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ABSTRACT
A key step in the semantic analysis of network traffic is to parse the
traffic stream according to the high-level protocols it contains. This
process transforms raw bytes into structured, typed, and semanti-
cally meaningful data fields that provide a high-level representation
of the traffic. However, constructing protocol parsers by hand is a
tedious and error-prone affair due to the complexity and sheer num-
ber of application protocols.

This paper presents binpac, a declarative language and com-
piler designed to simplify the task of constructing robust and effi-
cient semantic analyzers for complex network protocols. We dis-
cuss the design of the binpac language and a range of issues
in generating efficient parsers from high-level specifications. We
have used binpac to build several protocol parsers for the “Bro”
network intrusion detection system, replacing some of its existing
analyzers (handcrafted in C++), and supplementing its operation
with analyzers for new protocols. We can then use Bro’s power-
ful scripting language to express application-level analysis of net-
work traffic in high-level terms that are both concise and expres-
sive. binpac is now part of the open-source Bro distribution.

Categories and Subject Descriptors: C.2.2 [Network Protocols]:
Applications
General Terms: Languages
Keywords: Parser Generator, Protocol

1. INTRODUCTION
Many network measurement studies involve analyzing network

traffic in application-layer terms. For example, when studying Web
traffic [2, 13] one often must parse HTTP headers to extract infor-
mation about message length, content type, and caching behavior.
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Similarly, studies of Email traffic [21, 46], peer-to-peer applica-
tions [37], online gaming, and Internet attacks [29] require under-
standing application-level traffic semantics. However, it is tedious,
error-prone, and sometimes prohibitively time-consuming to build
application-level analysis tools from scratch, due to the complexity
of dealing with low-level traffic data.

We can significantly simplify the process if we can leverage a
common platform for various kinds of application-level traffic anal-
ysis. A key element of such a platform is application-protocol
parsers that translate packet streams into high-level representations
of the traffic, on top of which we can then use measurement scripts
that manipulate semantically meaningful data elements such as
HTTP content types or Email senders/recipients, instead of raw IP
packets. Application-protocol parsers are also useful beyond net-
work measurements—they form important components of network
monitoring tools (e.g., tcpdump [19], Ethereal [12], NetDude [24,
23]), real-time network intrusion detection systems (e.g., Snort [35,
36] and Bro [31]), smart firewalls, and application layer proxies.

Building application-protocol parsers might appear straightfor-
ward at first glance, given a specification of the corresponding pro-
tocol. In practice, however, writing an efficient and robust parser
is surprisingly difficult for a number of reasons. First, many of
today’s protocols are complex. For example, when analyzing the
predominant HTTP protocol [14], one has to deal with pipelined
requests, chunked data transfers, and MIME multipart bodies. The
NetWare Core Protocol [33]—a common protocol used for remote
file access—has about 400 individual request types, each with a dis-
tinct syntax. Second, even for simpler protocols, it is tedious and
error-prone to manually write code to parse their structure: the code
must handle thousands of connections in real-time to cope with
the traffic in large networks, and protocol specifications are seldom
comprehensive (i.e., they often ignore corner-cases, which a parser
nevertheless must handle robustly as they do occur in real-world
traffic). In potentially adversarial environments, an attacker may
even deliberately craft ambiguous or non-conforming traffic [34,
17]. Furthermore, several severe vulnerabilities have been discov-
ered in existing protocol parsers ([41, 42, 43, 44])—including one
which enabled a worm to propagate through 12,000 deployments
of a security product worldwide in tens of minutes [38, 25]—which
demonstrates how difficult it is to comprehensively accommodate
non-conforming input with hand-written code.

Given the care that writing a good protocol analyzer requires,
it is unfortunate that existing analyzers are generally not reusable,



because their operation is usually tightly coupled with their spe-
cific application environments. For instance, the two major open-
source network intrusion detection systems (NIDSs), Snort [36]
and Bro [31], both provide their own HTTP analyzers, each ex-
hibiting different features and shortcomings. Ethereal contains a
huge collection of protocol parsers, but it is very difficult to reuse
them for, e.g., Bro due to their quite different interfaces and data
structures. Even inside a single software product, low-level code is
generally inlined rather than factored into modules. For example,
the Ethereal version 0.99 source code contains more than 8,000 in-
stances of incrementing or decrementing by a hard-coded numeric
constant, the vast majority of which are adjusting a pointer or a
length while stepping through a buffer. Any instance of an incor-
rect constant can of course result in an incorrect parsing of a pro-
tocol, but is not detectable at compile-time since using the wrong
numeric constant still type-checks.

We believe that the major reason for all of these difficulties is a
significant lack of abstraction. In the programming language com-
munity, no one writes parsers manually. Instead, there are tools
like yacc [20] and ANTLR [30] that support declarative program-
ming: one expresses the syntax of the language of interest in a high-
level meta-grammar, along with associated semantics. The parser
generator then translates the specification into low-level code auto-
matically. In this work, we propose to use similar abstractions for
application-layer network protocols. By doing so, users building
analyzers can concentrate on high-level protocol semantics, while
at the same time achieving correctness, robustness, efficiency, and
reusability.

However, we observe that existing parser-generation tools are
not suitable for parsing network protocols. Common idioms of net-
work protocols, such as data fields preceded by their actual length
(sometimes not adjacent), cannot be easily expressed as a context-
free grammar. Furthermore, when analyzing protocols, we often
need to correlate across the two directions of a single connection;
sometimes even syntax depends on the semantics of the byte stream
in the other direction. Finally, parsers generated by these tools pro-
cess input in a “pull” mode and thus cannot concurrently parse mul-
tiple, incomplete input streams.

To improve this situation we designed and implemented
binpac—a declarative language and its compiler—to simplify the
task of building protocol analyzers. Users specify parsers by defin-
ing message formats, dependencies between message fields, and
additional computations to perform (e.g., printing ASCII records
or triggering further analysis) upon parsing different message ele-
ments. The compiler translates the declarations into parsers in C++.
binpac takes care of all the common and tedious (and thus error-
prone) low-level tasks, such as byte-order handling, application-
layer fragment reassembly, incremental input, boundary checking,
and support for debugging. binpac also facilitates protocol parser
reuse by supporting separation of different components of analyz-
ers. One can readily plug in or remove one part of a protocol an-
alyzer without modifying others. Such separation allows analysis-
independent protocol specifications to be reused by different analy-
sis tasks, and simplifies the task of protocol extension (for example,
adding or removing NFS to the RPC parser).

Our goal is to ensure that the generated parsers are as efficient
as carefully hand-written ones, so that they can handle large traf-
fic volumes. Our main strategy is to leverage data dependency
analysis—to tailor the generated parser to the analysis require-
ments at compilation time. For example, binpac identifies ap-
propriate units for buffering of incomplete input based on the data
layout specified by the user.

To demonstrate the power of our approach, we have used
binpac to build several protocol parsers for the Bro NIDS, in-
cluding HTTP, DNS, CIFS/SMB, DCE/RPC, NCP, and Sun RPC.
(We emphasize that binpac is not however tied in any significant
way to Bro.) Having written many protocol analyzers manually in
the past, our experience is that binpac greatly eases the process.
In future work we envision further using these binpac specifica-
tions to compile analyzers to alternative execution models: in par-
ticular, directly to custom hardware, without any intermediate C++
code, as sketched in [32].

The rest of this paper is organized as follows. We begin with
related work in Section 2. In Section 3 we discuss specific charac-
teristics of application protocols compared to languages targeted by
traditional parser-generators. Section 4 describes the binpac lan-
guage for specifying protocols and how the user associates seman-
tic protocol analysis along with the description. Section 5 discusses
the process of generating a parser from a binpac specification,
including handling incremental input as well as performing robust
error detection and recovery. Section 6 presents our experiences
with using binpac to develop protocol parsers for the Bro NIDS,
and we compare their performance with that of manually written
ones. We summarize and present future directions in Section 7.

2. RELATED WORK
Considerable previous work has addressed facets of describing

data and protocol layouts using declarative languages. First, there
are various Interface Description Languages for describing the ser-
vice interface for specific protocols. For instance, the External Data
Representation Standard (XDR) [40] defines the way to describe
procedure parameters and return values for the Remote Procedure
Call (RPC) protocol [39]. The XDR compiler generates the under-
lying code to marshal/unmarshal data to/from raw bytes. Targeting
a wider range of protocols, ASN.1 [3] is a language for describing
the abstract syntax of communication protocols, including a set of
encoding schemes. Unlike binpac, these languages dictate the
underlying data representation or focus on a specific type of proto-
col, while binpac tries to describe the data layout of a wide range
of existing (thus, already designed) protocols that span a variety of
formats and styles.

Augmented BNF (ABNF) [9] is used in many protocol standards
to specify the protocol syntax. However, the goal of ABNF is to
provide a concise, yet incomplete, way to define a protocol, rather
than for complete protocol specification from which one can gen-
erate a parser. In addition, ABNF targets ASCII protocols.

People have also designed languages for writing network proto-
col implementations, including both protocol parsing and process-
ing logic. Abbott et al. [1] proposed a language for designing and
implementing new network protocols. Prolac [22] is a language for
writing modular implementations of networking protocols such as
TCP. Biagioni et al. [5] experimented with implementing a TCP/IP
network stack in ML. These efforts differ from binpac in that the
goal is to build end-system implementations, instead of analyzers,
of protocols. They also target protocols at the network and trans-
port layers, rather than the wide range of application protocols.

There is also a rich body of work, e.g. [18, 6], in formal veri-
fication of design of protocols and, more generally, asynchronous
process systems. These verification frameworks focus on abstract
protocol behavior, instead of details of protocol syntax.

More related to binpac, there are efforts in the abstract de-
scription of existing protocol syntax. McCann and Chandra intro-
duced PACKETTYPES [26], a language that helps programmers to
handle binary data structures in network packets as if they were C
types. Borisov et al. designed and implemented GAPA [7], a frame-



work for application protocol analyzers. Its protocol specification
language, GAPAL, is based on (augmented) BNF and supports both
ASCII and binary protocols. A protocol specification in GAPAL
includes protocol syntax as well as analysis state and logic. While
GAPA and binpac both target application-level traffic analysis in
general, they are designed with different sets of goals and therefore
take quite different approaches. GAPA targets traffic analysis at
individual end hosts, and uses an interpreted, type-safe language.
The binpac compiler, on the other hand, generates C++ parsers
intended to process traffic of much higher volume at network gate-
ways. Second, GAPA is a self-contained system that handles both
protocol parsing and traffic analysis. binpac, on the other hand,
focuses on parser generation and is designed as a building block
for the construction of parsers that can be used by separate traffic
analysis systems such as Bro.

Beyond network protocols, there are a number of languages for
describing data formats in general. DATASCRIPT [4] is a scripting
language with support for describing and parsing binary data. De-
veloped more recently, PADS is a language for describing ad hoc
data formats [15]. PADS’s approach to data layout description is
similar to that of binpac in a number of ways, such as the use of
parameterized types. On the other hand, it is designed for a more
general purpose than parsing network protocols, so it lacks abstrac-
tions and features particular to processing communication traffic,
and the generated parsers cannot handle many input streams simul-
taneously. Related to PADS, Fisher et al. [16] described a calculus
for reasoning about properties and features of data description lan-
guages in general. The calculus is used to discover subtle bugs,
to prove the type correctness of PADS, and to guide the design of
language features.

Hand-written application-layer protocol parsers are an important
part of many network analysis tools. Packet monitors such as tcp-
dump [19], Ethereal [12], and DSniff [11] display protocol infor-
mation. NetDude [24, 23] provides both visualization and editing
of packet traces. NIDS such as Snort [36], Bro [31], and Network
Flight Recorder [28] analyze protocol communications to detect
malicious behavior. Protocol parsers are also components of smart
firewalls and application-layer proxies.

3. CHARACTERISTICS OF APPLICA-
TION PROTOCOLS

In this section we examine characteristics of network protocols
which differ significantly from the sorts of languages targeted by
traditional parser-generators. We discuss them in terms of syntax
and grammar, input model, and robustness.

3.1 Syntax and Grammar Issues
In terms of syntax and grammar, application-layer protocols

can be broadly categorized into two classes: binary protocols and
human-readable ASCII protocols. The messages of binary pro-
tocols, like DNS and CIFS, consist of a (not necessarily fixed)
number of data fields. These fields directly map to a set of ba-
sic data types such as integers and strings. Clear-text ASCII
protocols, on the other hand, typically restrict their payload to
a human-readable request/reply structure, using only printable
ASCII-characters. Many of these protocols, such as HTTP and
SMTP, are primarily line-based, i.e., requests/replies are separated
by carriage-return/line-feed (CR/LF) tuples, and their syntax is usu-
ally specified with grammar production rules in protocol standards.

While these two types of protocols appear to exhibit quite dis-
tinct language characteristics, we in fact find enough underlying
commonality between binary and ASCII protocols that we can treat

both styles in a uniform fashion within declarative binpac spec-
ifications, as we will develop below. On the other hand, there are
some critical differences between the grammars of network pro-
tocols (binary as well as ASCII) and those of programming lan-
guages:

Variable-length arrays. A common pattern in protocol syntax is
to use one field to indicate the length of a later array. Such a length
field often delimits the length of a subsequent (not necessarily con-
tiguous) byte sequence, e.g., the HTTP “Content-Length” field, but
can also indicate the number of complex elements, such as in the
case of DNS [27] question and answer arrays. A conceptual variant
of variable-length arrays is padding, i.e., filling a field with addi-
tional bytes to reach a specific length.

As long as the length-field has constant width, it is theoretically
possible to describe arrays and padding with a context-free gram-
mar. However, doing so is cumbersome and leads to complex gram-
mars.

Selecting among grammar production rules. Both binary and
ASCII protocols often use one or multiple data fields to select the
interpretation of a subsequent element from a range of options. For
example, DNS uses a type field to differentiate between various
kinds of “resource records”. HTTP uses multiple header fields
to determine whether the message body is a consecutive byte se-
quence, a sequence of byte chunks, or multipart entities. Some-
times the selector even comes from the opposite flow of the con-
nection, e.g., the syntax of a SUN/RPC reply depends on program
and procedure fields in the corresponding RPC call [39]. In general
such a selector can be easily expressed in a grammar by param-
eterizing non-terminal symbols—a very limited form of context-
sensitive grammar which we describe later in Section 4.1.2, How-
ever it is very hard to specify a selector with a context-free gram-
mar.

Encoding. In binary protocols, record fields directly correspond to
values. Therefore it is crucial to consider the correct byte-encoding
when parsing fields. For example, integers are often either encoded
in big-endian or little-endian byte order. Similarly, string characters
may be given in a (single-byte) ASCII encoding or in a (two-byte)
Unicode representation. To complicate the problem, the byte order
need not be fixed for a given protocol. For example, there is a field
in DCE/RPC [10] header which explicitly indicates the byte order
in which subsequent integers are encoded. In CIFS [8], a similar
field gives the character encoding for strings (which in fact does
not apply to all strings: certain ones are always in ASCII; similarly
in CIFS, not all integers use the same byte-order). Handling data
encoding is a tedious and error-prone task when writing a parser
manually, and it is hardly expressible by means of an LALR gram-
mar.

3.2 Concurrent Input
A fundamental difference between a protocol parser and a yacc-

style parser is their input model. A protocol-parser has to parse
many connections simultaneously and, within each connection, the
two flows on opposite directions, in parallel. For example, in per-
sistent HTTP connections each request needs to be associated with
the correct reply. Similarly, the syntax of a SUN/RPC reply de-
pends on program and procedure fields in the corresponding RPC
call [39].

Parsers generated by yacc/lex process input in a “pull” fash-
ion. That is, when input is incomplete, the parser blocks, waiting
for further input. Thus, a thread can handle only one input stream at
a time. To handle flows simultaneously without spawning a thread



class HTTP Conn : public binpac::ConnectionAnalyzer
{
public:

// Virtual functions defined in ConnectionAnalyzer.
virtual void NewData(bool is orig,

const u char *begin,
const u char *end);

virtual void NewGap(bool is orig, int gap length);
virtual void FlowEOF(bool is orig);

};

Figure 1: The interface of a binpac-generated parser.

for each one, the parsers must instead process input incrementally
as it comes in, partially scanning and parsing incomplete input and
resuming where the analysis left off when next invoked.

3.3 Robustness
Parsing errors are inevitable when processing network traffic. Er-

rors can be caused by irregularity in real-world traffic data (protocol
deviations, corrupted contents) as well as by incomplete input due
to packet drops when capturing network traffic, asymmetric rout-
ing (so that only one direction of a connection is captured), routing
changes, or “cold start” (a connection was already underway when
the monitor begins operation). Unlike compilers, protocol parsers
cannot simply complain and stop processing, but must robustly de-
tect and recover from errors. This is particularly important if we
consider the presence of adversaries: an attacker might specially
craft traffic to lead a protocol parser into an error condition.

4. THE LANGUAGE
In the previous section we examined the grammatical character-

istics of network protocols. This section describes the design of the
binpac language and its compiler, which are specifically tailored
to address these properties.

Here we assume that a parser generated from the binpac lan-
guage receives data from a lower-level protocol (such as TCP) an-
alyzer, with the interface outlined in Figure 1. While one can also
use the binpac language to build parsers for TCP/IP packets, a de-
tailed description of a TCP analyzer—how to manage states of TCP
connections and invoke corresponding application analyzers—is
beyond scope of this paper. Instead we just assume existence of
lower-level analyzers and focus on application level parsers in fol-
lowing discussion.

We begin with a description of binpac’s data model in Sec-
tion 4.1, corresponding to production rules in BNF grammars. In
Section 4.2 we discuss state-holding, in Section 4.3 how to add
custom computation, and finally in Section 4.4 the “separation of
concerns” to provide reusability.

Throughout the discussion we will refer to the examples in Fig-
ures 2 and 3, which show specifications of HTTP and DNS parsers
in binpac, respectively. We use them to illustrate features of the
binpac language. Note that the HTTP parser shown in Figure 2
is complete by itself (though simplified from the fully-featured
one we built for Bro, and evaluate below), except for the MIME-
decoding of HTTP bodies and escape sequences for URIs.1 The
former takes significant additional work to add; the latter can be
incorporated easily by processing the raw, extracted URI with an
additional function call. Due to space limitations, we only show an
excerpt of the DNS parser, though this includes the technically most
difficult element of parsing the protocol, namely compression-by-
indirection of domain names.
1The string comparisons and has prefix() in Figure 2 are in fact case-
insensitive, but here simplified for presentation.

In the language, text between %.*{ and %} (for example,
%header{ and %}) embeds C/C++ code. binpac keywords re-
flecting optional attributes start with “&” (e.g., &oneline). Key-
words starting with “$”, such as $context and $element, are
macros instantiated during parsing. In the examples, we highlight
binpac keywords (except for elementary types, introduced be-
low) using bold slant fonts. Table 4 summarizes the binpac lan-
guage constructs.

4.1 Data Model
binpac’s data model provides integral and composite types

which allow us to describe basic patterns in protocol data lay-
out, parameterized types to pass information between grammar ele-
ments, and derivative data fields to store intermediate computation
results. We discuss these in turn.

4.1.1 Integral and Composite Types
A binpac type describes both the data layout of a consecutive

segment of bytes and the resulting data structure after parsing. Type
empty represents zero-length input. Elementary types int8,
int16, int32 represent 8-, 16-, and 32-bit integers, respectively,
and so do their unsigned counterparts, uint{8,16,32}. As the
specification of HTTP ReplyLine shows (Figure 2), a string type
can be represented with a constant string (line 80), a regular ex-
pression (line 81), or a generic bytestring either of a specific
length (with &length, line 101) or running till the end of data
(with &restofdata, line 92).

Elementary integer and string types map naturally to their coun-
terparts in C++ (in the case of string, we define a simple C++
class to denote the begin and end of the string). This is how the
results are stored and accessed, with one exception. We allow
a string to be “chunked” to handle potentially very long byte se-
quences, such as HTTP bodies, with a &chunked attribute (Fig-
ure 2, line 100). A chunked string is not buffered. Rather, with the
&processchunk attribute one may define computation on each
chunk to process the byte sequence in a streaming fashion. For in-
stance, to compute a MD5 checksum for every HTTP body we may
add a &processchunk as follows (assuming compute md5
maintains intermediate results across chunks):

http_body: bytestring &chunked,
&length = $context.flow.content_length(),
&processchunk($context.flow.compute_md5($chunk));

External C++ types, including bool, int, and user-defined
ones (declared with extern type), can be used in computation,
e.g., as types of parameters, but cannot appear as types of data fields
in protocol messages.

Users can define composite types: (1) record, a sequential
collection of fields of different types; (2) case, a union (in the
C-language sense) of different types; and (3) array, a sequence
of single-type elements. binpac generates a C++ class for each
user-defined type, with data fields mapped as class members, and a
parse function to process a segment of bytes to extract various data
fields according to the layout specification.

As we compare record and case types with context-free
grammar production rules, we can see a clear correspondence be-
tween them: a concatenation of symbols maps to a record type
and multiple production rules of a symbol map to a case type. But
there is a difference in the latter mapping. The case type corre-
sponds to a set of production rules with zero look-ahead. Instead, a
production rule is selected based on an explicit indexing expression
computed from other data fields or type parameters (Figure 2, line



Language Construct Brief Explanation Section Example

%header{ ... %} Copy the C++ code to the generated header file Fig. 2, #15
%code{ ... %} Copy C++ code to the generated source file
%member{ ... %} C++ declarations of private class members of connection or flow §4.2 Figure 5
analyzer ... withcontext Declare the beginning of a parser module and the members of $context §4.2.2 Fig. 2, #1
connection Define a connection object §4.2.1 Fig. 2, #37
upflow/downflow Declare flow names for two flows of the connection §4.2.1 Fig. 2, #38
flow Define a flow object §4.2.1 Fig. 2, #40
datagram = ... withcontext Declare the datagram flow unit type §4.2.1 Fig. 3, #64
flowunit = ... withcontext Declare the byte-stream flow unit type §4.2.1 Fig. 2, #41
enum Define a “enum” type Fig. 2, #5
type ... = Define a binpac type §4.1.1 Fig. 2, #11
record Record type §4.1.1 Fig. 2, #49
case ... of Case type—representing an alternation among case field types §4.1.1 Fig. 2, #45
default The default case §4.1.1 Fig. 2, #103
〈type〉[] Array type §4.1.1 Fig. 2, #87
RE/.../ A string matching the given regular expression §4.1.1 Fig. 2, #11
bytestring An arbitrary-content byte string §4.1.1 Fig. 2, #73
extern type Declare an external type §4.1.1 Fig. 2, #13
function Define a function §4.2 Fig. 3, #67
refine typeattr Add a type attribute to the binpac type §4.4 Fig. 6
〈type〉 withinput 〈input〉 Parse 〈type〉 on the given 〈input〉 instead of the default input §4.1.4 Fig. 3, #59
&byteorder Define the byte order of the type and all enclosed types (unless otherwise specified) §4.1.3 Fig. 3, #7
&check Check a predicate condition and raise an exception if the condition evaluates to false §5.2.1 Fig. 3, #34
&chunked Do not buffer contents of the bytestring, instead, deliver each chunk as $chunk to &processchunk

(if any is specified)
§4.1.1 Fig. 2, #100

&exportsourcedata Makes the source data for the type visible through a member variable sourcedata §4.1.4 Fig. 3, #7
&if Evaluate a field only if the condition is true Fig. 3, #16
&length = ... Length of source data should be ... §4.1.1 Fig. 2, #101
&let Define derivative types §4.1.4 Fig. 2, #63
&oneline Length of source data is one line §5.1 Fig. 2, #63
&processchunk Computation for each $chunk of bytestring defined with &chunked §4.1.1
&requires Introduce artificial data dependency
&restofdata Length of source data is till the end of input §4.1.1 Fig. 2, #73
&transient Do not create a copy of the bytestring §6
&until End of an array if condition (on $element or $input) is satisfied §4.1.1 Fig. 2, #87

Table 1: Summary of binpac language constructs.

99). This allows production rule selection to be based on external
information, and is in spirit similar to “predicated parsing” intro-
duced in ANTLR [30]. On the other hand, the zero-look-ahead re-
striction simplifies parser construction, but at the same time poses
little limitation on the range of protocols that can be specified in
binpac. We believe that it is by design of protocols (rather than
by coincidence) that there are few syntax patterns that require look-
ahead. Since protocol data is generated and processed by programs,
it is usually organized in a way that simplifies the (traditionally
hand-written) implementation.

Although an array can be defined with recursive production
rules, we find it a common enough idiom in protocol syntax that it
justifies a separate abstraction. In binpac, the length of an array
can be specified with an expression containing references to other
data fields, as in the definition of DNS message (Figure 3, lines
3-6). An array can also be defined without a length, but with some
“terminate condition” that indicates the end of array. Such a con-
dition is specified through the &until attribute with a conditional
expression. The expression can be computed from the input data
to each element ($input), as in HTTP Headers (Figure 2, line
87), or from a parsed element ($element), as in HTTP Chunks
(line 106).

4.1.2 Type Parameters
As the examples of HTTP and DNS parsers show, type param-

eters (e.g., in type HTTP Body, Figure 2, line 98) allow one to
pass information between types without resorting to keeping exter-
nal state. This is a powerful feature that can significantly simplify
syntax specification.

type NDR_Format = record {
# Note, field names taken from DCE/RPC spec.
intchar : uint8;
floatspec : uint8;
reserved : padding[2];

} &let {
ndr_byteorder = (intchar & 0xf0) ?

littleendian : bigendian;
};

type DCE_RPC_Message = record {
# Raise an exception if RPC version != 5
rpc_vers : uint8 &check(rpc_vers == 5);
rpc_vers_minor : uint8;
PTYPE : uint8;
pfc_flags : uint8;
# ‘drep’--data representation
packed_drep : NDR_Format;
...

} &byteorder = packed_drep.ndr_byteorder;

Figure 4: Specifying dynamic byte order with &byteorder.

4.1.3 Byte Orders
For use with binary protocols, binpac allows the user to spec-

ify the byte order using a &byteorder attribute. Figure 4 shows
the specification of dynamic byte-order in DCE/RPC, where at
the bottom the user specifies that the byte-order is taken from the
ndr byteorder field that is defined earlier.2

In most cases we also want to propagate the byte-order specifi-
cation along the type hierarchy to the other types. Conceptually
we can pass byte order between types as a parameter (see Sec-
tion 4.1.2), but in practice the byte order parameter is required

2We discuss the definition of “derivative fields” such as ndr byteorder
in Section 4.1.4.



1 analyzer HTTP withcontext { # members of $context
2 connection: HTTP_Conn;
3 flow: HTTP_Flow;
4 };
5 enum DeliveryMode {
6 UNKNOWN_DELIVERY_MODE,
7 CONTENT_LENGTH,
8 CHUNKED,
9 };

10 # Regular expression patterns
11 type HTTP_TOKEN = RE/[ˆ()<>@,;:\\"\/\[\]?={} \t]+/;
12 type HTTP_WS = RE/[ \t]*/;
13 extern type BroConn;
14 extern type HTTP_HeaderInfo;
15 %header{
16 // Between %.*{ and %} is embedded C++ header/code
17 class HTTP_HeaderInfo {
18 public:
19 HTTP_HeaderInfo(HTTP_Headers *headers) {
20 delivery_mode = UNKNOWN_DELIVERY_MODE;
21 for ( int i = 0; i < headers->length(); ++i ) {
22 HTTP_Header *h = (*headers)[i];
23 if ( h->name() == "CONTENT-LENGTH" ) {
24 delivery_mode = CONTENT_LENGTH;
25 content_length = to_int(h->value());
26 } else if ( h->name() == "TRANSFER-ENCODING"
27 && has_prefix(h->value(), "CHUNKED") ) {
28 delivery_mode = CHUNKED;
29 }
30 }
31 }
32 DeliveryMode delivery_mode;
33 int content_length;
34 };
35 %}
36 # Connection and flow
37 connection HTTP_Conn(bro_conn: BroConn) {
38 upflow = HTTP_Flow(true); downflow = HTTP_Flow(false);
39 };
40 flow HTTP_Flow(is_orig: bool) {
41 flowunit = HTTP_PDU(is_orig)
42 withcontext(connection, this);
43 };
44 # Types
45 type HTTP_PDU(is_orig: bool) = case is_orig of {
46 true -> request: HTTP_Request;
47 false -> reply: HTTP_Reply;
48 };
49 type HTTP_Request = record {
50 request: HTTP_RequestLine;
51 msg: HTTP_Message;
52 };
53 type HTTP_Reply = record {
54 reply: HTTP_ReplyLine;
55 msg: HTTP_Message;
56 };

57 type HTTP_RequestLine = record {
58 method: HTTP_TOKEN;
59 : HTTP_WS; # an anonymous field has no name
60 uri: RE/[[:alnum:][:punct:]]+/;
61 : HTTP_WS;
62 version: HTTP_Version;
63 } &oneline, &let {
64 bro_gen_req: bool = bro_event_http_request(
65 $context.connection.bro_conn,
66 method, uri, version.vers_str);
67 };
68 type HTTP_ReplyLine = record {
69 version: HTTP_Version;
70 : HTTP_WS;
71 status: RE/[0-9]\{3\}/;
72 : HTTP_WS;
73 reason: bytestring &restofdata;
74 } &oneline, &let {
75 bro_gen_resp: bool = bro_event_http_reply(
76 $context.connection.bro_conn,
77 version.vers_str, to_int(status), reason);
78 };
79 type HTTP_Version = record {
80 : "HTTP/";
81 vers_str: RE/[0-9]+\.[0-9]+/;
82 };
83 type HTTP_Message = record {
84 headers: HTTP_Headers;
85 body: HTTP_Body(HTTP_HeaderInfo(headers));
86 };
87 type HTTP_Headers = HTTP_Header[] &until($input.length() == 0);
88 type HTTP_Header = record {
89 name: HTTP_TOKEN;
90 : ":";
91 : HTTP_WS;
92 value: bytestring &restofdata;
93 } &oneline, &let {
94 bro_gen_hdr: bool = bro_event_http_header(
95 $context.connection.bro_conn,
96 $context.flow.is_orig, name, value);
97 };
98 type HTTP_Body(hdrinfo: HTTP_HeaderInfo) =
99 case hdrinfo.delivery_mode of {

100 CONTENT_LENGTH -> body: bytestring &chunked,
101 &length = hdrinfo.content_length;
102 CHUNKED -> chunks: HTTP_Chunks;
103 default -> other: HTTP_UnknownBody;
104 };
105 type HTTP_Chunks = record {
106 chunks: HTTP_Chunk[] &until($element.chunk_length == 0);
107 headers: HTTP_Headers;
108 };
109 type HTTP_Chunk = record {
110 len_line: bytestring &oneline;
111 data: bytestring &chunked, &length = chunk_length;
112 opt_crlf: case chunk_length of {
113 0 -> none: empty;
114 default -> crlf: bytestring &oneline;
115 };
116 } &let {
117 chunk_length: int = to_int(len_line, 16); # in hexadecimal
118 };

Figure 2: A HTTP parser in binpac with Bro event generation, complete except for MIME and escape-sequence processing.

universally for binary protocols. Adding a parameter to each type
would be tedious and clutter the specification. To solve this prob-
lem, we designate “byteorder” as an implicit type parameter that is
always passed to referenced types unless it is redefined at the ref-
erenced type. The binpac compiler traverses the type reference
graph to find out which types require byte-order specification and
adds byte order parameters to their parse functions.

We have not yet added support for ASCII vs. Unicode to
binpac, though conceptually it will be similar to the support for
byte-order.

4.1.4 Derivative Fields
Sometimes it is useful to add user-defined derivative fields to

a type definition to keep intermediate computation results (see
the definition of HTTP Chunk.chunk length in Figure 2, line
117), or to further process parsing results (DNS label in Figure 3,
lines 58-60). Derivative fields are specified within &let {...}
attributes.

A derivative field may take one of two forms. First, a derivative
field can be defined with an expression, in the form of “<id> =
<expression>”, as in the HTTP example.

Second, it can be evaluated by mapping a type onto a piece of
computed input, in the form of “<id>: <type> withinput
<input expression>”. Here <input expression>
evaluates to a sequence of bytes, which are passed to the parse func-
tion of <type> as input data. Such withinput fields allow us
to extend parsing beyond consecutive and non-overlapping pieces
of original input data. For instance, the computed input data might
be (1) a reassembly of fragments (e.g. a fragmented DCE/RPC
message body), (2) a Base64-decoded Email body, or (3) a DNS
name pointer (as defined in Section 4.1.4 in [27]), as shown in Fig-
ure 3, lines 55-60. In the DNS example, a DNS label can be a
sequence of bytes or a “name pointer” pointing to a DNS name
at some specific offset of the message’s source data. In the lat-
ter case, we define a withinput field to redirect the input to the
pointed location when parsing the DNS name (and add an attribute



1 type DNS_message = record {
2 header: DNS_header;
3 question: DNS_question(this)[header.qdcount];
4 answer: DNS_rr(this)[header.ancount];
5 authority: DNS_rr(this)[header.nscount];
6 additional: DNS_rr(this)[header.arcount];
7 } &byteorder = bigendian, &exportsourcedata;
8 type DNS_header = record { ... };
9 type DNS_question(msg: DNS_message) = record {

10 qname: DNS_name(msg); qtype: uint16; qclass: uint16;
11 } &let {
12 # Generate Bro event dns_request if a query
13 bro_gen_request: bool = bro_event_dns_request(
14 $context.connection.bro_conn,
15 msg.header, qname, qtype, qclass)
16 &if (msg.header.qr == 0); # if a request
17 };
18 type DNS_rr(msg: DNS_message) = record {
19 rr_name: DNS_name(msg);
20 rr_type: uint16; rr_class: uint16;
21 rr_ttl: uint32; rr_rdlen: uint16;
22 rr_rdata: DNS_rdata(msg, rr_type, rr_class)
23 &length = rr_rdlen;
24 } &let {
25 bro_gen_A_reply: bool = bro_event_dns_A_reply(
26 $context.connection.bro_conn,
27 msg.header, this, rr_rdata.type_a)
28 &if (rr_type == 1);
29 bro_gen_NS_reply: bool = bro_event_dns_NS_reply(...);
30 &if (rr_type == 2);
31 };
32 type DNS_rdata(msg: DNS_message, rr_type: uint16,
33 rr_class: uint16) = case rr_type of {
34 1 -> type_a: uint32 &check(rr_class == CLASS_IN);
35 2 -> type_ns: DNS_name(msg);
36 # Omitted: TYPE_PTR, TYPE_MX, ...
37 default -> unknown: bytestring &restofdata;
38 };

39 # A DNS name is a sequence of DNS labels
40 type DNS_name(msg: DNS_message) = record {
41 labels: DNS_label(msg)[] &until($element.last);
42 };
43

44 # A label contains a byte string or a name pointer
45 type DNS_label(msg: DNS_message) = record {
46 length: uint8;
47 data: case label_type of {
48 0 -> label: bytestring &length = length;
49 3 -> ptr_lo: uint8; # the lower 8-bit of offset
50 };
51 } &let {
52 label_type: uint8 = length >> 6;
53 last: bool = (length == 0) || (label_type == 3);
54

55 # If the label is a pointer ...
56 ptr_offset: uint16 = (length & 0x3f) << 8 + ptr_lo
57 &if(label_type == 3);
58 ptr: DNS_name(msg)
59 withinput msgdata(msg.sourcedata, ptr_offset)
60 &if(label_type == 3);
61 };
62

63 flow DNS_Flow {
64 datagram = DNS_message withcontext (connection, this);
65

66 # Returns the byte segment starting at <offset> of <msgdata>
67 function msgdata(msgdata: const_bytestring,
68 offset: int): const_bytestring
69 %{
70 // Omitted: DNS pointer loop detection
71 if ( offset < 0 || offset >= msgdata.length() )
72 return const_bytestring(0, 0);
73 return const_bytestring(msgdata.begin() + offset,
74 msgdata.end());
75 %}
76 };

Figure 3: An (abridged) DNS parser in binpac.

&exportsourcedata to the DNS message to make the input
visible as variable sourcedata).

The derivative members are evaluated once during parsing and
can be accessed in the same way as record or case fields in the
generated C++ class. The order that derivative fields, along with
non-derivative ones, are evaluated depends on only the data depen-
dency among fields; the order is undefined for fields that do not
depend on each other. (Note, this lack of ordering is deliberate,
as it keeps the door open for future parallelization.) On the other
hand, binpac provides attributes for users to introduce artificial
dependency edges between fields, in case the user wants to ensure
a certain ordering among evaluation of fields.

Derivative fields are also used to insert custom computation
(such as event generation for the Bro NIDS) into the parsing pro-
cess, as discussed in Section 4.3.

4.2 State Management
Up to this point we have explored various issues in describing

the syntax of a byte segment. To model the state of a continuous
communication, binpac introduces notions of flow and connec-
tion. A flow represents a sequence of messages and state to main-
tain between messages. A connection represents a pair of flows
and state between flows. Note that here connections are not only
TCP or UDP connections, but any two-way communication ses-
sions. For example, a DCE/RPC connection may correspond to a
TCP connection on port 135, a UDP session to the Windows mes-
senger port, or a CIFS “named pipe” (a DCE/RPC tunnel through
the CIFS protocol).

As shown in the HTTP example (line 38), the declaration of a
connection consists of definitions of flow types for each flow. The
“upflow” refers to the flow from the connection originator to the
responder, and the “downflow” refers to the flow in the opposite
direction. Like types, connections and flows can be parameterized,
too.

Without loss of generality, we assume a flow consists of a se-
quence of messages of the same binpac type. (If a flow consists
of messages of different types, we can encapsulate the types with a
case type.) Thus one message type is specified for each flow, which
we term flow unit type.

When specifying the flow unit type, we also specify how input
data arrive in a flow: it may arrive as datagrams, each containing
exactly one message, or in a byte stream, where the boundary of
data delivery does not necessarily align with message boundaries,
though the bytes are guaranteed to arrive in order.3 The two in-
put delivery modes are specified with keywords datagram and
flowunit, respectively, as we see in the examples of DNS and
HTTP parsers (lines 64 and 41 respectively).

4.2.1 Per-Connection/Flow State
While type parameterization allows types to share information

within a message, in some scenarios we have to keep state at per-
connection or per-flow level. For instance, a DCE/RPC parser
needs to remember onto which interface a connection is bound, so
that requests and replies can be parsed accordingly. As Figure 5
shows, a SUN/RPC parser keeps a per-connection table that maps
session ID’s to call parameters, and when a reply arrives, the parser
can find the corresponding call parameters by looking up the reply
message’s session ID in the table. Connection/flow state is speci-
fied with embedded C++ code and corresponding access functions
defined in binpac types.

Further abstraction of state is an important aspect of future work,
as the abstraction can then expose data dependencies in the protocol

3Because the flows represent abstract flows, the delivery mode of a flow
does not always indicate whether the underlying transport protocol is TCP
or UDP. For example, while the DNS abstract flow takes input as datagrams,
it is used for both TCP and UDP, whereas in the case of TCP, an additional
thin layer between the DNS and TCP protocol delimits one DNS message
from another in the TCP byte stream.



connection RPC_Conn(bro_conn: BroConn) {
%member{

typedef std::map<uint32, RPC_Call *> RPC_CallTable;
RPC_CallTable call_table;

%}
# Returns the call corresponding to the xid. Returns
# NULL if not found.
function FindCall(xid: uint32): RPC_Call

%{
RPC_CallTable::const_iterator it = call_table.find(xid);
if ( it == call_table.end() )

return 0;
return it->second;
%}

function NewCall(xid: uint32, call: RPC_Call): void
%{
if ( call_table.find(xid) == call_table.end() )

call_table[xid] = call;
%}

#...
};

type RPC_Call(msg: RPC_Message) = record {
# ...

} &let {
# Register the RPC call by the xid
newcall: void = $context.connection.NewCall(msg.xid, this);

};

type RPC_Reply(msg: RPC_Message) = record {
# ...

} &let {
# Find the corresponding RPC call.
call: RPC_Call = $context.connection.FindCall(msg.xid);

};

Figure 5: SUN/RPC per-connection state.

analysis and enable better parallelization or hardware realization.
The main challenge in abstracting state lies in understanding which
data structures, such as hash tables, FIFO queues, and stacks, are
commonly used in protocol parsers and providing ways to abstract
them.

4.2.2 The $context Parameter
For types to access per-connection/flow state, the references to

the corresponding connection and flow have to be given to the type
parse functions through function parameters. As the connection
and flow might be accessed by multiple types, we can propagate
them as implicit parameters to relevant types, just as the byte order
flag does. More generally, state can also be maintained at gran-
ularity other than connection or flow, e.g., at a multi-connection
“session” level. We aggregate all such parameters as members of
an implicit context parameter. The members of the context param-
eter are declared with analyzer <name> withcontext at the
beginning of a binpac specification (Figure 2, line 1). The mem-
ber values are instantiated in the withcontext clause in the flow
unit definition (Figure 2, line 42).

4.3 Integrating Custom Computation
In a yacc grammar one can embed user-defined computation,

such as syntax tree generation, in the form of C/C++ code seg-
ments, which the parser executes when reducing rules. binpac
takes a slightly different approach in integrating custom com-
putation with parsing. The computation (e.g., generating an
event in the Bro NIDS) is embedded through adding deriva-
tive fields (discussed in Section 4.1.4). As the definition of type
HTTP Header in Figure 2 shows (lines 94-96), a Bro event
for a HTTP header is generated by calling an external function
bro event http header in the definition of derivative field
bro gen hdr. The function is invoked after parsing the data
fields it depends on, name and value of the header. Note that
these sorts of links are the only tie between the binpac specifica-
tion for HTTP and the Bro system.

refine typeattr HTTP_Header += &let
process_header: bool =

$context.flow.bro_event_http_header(name, value);
;

Figure 6: Separating Bro event generation from protocol syn-
tax specification with refine.

4.4 Separation of Concerns
“Separation of concerns” is a term in software engineering that

describes “the process of breaking a program into distinct features
that overlap in functionality as little as possible.” [45] In the case
of binpac, one would want to separate the definition of a proto-
col’s syntax from specifications of additional computation (such as
Bro event generation) on parsing results, because such separation
allows us to reuse the protocol definitions for multiple purposes and
across different systems. For the same reason, one may also want
to separate specification of sub-protocols (e.g. RPC Portmapper
and NFS) from the underlying protocol (e.g., RPC) and from each
other.
binpac supports a simple but powerful syntactic primitive to

allow separate expression of different concerns—parsing vs. anal-
ysis, a lower-level protocol vs. higher-level ones—and yet make
the separated descriptions semantically equivalent to a unified one.
The language includes a “refine typeattr” primitive for appending
new type attributes, usually additional derivative fields, to existing
types. For example, the generation of http header event in the
HTTP example (lines 94-96) can be separated from the protocol
syntax specification, as Figure 6 shows.

Such separation allows us to place related-but-distinct definitions
in different binpac source files. A similar refine casetype
primitive allows insertion of new case fields to a case type defini-
tion (e.g., NFS Params as a new case for RPC Params), facilitating
syntactical separation between closely related protocols.

Note that the support for separation of concerns in binpac is
not complete in two ways. First, one cannot easily change the set
of parameters of a type (or function), which can limit extension of
protocol analyzers in some cases, an area for future exploration.
Second, binpac does not enforce separation of concerns, or make
it easier to describe things separately than describing them together.
Thus, we rely on binpac users practicing a discipline of separat-
ing their concerns for better code maintenance and reuse.

5. PARSER GENERATION
Two main considerations in parser generation are (1) handling

incremental input on many flows at the same and (2) detecting and
recovering from errors. Below we examine them in turn.

5.1 Incremental Input
One approach to handle incremental input is to make the pars-

ing process itself fully incremental, i.e., to make the parse func-
tion ready to stop anywhere, buffer unprocessed bytes at elemen-
tary type level, return, and resume on next invocation. The parsing
state of a composite type, such as a record, can be kept by an
indexing variable pointing to the member to be parsed next and a
buffer storing unprocessed raw data.

However, incremental parsing at elementary type granularity
is expensive, because boundary checks of adjacent fields can no
longer be combined. It is also unnecessary for all the protocols we
have encountered. As protocols are designed for easy processing,
they often have a natural unit for buffering. Binary protocols (such
as DCE/RPC) often have a “length” header field that denotes the
total message length. ASCII protocols are usually either line-based



type DCE_RPC_Header = record
...
frag_length: uint16; # length of the PDU
...

;

type DCE_RPC_PDU = record
header: DCE_RPC_Header; # A 16-byte-long header
...

&length = header.frag_length;

Figure 7: Specifying buffering length of a type.

(such as SMTP) or alternate between length-denoted and line-based
units (such as HTTP). Given such parsing boundaries, we still re-
quire support for incremental parsing, but can carry it out at larger
granularity and with reduced overhead.

Thus, binpac provides the attributes &length and
&oneline to specify buffering units.4 &oneline triggers
line-based buffering while &length gives a message’s length in
bytes. &length usually points to a corresponding length field
in the header (Figure 7) but can generally take any expression
to compute the length. The binpac compiler performs data
dependency analysis to find out the initial number of bytes to
buffer before the length expression can be computed (in the case of
a DCE/RPC message, the first 16 bytes). The generated code will
buffer the message in two steps, first the initial bytes for computing
the message length, then buffer up to the full length before parsing
the remaining fields.

5.2 Error Detection and Recovery
Protocol parsers have to robustly detect and recover from various

kinds of errors. Errors can be caused by irregularity in real-world
traffic data, including small syntax deviations from the standard,
incorrect length fields, corrupted contents, and even payloads of a
completely different protocol running on the standard port of the
parsed protocol. Errors can also result from incomplete input, such
as due to packet drops when capturing network traffic. In these
cases, the parser might not know in the specific state of the dialog,
e.g., whether what it now sees on HTTP flow is inside a data trans-
fer or not. Errors may also arise through incorrect binpac specifi-
cations, e.g., through missing cases or trying to access an unparsed
case field, or due to adversarial manipulation, as discussed earlier.

Parsers generated by the binpac compiler detect errors of var-
ious aspects, as we discuss below. When an error is detected, the
code throws a C++ run-time exception, which can then be caught
for recovery.

5.2.1 Error Detection

Efficient Boundary Checking. Conceptually, boundary checking
(whether scanning stays within the input buffer) only need take
place before evaluating every elementary integer or character type
field, because all other types are composed of elementary types.
While it would be easy to generate the boundary checking code this
way, the generated code would be quite inefficient, too. Instead,
the binpac compiler tries to minimize the number of boundary
checks. The basic idea is: before generating boundary checking
code for a record field, check recursively whether we can generate
the checking for the next field. If so, we can combine them into one
check. In this way, the compiler can determine the furthest field for
which the boundary checking can be performed at a given point of
parsing.
4binpac’s incremental analysis depends on the existence of these at-
tributes. Viewing the record definitions as a tree of types, each path from
the root type to a leaf must contain one of them at a non-leaf node.

Handling dropped packets. When capturing network traffic,
packet drops cannot always be avoided. They can be caused by
a high traffic volume, kernel scheduling issues, or artifacts of
the monitoring environment. Such drops lead to content gaps in
application-level data processed by protocol parsers. Facing con-
tent gaps, parsers not only are unable to extract data for the cur-
rent message, but also may not even know where the next message
starts.

A particular, very common case of a content gap is one located
inside a byte sequence of known length. For example, within an
HTTP entity body, a content gap can be handled without creating
uncertainty for subsequent protocol elements. If a byte sequence is
defined as &chunked in a binpac specification—and thus only
passed to a potential &processchunk function, but not further
referenced by other expressions—then the generated parser can
simply skip over such a gap. (If &processchunk is defined for
the sequence, the function is called with a specially marked “gap
chunk” so it can take note of the fact.) This mechanism allows us
to handle most content gaps for protocols in which the majority of
data is contained in long byte sequences. Hand-written protocol
parsers in Bro handle content gaps in a similar way, but on an indi-
vidual basis; the chunked byte string abstraction in binpac allows
them to be handled universally for all protocols.

In general, it is trickier to handle content gaps which do not fully
fall into a byte sequence of known size. We discuss these below in
Section 5.2.2.

Run-time type safety. The only access to parsing results provided
to binpac parsers is via typed interfaces. These leaves two as-
pects of type safety to enforce at run-time: (1) among multiple
case fields in a case type, the generated code ensures that only the
case that is selected during parsing can be accessed, otherwise it
throws a run-time exception; (2) access to array elements is always
boundary-checked. On the other hand, note that binpac cannot
guarantee complete safety, as it allows arbitrary embedded C++
code which it cannot control.

User-defined error detection A user may also define protocol-
specification error checking, using the &check attribute. For
example, one may check the data against some protocol signa-
ture (e.g., the first 4 bytes of a CIFS/SMB message should be
“\xffSMB”) to make sure the traffic data indeed reflects the pro-
tocol.

5.2.2 Error Recovery
Currently errors are handled in a simple model: when the flow

processing function catches an exception, it logs the error, discards
the unfinished message as well as the unprocessed data, and initial-
izes to resume on the next chunk of data.

One potential problem with this approach is that, for stream-
based protocols, the next message might not be aligned with the
next payload chunk. In the future we plan to add support for
re-discovering message boundaries in such cases. Having such a
mechanism will also help to further improve parsing performance,
as we can then skip large, semantically uninteresting messages, and
re-align with the input stream afterwards.

6. EXPERIENCES
We have used binpac to add protocol parsers for CIFS/SMB,

DCE/RPC (including its end-point mapping protocol) and NCP to
Bro’s traffic analysis engine.5 To compare binpac with hand-
5Given the complexity of CIFS, the parser does not yet cover the entire
protocol, but only the commonly seen message types.



Protocol Hand-written binpac
LOC CPU Time (seconds) Throughput LOC CPU Time (seconds) Throughput

HTTP 1,896 538–541 244 Mbps / 36.7 Kpps 676 442–444 298 Mbps / 44.7 Kpps
DNS 1,425 37.3–37.5 18.6 Mbps / 13.3 Kpps 698 44.7–44.8 15.6 Mbps / 11.1 Kpps

Table 2: Performance.

written protocol parsers, we also rewrote the parsers for HTTP
and DNS (and SUN/RPC, which we have not yet evaluated) in
binpac. We use these latter to provide a comparison in terms
of code size and performance between binpac-based and hand-
written parsers.

As Table 2 shows, the binpac-based parsers for HTTP and
DNS have code sizes of roughly 35–50% that of the hand-written
parsers, measured in lines of code (and the same holds in source file
sizes), respectively. We also note that for both protocols, the Bro-
specific semantic analysis comprises well over half of the binpac
specification, so for purposes of reuse, the specifications are signif-
icantly smaller than shown.

To test the performance of the parsers, we collected a one-hour
trace of HTTP and DNS traffic at Lawrence Berkeley National Lab-
oratory’s network gateway. The HTTP subset of the trace spans
19.8M packets and 16.5 GB of data. The DNS subset spans 498K
packets and 87 MB. The drop rate reported by tcpdump when
recording the trace was below 4/106.

Table 2 shows the CPU time required for each type of analysis,
giving the minimum and maximum times measured across 5 runs,
using a 3.4 GHz Xeon system running FreeBSD 4.10 with 2 GB of
system RAM. We also show the throughput in bits/sec and pack-
ets/sec, observing that on a per-packet basis, DNS analysis is much
more expensive than HTTP analysis, since many HTTP packets are
simply entity data transfers requiring little work.

For these numbers, we disabled Bro’s script-level analysis of
the protocols, so the timings reflect the computation necessary for
the parser to generate the Bro events corresponding to the applica-
tion activity (including TCP/IP processing and TCP flow reassem-
bly), but no further processing of those events. Specifically, the
HTTP parser generates an event for (1) every request line (with
the method, the URL, and the HTTP version as event parameters),
(2) every response line (with the response number and the reason
phrase), (3) every HTTP header (with the name and the value, in
either request or response), and (4) the end of every request/reply
message (with the length of the body). The DNS parser generates
an event for every request and reply and for every answer in the re-
ply. Thus, the generated events allow almost all essential analysis
on HTTP and DNS, except that HTTP data bodies are not exported
through events.

We see that the binpac HTTP parser performs significantly
better than the hand-written one. This gain came after tun-
ing the specification by adding a &transient attribute to
HTTP header fields, which instructs binpac to not create a
copy of the corresponding bytestring. (Transient strings are visi-
ble only within the parsing function of the type, while non-transient
ones, which are copied, can be accessed after parsing.) We have not
yet applied the same tuning to the DNS specification; as a result, it
allocates many more dynamic objects, and copies more strings than
the hand-written one does. We do, however, believe that tuning it
will prove straightforward.

Both the hand-written and the binpac HTTP parsers handle
content gaps by skipping over gaps within data bodies, which are
common in large traces. However, it is worth noting that in the
hand-written case, content-gap skipping must be crafted in each

case and thus is applied in very limited scope beyond HTTP bod-
ies (such as SMTP mail bodies). For binpac-based parsers, gap
skipping is automatically handled for every string type with a
&chunked attribute.

We also note that in developing our DNS parser we found two
significant bugs in the hand-written parser’s processing. These re-
lated to using incorrect field widths and non-portable byte-ordering
manipulations, and provide direct examples of the benefit in terms
of correctness for specifying analyzers in a high-level, declarative
fashion.

7. SUMMARY AND FUTURE DIREC-
TIONS

This paper presents binpac, a declarative language for generat-
ing parsers of application-layer network protocols from high-level
specifications. Such parsers are a crucial component of many net-
work analysis tools, yet coding them manually is a tedious, time-
consuming, and error-prone task, as demonstrated by the numerous
severe vulnerabilities found in such programs in the past.
binpac reflects a different paradigm for building protocol

parsers: abstracting their syntax into a high-level meta-grammar,
along with associated semantics. A parser generator then translates
the specification into low-level code automatically. By providing
such an abstraction, a programmer can concentrate on high-level
protocol aspects, while at the same time achieve correctness, ro-
bustness, efficiency and reusability of the code.

In spirit, this approach is similar to that embodied in the use of
yacc for writing parsers for programming languages, but many
elements of the network analysis problem domain require signif-
icantly different underlying mechanisms. First, there are critical
differences between the syntax and grammar of network protocols
and context-free languages. In addition, processing network traffic
requires a fundamentally different approach in terms of handling
input, namely the ability to incrementally parse many concurrent
input streams.

Our domain-specific binpac language addresses these issues
with a set of network-specific features: parameterized types, vari-
able byte ordering, automatic generation of boundary checking, and
a hybrid approach of buffering and incremental parsing for han-
dling concurrent input. binpac supports both binary and ASCII
protocols, and we have already used it to build parsers for HTTP,
DNS, SUN/RPC, RPC portmapper, CIFS, DCE/RPC (including the
endpoint mapper), and NCP. We integrated all of these into the
Bro NIDS, replacing some of its already existing, manually writ-
ten ones. Our evaluation shows that binpac specifications are
35–50% the size of handcoded ones, with the protocol descrip-
tion (independent of the user’s analysis semantics) comprising less
than half of the specification. Our HTTP parser runs faster than the
handcrafted one it replaces (and with equal memory consumption),
and we are confident that the DNS will likewise soon exhibit per-
formance equal to the one it replaces. binpac is open-source and
now ships as part of the Bro distribution.

In the future, along with specifying further protocols in binpac,
we envision exploiting its power in two areas. First, we wish to



explore the reusability of binpac-generated parsers by integrating
them into additional network tools. Second, we intend to add back-
ends other than C++ to binpac to generate parsers for different
execution models. As proposed in [32], we specifically aim to build
highly parallel parsers in custom hardware.
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