB 2.9KB ×8.7 0.6MB 193 s ×6.4 8.1 h
UCB 655 4 155B ×4.7 27KB 2.5KB ×9.1 0.7MB 166 s ×6.9 7.9 h
USC 405 0 184B ×4.3 12KB 4.1KB ×7.2 0.6MB 168 s ×6.5 5.5 h
NC 3,023 34 112B ×3.9 146KB 2.6KB ×10.6 3.4MB 106 s ×7.4 6.8 h
UK 962 35 143B ×3.6 30KB 2.5KB ×9.3 0.7MB 175 s ×5.2 7.2 h

Table 8: Summary of TELNET Connections

5 TELNET

We now turn to analyzing the characteristics of individual
protocols and developing models to describe them. We be-
gin with telnet.8

5.1 Overview of TELNET connections

Table 8 summarizes some basic statistics of the datasets’tel-
netconnections. The table is read as follows.

The second column gives the number of “valid” connec-
tions recorded for the dataset and the third column the number
of “rejected” connections (§ 3.3); [P93] details the rejected
connections. As discussed in [P94], the LBL-6 and LBL-7
telnet traffic included a large number of connections due to
periodic traffic. We removed those connections prior to our
analysis, and they do not appear in Table 8.

The 4th through 6th columns summarize the number of
data bytes transmitted by the originator (the user end of the
remote-terminal connection). The values given are the geo-
metric mean (Equation 6), the geometric standard deviation
(Equation 7), and the maximum. As noted in§ 3.2, we ap-
plied log2 transformations to the data prior to analysis.

The 7th through 9th columns give the same summary for
the number of bytes transmitted by the responder (remote
computer), and the 10th through 12th columns summarize the
duration of the connections, with ‘s’ used to indicate seconds
and ‘h’ for hours.

We note that the geometric mean duration oftelnetconnec-
tions ranges from 2 to 4 minutes, while Jackson and Stubbs
[JS69] reported average connection lengths for local logins of
17 to 34 minutes, and [B67] gives a local-login median of 20
minutes and a mean of 45-50 minutes. Jackson and Stubbs
inferred that connection time “may be considerably reduced
by providing a high-speed channel from the computer to the

8[P93] presents a similar overview forrlogin traffic, along with results of
modeling it using thetelnetmodels developed in this section.

user”, so we appear to be seeing Jackson and Stubbs’ effect
rescaled to reflect today’s range of communication speeds.

The LBL telnetconnections were on average substantially
longer and consisted of more bytes than those at other sites,
even if we adjust for the fact that the LBL datasets span more
days and hence give an opportunity to detect long-lived con-
nections missed by the other datasets. We conclude that, at
least with regard to mean bytes transferred and duration, the
LBL telnettraffic is significantly different from that at other
sites (and this is what is shown in Table 7 above).

We also note an apparent trend over the LBL datasets to-
wards increasing values ofx̄orig andx̄resp, indicating thattel-
netconnections are growing larger with time. Connection du-
rations, on the other hand, are not growing longer, suggesting
that higher network bandwidths are enabling users to engage
in more work during each session (again reflected in Table 7).

Finally, we note that the data provide support for the obser-
vation in [DJCME92] that “interactive applications can gen-
erate 10 times more data in one direction than the other,” and
actually suggest the factor is around 20:1. Marshall and Mor-
gan found ratios as high as 35:1 for teletypewriters in tech-
nical use, with half that being a representative average, and
as low as 3:1 for teletypewriters used for word processing
[MM85].

In § 5.5 below we present a model for this ratio.

5.2 TELNET originator bytes (A)

With the bulk transfer protocols examined in subsequent sec-
tions, we usually are only interested in modeling the num-
ber of bytes transferred. With interactive applications, on the
other hand, we not only are interested in the bytes transferred
in both directions but also the connection duration and the
relationships between these variables.

We begin by modeling the number of bytes sent by the
originator of atelnetconnection (generally a human typing
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Figure 1: TELNET Originator-Bytes Model for LBL-2:
Log2-Extreme Distribution

at a keyboard). The best fit we found to the LBLtelnet test
datasets came using thelog2-extreme distribution (§ 3.2).

Figure 1 shows the distribution for the first half of the
LBL-2 dataset, along with the fitted model. We see appar-
ently good agreement except in the tails, where, as indicated
in Table 7, the upper 1% tail is grossly overestimated.

One important point regarding this model is that it is easy
to assume that the number ofbytesgenerated by thetelnet
originator equates to the number ofpacketsgenerated. As
mentioned in [PF94], this equation is erroneous. Often an
originator packet holds more than a single keystroke. [PF94]
finds that the number ofpacketsgenerated by the originator
appears better modeled using a log-normal distribution; as
we did not have any intra-connection information, we were
unable to test this finding.

5.3 TELNET responder bytes (B)

We next model the bytes transferred by thetelnetresponder.
As shown in Figure 2, the upper 80% of the distribution is
well-modeled using alog2-normal distribution, but the lower
20% (below the horizontal line, corresponding to less than
1 KB transferred) is not smoothly distributed, making it un-
likely we might find a simple analytic model encompassing it.
No doubt this roughness is due to the varying sizes of log-in
dialogs and message-of-the-day greetings. Fortunately, ex-
actly modeling the lower tail is of little importance, so we
limit ourselves to modeling just the upper 80% (in doing so,
we apply datacensoring; see§ 3.1.4).
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Figure 2: Censored Log2-Normal Fit to Upper 80% of LBL-4
TELNET Responder Bytes

5.4 TELNET duration (C)

We model telnet connection durations using a simple
log2-normal distribution. An alternative is to simply not
model the duration at all, for the following reason: Pax-
son and Floyd show that by using Poisson arrivals, log-
normal originator connection sizes (in packets), and the Tc-
plib packet interarrival distribution, one can synthesizetelnet
traffic which reproduces the same burstiness at different time
scales as observed in actual traffic traces [PF94]. The dura-
tion of theirtelnetconnections is simply the sum of the packet
interarrivals. That their model is successful without using a
separate distribution for the connection duration suggests that
to simulatetelnettraffic with realistic durations, it is sufficient
to use the Tcplib interarrival distribution.

5.5 TELNET responder/originator ratio (D)

If we wish to use these models to generate or predicttelnet
traffic, then we also need models giving the relationships be-
tween the various distributions. In particular, we would like
to know how many responder bytes to expect given a partic-
ular number of originator bytes, and how long a connection
will last given how many bytes it transfers.

We model the ratio between the number of responder bytes
and originator bytes using a simplelog2-normal distribution.
The overall success of the unscaled analytic model gives solid
evidence that the ratio between the bytes generated by the
computer in a remote login session and those generated by
the user is about 20:1, since the unscaled model uses a ratio
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of 21:1.
When using the responder/originator ratio to generatetel-

net traffic, a subtle point arises: one can either derive the
originator bytes and the ratio, and multiply to obtain the re-
sponder bytes, or one can proceed in the opposite fashion,
generating the responder bytes and the ratio, and dividing to
obtain the originator bytes. While these two approaches ap-
pear equivalent, they are not, and the former (deriving the
responder bytes from the originator) is preferable. The dif-
ference arises because while both the responder bytes and
the ratio arelog2-normal distributed, the originator bytes are
log2-extremedistributed. Multiplying the originator byte’s
log-extreme distribution by the ratio’s log-normal distribu-
tion yields a distribution close to log-normal; but dividing the
responder byte’s log-normal distribution by the ratio’s log-
normal distribution yieldsexactlya log-normal distribution
(since the difference of two normal distributions is a nor-
mal distribution), and not a log-extreme distribution. Alter-
natively, we can think of the originator bytes as having a
somewhat skewed log-normal distribution. Multiplying this
distribution by another log-normal distribution smears out the
deviations, and the result is close to log-normal; but chances
are dividing two log-normal distributions will never repro-
duce the skewed distribution.

Thus, to generate traffic we should begin by generating the
number of originator bytes and the responder/originator ratio,
and then multiply to derive the responder bytes.

5.6 TELNET responder/duration ratio (E
and F)

Just as we want a way to relate the originator bytes sent with
the responder bytes, we also would like to relate these random
variables to the connection duration. We investigated analytic
models for three different ratios: originator bytes to duration,
responder bytes to duration, and total bytes to duration. We
found the best fits came using the responder/duration model
(though see the last paragraph of this section).

For most connections the responder/duration ratio was
well modeled by an exponential distribution, but “large”
connections—those whose responder bytes were in the up-
per 10% of all connections—had a different distribution. For
these, the ratio was fairly well modeled by a log-normal dis-
tribution.

Figure 3 shows the responder/duration ratio for both the
lower 90% of the LBL-1 connections (in terms of respon-
der bytes) and the upper 10%. The distribution on the left
is for the lower 90%; though it is hard to tell due to scaling,
an exponential with the same mean has been drawn and lies
squarely on top of it. This fit is very good. To the right we
show the distribution of the upper 10%, plotted with an ex-
ponential with the same mean. We see that the distribution is
qualitatively different, and the corresponding exponential not
a good fit.
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Figure 3: Responder/Duration Distributions for LBL-1: Ex-
ponential Fits

We find the bimodality shown in this figure a bit puzzling.
It says that very large connections (in terms of bytes trans-
ferred) occur over relatively short durations: whilex̄resp in
these large connections is 45 times that of the smaller (lower
90%) connections,̄xdur is only 16 times that of the smaller
connections. This phenomenon was also observed by the
authors of [SC93], who found that “users transmitting large
amounts of data over a link tend to transmit that data within
15 minutes.” We do not have a good explanation for this phe-
nomenon.

For the upper 10% of the responders we compared consid-
erably fewer datasets. Our requirement that each dataset in-
clude at least 100 measurements (§ 3.3) ruled out any dataset
with fewer than 1,000telnet connections, leaving just the
LBL and NC datasets. The fit remains good, though.

The use of two separate models for the responder/duration
ratio is not wholly satisfying, but was the best we could find.
One other somewhat successful model for relatingtelnetcon-
nection size and duration was the ratio between the duration
and the originator size. We found that when this ratio was
≥ 0.5 (about 80% of the connections), then it was well mod-
eled using a Pareto distribution (Equation 2). But when the
ratio was< 0.5, we found no simple yet accurate analytic de-
scription of the marginal distribution. Unlike when modeling
telnet responder bytes, for the duration/originator ratio both
the lower and upper parts of the distribution are important;
we cannot simply model the upper 80% of the connections
and ignore the remainder. So we chose to use models E and F
above instead.
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Dataset # Conn # Rej % Failures x̄orig σorig maxorig x̄resp σresp maxresp

LBL-1 57,898 2 38 % 2.0KB ×9.2 4.2MB 305B ×2.0 923KB
LBL-2 57,997 1 36 % 2.4KB ×7.8 1.1MB 328B ×2.1 584KB
LBL-3 46,167 6 19 % 2.4KB ×6.2 1.9MB 384B ×1.9 128KB
LBL-4 73,179 39 2 % 6.0KB ×8.5 5.6MB 398B ×2.2 1.4MB
LBL-5 50,969 161 8 % 14.5KB ×8.5 16.5MB 633B ×2.9 9.5MB
LBL-6 55,176 1048 8 % 28.4KB ×6.8 15.7MB 888B ×2.2 1.3MB
LBL-7 70,842 143 7 % 41.7KB ×7.1 10.8MB 1032B ×2.2 2.6MB
BC 345 116 25 % 15.5KB ×6.2 2.4MB 1005B ×3.0 81KB
UCB 6,899 0 1 % 2.1KB ×7.2 720KB 307B ×2.0 1.7MB
USC 4,615 15 4 % 11.5KB ×10.3 3.6MB 709B ×2.3 74KB
DEC-1 23,864 5 2 % 1.1KB ×11.6 5.8MB 264B ×2.2 75KB
DEC-2 18,819 88 3 % 1.3KB ×11.7 26MB 292B ×2.4 356KB
DEC-3 19,244 7 7 % 2.2KB ×14.1 18MB 339B ×2.7 223KB
NC 904 206 9 % 12.9KB ×12.3 12MB 1182B ×4.5 3.2MB

Table 9: Summary of NNTP Connections

6 NNTP

6.1 Overview of NNTP connections

Table 9 summarizesnntp connections. Asnntp is non-
interactive, the connection duration is not of much interest
and has been omitted. [P93] discusses the connections we
rejected due to protocol errors.

We expectnntp connections to show considerable varia-
tion because they can come in at least three modes: (1) a
server contacts a peer and is informed that the peer presently
cannot talk to the server; (2) the server offers the peer news
articles but the peer already has the articles; (3) the server of-
fers articles and the peer does not have the articles. Each of
these modes will result in significantly different distributions
of the bytes transferred during the connection. Furthermore,
the second and third modes are somewhat indistinct, since the
remote peer may have some but not all of the offered articles.

The first mode is easy to detect. If upon initially being
contacted a responder peer is unable to communicate with the
originating peer, it sends a message with response code 400
(“service discontinued”) as per [RFC977]. When the origi-
nating peer then replies with “QUIT” followed by a carriage-
return and a line-feed, it will have sent a total of 6 bytes
during the connection. Indeed, we find large spikes of 6
originator bytes in thenntp datasets, as did the authors of
[DJCME92]. Thus we can recognize a connection in which
the originating host sent 6 bytes as a “failure”.

Not surprisingly, the failure rate varies greatly from siteto
site and from time to time, since it is often due to transient
phenomena such as full disks. These failure rates are given in
the “% Failures” column. To compute the remaining statistics
in the table, we first removed all failure connections from the
datasets.

Not only can the failure rate vary significantly, but so can
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Figure 4: Distribution of NNTP Originator Bytes

the bytes transferred during non-failure connections. For
example, as can be seen by the large increase inx̄orig be-
tween LBL-3 and LBL-4, the LBLnntpserver became much
more effective in propagating news over a five month period.
LBL-5 and LBL-7 continue the impressive growth in̄xorig. A
similar effect can be seen between DEC-1 and DEC-3, only
a week apart. Such changes can be due in part to circum-
stances wholly outside of the local site. Whether the arti-
cles a server attempts to propagate to its peers are accepted
depends on whether those peers already have the articles; a
subtle change in thenntppeer topology can swing a server’s
position from one of holding mostly “stale” news to holding
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mostly “fresh” news. The steadily increasingx̄orig value for
the last four LBL datasets is most likely also a reflection of
the global growth in USENETnntptraffic, which increases in
volume about 75%/year [P94].

6.2 NNTP originator bytes (G)
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Figure 5: Daily Variation inlog2-mean of LBL NNTP Origi-
nator Bytes

Figure 4 shows the distributions of bytes sent by the orig-
inator in non-failurenntp connections at LBL, DEC, and
coNCert. The distributions show a huge degree of variance
(recall that the X axis is scaled logarithmically).

Given the great variation in originator bytes transferred,we
decided to simply use alog2-normal model to describe the
connections, with the caveat that we do not expect the model
to perform well (we also do not expect empirical models to
do well). Indeed, as shown in Table 7, none of the models do
well.

One final important point regarding modelingnntporigina-
tor bytes is that the distribution is not stationary but changes
over the course of a day. Figure 5 shows the hourlyx̄orig

for LBL-1 and LBL-4 non-failurenntpconnections. We see
considerable but not consistent variation. The peak-to-peak
differences for both datasets is about a factor of 3.4; but
LBL-1’s connections tended to be largest in the middle of the
night, with secondary peaks during “prime-time” work hours.
LBL-4’s connections peaked during working hours and were
lowest at precisely the time when LBL-1’s were highest.9

9The test datasets also showed a weekly pattern, with LBL-1 and LBL-4
(and to a lesser extent LBL-2) having minimalx̄orig during weekends, while
LBL-3 had amaximumx̄orig on Saturdays.
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Figure 6: One-Minute Variation in DEC-2 NNTP Arrivals

The variation in the daily pattern may be due to the influ-
ence of keynntpgateways either propagating news as soon as
it comes in (consistent with the LBL-4 case) or waiting till the
late-night hours to take advantage of minimal loads (LBL-1).

6.3 NNTP responder bytes

As seen in Table 9 above, there is in general much less varia-
tion in the bytes sent by annntpresponder than by the origina-
tor. For the majority of the datasets, the responder sent fewer
than 1500 bytes in 80% or more of the connections. Thus we
decided not to modelnntp responder bytes, as in general the
datasets do not show interesting variations.

6.4 NNTP duration

Sincenntp is a bulk-transfer protocol and not interactive, we
do not model connection durations, because these are pre-
sumably dominated by networking latencies and not a funda-
mental aspect of thenntpprotocols. Similarly, below we do
not modelsmtpor ftp durations.

6.5 NNTP arrival patterns

Nntp arrivals have a definite one-minute periodicity about
them.10 Figure 6 shows the number of DEC-2nntpconnec-
tions that arrived during each second (i.e., ignoring minutes
and larger units of the arrival time). Clearly, arrivals tended
to show up at about 19 seconds past the minute, though some

10We also found three-, five-, fifteen-, and twenty-minute patterns in vari-
ous datasets.
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tended to arrive about 7 seconds past. All of thenntpdatasets
show this pattern to varying degrees except for LBL-3; LBL-4
shows two distinct spikes. Sometimes the spike is quite sharp.
With the other datasets, it is broad, like in Figure 6. In gen-
eral, periodicity such as this can lead to global synchroniza-
tion of network processes; see [FJ93].

7 SMTP

7.1 Overview of SMTP connections

Table 10 summarizes thesmtp connections. Again, [P93]
summarizes the reasons for removing the connections marked
as rejects. Based on the values formaxorig it is clear thatsmtp
is sometimes used to transfer quite large files.

There is quite a bit of variation in̄xorig (and just about
none in x̄resp). In [WLC92] the authors note that the UK
smtpdata show a substantially higher (arithmetic)x̄orig than
for the LBL-1 and LBL-2 datasets reported in [P91]. They
attribute this difference to the fact that since the U.K. aca-
demic network (JANET) was not at that time fully connected
to the Internet, U.K. users were more likely to usesmtpto
transfer files. The large UKσorig variance supports their hy-
pothesis. The DEC traffic has similarσorig values, and Mogul
also states that an “FTP-by-mail” facility is responsible for
about 150 rather lengthysmtpmessages at DEC-WRL each
day [M92].

Another explanation is that perhaps the NC and UK traf-
fic tends to make moresmtp“hops”, each of which adds a
Received header to the mail message [RFC822], pushing
up the average number of bytes11. One would expect the
greater number of hops to be correlated with “wider” wide-
area traffic, presumably a property of the NC and UK traffic,
as these sites are at inter-network gateways.

We see a definite trend in the LBL data indicating larger
and larger mail messages. As discussed in [P94], LBL’s wide-
area traffic did become “wider” during the three year period
spanned by the LBL datasets, in agreement with the “hops
overhead” explanation.

7.2 SMTP originator bytes (H)

When modeling the number of bytes sent by thesmtporigi-
nator, we found that nearly all connections transferred more
than 300 bytes, while the connections transferring fewer bytes
showed sporadic distributions. We hypothesize that the first
300 bytes of these connections constitute a more-or-less fixed
overhead, and that connections with fewer total originator
bytes correspond to “failures”: either invalid email addresses
or busy remote machines unable to accept mail at the mo-
ment. In constructing our models we therefore removed any

11A check of one of the author’s mail folders revealed an average
Received header length of more than 100 bytes.

Bytes

5
2

10
2

15
2

20
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data
Lower 80% fit (f)
Upper 20% fit (g)

Figure 7: Bimodal Log2-Normal Fit to LBL-3 SMTP Origi-
nator Bytes

connections of≤ 300 bytes (anywhere from 0.6% to 2.3% of
all connections) and subtracted 300 bytes from the remaining
connections.

We found the distribution ofsmtp originator bytes to
be bimodal, not surprisingly given thatsmtp is sometimes
used to transfer files. We model the distribution using two
log2-normal distributions, one (calledf here) for the lower
80% of the data, and one for the remaining 20% (g). Figure 7
shows this model’s fit to the LBL-3 test data after removing
failures and subtracting 300 bytes; the horizontal line indi-
cates the dividing line between using distributionf (below
the line) andg (above).

As was the case fornntp, for smtpwe found that the orig-
inator bytes distribution is not stationary. Figure 8 showsthe
hourly x̄orig for LBL-1 and LBL-4 smtpconnections. Un-
like nntp, which suffered from inconsistent variations, here
the pattern is more stable: connection sizes peak during off-
hours, and reach minima during peak working hours. We
conjecture that uses ofsmtpto transfer files tend to happen
off-hours and cause this pattern.

7.3 SMTP responder bytes

We did not model the distribution of the responder bytes in
smtpconnections, as the responder’s role shows little varia-
tion. For the LBL test datasets, in about 75% of all connec-
tions the responder sent between 300 and 400 bytes, and in
every dataset more than 97% of the connections sent between
100 and 1000 bytes. While reference [DJCME92] finds that
smtpconnections are bidirectional, this finding must be inter-
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Dataset # Conn # Rej x̄orig σorig maxorig x̄resp σresp maxresp

LBL-1 38,481 286 1.4KB ×2.8 2.1MB 331B ×1.2 1.9KB
LBL-2 51,240 572 1.5KB ×2.9 7.2MB 334B ×1.2 6.5KB
LBL-3 75,418 333 1.6KB ×2.6 1.6MB 334B ×1.2 2.9KB
LBL-4 92,694 1583 1.7KB ×3.0 1.2MB 335B ×1.3 2,980KB
LBL-5 123,741 446 1.7KB ×2.9 2.4MB 320B ×1.3 8.0KB
LBL-6 207,485 6,567 1.9KB ×3.0 37.0MB 321B ×1.3 9.5KB
LBL-7 205,668 6,306 1.9KB ×2.9 8.0MB 314B ×1.4 16.6KB
BC 8,428 121 1.3KB ×2.8 1.1MB 324B ×1.3 10.2KB
UCB 16,929 61 1.3KB ×3.0 0.5MB 334B ×1.3 2.0KB
USC 3,498 3 1.4KB ×2.3 0.1MB 337B ×1.2 1.6KB
DEC-1 25,160 19 2.0KB ×3.1 2.5MB 340B ×1.2 4.7KB
DEC-2 10,777 5 2.1KB ×3.5 4.9MB 341B ×1.2 4.7KB
DEC-3 31,631 70 2.0KB ×3.2 5.1MB 338B ×1.2 3.5KB
NC 26,161 511 1.9KB ×2.9 1.8MB 340B ×1.4 10.6KB
UK 10,729 129 1.9KB ×3.3 4.6MB 319B ×1.3 6.0KB

Table 10: Summary of SMTP Connections
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preted with the rather fixed nature of thesmtpresponder in
mind.

8 FTP

8.1 Overview of FTP connections

Table 11 summarizesftpdataconnections. Each connection
is unidirectional, with sometimes data flowing from the con-

nection originator to the responder (corresponding to anftp
get command) and sometimes in the other direction (aput
command). The “Get” column shows the percentage of con-
nections that wereget commands; the remainder wereput
commands. The next three columns show the (geometric)
mean, standard deviation, and maximum for the number of
bytes transferred. As before, [P93] gives details regarding the
connections we rejected.

A considerable portion of the UCB, LBL-5, LBL-6, and
LBL-7 ftp connections were due to periodic traffic, as dis-
cussed in [P94]. As with periodictelnet connections, we
eliminated these prior to analysis.

There clearly is quite a range in̄xbytes, and the uniformly
large values ofσbytes shows that in general file sizes vary
widely.

Table 12 summarizes theftpctrl connections. We have not
shown statistics for bytes transferred and duration of theftp-
ctrl connections themselves since the primary use offtpctrl
connections is to spawnftpdataconnections, either for file
transfer or to list remote directories. Instead, we groupedwith
eachftpctrl connection its associatedftpdataconnections. We
considered anftpdataconnection to belong to aftpctrl con-
nection if it occurred during the span of theftpctrl connection
and was between the same two hosts (see [P93] for details).
We refer to such a collection of anftpctrl connection and its
associatedftpdataconnections as anftp session.

The fourth through seventh columns in Table 12 summa-
rize the number offtpdataconnections that occurred during
eachftp session. The “0 xfer” column lists the percentage of
all ftp sessions that did not haveanyassociatedftpdatacon-
nections, presumably due to failed attempts to provide log-in
information. These numbers are somewhat lower than the
42.9% reported in [DHS93], but still surprisingly high.

Thex̄xfers andσxfers columns give the geometric mean and
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Dataset # Conn # Rej Get x̄bytes σbytes maxbytes

LBL-1 23,555 287 80 % 2.3KB ×15.3 54MB
LBL-2 27,917 335 92 % 2.4KB ×17.4 124MB
LBL-3 39,552 349 91 % 3.3KB ×17.7 62MB
LBL-4 65,860 335 86 % 3.8KB ×14.7 67MB
LBL-5 66,411 344 80 % 4.5KB ×16.0 177MB
LBL-6 86,464 464 91 % 2.1KB ×14.9 292MB
LBL-7 105,821 468 94 % 2.8KB ×15.2 223MB
BC 5,199 58 97 % 2.5KB ×12.6 16MB
UCB 4,529 77 96 % 1.0KB ×13.5 22MB
USC 1,870 29 93 % 1.3KB ×14.5 5MB
DEC-1 7,970 6 100 % 2.2KB ×16.5 5MB
DEC-2 4,013 13 100 % 1.3KB ×17.1 7MB
DEC-3 6,775 25 99 % 1.9KB ×16.7 13MB
NC 19,076 183 98 % 1.8KB ×19.0 44MB
UK 10,018 58 97 % 3.4KB ×14.2 7MB

Table 11: Summary of FTP Data Connections

Dataset # Conn # Rej 0 xfer x̄xfers σxfers maxxfers x̄bytes σbytes

LBL-1 3,757 51 19 % 3.3 ×2.9 1,006 28KB ×15.2

LBL-2 5,312 72 25 % 3.2 ×2.8 388 27KB ×17.0

LBL-3 6,916 90 21 % 3.1 ×2.9 612 30KB ×18.4

LBL-4 7,941 189 17 % 3.3 ×3.0 1,951 33KB ×17.6

LBL-5 9,968 1,227 26 % 3.0 ×3.0 975 31KB ×16.7

LBL-6 12,470 535 24 % 3.1 ×2.9 2,996 31KB ×16.8

LBL-7 17,556 319 27 % 3.0 ×2.9 1,666 34KB ×16.8

BC 669 19 32 % 3.3 ×2.7 426 13KB ×14.2

UCB 756 19 26 % 3.9 ×2.6 350 12KB ×14.9

USC 272 6 22 % 3.8 ×2.8 133 20KB ×14.5

DEC-1 727 8 26 % 5.4 ×3.2 961 36KB ×15.6

DEC-2 491 8 13 % 5.0 ×3.0 106 36KB ×17.8

DEC-3 811 17 25 % 4.8 ×2.9 232 36KB ×15.3

NC 2,500 59 31 % 5.0 ×2.9 392 26KB ×18.6

UK 1,733 35 24 % 3.4 ×3.0 368 22KB ×16.0

Table 12: Summary of FTP Control Connections

standard deviation for the number of files transferred, given
that at least one file was transferred. That the mean is sub-
stantially higher than one is not surprising since we classify
remote directory listings as file transfers (both result in an ftp-
dataconnection), and probably the most common use offtp
is to connect to a remote archive site, do several listings to
find the file or files of interest, and then transfer those files.

The x̄bytes andσbytes columns show the geometric mean
and standard deviation for the total number of bytes trans-
ferred via ftpdata connections during eachftp session (for
those connections with at least oneftpdatatransfer). We note
that these means are 5-10 times greater than those for indi-
vidual ftpdataconnections, an increase larger than that due
simply to the multiplying effect of̄xxfers. We suspect that this

disparity is due to a typicalftp session including at least one
true file transfer. As files will tend to be significantly larger
than directory listings, the mean number of transferred bytes
during anftp session will approach the mean file size, and not
be held down, as are theftpdataconnection summaries, by a
large number of smaller directory listings. Theσbytes values
are quite large, again showing a wide range in transfer sizes.

One important point regarding theftpdataconnections oc-
curring during anftp session is that they frequently arrive in
bursts[PF94]. An ftpdataconnection burst is defined as one
or moreftpdataconnections belonging to the same session
that are spaced less than 4 seconds apart. That is, each con-
nection in the burst begins less than 4 seconds after the pre-
vious connection ended. A burst can be due to a “multiple-
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Dataset # Bursts x̄bytes σbytes maxbytes 2% Tail 0.5% Tail α k

LBL-1 13,055 2.0KB ×17.6 102MB 70 % 49 % 1.00 375KB
LBL-2 16,111 1.8KB ×19.2 124MB 70 % 44 % 1.01 445KB
LBL-3 22,388 2.3KB ×19.0 96MB 68 % 41 % 1.03 624KB
LBL-4 27,084 2.5KB ×18.8 83MB 68 % 41 % 1.05 717KB
LBL-5 30,358 2.8KB ×19.1 754MB 79 % 61 % 0.93 620KB
LBL-6 39,740 2.7KB ×16.7 465MB 77 % 58 % 1.06 595KB
LBL-7 48,542 2.8KB ×17.1 200MB 67 % 44 % 1.16 748KB
BC 2,077 1.4KB ×13.9 16MB 64 % 41 % 1.21 290KB
UCB 2,804 0.9KB ×13.2 12MB 66 % 42 % 1.11 148KB
USC 830 1.1KB ×19.1 5MB 53 % 31 % 1.37 315KB
DEC-1 4,487 1.3KB ×13.9 32MB 70 % 48 % 1.06 248KB
DEC-2 2,743 1.3KB ×13.5 12MB 66 % 37 % 1.18 374KB
DEC-3 4,276 1.3KB ×13.2 15MB 67 % 45 % 1.09 244KB
NC 13,086 1.3KB ×17.7 44MB 57 % 37 % 1.34 308KB
UK 5,837 1.9KB ×14.6 8MB 54 % 29 % 1.40 375KB

Table 13: Summary of FTP Bursts

get” transfer, or to a user doing a remote directory listing and
shortly after it completes, fetching a file. A key finding in
[PF94] regarding bursts is that the distribution of the number
of bytes in a burst has an extremely heavy tail: just a handful
of the largest bursts carry the majority ofall of the ftp data
bytes.

Table 13 summarizes theftpdatabursts. We see from the
second column that each dataset had roughly half as many
bursts asftpdataconnections (Table 11). The third through
fifth columns summarize the number of bytes transferred
per burst offtpdata connections. The values ofxbytes are
surprising—they are lower than the corresponding values for
ftpdataconnections! This appears paradoxical, because each
ftpdataconnection burst is made up of at least oneftpdata
connection, so we would expect the bursts on average to be
at least as large as the individual connections. The key to un-
derstanding this discrepancy is thatlarge ftpdata connections
tend to arrive together in single bursts. This means that the
upper tail of the distribution of the number of bytes per burst
is heavier than the corresponding upper tail forftpdatacon-
nections; there are fewer big bursts, but those few are very
large. Becausexbytes is ageometricmean (Equation 6), and
the geometric mean is relatively insensitive to outliers, we
find xbytes becomeslower when we shift distribution weight
higher into the upper tail.

The next two columns explore the tail-weight further. The
“2% Tail” column gives the percentage of allftp burst data
bytes due to the 2% largest bursts, and similarly for the “0.5%
Tail” column. We see that the 2% upper tail in all cases ac-
counts for more than 50% of all of the data bytes! Thusftp
traffic is heavily dominated by a few rare but huge bursts. As
stated in [PF94], this finding means that modelingftp traffic
should concentrate heavily on the upper tails offtpdatabursts
(as is done in§ 8.4 below). Note thatftpdataconnections

alone donot have nearly as heavy a tail. For example, in the
DEC-1 dataset the upper 2% of theftpdataconnections holds
about 25% of the data bytes, vs. 70% for the bursts. It is the
fact that largeftpdataconnections tend to arrive together that
leads to the very heavyftp burst tail.

In § 8.4 below we model the upper 5% tail of theftpdata
burst distribution using a Pareto distribution (Equation 2).
The Pareto distribution has an extremely heavy tail, heavier
than that of any of the other distributions discussed in§ 3.1.3
or their logarithmic versions (§ 3.2). To this end, the final
columns in Table 13 gives the estimated values ofα andk
(corresponding to Equation 2) for each dataset. That the val-
ues ofα are smaller for the LBL datasets than for the oth-
ers, and the values fork larger, indicates that the LBLftp
bursts are significantly different than those found in the other
datasets. In particular, the LBL bursts have heavier tails.
Probably this difference is due to the prevalence of LBL users
exchanging large scientific datasets.

8.2 FTP connection bytes (I)

We model the bytes transferred during anftpdataconnection
using alog2-normal distribution. Figure 9 shows this model
fitted to the first half of the LBL-4 dataset. While the model
appears to match the overall shape, a number of clumps and
spikes make the actual distribution irregular. For example,
LBL-4 has a spike of 1,269 connections, each transferring
1,856 bytes. For the most part, unfortunately, these spikesdo
not occur in predictable locations, making it difficult to in-
corporate them into our analytic model. Such unpredictabil-
ity also impairs the ability of empirical models to fit other
datasets. One spike stands out, however, being present in
all the DEC datasets, the NC dataset, LBL-4, LBL-5, and
LBL-7. This spike occurs at 524,288 bytes (= 219), a size of-
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Figure 9: Log2-Normal Fit to LBL-4 FTP Data Bytes

ten used when splitting a large distribution archive into man-
ageable pieces.

8.3 FTP session bytes (J)

Figure 10 shows an example of the distribution of the total
number of bytes transferred duringftp sessions, for the LBL-1
test dataset, again fitted to alog2-normal model. In this case
the fit is visually fairly satisfying.

The authors of [DJCME92] reported that 80% offtp ses-
sions transfer less than 10 KB. But once we remove the
20-30% of sessions that do not transfer any data, half of the
remainder transfer more than 32 KB, and a sixth transfer more
than 500 KB. Thus if a file transfer session is not a “failure”,
it should not be assumed small.

8.4 FTP bursts (K)

As mentioned in§ 8.1 above, modelingftpdatabursts is par-
ticularly important. Not only does the distribution of bytes
per burst have an extremely large tail, but because the inter-
connection spacing within a burst is (by definition)< 4 sec-
onds, from a link-level (or queueing) viewpoint, there is little
difference between a burst offtpdataconnections and a single
large connection transferring the same total number of bytes.

Because the upper tail of this distribution is so domi-
nant, we decided to concentrate on modeling the size of the
largest 5% of the bursts. We found that upper-tail burst
size is well-modeled using a Pareto distribution (doubly-
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Figure 10: Log2-Normal Fit to Bytes in LBL-1 FTP Sessions

exponential; Equation 2). As discussed further in [PF94],
that ftp burst sizes are Pareto-distributed suggests a mecha-
nism by whichftp traffic might contribute to the presence of
self-similarity([LTWW93]) in wide-area network traffic.

9 Summary

We have presented a number of analytic models for describ-
ing the characteristics oftelnet, nntp, smtp, and ftp con-
nections, drawn from wide-area traces collected from seven
different sites, comprising more than 3 million connections.
While these models are inexact in a statistical sense, we de-
veloped a methodology for comparing their effectiveness to
that of other models. We found that in general the analytic
models reflect the connection characteristics as well as or
better than two empirical models, one corresponding to the
Tcplib library [DJ91] and one corresponding to a one-month
trace of traffic at the Lawrence Berkeley Laboratory. We also
found that wide-area connection characteristics exhibit sig-
nificant variation from site to site and over time.

The essence of the argument presented in this paper is that
while wide-area traffic cannot be modeled exactly in a statis-
tical sense, we can usually construct simple analytic models
that are a good approximation. Furthermore, these analytic
models are as accurate as empirical models, meaning we can
reap the benefits of using analytic models without losing ac-
curacy in the process. We believe the methodology presented
in this paper will prove beneficial for developing future ana-
lytic models and for gauging their effectiveness.
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