
Active Mapping: Resisting NIDS Evasion Without Altering Traffic

Umesh Shankar∗

ushankar@cs.berkeley.edu

University of California at Berkeley

Vern Paxson
vern@icir.org,ee.lbl.gov

ICSI Center for Internet Research and Lawrence Berkeley National Laboratory

Abstract

A critical problem faced by a Network Intrusion De-
tection System (NIDS) is that of ambiguity. The NIDS
cannot always determine what traffic reaches a given
host nor how that host will interpret the traffic, and at-
tackers may exploit this ambiguity to avoid detection or
cause misleading alarms. We present a lightweight so-
lution, Active Mapping, which eliminates TCP/IP-based
ambiguity in a NIDS’ analysis with minimal runtime
cost. Active Mapping efficiently builds profiles of the
network topology and the TCP/IP policies of hosts on
the network; a NIDS may then use the host profiles to
disambiguate the interpretation of the network traffic on
a per-host basis. Active Mapping avoids the semantic
and performance problems of traffic normalization, in
which traffic streams are modified to remove ambigui-
ties. We have developed a prototype implementation of
Active Mapping and modified a NIDS to use the Active
Mapping-generated profile database in our tests. We
found wide variation across operating systems’ TCP/IP
stack policies in real-world tests (about 6,700 hosts), un-
derscoring the need for this sort of disambiguation.

1 Introduction

A Network Intrusion Detection System (NIDS) pas-
sively monitors network traffic on a link, looking for sus-
picious activity as defined by its protocol analyzers (see
Figure 1).

In order to correctly analyze a stream of traffic, the
NIDS must first determine which packets reach the tar-
get host it is monitoring and then, for those that do, in-

∗Research supported in part by an NDSEG fellowship and an
equipment donation from Intel.

Site

Firewall
:
:

NIDS

Alert

:
:

ISP1

ISP2

Figure 1. A diagram of a typical site’s network
with a NIDS

terpret them exactly as the target host does. The problem
is therefore equivalent to NIDS being able to perform a
complete and precise simulation of the network and the
host machines; in this paper we restrict our discussion to
the NIDS’ ability to simulate the network and transport
layers. The dominant obstacle to achieving this goal is
ambiguity: the wide variety of network topologies and
TCP/IP-stack policies makes it impossible for the NIDS
to know the correct interpretation of traffic without ad-
ditional context.

The result is a divergence between how a host inter-
prets a sequence of packets and how the NIDS believes
the sequence has been interpreted. The NIDS can be
tricked by an attacker into believing that no attack oc-
curred or may be confused by a multitude of possible
interpretations, some of which are attacks and some of
which are not. The evasions are not just theoretically



possible: Ptacek and Newsham [PN98] describe a num-
ber of specific methods for exploiting this sort of am-
biguity at the TCP/IP layer. Furthermore, toolkits have
been developed which automate their use [So02, Mc98].
Thus, it is of considerable practical concern that we find
a way to resolve TCP/IP-based ambiguities.

In this paper we explore a novel approach to elimi-
nating TCP/IP ambiguity, called Active Mapping. The
key idea is to acquire sufficient knowledge about the in-
tranet being monitored that, using it, the NIDS can tell
which of those packets will arrive at their purported re-
cipient, and, if so, how they will be interpreted. Active
Mapping does this by building up a profile database of
the key properties of the hosts being monitored and the
topology that connects them. Profiles are constructed by
sending specially crafted packets to each host and inter-
preting the responses to determine path properties and
TCP/IP policies (see Section 3 and the Appendix for de-
tails).

Using Active Mapping profiles makes a NIDS
context-sensitive. Some measure of context-
sensitivity—awareness of the hosts the monitor is
trying to protect—is necessary; writing more detailed
analyzers is of no use when we don’t know how to
disambiguate the traffic we are analyzing. No amount of
careful coding in the NIDS can remove context-related
ambiguity. Thus, something like our approach—
gathering host- and network-specific information and
using it in the NIDS—is inevitable if we are to make
inroads against the problem of ambiguity in a passive
monitor. The information-gathering may be done in
other ways, e.g., passively, but the principle remains the
same.

Previous work proposes to eliminate ambiguity in
NIDS analysis by using a traffic normalizer [HKP01].
The normalizer, which sits in the forwarding path before
the NIDS, rewrites incoming traffic into well-formed
streams that presumably admit only one interpretation
on all reasonable TCP/IP implementations. Thus the
NIDS, with a single policy set, can unambiguously ana-
lyze the traffic for intrusion attempts on any of the hosts
of the protected network.

Though it succeeds in reducing ambiguity, a normal-
izer, like any active (traffic-altering) element, has a num-
ber of drawbacks. One is performance: the normalizer
must be able to reconstruct every TCP stream in real-
time. Another is robustness: since the normalizer is
in the forwarding path of every packet, it must be ex-
tremely reliable even in the face of resource exhaustion;
it also must be resistant to stateholding and CPU attacks
on itself. Normalization also potentially changes the
semantics of a stream. As detailed in [HKP01], these
changes can break some mechanisms, like traceroute

and Path MTU discovery.
By contrast, a NIDS armed with a profile database

can resolve ambiguities in a traffic stream it observes
without having to intercept or modify the stream, which
has major operational and semantic advantages. We
stress that making contextual information available to
the NIDS is the only way to do correct disambiguation
of a stream without modifying it, so employing some-
thing like Active Mapping is essential.

Next, let us consider an example evasion. Figure 2
details an evasion based on uncertainty about the num-
ber of hops between the NIDS and a target host. If an
attacker manipulates the TTL field of packets to con-
fuse the NIDS, it can not know which of many possible
packet sequences was actually received and accepted by
the host. On the other hand, if the NIDS has information
about the network path to the host, then it can elimi-
nate the ambiguity. It is just this information that Active
Mapping gathers and supplies to the NIDS. With it, the
NIDS can ignore packets that will not reach the host, en-
abling correct analysis. It may be tempting to try to si-
multaneously analyze all possible interpretations of the
packet stream; however, the space of possible network
topologies and TCP/IP policies is so large as to make
the problem intractable (see Figure 2 and the Appendix
for examples).

We have implemented a prototype of Active Mapping
and run it on a network of about 6,700 hosts. Our tests
showed that the increased precision in analysis does not
come with any significant performance cost at runtime
for the NIDS. The increased memory cost was minimal
as well. We present results to this effect in Section 5.

The organization of this paper is as follows. In Sec-
tion 2, we discuss a model of operation of the map-
per. In Section 3, we discuss the abilities and limita-
tions of Active Mapping, examining selected tests in de-
tail. The mapper’s implementation is described in Sec-
tion 4; the results of mapping real-world networks and
NIDS integration tests are presented in Section 5 along
with a discussion of performance and findings. We give
an overview of related work in Section 6, including the
potentially symbiotic relationship between Active Map-
ping and normalization, and conclude with a summary
of our findings in Section 7. In the Appendix, we make
an effort to cover the complete spectrum of TCP/IP map-
pings.

2 Design

2.1 Assumptions

In order to perform mapping efficiently, we make cer-
tain assumptions about the nature of the network being

2



Figure 2. Evading a NIDS by manipulating the TTL field [HKP01]. The NIDS is 15 hops from the
sender, but the receiver is 20 hops from the sender. Packets with an initial TTL greater than 15
but less than 20 will be seen by the NIDS but will be dropped before reaching the receiver. Since
the retransmitted segments are inconsistent, the NIDS does not know the correct interpretation.

monitored:

• Network topology is relatively stable. We discuss
how often mapping may be performed (based on
the prototype mapper’s performance) in Sections
5.3 and 5.6.

• The attacker is outside the network; if there is col-
lusion with a user on the inside, there is little any
system can do. Malicious insiders working alone
are assumed to be unable to change or drop partic-
ular packets. This latter assumption is more likely
to be true for switched networks.

• There is a firewall that can be used for sim-
ple packet-level filtering, especially address-based
ingress and egress filtering to prevent spoofing.
Also, we assume the NIDS’ tap is inside the fire-
wall.

• Hosts’ TCP/IP stacks behave consistently within
ordinary parameters: that is, if they exhibit unusual
behavior, it will be at boundary cases. We do not,
for example, run every TCP mapping test at every
possible sequence number.

2.2 Design Goals

We have been guided by a number of design princi-
ples in constructing our system:

• Comparable runtime performance. The use of
Active Mapping profiles should not appreciably
slow down the NIDS nor significantly increase its
memory requirements.

• Mapping should be lightweight. The bandwidth
consumed by mapping packets should be small
enough not to disrupt ordinary traffic on the net-
work nor disrupt the operation of the host being
mapped. The process of mapping should also be
completed in a modest amount of wall-clock time.

• Avoid harming the hosts. While no intention-
ally malicious packets are sent, bugs in a host’s
TCP/IP implementation might be triggered by the
(unusual) mapping packets. Each test should be
checked against known vulnerabilities before being
deployed.

2.3 Architecture

Our overall strategy is as follows: independent of the
NIDS, an Active Mapping machine scans each host on

3



Host Profile
Table

NIDS

probe
packets

Internet
Traffic

Firewall

Mapper

Host... ...

Dotted lines indicate 
offline activity

Figure 3. Interaction between the NIDS and the Mapper. The Active Mapping system sends spe-
cially crafted packets to each host to determine the hop count, Path MTU, and TCP/IP stack
policies. The results are combined into a profile. The NIDS uses the profiles to correctly
interpret each packet going to one of the hosts.

the internal network, building for each host a profile of
the network path and TCP/IP stack properties. These
profiles are stored in a database. At runtime, a NIDS
can use the database to resolve potential ambiguities (see
Figure 3). For example, the NIDS can use the host pro-
files to decide whether to accept or discard SYN data
in TCP packets, depending on the policy of the host for
which the packet is destined. We note that although our
method allows many ambiguities to be resolved, some-
times the very presence of ambiguity may be indicative
of noteworthy behavior (an attack attempt, for example).
Thus a NIDS may want to retain the ability to notify the
administrator of suspicious behavior, even when the in-
terpretation of that behavior is clear.

Our mapping tool is intended to be run on a machine
whose network point is topologically equivalent to the
link the NIDS is watching (see Figure 3). Typically this
is between the firewall and any internal routers. It is im-
portant that the mapper be able to send packets on this
link, since the mapping results should reflect the path of
actual packets from the point of view of the NIDS. In or-
der to keep the NIDS from interpreting mapping traffic
as attacks on internal hosts, the NIDS should be config-
ured to ignore traffic to and from the mapping machine.

The mapper begins mapping a host by performing
service discovery and hop count and Path MTU (PMTU)
determination. It initiates TCP connections to a set of
TCP services and sends ICMP echo packets to deter-
mine which services are available. Subsequent testing is
abstracted within the mapper to use those services. For
example, some tests require determining whether some

particular TCP data is accepted by the receiver. To do
so, we can use any service for which we can tell by
its response whether it received the specific data. To
date, we have developed concrete implementations of
SSH and HTTP beneath this abstraction. Other tests re-
quire simpler abstract interfaces. PMTU determination,
for example, is done with ICMP echo if available, or any
TCP service failing that. The hop count and PMTU of
the path to each host are determined next (Section 3.2).
Once these basic properties have been established, we
conduct a variety of IP and TCP tests (Section 3.2), gen-
erating the host profiles. Each test is repeated multiple
times to confirm the result and account for timeouts and
late or duplicated packets. To reduce correlated failures,
we never run more than one instance of a (host, test) pair
at the same time.

3 Active Mapping: Details and Limita-
tions

To thoroughly analyze the applicability of Active
Mapping to resolving possible ambiguities, we follow
the “header-walking” technique used in [HKP01]. We
feel this is a good place to start, since the authors of that
paper used a systematic approach to enumerate possible
ambiguities in TCP/IP streams. We examine each ambi-
guity to see if it can be resolved via Active Mapping, or,
if it is very simple, if it can be handled by stateless fire-
wall rules (see Section 3.1). Thus, we provide a reason-
ably complete picture of the ability of Active Mapping
to eliminate TCP/IP ambiguity.

4



A summary of the Active Mapping approach to every
normalization in [HKP01] is in the Appendix. To date,
we have implemented a selected subset of these map-
pings, spanning a number of different types of ambigui-
ties. We discuss them in detail in Section 3.2. Many of
the mappings in the full list are straightforward additions
given the types we have already implemented.

Active Mapping has some additional concerns be-
yond those for normalization (mostly regarding timing,
since, e.g., normalized traffic is generally not subject to
IP fragment timeouts). We discuss these and other cases
that are not easily tackled using our approach in Sec-
tion 3.3. A discussion of some practical concerns such
as NATs and DHCP follows in Section 3.5.

3.1 Firewall Filters

Certain simple cases should be handled by stateless
packet filtering at the firewall:

• Verifying IP header checksums

• Ingress and egress filtering, i.e., accepting external
and internal source addresses only on those respec-
tive interfaces

• Blocking packets to broadcast addresses or to re-
served private address spaces

• Rejecting packets whose IP header length field is
too small or too large

In short, the firewall should reject packets that could
not be part of legitimate traffic or that are so malformed
as to be useless to an endhost.

3.2 Selected Mappings

For a complete list of normalizations and the Active
Mapping approach to each, please see the Appendix.

Hop Count. Knowing the number of hops to an end
host allows us to resist the evasion in Figure 2. The eas-
iest way to determine hop count is to use the traceroute
utility. However, its strategy of sending three packets
per hop, increasing the search radius one hop at a time,
is quite time-consuming. To speed this up, we instead
use a known service on the system and send a packet to
it that is expected to elicit a response. Most hosts will
set the initial TTL value to 2N or 2N −1 for 5 ≤ N ≤ 8.
Thus from the response we can make a good first guess
of the number of hops G by subtracting the TTL in the
response packet from the next highest value of 2N + 1.
This guess could be wrong if the routing is asymmetric

or the host happens to use a different initial value. Our
search strategy is therefore to test the range G − 4 to
G, then if that fails to yield a result, perform a binary
search.

PMTU. Knowing the Path MTU—the Maximum
Transmission Unit over the path to the host—is impor-
tant because packets greater than this size with the DF
(Don’t Fragment) bit set are discarded. To determine it,
we send packets of various sizes to known services on
the hosts with the DF bit set and watch for responses.1

As with hop count determination, we optimize for the
common case. Since many internal networks run on Eth-
ernet, which has an MTU size of 1500 bytes, we test this
first, then do a binary search on [0, 1500], since the map-
per’s MTU will generally be limited by its local Ethernet
interface to 1500.

TCP RST Acceptance. RFC 793 [Po81c] specifies
that a TCP RST packet is to be accepted if and only
if it is within the receiver’s window. A non-compliant
TCP could create problems for a NIDS, which would
not know if the connection had been terminated or not.
The algorithm we use is as follows.

Repeat the following steps with the offset O set equal
to 0 (in sequence), 1 (in the window), and W+small con-
stant (outside the window):

• Send a TCP SYN packet at sequence number S.

• Receive a SYN/ACK packet, including a window
size W .

• Send an ACK packet to establish the connection.

• Send RST packet at S + O.

• Send FIN packet in sequence, i.e., at S.

• Receive one of: ACK of FIN packet → RST not
accepted; RST or nothing2 → RST accepted.

Overlapping and Inconsistent IP Fragments. RFC
791 [Po81a] states, “In the case that two or more frag-
ments contain the same data either identically or through
a partial overlap, this [suggested] procedure will use
the more recently arrived copy in the data buffer and

1In principle, we could also watch for ICMP Needs Fragmentation
responses, some of which indicate the limiting MTU size at the router
generating the response. But it is simpler for us to directly assess
PMTU end-to-end.

2Note that although a RST should be generated in response to the
FIN if the initial RST was accepted, some hosts have firewalling soft-
ware that will not respond to packets not sent to open connections (so
as to leak as little information as possible). Thus we equate receiving
no response (within 5 seconds) to an acceptance of the RST we sent.

5



datagram delivered.” It does not talk about inconsistent
or overlapping fragments. Furthermore, employing the
suggested policy has security implications: firewalls and
other packet filters must reassemble packets before mak-
ing any decisions about them, since at any point, a new
fragment can overwrite data from an old one. It is there-
fore no surprise that there are many different implemen-
tations in use.

We perform fragment reassembly testing using ICMP
echo packets; in principle the test could be performed
with TCP packets as well. We send a sequence of frag-
ments, each one containing a multiple-of-eight byte pay-
load (since the IP offset field is in those units). The dia-
gram below shows each of the six fragments, numbered
by the order in which they were sent; their payloads con-
sisted of that number replicated a multiple-of-eight num-
ber of times. For example, the third fragment was sent
at an IP offset of 6 (corresponding to the 48th octet in
the overall packet) and had a 24-byte payload of the re-
peating character ‘3’. Each fragment but the last had the
MF (More Fragments) bit set. The fragments’ offsets
and the host’s possible interpretations are given below,
along with the names of the policies to which they cor-
respond:3

11
012345678901 --> higher IP Offset

Data Sent
111 22333 (Fragments 1,2,3)
4444 555666 (Fragments 4,5,6)

Data Received
111442333666 BSD policy
144422555666 BSD-right policy
111442555666 Linux policy
111422333666 First policy
144442555666 Last/RFC791 policy

The following is a description of the policies we have
observed so far:

BSD. This policy left-trims an incoming fragment to
existing fragments with a lower or equal offset,
discarding it if it is overlapped entirely by exist-
ing fragments. All remaining octets are accepted;
overlapping fragments with a greater offset are dis-
carded or trimmed accordingly. This policy is doc-
umented more thoroughly in Wright and Stevens
[WS95], pp. 293-296.

3One unfortunate problem is that for the ICMP checksum to be
correct, we must calculate it assuming a particular reassembly policy!
Thus we must send all the fragments (with a different checksum) once
for each policy.

BSD-right. This policy is similar to BSD, except
fragments are right-trimmed (new fragments take
precedence over those with a lower or equal offset).

Linux. The Linux policy is almost the same as the BSD
policy, except that incoming fragments are trimmed
only to existing fragments with a strictly lower off-
set; that is, existing fragments with the same offset
will be overwritten, at least in part.

First. Always accept the first value received for each
offset in the packet.

Last/RFC791. Always take the last value received for
each offset in the packet.4

Other. Three other possible policies are tested for, but
none have yet been observed in practice.

Overlapping and Inconsistent TCP segments. This
problem is similar to that of IP fragment reassembly.
RFC793 [Po81c] states that an implementation should
trim segments “to contain only new data”, which implies
a “First” policy. The principle for testing is likewise
similar to evaluating fragment reassembly ambiguities,
and we could do the mapping using any TCP service
for which we can conduct an application-level dialog.
Ideally we would use the TCP Echo service, but this is
rarely supported; we used SSH and HTTP in testing. We
discuss it here as implemented for SSH.

Upon connecting, an SSH server sends a version
string of the form

SSH-<major>.<minor>-<comments>\r\n
[Yl02].
The client is expected to send a similar string of its own;
if the string is well-formed, the server responds with ad-
ditional parameters for negotiation. If not well-formed,
the server closes the connection, optionally sending an
error message.

Our test makes the well-formedness of the version
string dependent on the reassembly policy. By sending
different combinations of segments, we can deduce the
policy from the varied responses. For each of the follow-
ing two tests, some hosts will reassemble the following
legal version string

SSH-2.0-blah\r\n5

and some will reassemble an illegal version string, upon
which they will end the connection. Thus we can tell by

4In testing, some Cisco routers (which employed the Last policy)
sent back ICMP echo responses with several additional trailing NUL
characters.

5Actually, the version string the mapper sends to the server is the
same as the one the server initially sends to the mapper. This prevents
“protocol mismatch” errors.

6



the success or failure of the connection whether a legal
string was reassembled or not.

The first test sends the following three segments.
Only policies that do not left-trim (or indiscriminately
trim) to earlier data will fail.

012346789012 TCP Seq. Offset
SH- (First segment)

X2.0-blah\r\n (Second segment)
S (Third segment)

Note that the initial ‘S’ is sent last to prevent reassem-
bly until it is sent.

The second sends four segments; this test tries to fur-
ther discriminate among policies that succeeded on the
first test. Policies which never discard already-received
data will fail this test.

012346789012 TCP Seq. Offset
SH (First segment)

+ (Second segment)
X-2.0-blah\r\n (Third segment)

S (Fourth segment)

Here there are three observed policies, characterized
by the success (connection) of the (first, second) test.
They are the same as for IP fragments: BSD (yes, yes),
First (yes, no), and Last (no, no). The fourth possibil-
ity (no, yes), has not yet been detected in our testing.
Observed results by operating system may be found in
Section 5.

3.3 Difficult or Intractable Cases

The success of Active Mapping depends upon hosts’
behaving in a consistent and predictable way. This
is generally a good assumption, since most protocol
stacks are deterministic and obey relatively simple rules
for ambiguity resolution. There are, however, at least
three sources of nondeterminism that can make it dif-
ficult to perform precise simulation in the NIDS, even
with Active Mapping: user-controlled parameters in the
TCP stack, new semantics, and non-deterministic packet
drops.

Application-level Parameters. Users can change cer-
tain parameters that affect the TCP/IP stack. One ex-
ample, as noted in [HKP01], is the use of the TCP “ur-
gent” pointer, which marks some part of the sequence
space as containing important data that should be pro-
cessed without delay. Depending on the implementation
and user-set parameters, this data may be delivered via a
signal or inline to the user process. There is no way for
the NIDS to determine unambiguously the reconstructed

byte stream as seen by the application without help from
the host or hardcoding of the application’s interpretation
of urgent data.

New semantics. A NIDS must understand the in-
tended semantics of a stream if it is to interpret it cor-
rectly. Unknown TCP options, for example, can be ig-
nored if the target host does not indicate support for
them. The best the NIDS can do in general is to be up-
dated regularly with support for new options as hosts on
the internal network support them. If partial normaliza-
tion (see Section 6.1) is available, unsupported options
can be filtered out.

Nondeterministic Packet Drops. Perhaps the most
common reason for packet drops is a full incoming
packet buffer at an internal router or endhost. Thus if
routers internal to a site become saturated, or if a par-
ticular host is facing very high traffic volumes, pack-
ets may be dropped. If an attacker can cause packets to
be dropped in a very precise way during mapping, that
could affect mapping results; less precise interference is
likely to be caught as an inconsistency between multiple
runs.

Dropping may also be done by routers to meet Qual-
ity of Service guarantees. Mechanisms like Diffserv
[B+99] that implement QoS but whose exact workings
are site-specific are hard to predict, since external and
internal traffic may be mingled, each contributing to
packet drops for the other. A mitigating factor is that
such QoS policies tend to be implemented either at the
boundary routers (which filter before the NIDS) or at an
external aggregation point.

The NIDS must also know when a host will timeout
an IP fragment or TCP segment. Without this knowl-
edge, an attacker can later retransmit the fragment or
segment with different data: the NIDS cannot know
which was accepted, even with knowledge about which
would be accepted if the first did not time out. Though
Active Mapping can try to deduce the timeout value, the
need for precision in the timeout determination makes
this difficult.

3.4 Dealing with Timeouts and Packet Drops

The NIDS cannot be notified of every router or end
host packet drop. The host being monitored does, how-
ever, give some implicit drop information, in the form
of acknowledgments and responses to requests or lack
thereof. When combined with temporal causality, this
can allow partial reconstruction of the host’s state.

If we see an acknowledgment of a TCP segment or a
response to a UDP or ICMP request, we can infer that

7



the request must have been accepted using only packets
that preceded the response. Furthermore, if no response
is sent when one is expected, we can infer that packets
have been dropped. If the NIDS can send packets in real
time, it can send a “keep-alive” TCP packet, one that is
out of sequence. This should elicit an ACK that shows
the current sequence number.

The NIDS can also watch for ICMP messages in-
dicating timeouts (“Fragment Reassembly Time Ex-
ceeded,” per [Po81b]). Not all hosts send these notifi-
cations, and they might leak information to an attacker.
A compromise might be to configure hosts to generate
informative ICMP messages that are filtered by the fire-
wall (but are still seen by the NIDS).

3.5 Practical Considerations

There are additional concerns that arise in mapping
real networks. Our initial prototype does not handle all
these cases and there are likely to be others. We discuss
possible approaches to common real-world scenarios be-
low. We point out that Active Mapping does not require
a complete profile for each host to be useful: at best,
many ambiguities are eliminated; at worst, the default
behavior is that of the original NIDS. Thus Active Map-
ping may be incrementally deployed even while some
practical hurdles are being surmounted.

NAT So far our discussion of mapping has assumed
that each IP address corresponded to exactly one ma-
chine (and a single set of policies). If a NAT [EF94] is
running inside the monitored site (so that the NIDS does
not see the private addresses), however, we need addi-
tional strategies. To handle servers behind a NAT, we
could map each port as though it belonged to a separate
machine, checking for all relevant policies on each port.
It is harder to deal with clients behind a NAT, though this
is only relevant in the case of outside servers attacking
internal clients in a client OS-specific way.

It can be difficult to detect when a NAT is being used,
though recent work by Bellovin [Be02] suggests that it is
possible in some cases. If not all NAT IPs are not known
to system administrators, the mapper could map multi-
ple ports independently or sample them for differences,
which would indicate a NAT’s presence.

DHCP The Dynamic Host Configuration Protocol
(DHCP) [Dr97] dynamically assigns IP addresses to
clients. A DHCP server leases out addresses when
clients request them; leases expire periodically. Deal-
ing with DHCP requires some integration: the mapper
could be triggered upon seeing DHCP requests (if the
broadcast does not make it to the mapping machine, the

DHCP server can be set up to notify it). The profile
database could include MAC addresses, so the mapper
would know when it already has a profile for a given ma-
chine (perhaps gathered previously under a different IP
address). If integration with a DHCP server is not possi-
ble, determining MAC addresses might be nontrivial; it
is an area for future work.

TCP Wrappers (Host-Based Access Control) Some
hosts use TCP Wrappers to restrict access to services to
a set of hosts determined by an Access Control List. If
the Active Mapping machine is not granted access, some
tests requiring meaningful interaction with a particular
TCP service will fail. A simple solution is to allow a
designated mapping machine access to relevant services.

Attacks on the Active Mapper A natural concern is
whether or not an attacker could subvert the mapping
process, causing false results, by attacking the mapping
machine or trying to change mapping traffic. Prevent-
ing outsider attacks on the mapper directly is straight-
forward: simply have the firewall reject all traffic des-
tined for the mapper. There is no legitimate need for
direct access to a mapping machine from the outside. A
greater concern would be direct attacks from inside ma-
chines that have been compromised; the threat could be
mitigated by only allowing access to well-known ports
from a restricted set of administrative machines at the
mapper’s local router. Of course, once an attacker has
compromised an internal machine many other types of
attacks are possible.

4 Prototype Implementation

We implemented Active Mapping in about 2,000
lines of Perl and have ported it to the Linux and
FreeBSD operating systems. It requires a TCP/IP
firewall capability, the libpcap packet capture library
[MLJ94], and raw socket support. Using these features
generally requires superuser access.

ICMP and TCP packets are sent directly using raw
sockets. A Pcap filter is set up to capture responses.
Our user-level TCP implementation follows a strategy
similar to that of Tbit [PF01], a TCP behavior-inference
tool. Like Tbit, we firewall off high-numbered TCP
ports for use as ephemeral source ports (to prevent the
kernel from responding to incoming traffic to those ports
by sending RSTs). Unlike Tbit, which dynamically in-
stalls and removes firewall filters, we require the user
to allocate and firewall off a range of ports in advance;
this reduces the amount of system-dependent code in the
mapper at the expense of transparency. Our TCP imple-
mentation is rudimentary; currently we perform neither

8



reassembly nor implement congestion control, for exam-
ple. Nonetheless, it has proved adequate thus far for the
short-lived connections needed for mapping, especially
since servers tend to send back well-formed replies to
our often malformed queries.

The mapper conducts tests in parallel with respect to
machines being mapped and with respect to each indi-
vidual test. The degree of parallelism is determined by
the number of available TCP source ports, the size of the
packet buffers, and (due in particular to our unoptimized
implementation) the CPU speed.

Each test is repeated a configurable number of times
(three, in testing) and all the results are recorded. This is
important to account for dropped packets and timeouts.

Currently, we have implemented network topology
and service discovery as well as the specific tests de-
scribed in Section 3.2.

We modified the Bro NIDS [Pa98] to use Active
Mapping profiles to properly interpret traffic. (We note
that this integration may be done with any NIDS which
does TCP/IP stream reconstruction, since it will include
all the necessary decision points.) The integration was
straightforward; a few hundred lines of C++ code were
needed. The performance impact of the modifications is
discussed in the following section.

5 Experiments and Results

5.1 Observed Active Mapping Profiles

We ran the prototype Active Mapper at the Lawrence
Berkeley National Laboratory. The exact number of ac-
tive hosts during our scan is not known, but was esti-
mated based on other scans to be around 6,700. We ob-
tained nontrivial, consistent data (identical results over
three trials for something other than the hostname) for
just over 4,800 hosts. Many of the IPs for which we
did not obtain results are in DHCP blocks (hosts may
not always be present); in addition, many users employ
host-based firewalls which would prevent our scanning.
We are currently working on getting more precise data
here (we note that firewalls are likely to prevent the at-
tacks the NIDS is looking for in any case!). It is signifi-
cant that we obtained results for virtually every machine
for which OS data were known; presumably most other
machines are more transient or are firewalled enough to
stop OS detection. We present Active Mapping profiles
by operating system in Figure 4. Some tests did not yield
results due to services’ being protected with TCP Wrap-
pers. We expect this limitation can be overcome in prac-
tice by adding the mapping machine to the hosts’ ACLs
as needed.

The amount of observed diversity in policy is remark-
able, given that we only ran five tests. While hosts with a
given operating system version exhibited the same poli-
cies, it is interesting note how policies changed for dif-
ferent versions of the same operating system. Linux in
particular seems to have undergone a number of pol-
icy changes, even during minor revisions of the kernel.
We also note that individual users can alter policies by
installing “hardening” or other patches. It is precisely
this diversity (borne out by our experiments) that under-
scores the need to disambiguate traffic destined for each
host based its particular observed policy.6

For 173 hosts, we were unable to get results that were
consistent (defined as getting identical results for three
trials). This is less surprising, perhaps, in light of the fact
that all but 29 of them were found to be printers, routers,
or scanners; many of the remaining 29 had unknown
operating systems. Furthermore, all but 36 of the 173
hosts gave consistent results for the trials which com-
pleted, but had one or more trials which did not com-
plete. This could be due to congestion. In all, only 10
machines which were not known to be special-purpose
devices yielded results with conflicting answers.

5.2 Stability of Results

We performed another mapping of the hosts at LBNL
about 5 months after the original study whose results are
presented above. The goal was to see what the “churn
rate” was like, i.e., how many IP addresses had come and
gone and whether or not profiles had stayed constant.
Ideally, one might perform such an analysis a smaller
time scales.

First, let us examine the differences between the sets
of IP addresses in the two runs. In the original mapping,
4,882 hosts provided nontrivial, consistent results; in the
second mapping 4,733 hosts did so. 1,122 IPs were in
the first set, but not the second; of these 880 were in
DHCP blocks. 973 IPs were in the second set but not
the first; 669 were in DHCP blocks. The large fraction in
DHCP blocks is important because the set of machines
in these blocks may have “IP churn” without “machine
churn”, which is more significant for us, since it seems
feasible to inform the NIDS about DHCP lease updates.

We estimate the “machine churn” in DHCP blocks by
comparing the distributions of profiles among the DHCP
machines. As we can see from Figure 5, the distribution
is relatively stable; thus we expect that machine churn
should be manageable.

6We note that a first-order approximation might be obtained by us-
ing known OS version information with a lookup table; it may even
make sense to run Active Mapping and then infer the OS from its re-
sults. We plan to investigate this relationship in the future.

9



OS IP Frag TCP Seg RST in wnd RST outside wnd
AIX 2 BSD BSD Yes No

AIX 4.3 8.9.3 BSD BSD Yes No
Cisco IOS Last BSD Yes No
FreeBSD BSD BSD Yes No

HP JetDirect (printer) BSD-right BSD Yes No
HP-UX B.10.20 BSD BSD Yes No
HP-UX 11.00 First BSD Yes Yes
IRIX 4.0.5F BSD No result Yes No

IRIX 6.2 BSD No result Yes No
IRIX 6.3 BSD BSD Yes No

IRIX64 6.4 BSD BSD Yes No
Linux 2.2.10 linux No result No No

Linux 2.2.14-5.0 linux BSD Yes No
Linux 2.2.16-3 linux BSD No No

Linux 2.2.19-6.2.10smp linux BSD No No
Linux 2.4.7-10 linux BSD Yes No

Linux 2.4.9-31SGI XFS 1.0.2smp linux BSD Yes No
Linux 2.4 (RedHat 7.1-7.3) linux BSD Yes No
MacOS (version unknown) First BSD Yes Yes

netapp unknown No result No result No No
netapp unknown No result No result Yes No

NCD Thin Clients (no services exported) BSD No result No result No result
OpenBSD (version unknown) linux BSD Yes No
OpenBSD (version unknown) linux BSD No No

OpenVMS 7.1 BSD BSD Yes No
OS/2 (version unknown) BSD No result Yes Yes
OS/2 (version unknown) No result No result No No

OSF1 V3.0 BSD BSD Yes No
OSF1 V3.2 BSD No result Yes No

OSF1 V4.0,5.0,5.1 BSD BSD Yes No
SunOS 4.1.4 BSD BSD Yes No

SunOS 5.5.1,5.6,5.7,5.8 First Last Yes No
Tektronix Phaser Printer (unknown model) Last No result No No
Tektronix Phaser Printer (unknown model) First BSD Yes Yes

Tru64 Unix V5.0A,V5.1 BSD BSD Yes No
Vax/VMS BSD BSD Yes No

Windows (95/98/NT4/W2K/XP) First BSD Yes No

Figure 4. Selected Observed Active Mapping Profiles. Active Mapping profiles observed, by operat-
ing system of the host. Tests reported correspond to those described in section 3.2. Operating
system data were not available for all mapping hosts, so the above table is not complete with
respect to our test set; in some cases, version numbers were not known. Some entries with
identical results across many versions of an OS have been summarized in one line; some very
similar OS versions with identical results have been omitted for brevity. A value of “No Result”
is due mostly to the use of TCP Wrappers; in some cases the mapped host did not support
the service required to perform mapping. Since every machine accepted a RST in sequence,
results for that test are not given.

10



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

N
um

be
r o

f m
ac

hi
ne

s

Profile

Original Mapping
Second Mapping

Figure 5. The distribution of AM profiles of
DHCP clients for two runs separated by five
months. The large spike in the graph corre-
sponds to Windows machines not running
any public services.

Among the 1,618 machines with fixed IPs, only 35
showed any difference in AM profile between the two
runs. Although we did not have complete OS informa-
tion for all these IPs for each run, our manual compar-
ison where possible showed that these were almost all
due to OS upgrades. Thus, it does not appear that there
is a considerable amount of turnover in this group.

5.3 Mapping Time

The times measured are dependent on the policies
found: since many tests’ results are determined by the
presence or absence of a response from the host within a
certain time, some policies generate more timeouts than
others. Most timeouts are on the order of 5–10 seconds;
we found this interval to be sufficient to account for de-
lays at the hosts and in the network.

Mapping a single host requires approximately 37 sec-
onds. This minimum is due to the fact each of the map-
ping tests is repeated three times, and a single test re-
quires two rounds of communication.

Wall-clock time rises sublinearly through 64 hosts,
due to increased parallelism. For more than 64 hosts,
though, times are likely to scale linearly since the
mapper implements rate-limiting to avoid packet-buffer
overflows (a problem we were able to alleviate in part
by using larger-than-normal packet capture buffers). In-
deed, mapping 101 hosts took 532 seconds, or 5.3 sec-
onds per host; for 64 hosts, the time was 5.7 seconds per
host and for 16 hosts, it took 10.1 seconds per host.

Our prototype implementation’s inefficiency resulted

in user time increases at the rate of somewhat less than
two seconds per host being mapped. As a result, paral-
lelism was limited, allowing steady-state rates of about
5 seconds per active host on the full-site mapping with
thousands of hosts. We expect that this figure could be
improved considerably with a better implementation.

5.4 Mapping Traffic

We measured bidirectional network traffic generated
during mapping. During a scan of a subnet with 101 live
hosts, we recorded statistics (taken over three trials) re-
lating to the number of bytes and packets generated by
scanning, both to and from the mapper. The results are in
Figure 6. ICMP packets were due to ICMP service dis-
covery, PMTU and hop count determination, and some
IP mappings. TCP packets were due to TCP service dis-
covery, PMTU and hop count determination (if ICMP
was not supported), and TCP mappings.

Total Per host
Total bytes 1.9MB ± 49KB 19KB
Total packets 32,893 ± 345 326
ICMP packets 21,763 ± 2 215
TCP packets 10,588 ± 7 105
Packets/sec. 3.3 ± 0.0
Bytes/sec. 191 ± 5

Figure 6. Traffic generated by mapping 101
hosts on a single subnet. Three trials were
conducted.

5.5 NIDS Integration Tests

We modified the Bro NIDS by adding support for
disambiguation based on Active Mapping profiles; we
stress that the choice of NIDS was for convenience since
our techniques would apply equally to any TCP/IP-
analyzing NIDS. Our goals in testing were twofold: first,
to ensure that using Active Mapping would indeed re-
sult in correct interpretation of network traffic; second,
to check that using Active Mapping would not incur any
significant runtime cost. Accordingly, we ran two set of
tests: first, a synthetic test with ambiguous traffic; sec-
ond, a comparison of the original and Active Mapping-
modified NIDS on real-world traces. (We expect that
results would be substantially the same with any other
NIDS integration.)

11



5.5.1 Synthetic Tests

In order to test the correctness of the modified NIDS
(its ability to disambiguate traffic correctly, we gener-
ated HTTP attack traffic to 8 hosts with evasion mea-
sures added using fragroute [So02] to modified traf-
fic to 2 hosts. Fragroute automatically transformed
the request stream to include overlapping and inconsis-
tent IP fragments and TCP segments. The inconsistency
favored one of two policies (in our parlance, a “first”
policy and a “BSD” policy); the data not expected to be
accepted were chosen randomly. For the two machines
receiving modified traffic, we used Active Mapping pro-
files which would allow the traffic to be properly inter-
preted.

We found that the unmodified NIDS believed the
HTTP request to be:

GET /msadcTpo6EGKEY./../..%bTMmzy
QaL/system32/fipGNdDg++dir+c:\

rather than:
GET /msadc/../../../../../../winnt
/system32/cmd.exe?/c+dir+c:\

which was the actual request URL. It is clear that the un-
modified NIDS, which had no way to properly resolve
the ambiguous overlaps, chose the wrong data to use in
reassembly. The modified NIDS performed reassembly
correctly.

To measure the impact of Active Mapping on the
NIDS’ performance in the presence of a relatively high
proportion of ambiguous traffic, we used two traces of
500 connections to the 8 hosts. In the first, where
none of the connections were modified by fragroute,
times were essentially identical over three trials. In the
second, where connections to two of the machines were
modified by fragroute, the Active Mapping-enabled
NIDS was actually about 15% faster, since it was able to
discard more data. In practice we expect this effect to be
small, since it is only relevant when there are overlap-
ping IP fragments or TCP segments (or the like); such
occurrences are uncommon.

5.5.2 Real-world Tests

To get a picture of the performance impact on a larger,
more realistic dataset, we used two real-world traces.
The first was of a wide variety of non-HTTP traffic
(mostly just SYN/FIN/RST packets, the data filtered
out) gathered by a one-hour capture at a busy site (100.2
MB data, 1.2 M packets, 273 K connections). The sec-
ond was of two hours of HTTP traffic (with full data)
at another site (137 MB, 197 K packets, 6,379 connec-
tions). In both cases, the results were the same: with
Active Mapping on, execution time was essentially iden-

tical7. Memory usage was approximately 200K higher
with AM (specific profiles were used for about 4,800
hosts; a default one for the rest), a small fraction of the
68MB used overall.

We are currently working on deploying an Active
Mapping-enabled NIDS operationally to get more data
on the impact of using AM profiles on performance and
precision.

5.6 Conclusions and Recommendations

The test results suggest that mapping can be per-
formed quite frequently. A full class C subnet can
be scanned in about 20 minutes, so daily scans during
off-peak times are certainly feasible. Importantly, with
a steady-state rate of about 5 seconds per host (using
our unoptimized prototype), it is feasible to completely
remap even large sites—say, thousands of hosts—on a
weekly basis during off-peak hours. Certain tests whose
results we expect not to change often (e.g., those related
to network topology) can be performed less frequently.
The mapping-induced traffic of about 19 KB per host
mapped is quite low and its impact during off-peak hours
is likely to be negligible.

Remapping can also be triggered by any inconsis-
tency between the stored policy and an observed one.
For example, if a host sends an ICMP Needs Fragmenta-
tion message for a packet smaller than the stored PMTU,
then the host should be remapped. External information,
e.g., OS fingerprint results, can be used to detect changes
in the status of a machine as well.

On-the-fly mapping—mapping when the first packet
to a host is seen—is probably not possible, because
many tests take several seconds. In any case, host pol-
icy changes are most likely to be triggered by infrequent
operating system upgrades. More frequent changes to
the policy database are those initiated by DHCP. As we
have noted, we can store policies by MAC address and
simply update a table when the NIDS sees a DHCP re-
quest (or is informed of a new lease by the DHCP server
itself). For new hosts—say, a laptop attached for the first
time to the network—mapping can be performed in un-
der one minute (mapping a single host takes on the order
of 30 seconds). This period of uncertainty is unlikely to
be problematic, since it is rare that DHCP clients export
public services.

Runtime performance in the NIDS was not negatively
affected by the addition of Active Mapping-based dis-
ambiguation. In fact, since using Active Mapping re-
sults allows the NIDS to discard additional packets, per-
formance in some cases was actually improved. The ad-

7With AM on, it was slightly faster (less than 1%). We are not sure
why this is the case; it could be due to minor cache or compiler effects

12



ditional memory footprint was approximately 100 bytes
per host. We expect with all mappings implemented it
would be on the order of a few hundred bytes.

The modified NIDS was also capable of correctly in-
terpreting traffic in a way that the original one was not,
detecting precise attacks that the original could only hint
at through warnings about inconsistent retransmission.
We stress that no amount of care in the design of the
original could have changed its behavior in this respect:
since hosts’ behavior varies, any single policy employed
by the NIDS will inevitably fail for hosts that employ a
different one.

6 Related Work

6.1 Normalization

As previously discussed, traffic normalization seeks
to eliminate network traffic ambiguities by altering the
traffic stream [HKP01]. The normalizer lies in the for-
warding path of packets into a site. It reassembles IP
fragments and TCP streams and statefully modifies or
filters out nonconforming traffic before sending packets
on to the internal network. Its efficacy in improving the
precision of the NIDS relies on its output being inter-
preted in the same way by all the hosts on the network.
It largely succeeds at achieving this goal; the paper also
discusses some exceptions.

There are disadvantages to normalization, however.
A normalizer performs the same sorts of tasks as a fire-
wall, but is doing more work: it deals with TCP streams
rather than just individual packets. Two main concerns
arising from this complexity are performance and ro-
bustness. Since the normalizer is in the forwarding path,
it must be able to process every packet as it arrives, even
in the presence of stateholding attacks on itself. Fur-
ther, it must be extremely reliable; if it is not, the entire
site may lose Internet connectivity. An additional con-
cern is that the normalizer changes the semantics of the
streams it rewrites. This can block useful traffic, cause
unintended problems with newer protocols, or decrease
efficiency.

It appears that Active Mapping can replace many of
the normalizations (see the Appendix for a full list).
Still, there are cases in which some amount of normal-
ization can confer significant benefits: its ability to re-
move flags and options can be used to eliminate any un-
certainty as to their use.

Accordingly, it may sometimes work best to use in-
formed partial normalization, that is, to perform a lim-
ited set of normalizations that eliminate ambiguities that
Active Mapping cannot. If the host profiles indicate

that certain kinds of noncompliant packets are never ac-
cepted by any host, or if administrators want an addi-
tional layer of safety, such packets may be filtered out at
the firewall.

6.2 Mapping Tools

Active Mapping’s tactic of sending specially crafted
packets and interpreting responses to infer host proper-
ties has been employed in a variety of tools.

The most common purpose for such tools is to de-
termine the operating system of a host. Nmap [Fyo01]
uses port scans combined with IP and TCP options in
responses to guess a host’s operating system. Queso
[Sa98] takes a similar tack, sending TCP packets with
illegal flag combinations. By matching initial TTL val-
ues, advertised TCP windows, initial sequence numbers,
nonconforming responses to packets sent to closed ports,
and so forth, these tools can detect a large number of op-
erating system versions.

Neither provides us with enough precise information
on the long list of policy choices and parameters we
need. Since doing OS detection takes approximately as
long as Active Mapping, there seems little advantage to
doing OS detection instead for this purpose; however,
knowing the host OS can be very useful in eliminat-
ing false positives (i.e., could a particular attack actu-
ally succeed?). We note that, especially in light of the
fact that operating systems may be user-modified, the
actually observed behavior is the only relevant thing for
correct interpretation: the OS version is at best a proxy
for this information.

Nonetheless, there is a certain synergy between the
two. If OS data is known, it can serve as a quick proxy
for mapping characteristics when coupled to a database
containing canonical mappings by OS type and version.
Conversely, known mappings can give at least a rough
estimation of the OS a host is running. This can be use-
ful for alert filtering: if a particular attack only works
on Linux and the mapping data suggest a Windows ma-
chine, then we can filter out irrelevant alerts without
knowing more precisely the OS versions.

The Ntop NIDS has been supplemented with network
information inferred from passive monitoring [DS00];
this information appears to be limited to guessing the
hop count and figuring out which IP addresses corre-
spond to routers.

Tbit [PF01] tries to learn the TCP behavior of HTTP
servers in regards to congestion control. It only sends
legitimate TCP packets, relying on TCP options, adver-
tised windows, and timing information to deduce the
server’s TCP configuration (or bugs therein). We use
its scheme for implementing our user-level TCP.

13



7 Summary

Ambiguity in the interpretation of network traffic is a
critical difficulty for Network Intrusion Detection. This
ambiguity takes many forms. Some types may be re-
solved by careful construction of the NIDS. Other types
are fundamentally more difficult to resolve, and require
additional information about the network and the hosts
being monitored. In this paper, we have presented Ac-
tive Mapping, a method of eliminating network- and
transport-layer ambiguities by informing the NIDS of
relevant network and host TCP/IP stack policies. We
stress that the ambiguities that Active Mapping seeks to
address are readily exploitable; systems have been de-
signed for doing just that [So02, Mc98].

Active Mapping runs separately from the NIDS (typ-
ically during off-peak hours) and works by sending spe-
cially crafted packets to each host and inferring policy
from the responses it receives (or lack thereof). It does
not require any real-time manipulation of the incoming
traffic stream by the NIDS. In our tests with a NIDS
modified to use Active Mapping-generated profiles, we
found that there was essentially no cost in terms of speed
or memory use to get the increased precision in analysis;
we expect this will hold true for any NIDS. In addition,
we have shown that Active Mapping itself is efficient in
terms of time, network bandwidth consumed, and out-
put size. Preliminary mapping results show considerable
variation in policy among hosts’ TCP/IP stacks, under-
scoring the need for the precise simulation that Active
Mapping enables. Future work in this area might in-
clude exploring using passive monitoring to determine
when to remap a host, as well as an implementation of
mapping of DHCP clients and implementation of more
of the mappings described in the Appendix.

Finally, we note that the problem of ambiguous traf-
fic is not confined to the network and transport layers.
It also occurs at the application layer—for example, ex-
actly how will a particular URL be interpreted?—and
dealing with all possible ambiguities appears essentially
intractable. Active Mapping profiles might be able to
help lower false positives by allowing the NIDS to con-
sider only platform-relevant attacks, but analysis of this
potential benefit is beyond the scope of this paper. Thus
we do not claim to have “solved” the NIDS evasion
problem. However, we believe that the general problem
of ambiguity resolution is best addressed in a system-
atic, layered fashion, and Active Mapping represents a
step toward eliminating ambiguity at the bottom layers.

Acknowledgments

We would like to thank Mark Handley at ICIR and
Partha Banerjee, Mark Dedlow, Jay Krous, and Craig
Leres in the SNS group at LBNL who helped us with
testing the Active Mapper and in gathering data about
the hosts on the LBNL network. We would also like
to thank Nikita Borisov, Mark Handley, Rob Johnson,
Chris Karlof, and David Wagner for their insightful and
focusing comments on this paper.

References

[Be02] Steven M. Bellovin, “A Technique for Count-
ing NATted Hosts.” Proceedings of the Sec-
ond Internet Measurement Workshop, Novem-
ber 2002.

[B+99] S. Blake et al, “An Architecture for Differenti-
ated Services,” RFC 2475, Dec. 1998.

[Dr97] R. Droms et al., “Dynamic Host Configuration
Protocol,” RFC 2131, Mar. 1997.

[DS00] L. Deri and S. Suin, “Improving Network Se-
curity Using Ntop,” Proc. Third International
Workshop on the Recent Advances in Intrusion
Detection (RAID 2000), 2000.

[EF94] K. Egevang and P. Francis, “The IP Network
Address Translator (NAT),” RFC 1631, 1994.

[Fyo01] Fyodor. nmap, 2001. http://www.insecure.org/
nmap/ .

[HKP01] Mark Handley, Christian Kreibich and
Vern Paxson, “Network Intrusion Detection:
Evasion, Traffic Normalization,” Proc. 10th
USENIX Security Symposium, 2001.

[Mc98] John McDonald. “Defeating Sniffers and In-
trusion Detection Systems,” Phrack Magazine,
8(54), Dec 25th, 1998.

[MLJ94] S. McCanne, C. Leres and V. Ja-
cobson, libpcap, available at
http://www.tcpdump.org, 1994.

[Pa98] Vern Paxson, “Bro: A System for Detecting
Network Intruders in Real-Time,” Computer
Networks, 31(23-24), pp. 2435–2463, 14 Dec.
1999.

[PF01] Jitendra Padhye and Sally Floyd, “Identifying
the TCP Behavior of Web Servers,” Proc. ACM
SIGCOMM, Aug. 2001.

14



[PN98] T. H. Ptacek and T. N. Newsham, “Inser-
tion, Evasion and Denial of Service: Elud-
ing Network Intrusion Detection”, Secure Net-
works, Inc., Jan. 1998. http://www.icir.org/vern/
Ptacek-Newsham-Evasion-98.ps

[Po80] J. Postel, “User Datagram Protocol,” RFC 768,
August 1980.

[Po81a] J. Postel, “Internet Protocol,” RFC 791,
September 1981.

[Po81b] J. Postel, “Internet Control Message Protocol,”
RFC 792, September 1981.

[Po81c] J. Postel, “Transmission Control Protocol,”
RFC 793, September 1981.

[Sa98] Savage, “QueSO,” savage@apostols.org,
1998. http://www.backupcentral.com/cgi-
bin/redirect?url=ftp://contrib.redhat.com/
pub/contrib/libc6/SRPMS/queso-980922b-
1.src.rpm.

[So02] Dug Song, fragroute. Available at
http://www.monkey.org/˜dugsong/fragroute/.

[WS95] Gary R. Wright and W. Richard Stevens,
TCP/IP Illustrated: The Implementation,
Addison-Wesley, 1995.

[Yl02] T. Ylonen et al, “SSH Transport Layer Proto-
col,” Internet Draft, work in progress, 2002.

15



Appendix: Full List of Active Mappings

In [HKP01], the authors adopted a “header-walking” technique—inspection of each TCP and IP header field—in
an attempt to enumerate all ambiguities (which would then be resolved using a normalizer). In our analysis of Active
Mapping as an approach to the same problem, we borrow that work’s list of normalizations, noting for each how it
fits into the Active Mapping framework. The idea is to try to get a complete picture of how Active Mapping can (or
can’t) eliminate possible TCP/IP ambiguities by looking at each, then stating what sort of mapping technique would
work. The reader is referred to [HKP01] for more thorough explanations of some of the normalizations. We note that
we have not implemented all of the mappings suggested below; nonetheless, most are straightforward given the ones
that we have implemented and tested.

The Disposition column in the tables below will usually contain one of three main approaches, sometimes coupled
with a short explanation:

Drop. The stateless firewall should be configured to drop this packet.

Map. We can send chosen probe packets to the host to determine its policy. The most common case, “Map for drop,”
indicates that the packet should be sent to a host—usually as part of an open connection—to see whether it is
dropped or acknowledged.

Ignore. We do not need to perform any mapping for this test.

There is a tradeoff between accepting malformed packets that might be useful and allowing in malicious traffic. For
some normalizations, a choice should be made about whether the anomaly in question might (or empirically does)
arise in normal traffic. If it is decided that the anomalous packet would not arise normally, it may be dropped by a
firewall or a partial normalizer running in front of the NIDS.

IP Normalizations

# IP Field Normalization Performed Disposition
1 Version Non-IPv4 packets dropped. Drop if NIDS is not IPv6-aware, else Ignore.
2 Header Len Drop if hdr len too small. Drop.
3 Header Len Drop if hdr len too large. Drop.
4 Diffserv Clear field. Ignore if internal routers don’t support; add Diffserv pol-

icy to NIDS otherwise
5 ECT Clear field. Map for drop.
6 Total Len Drop if tot len > link layer len. Drop.
7 Total Len Trim if tot len < link layer len. Ignore.
8 IP Identifier Encrypt ID. Ignore.
9 Protocol Enforce specific protocols. Ignore unless the NIDS is aware of any other protocol.
– Protocol Pass packet to TCP,UDP,ICMP

handlers.
N/A (done by NIDS)

10 Frag offset Reassemble fragmented packets. Map (see § 3.2).
11 Frag offset Drop if offset + len > 64KB. Map to see if data > 64k is accepted or trimmed off, but

don’t trigger known bugs.
12 DF Clear DF. Map PMTU (see § 3.2).
13 DF Drop if DF set and offset > 0. Map for drop. One plausible interpretation is: do not fur-

ther fragment this packet. Some Solaris machines gener-
ate these packets; it is not disallowed by RFC791 [Po81a].

14 Zero flag Clear. Firewall should clear if possible; otherwise Map to see if
packets with zero flag set are dropped.

15 Src addr Drop if class D or E. Drop.
16 Src addr Drop if MSByte=127 or 0. Drop.
17 Src addr Drop if 255.255.255.255. Drop.

16



# IP Field Normalization Performed Disposition
18 Dst addr Drop if class E. Drop.
19 Dst addr Drop if MSByte=127 or 0. Drop.
20 Dst addr Drop if 255.255.255.255. Drop.
21 TTL Raise TTL to configured value. Map (see § 3.2).
22 Checksum Verify, drop if incorrect. Drop or optionally Map for drop.
23 IP options Remove IP options. Map for drop (esp. source route/record route); add support

for IP options to packet processing on NIDS. Optionally
have router or partial normalizer clear unsupported options
(packets already taking slow path on router).

24 IP options Zero padding bytes. Ignore. Optionally have router clear padding bytes.

UDP Normalizations

# UDP Field Normalization Performed Disposition
1 Length Drop if doesn’t match length as

indicated by IP total length.
Map: assume minimum of UDP or IP length taken. Also
map for drop. Optionally drop if router supports it.

2 Checksum Verify, drop if incorrect. Map for drop. Optionally just Drop if router supports it.

TCP Normalizations

# TCP Field Normalization Performed Disposition
1 Seq Num Enforce data consistency in re-

transmitted segments.
Map (see § 3.2).

2 Seq Num Trim data to window. Map: send out-of-window segment, then segments in re-
verse to start of window to prevent stream reassembly un-
til all segments have been received; check ACK sequence
point.

3 Seq Num Cold-start: trim to keep-alive. If NIDS can send packets, send keep-alive (incorrect ACK
designed to elicit the current sequence point in an ACK
from the internal host). Otherwise Ignore: this is a cold-
start problem.

4 Ack Num Drop ACK above sequence hole. Map to see if the ACK is accepted.
5 SYN Remove data if SYN=1. Map for drop; if not, see if data is ACKed.
6 SYN If SYN=1 & RST=1, drop. Map to see if RST accepted during open connection; Map

to see if SYN accepted if no connection established.
7 SYN If SYN=1 & FIN=1, clear FIN. See if FIN is ACKed; the sender could plausibly say, “I

want to initiate a connection, but have nothing to send,”
making the connection half-open right away.

8 SYN If SYN=0 & ACK=0 & RST=0,
drop.

Map for drop or optionally Drop.

9 RST Remove data if RST=1. Ignore: there are no known exploits. Optionally use nor-
malizer to remove data.

10 RST Make RST reliable. If possible, have NIDS send-keep alive to ensure that RST
was accepted (reliable RST).

11 RST Drop if not in window. Map (see Section 3.2)
12 FIN If FIN=1 & ACK=0, drop. Map for drop.
13 PUSH If PUSH=1 & ACK=0, drop. Map for drop.
14 Header Len Drop if less than 5. Map for drop.
15 Header Len Drop if beyond end of packet. Map for drop.
16 Reserved Clear. Ignore or optionally Map for drop.

17



# TCP Field Normalization Performed Disposition
17 ECE, CWR Optionally clear. Ignore.
18 ECE, CWR Clear if not negotiated. Ignore.
19 Window Remove window withdrawals. Map for drop.
20 Checksum Verify, drop if incorrect. Map for drop.
21 URG,urgent Zero urgent if URG not set. Ignore. Optionally use app-level host information (e.g.,

particular HTTP server) to interpret urgent data.
22 URG,urgent Zero if urgent > end of packet. As above. Note that it is legal for the urgent pointer to

point beyond of the packet containing it.
23 URG If URG=1 & ACK=0, drop. Map for drop.
24 MSS option If SYN=0, remove option. Map to see if the option actually changes the MSS in this

case.
25 MSS option Cache option, trim data to MSS. The NIDS should do the caching.
26 WS option If SYN=0, remove option. Ignore: Window scaling presents a cold-start problem; if

desired, partial normalization can remove the option or
else the NIDS can try to infer its success from subsequent
ACKs.

27 SACK Normalizations 27-31 regarding
SACK

Ignore: SACKs are advisory, so should not affect the se-
mantics the NIDS uses.

32 T/TCP opts Remove if NIDS doesn’t sup-
port.

Map for drop.

33 T/TCP opts Remove if under attack. N/A
34 TS option Remove from non-SYN if not

negotiated in SYN.
Map for drop.

35 TS option If packet fails PAWS test, drop. Map for drop.
36 TS option If echoed timestamp wasn’t pre-

viously sent, drop.
Map for drop.

37 MD5 option If MD5 used in SYN, drop non-
SYN packets without it.

Map for drop when option not set in SYN. If not dropped,
do same thing in NIDS as in normalizer, but this causes a
cold-start problem.

38 other opts Remove options Ignore: optionally remove with a partial normalizer. (See
Section 3.3).

ICMP Normalizations

# ICMP Type Normalization Performed Disposition
1 Echo request Drop if destination is a multicast

or broadcast address.
Optionally Drop.

2 Echo request Optionally drop if ping check-
sum incorrect.

Optionally Drop.

3 Echo request Zero “code” field. Map for drop.
4 Echo reply Optionally drop if ping check-

sum incorrect.
Optionally drop.

5 Echo reply Drop if no matching request. Ignore.
6 Echo reply Zero “code” field. Map for drop.
7 Source

quench
Optionally drop to prevent DoS. Optionally Drop.

8 Destination
Unreachable

Unscramble embedded scram-
bled IP identifier.

Ignore: IP identifiers not scrambled without normalizer.

9 other Drop. Optionally Drop depending on NIDS policy.

18


