
A High-level Programming Environment for Packet Trace
Anonymization and Transformation

Ruoming Pang
Department of Computer Science

Princeton University

rpang@cs.princeton.edu

Vern Paxson
International Computer Science Institute

vern@icir.org

ABSTRACT
Packet traces of operational Internet traffic are invaluable to net-
work research, but public sharing of such traces is severelylim-
ited by the need to first remove all sensitive information. Current
trace anonymization technology leaves only the packet headers in-
tact, completely stripping the contents; to our knowledge,there
are no publicly available traces of any significant size thatcontain
packet payloads. We describe a new approach to transform and
anonymize packet traces. Our tool provides high-level language
support for packet transformation, allowing the user to write short
policy scripts to express sophisticated trace transformations. The
resulting scripts can anonymize both packet headers and payloads,
and can perform application-level transformations such asediting
HTTP or SMTP headers, replacing the content of Web items with
MD5 hashes, or altering filenames or reply codes that match given
patterns. We discuss the critical issue of verifying that anonymiza-
tions are both correctly applied and correctly specified, and expe-
riences with anonymizing FTP traces from the Lawrence Berkeley
National Laboratory for public release.

Categories and Subject Descriptors: C.2.m [Computer-
Commnication Networks]: Miscellaneous—packet trace process-
ing; D.3.4 [Programming Languages]: Processors—network trace
rewriting

General Terms: Security, Measurement

Keywords: packet trace, anonymization, transformation, Internet,
privacy, measurement, network intrusion detection

1. INTRODUCTION
Researchers often use tools such astcpdump to capture net-

work packet traces. Packet traces recording real-world Internet traf-
fic are especially useful for research on traffic dynamics, protocol
analysis, workload characterization, and network intrusion detec-
tion. However, sharing of Internet packet traces is very limited
because real-world traces contain many kinds of sensitive infor-
mation, such as host addresses, emails, personal web-pages, and
even authentication keys. The traces must be first “anonymized”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’03,August 25–29, 2003, Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-735-4/03/0008 ...$5.00.

to eliminate any private information (e.g,, IP addresses, user IDs,
passwords) before they can be shared among researchers.

To date, Internet packet trace anonymization has been limited to
only retaining TCP/IP headers [21, 17], with IP addresses renum-
bered and packet payloads completely removed. To our knowl-
edge, there areno publicly available traces of any significant size
that contain TCP payloads. The lack of such traces greatly lim-
its research on application protocols. It is especially crippling for
network intrusion detection research, forcing researchers to devise
synthetic attack traces that often lack the verisimilitudeof actual
traffic in critical ways, resulting in errors such as grosslyunderes-
timating the false positive rate of “anomaly detection” techniques.
[10, 1]

In this work we develop a new method to allow anonymization
of packet payloads as well as headers. Traces are processed in three
steps:

1. Payloads are reassembled and parsed to generate application-
protocol-level, semantically meaningful data elements.

2. A policy script transforms data elements to remove sensi-
tive information and sends the resulting elements to the com-
poser.

3. The trace composer converts application protocol data ele-
ments back to byte sequences and frames the bytes into pack-
ets, matching the new packets to the originals as much as
possible, in order to preserve the transport protocol dynam-
ics.

Parsing allows the trace transformation policy script to oper-
ate on semantically meaningful data elements, such as usernames,
passwords, or filenames, making policy scripts more conciseand
comprehensible than those operating directly on packets orbyte
sequences. Working at a semantic level also gives the opportu-
nity for less draconian anonymization policies. For example, the
added information that the string “root ” appears in a filename
(“ /root/.cshrc ”) rather than as a username might, depending
on a site’s anonymization policy, allow the string to appearin an
anonymized trace, whereas a purely textual anonymization would
have to excise it, because it could not safely verify that theoccur-
rence did not reflect a username.

The design of trace composer aims to generate “correct” traces,
for instance, as payload data is modified, checksums, sequence
numbers, and acknowledgments will be accordingly adjusted. The
output traces just look as if they were collected from the real Inter-
net, except that they do not carry private information. Accordingly,
analysis tools that work on raw traces will likewise work on the
anonymized traces.

In order to make the anonymization process amenable to valida-
tion, we follow a “filter-in” principle throughout our design of the
anonymizer: instead of focusing on “filtering out” sensitive infor-
mation, the anonymizer focuses on what, explicitly, toretain (or
insert, in a modified form) in the output trace. With this principle,
it becomes much easier to examine a policy script for privacyholes.

An optional “manual inspection” phase can keep more nonsen-
sitive information in the output trace as the general anonymization
script may have to make conservative judgments for some datael-
ements; for example, whether to allow the command “UUSER” to
appear in a trace of anonymous FTP traffic (the presence of such
a typo can be useful for some forms of analysis, such as anomaly
detection).

We implemented the anonymizer as an extension to Bro [16], a
network intrusion detection system, to take advantage of its appli-
cation parsers and its built-in language support for policyscripts.

Beside anonymization, our tool can also be used for generic trace
transformations, providing a great degree of freedom and conve-
nience for various types transformation. For example, we can take
a trace of FTP traffic and remove from it all the connections for
which the user name was not “anonymous ”; or all the ones for
which the FTP authentication was unsuccessful; or those that do
uploads but not downloads. A different type of transformation is
for testing network intrusion detection systems by inserting attacks
into actual background traffic by slightly altering existing, benign
connections present in a trace. Still another type of transformation
is to remove large Web items from HTTP connections (including
persistent sessions with multiple items) in order to save disk space
(see Section 3.4 below).

In a sense, the tool spells the end of traces as being stand-alone
evidence of any sort of activity, since it makes it so easy to modify
what a trace purports to show.

We developed trace transformations for FTP, SMTP, HTTP, Fin-
ger, and Ident. As a test of the approach, we anonymized FTP traces
from the Lawrence Berkeley National Laboratory (LBNL). Besides
testing the technology, one of the important questions behind the
exercise was to explore what sort of anonymizations a site might
require, and being willing to abide, for public release of traces with
contents. To this end, working with the site we devised an anonymi-
zation policy acceptable to the site and approved for publicrelease.
The corresponding traces are available from [6].

The rest of this paper is organized as follows. In the next section
we present our goals. We describe generic packet trace transforma-
tion in Section 3, trace anonymization in Section 4, and unsolved
problems and new directions in Section 5. We discuss relatedwork
in Section 6 and summarize in Section 7.

2. GOALS
We designed the transformation tool with the following goals in

mind:

1. Policy scripts operate on application-protocol-level data val-
ues. This means that instead of operating on packets or TCP
flows, a policy script sees typed and semantically meaning-
ful values (e.g., HTTP method, URI, and version). Likewise,
the trace transformation scripts also specify application-
protocol-level data to the output trace, without needing to
dictate the details of generating the actual packets.

2. The output traces contain well-formed connections: pack-
ets have correct checksums and lengths, TCP flows can
be reassembled from the resulting packets, and application-

Figure 1: Data Flow in Trace Transformation

protocol data has correct syntax1, so that other programs can
process the transformed traces in the same way that they han-
dle originaltcpdump traces.

3. The mechanism supports generic trace transformations be-
sides anonymization.

4. The anonymization is “fail safe” and amenable to verifica-
tion. Fail-safety means that the privacy resulting from the
anonymization does not depend on the tool and the policy
script being completely correct. Being amenable to verifi-
cation means it is easy to examine and validate the policy
script, the anonymization process, and the output trace.

The first and third goal dictate where to separate mechanism and
policy: 1) the mechanism part should parse the input trace toexpose
all application-protocol semantic elements, e.g., commands, reply
codes, MIME header types; 2) the mechanism should not restrict
how the values will be changed, but leave that to the policy script.
We will discuss mechanism and anonymization policy in the next
two sections, respectively.

3. GENERIC TRACE TRANSFORMATION
Trace transformation consists of three steps: parsing, data trans-

formation, and composition. These are shown as the right-hand
components of Figure 1. The parsing and composition parts donot
depend on the type of trace transformation, and we have imple-
mented them in Bro as built-in mechanisms. The second step (data
transformation) is fully programmable, however, and so is imple-
mented as a Bro policy script.

We will first look at the process from the viewpoint of the policy
script, focusing on the trace input/output interface, and then discuss
details of trace parsing and composition.

3.1 Policy Script Programming Environment
The Bro policy script language is procedural, with strong typ-

ing that includes support for several network-specific types (e.g.,
addresses and ports), as well as relative and absolute time,aggre-
gate types (associative tables, records), regular expression match-
ing, and string manipulation. More details about Bro language can
be found in [16, 15].

From the point of view of a policy script, the parsing part is Bro’s
event engine, and the composer is a family of library functions,
which we call “rewrite functions”.

A policy script for a protocol usually contains several “event han-
dlers”, which are execution entry points of the script. Through
event parameters, each event handler receives protocol-semantic
data elements as well as a record corresponding to the particular
TCP connection. An event handler may call other functions topro-
cess the data, and writes the transformed data to the output trace
1Or not, if the policy script decides to keep the “dirtiness” of the original
trace.

by calling the rewrite functions. When calling a rewrite function,
the policy script specifies a connection, and sometimes alsodirec-
tion of the flow, to write the data to. The destination connection is
usually the same connection of the event, but can also be any other
connection present in the input trace at the same time.

For example, a line in an SMTP message “MAIL
From:<alice@bob.org> \r \n” arriving on connection
C will generate the event:

smtp_request(
conn: connection = C,
command: string = "MAIL",
argument: string = "From: <alice@bob.org>")

The policy script receives the command and argument and decides
what to write to the output trace—e.g., it could call:

rewrite_smtp_request(
C,
"MAIL",
"From: <name123@domain111>")

to change the sender in the trace from “alice@bob.org ” to
“name123@domain111”.

There is usually a correspondence between protocol events and
rewrite functions: e.g., for eventsmtp_request , there is func-
tion rewrite_smtp_request , and they have the same or very
similar set of parameters.

Explicit Rewriting : Note that the trace composer API requires ex-
plicit rewrites, i.e., for a data element to get into the output trace, it
must be explicitly placed there by the policy script callinga rewrite
function. Alternatively, another style we could have chosen for the
composer API would be to have the policy script only specify data
elements that should bechanged, and pass the rest through unmod-
ified. With this style, we could implement a single generic interface
by which scripts would directly specify the element to change. For
example, the SMTP rewrite above would be specified as:

modify_element(
smtp_request_arg,
"From: <name123@domain111>")

and the composer would alter the location in output trace occu-
pied by the variablesmtp_request_arg to contain the new text
rather than the original.

While appealing because a single rewrite function would suf-
fice for all protocols (though the application parsers wouldhave to
annotate each script variable with its location in the connection’s
byte stream), instead of having a family of rewrite functions for
various protocols, we choose the heavier API because it presents
a safer interface for trace anonymization. First, requiring explicit
rewrite forces the policy script writer to put consideration into ev-
ery element, so it will be less likely that they overlook a privacy
hole. Second, it is easier for other people to examine a policy script
for privacy leaks, as the examiner only needs to look at elements
written in the script (rather than having to keep in mind all the pro-
tocol elements that are implicitly not being changed because they
don’t show up in the script). This design choice shows how the
“filter-in” principle affects our design. Additionally, this interface
allows type-checking on trace-rewrite operations to catchinconsis-
tency between output data elements.

3.2 Trace Parsing
Trace parsing usually consists of three steps: flow reassembling,

(optional) line breaking, and protocol-specific parsing.

Flow Reconstruction: Bro’s application parsing begins by re-
assembling IP fragments and then reassembling the TCP byte

stream. (We ignore here Bro’s UDP processing, though our tech-
niques could be applied to it, too.) In case of TCP retransmission or
packet reordering, the bytes that arrive first are not delivered until
the gap is filled, at which point the bytes are delivered together. For
example, suppose an SMTP command arrives in three packets with
the last two in reverse order: “MAIL Fro ”, “ bob.org> \r \n”,
and “m:<alice@ ”. The reassembler will emit “MAIL Fro ” on
the first packet arrival, nothing on the second because it comes out
of order, and “m:<alice@bob.org> \r \n” after processing the
third packet.

Breaking into Lines: Many protocols (e.g., SMTP, FTP, the non-
data part of HTTP) process application data one line at a time. For
such protocols, there is an intermediate step that structures the bytes
from reassembler into lines before protocol-specific parsing. Fol-
lowing the above example, the line divider will emit a line “MAIL
From: <alice@bob.org> ” after it sees\r \n.

Protocol-Specific Parsing: The parser takes plain bytes as input
and emits typed and semantically meaningful data fields. It first di-
vides the bytes according to protocol syntax, then convertsbytes of
each field to typed values—e.g., string, integer, boolean, record—
and groups the values by events, finally placing the events inan
event queue. (As event parameters, each data element carries a se-
mantic meaning.) Currently Bro has parsers for DNS, Finger,FTP,
HTTP, ICMP, Ident, MIME, NTP, Netbios, Rlogin, SMTP, SSH,
and Telnet.

A major challenge in parsing is that the parser often cannot
strictly follow the RFCs that define the application protocol, since
in practice there are frequently deviations from the letterof the
standards, or deficiencies in the traffic being analyzed. Twopar-
ticular difficulties relevant for our discussion are:

Line Delimiters: Line-oriented protocols (e.g., SMTP, HTTP) gen-
erally are specified to use the two-byte sequence CRLF (\r \n) as
the delimiter between lines. However, some end hosts also interpret
single LF (\n) and/or CR (\r) as the end of the line. Ideally, we
would like to identify which delimiter each host uses, and consis-
tently apply that interpretation.

Content Gaps: For traces captured under high-volume traffic con-
ditions, sometimes the packet filter fails to capture all of the pack-
ets. Such “content gaps” are generally unsolvable, but we found
that most of them occur within the data-transfer section of an ap-
plication dialog rather than in the command/reply exchange. We
developed a content gap recovery mechanism for SMTP and HTTP
that skips over gaps that appear consistent with being wholly con-
tained within a data transfer. With this heuristic, we find that most
content gaps no longer disrupt parsing. (We note that content gaps
are also delivered as events, and the policy script may decide to
eliminate them, keep them, or even insert new content gaps inthe
output trace.)

In summary, there can be some loss of fidelity when data goes
through the trace parser. This is in fact a general problem for any
network monitoring tools.

3.3 Trace Composer
The trace composer consists of rewrite functions and a packet

generator. As discussed above, the rewrite functions are called dur-
ing event processing. A rewrite function generates a byte string on
each invocation and buffers the string for the packet generator. Af-
ter processing events, Bro invokes the packet generator to process
buffered bytes and generate output packets. Below we will look at
the rewrite functions and packet generation in detail.

Write a finger request to trace.
rewriter finger_request %(full: bool,

username: string, hostpart: string%)
%{
const int is_orig = 1;
if (full)

@WRITE@(is_orig, "/W ");
@WRITE@(is_orig, username);
if (hostpart->Len() > 0)

{
@WRITE@(is_orig, "@");
@WRITE@(is_orig, hostpart);
}

@WRITE@(is_orig, "\r\n");
%}

Figure 2: Source Code of a Rewrite Function

3.3.1 Rewrite Functions
A rewrite function performs the inverse of parsing: it prints the

typed data elements to a byte string in a protocol specific format,
placing them in the right order and adding proper delimiters. For
example,rewrite_finger_request takes four parameters:
c (the associated connection, of typeconnection , which is a
record of connection information),full (a boolean flag indicating
whether the Finger request was for the “full” format),username
andhostpart (both strings). The rewrite function concatenates
username and hostpart , adds\r\n to the end, and inserts
“ /W ” to the beginning of the line whenfull is true. Thus,
with parameters(T, "alice", "host123") , the function
generates the string “/W alice@host123\r\n ”, and with pa-
rameters(F, "bob", "") , it generates “bob\r\n ”.

Rewrite Function Compiler: When implementing the rewrite
functions for various protocols, we found a number of common-
alities: they all need to convert Bro values to C++ native values
and fetch the connection object, and for each built-in function we
need to write a Bro-language prototype declaration and add initial-
ization code to bind the Bro built-in function to the C++ function.
So we looked for ways to facilitate code reuse to avoid the tedious
and error-prone task of repeating the similar code at each place.

To do so, we developed a “rewrite function compiler”. We
write rewrite functions with Bro-style function prototypes and
C++ bodies. The compiler inserts code for the value conver-
sion and connection record fetch, extracts Bro function proto-
types, and generates function binding code. With the rewriter
compiler, most rewrite functions can be implemented with around
10 lines of code each. Figure 2 shows the source code of
“ rewrite_finger_request ”. Note that each rewrite func-
tion has a hidden first parameter: “c: connection ”, which is
inserted into the C++ code and the Bro prototype during compila-
tion.2

Currently we have implemented rewrite functions for FTP,
HTTP, SMTP, Finger, and Ident.

3.3.2 Packet Generation: Framing
After rewriter functions emit byte sequences, thepacket framer

decides how to pack the bytes into packets. It cares about
1) whether the bytes should fit into a single packet or be splitacross
multiple ones, and 2) what timestamp to attach to each packet.

The central concern of the packet framing algorithm is to keep
the traffic dynamics as close to the original as possible and yet to
remain transparent to the policy scripts. For example, an HTTP re-

2The boolean variable “isorig = 1” means the direction of the TCP flow is
from the connection originator (the Finger client).

quest can be transmitted line-by-line, one packet per line,or all in
one packet; for each of these cases, we would like the rewritten re-
quest to maintain the original packet structure and the timestamps.

Note that we cannot directly reuse the packet structure present in
the input trace because there is not necessarily a one-to-one map-
ping between bytes in the input and output traces, as a policyscript
can change data lengths, insert or remove objects, or changethe
ordering among objects. So in general it is only possible toapprox-
imate the original dynamics. Also, as the policy script does not
have to specify the origin of data when it calls a rewrite function,
the trace composer does not know an explicit mapping between
original and new data objects and has to derive an implicit tempo-
ral relation to map bytes to packets, as follows.

In the common case, transformed data is written to the same TCP
flow (i.e., same direction of a TCP connection) as the input packet
currently being processed. The framer places the bytes in the cur-
rent output packet. If the payload size exceeds the MTU, it gener-
ates another output packet with the same timestamp to hold the rest
of the data.

Usually the data written by the policy script originates from data
in the current input packet; thus, the output trace has a similar
packet structure as the input trace. However, there are two cases
in which the data to write actually comes from an earlier or later
input packet:

1. When an event consists of data from multiple packets, the
data may range across packet boundaries or appear in re-
transmitted packets. In this case, the transformed data will
be written with respect to the last packet associated with the
event, i.e., the packet whose arrival makes the trace parser
generate the event.

2. When the policy script cannot decide immediately what to
write before seeing later data. For example, when rewrit-
ing HTTP messages, the new Content-Length header for an
HTTP entity cannot be decided until the entity is entirely
transformed. In another example, when anonymizing FTP
traces, user names in unsuccessful login attempts might be
treated differently than user names in successful logins (be-
cause the unsuccessful ones can leak sensitive information,
such as passwords mistyped for user names), so the script
needs to see the server reply before it can decide how to
anonymize the argument of the “USER” command.

For the first of these, we find it tolerable to simply associatethe
data with the event’s last packet, because to do otherwise would
require a great deal of work—tracing each event parameter’s origin
throughout the trace reassembly and parsing hierarchy in order to
know from exactly which input packet the data originates.

Deferring Writes : The second case, of the policy script having
to defer its transformation decision, presents a larger problem, be-
cause it not only leads to imprecise timestamps for output packets,
but also causes inconvenience for transformation script program-
ming: in the HTTP message case, the Content-Length header has
to be written before the data entity, so the script must buffer up all
the transformed data entity until it finishes processing theentire en-
tity. To address this problem, we added support for deferring writes
so that the script can essentially write packets out of order.

The trace composer supports deferring writes by allowing the
policy script to reserve slots in current output packets. The script
may then seek the reserved slot at a later point, write data toit, and
release the slot. (See Figure 3)

3.3.3 Packet Generation: TCP/IP header fields

when the original Content-Length header
arrives on connection c
msg$header_slot = reserve_rewrite_slot(c);
...
after the entire data entity is processed
seek_rewrite_slot(c, msg$header_slot);
rewrite_http_header(c, is_orig, "Content-Length",

fmt(" %d", data_length));
release_rewrite_slot(c, msg$header_slot);

Figure 3: Deferring Writes to HTTP Content-Length Header

Once packet payloads are determined, the trace composer at-
taches TCP and IP headers to output packets. Also, if no data is
written in the current packet cycle, but the trace composer needs to
construct a packet to carry a TCP flag (SYN, RST, or FIN) or sim-
ply an acknowledgment, it generates an empty packet and attaches
the headers to it.

For every output packet, the trace composer first fetches theTCP
and IP headers of the most recent input packet on the same TCP
flow and generate the new headers by modifying the following
header fields:

1. If the trace is being anonymized, the source and destination
addresses in the IP header are anonymized, as discussed in
Section 4.4.2.

2. As the output trace does not have IP fragments (Bro reassem-
bles fragments early in its protocol processing, making it too
difficult to track their contribution to the final byte stream),
the composer clears fragment bits in the IP header.

3. The composer keeps the original IP identification field, un-
less the (source IP, ID) pair has already appeared in the out-
put trace, in which case we increment the ID till no conflict
is found.

4. TCP sequence/acknowledgment numbers are adjusted to re-
flect new data lengths, as is the IP packet length field. The
composer then recomputes the TCP and IP checksums. (Note
that, similar to the case of fragments in the input trace, be-
cause Bro discards packets with checksum failures early in
its processing, it is too difficult to propagate checksum errors
into the transformed output.)

5. Currently the composer discards IP options, because Bro
lacks an interface to access them, and some of them would
take significant effort to address. The composer keeps cer-
tain TCP options, such as maximum segment size, window
scaling and SACK negotiation (but not SACK blocks, due to
the ambiguity of the location of the SACK’d data in the trans-
formed stream), and timestamps; and replaces other options
with NOP.

6. TCP flags are propagated, except that the composer removes
the FIN flag. This is because additional packets may be in-
serted after the last one present in the input stream, and these
must still be numbered in the sequence space before the final
FIN to comply with TCP semantics. We can imagine a “con-
ceptual” FIN that is reordered together with the payloads and
comes only at the end of the data flow. Therefore, the trace
composer inserts a FIN flag only when the flow reassembler
has delivered, and the transformation script has processed,
the last chunk of the flow.

3.4 Trace Rewriters for Trace Size Reduction
As a demonstration of the utility of trace transformation inad-

dition to anonymization, we implemented trace rewriters for HTTP
and SMTP to reduce thesizeof traces rather than the privacy of
their embedded contents. At LBNL, for example, the volume of
HTTP traffic often exceeds 50 GB per day. The site wants to con-
tinuously record this traffic (for intrusion detection analysis), but
the volume proves problematic.

HTTP trace rewriter : Replaces HTTP entities beyond a speci-
fied size with their MD5 hash values, changes the Content-Length
header to reflect the new data length, and keeps the original
Content-Length and the actual data length in an “X-Actual-Data-
Length” header (see Appendix A for an example). Testing it ona
729 MB trace file, and setting the threshold to 0 bytes (so all enti-
ties are replaced by hashes), the rewriter reduces the tracesize to
25 MB, a factor of 29. If we compare thegzippedsizes of the traces
(which the site often does with traces, in order to keep them longer
before the disk fills up), the reduction becomes a factor of 69(from
377 MB to 5.5 MB). Alternatively, we can implement more selec-
tive size reductions, such as stripping out only non-HTML objects
in order to keep the cross-reference structure intact. Operationally,
the site keeps the first 512 bytes of each entity, and keeps those
with a MIME type of “text” in their entirety; this results in about a
factor of 10 in size savings, yet retains enough informationto help
analyze most HTTP attacks to determine whether they succeeded.

SMTP trace rewriter : Replaces mail bodies with MD5 hash val-
ues and size information, but keeps all SMTP commands/replies
and mail headers.

4. TRACE ANONYMIZATION
In this section we discuss general issues in trace anonymization,

analyze four types of possible attacks, and present our anonymi-
zation scheme for LBNL FTP traces. Although the scheme is in-
evitably dependent on the specific policy approved by the site, the
general techniques are also applicable to other sites and protocols.

4.1 Objectives of Anonymization
The information we try to hide through anonymization falls into

two categories:identities, including identity of users, hosts, and
data; and confidentialattributes, e.g., passwords, or specifics of
sensitive user activity [4].

The first step of developing an anonymization scheme is to de-
cide what information in the trace we need to hide. For example, in
anonymizing FTP traces, we aim to hideidentitiesof clients, pri-
vate data (hidden files), and private servers; and sensitiveattributes:
e.g., passwords, authentication keys, and in some cases filenames.

Confidential information can be exposed via direct means, orin-
ferred via indirect means. Therefore, to hide the identity of client
hosts, it may not be enough to just anonymize their IP addresses.
We will shortly analyze four kinds of inference attacks thatmay
reveal confidential information through indirect means, but before
doing so we first discuss the anonymization primitives, i.e., how we
anonymize basic data elements.

4.2 Anonymization Primitives

Constant Substitution: One way to anonymize a data element is
to substitute the data with a constant, e.g., replace any password
with the string “<password> ”.

Constant substitution is usually used to anonymize confidential
attributes. Applying constant substitution to identifiers(e.g., IP ad-
dresses), however, is generally undesirable, as we would then no

longer be able to precisely distinguish objects from one another. In-
stead, identifiers are usually anonymized with a 1-1 mapping, such
as sequential numbering or hashing, so that the anonymized identi-
fiers are still unique, as follows.

Sequential Numbering: We can sequentially number alldistinct
identifiers in the order of appearance, e.g., mapping files names to
“ file1 ”, “ file2 ”, etc.

Hashing: One shortcoming ofsequential numberingis that we
have to keep the whole mapping history to maintain a consistent
mapping during the anonymization process and across anonymiza-
tions. Instead, we can use a hash function as the mapping. Doing
so requires no additional state during the anonymization process,
and in addition using the same hash function across anonymiza-
tions will render a consistent mapping (assuming that the range of
the hashing function is large enough so that likelihood of collision
is negligible). To preserve confidentiality, the hash function must
be one-way and preferably resistant to chosen plain-text attack, so
that an adversary can neither discover the input from the output
nor compute the hash by themselves. HMAC-MD5 (with a secret
key) satisfies these requirements. Assuming the adversary can nei-
ther reverse MD5 nor extract the secret HMAC key,hashingis as
secure assequential numbering.

Prefix-Preserving Mapping: Sometimes it is valuable to preserve
some of the structural relationships between the identifiers, which
sequential numberingandhashingcannot do. For example, IP ad-
dresses can anonymized in a prefix-preserving way [12, 21] such
that any two IP addresses sharing a prefix will share a prefix ofthe
same length in their anonymized form. Prefix-preserving mapping
can be similarly applied on the directory components of file names.
While being valuable for some forms of analysis, prefix-preserving
mapping also reveals more information about the identifiersand
thus is more vulnerable to attacks [22].

Adding Random Noise: We can add noise to numeric values, e.g.,
file sizes, to make the result more resistant to fingerprinting attacks
such as matching file sizes in the trace with public files [19].We
have not applied this primitive in our experiments, however, so we
do not have experience regarding how effective it is and the degree
to which it diminishes the value of the trace.

4.3 Inference Attacks
Besides anonymizing certain identifiers and attributes to elimi-

nate direct exposure of identities and secret data, we also consider
rewriting other data fields to preventindirect exposure. In order to
understand which data should be anonymized, we need to analyze
how an adversary might use additional data to infer confidential
information. Below we will discuss four kinds of inference tech-
niques and how they relate to our FTP anonymization efforts.

4.3.1 Fingerprinting
“Fingerprinting” is the notion of an adversary recovering the

identity of an object by comparing its attributes to attributes of ob-
jects known by the adversary. In order to do so the adversary has to
know the fingerprints of the candidate objects. Thus, they cannot,
for example, discover a previously unknown FTP server through
fingerprinting.

We present here a brief analysis of possible fingerprinting on our
anonymized FTP traces, to convey the flavor of problem:

1. Fingerprinting files: possible for public files, by looking for
matches in file sizes, similar in spirit to the techniques of Sun
et al [19].

2. Fingerprinting servers: possible for public servers, bythe
structure of their reply messages (especially the220 greet-
ing banner), help replies, SITE commands, or through fin-
gerprinting files on the server. It is unclear to us whether itis
possible to fingerprint servers by analyzing response timing.

3. Fingerprinting clients: there are at least two possible ways
to fingerprint clients: 1) when the client displays some pe-
culiar behavior known to the adversary; 2) through “active”
fingerprinting: the adversary inserts a fingerprint for a cer-
tain client by sending packets to the trace collection site with
a forged source address of the client’s host address, and then
looks for how these were transformed in the anonymized
trace.

While fingerprinting of files and servers can expose usage pat-
terns, this does not appear to be a serious issue becausewhomade
the access is not exposed.

Fingerprinting clients, on the other hand, would in some circum-
stances pose a significant privacy threat. But this is generally dif-
ficult for the adversary to accomplish. For the first type of finger-
printing, the client’s sessions must possess peculiarities that survive
the anonymization process, and the adversary must discoverthese.
For the second type of fingerprinting, the fingerprint has to be in-
serted during trace collection. We discuss a defense against active
fingerprinting, “knowledge separation”, in Section 4.3.4.

A particular threat is that a class of clients displaying certain
peculiar behaviors will stand out from other clients. If we want
to eliminate this threat, we should eliminate or blur the distinc-
tion among client behaviors—which might significantly reduce the
value of the trace.

4.3.2 Structure Recognition
Similar to fingerprinting, the adversary may also exploit the

structure among objects to infer their identities. For example, traces
of Internet traffic will often include sequential address scans made
by attackers probing for vulnerable hosts. By assuming thatan
anonymized trace probably includes such scans, an adversary can
hunt for their likely presence, such as by noting that a series of
unanswered SYN packets occur close together in one part of the
trace, or that (when usingsequential numbering) suddenly a group
of new hosts appears in the trace. They can then infer the original
addresses of other hosts by the sequence they occupy in the scan,
given the assumption that the scan started at a particular base ad-
dress and proceeded sequentially up from it [18]. In addition, if the
adversary has identified a single host in the trace (say a well-known
server), they can then calibrate their inference by confirming that it
shows up in the scan in the expected sequence.

4.3.3 Shared-Text Matching
When attributes or identifiers of different objects share the same

text, the unmasking of one can lead to exposure of the other. For
example, if there is both a user name “alice” and a file name “alice”,
the user name will be exposed if the adversary can identify the file.
To avoid this attack, we apply “type-separation”: the user name “al-
ice” should be anonymized as the string “user+alice”, and the file
name as “file+alice”. Generally it is good practice to avoid using
the same text for distinct objects (e.g., files with the same name on
different servers) unless there is some trace analysis value in doing
so. The attack on prefix-preserving IP anonymization also exploits
shared-text matching for cascading effects, where the shared text is
the prefix.

4.3.4 Known-Text Matching

When both the original text and the anonymized text are
known to the adversary, they can identify all appearances ofthe
anonymized text in the trace. The knowledge required for a known-
text attack is often obtained through fingerprinting.

One example is a “known server log” attack: if the adversary
obtains the log of a server present in the trace, they may be able
to identify the mapping between client addresses and anonymized
addresses through fingerprinting, and then unmask the clients’ ac-
tivities on other servers. (Obtaining such logs is sometimes not
difficult—for example, occasionally a query to a search engine will
find them, because the logs are maintained in a publicly accessible
manner.)

Another example is if the adversary can insert traffic with given
strings, such as a particular user ID, into the trace, similar to the
“active fingerprinting” discussed above. They can then observe
how the string was mapped, and look for other occurrences of the
resulting text in order to unmask instances of the same original text.

A general method to counter known-text attacks is through
“knowledge separation”. This is similar to the type-separation de-
fense against shared-text matching discussed above. For example,
to counter a “known server log” attack, we can anonymize a client
IP differently depending on the server it accesses. To counter the
user ID insertion attack, we can anonymize user IDs differently de-
pending on whether the login is successful or not (an alternative
is to anonymize user IDs depending on the client’s IP address).
Similarly, “active fingerprinting” with forged source IPs can de-
feated by anonymizing addresses differently for connections that
are never established, since the adversaries will fail to complete
the TCP three-way handshake unless they can conduct an initial-
sequence-number guessing attack.

When we apply “knowledge separation”, a single object can
have multiple identifiers in the anonymized trace, which reduces
the value of the trace for some types of analysis. This is a basic
trade-off, and the choice of the degree to incur it will be policy-
dependent.

4.4 Case Study: FTP Anonymization
In light of these possible attacks and defenses, we now turn to the

anonymization scheme we used for LBNL’s FTP traces. Though
the scheme is inevitably dependent on the specific policy approved
by the site, and thus may not be directly applicable to other sites, we
believe the considerations and techniques, for instance, the “filter-
in” principle, will be also applicable to other site policies and other
application protocols. Accordingly, we discuss in detail relevant
points of the resulting anonymization process. The full scheme can
be found at [6].

The FTP traces were collected at the Internet access point (Giga-
bit Ethernet) of LBNL, and contain incoming anonymous FTP con-
nections to port 21. The traces do not include any of the transferred
FTP items (files uploaded or downloaded, or directory contents cor-
responding to the FTP “LIST” command), but only requests and
replies in the traces.

As stated above, our objectives are: 1) ensure that the anonymi-
zation hides the identity of clients, non-public FTP servers, and
non-public files, as well as confidential authentication informa-
tion;3, and 2) the anonymization keeps the original request/reply
sequence and other nonsensitive information intact.

In some ways, these goals and the resulting traces are quite mod-
est. But we believe that the path to site’s becoming open to releas-
ing traces with packet contents is one that must be tread patiently,

3Here, hiding a “non-public” server/file means that if an adversary does not
know where to find the server/file beforehand, they will not beable to find
it after looking at the anonymized traces.

as sites quite naturally must develop a solid sense that trust in the
anonymization process is warranted.

Self-Explaining: Besides the above objectives, we designed the
anonymization scheme to beself-explaining: it should be easy for
other people to examine and validate the scheme by merely look-
ing at the scheme description or the policy script, without being
familiar with every detail of FTP. We believe this is particularly
important in order for the policy makers at a site to understand and
accept trace anonymization.

4.4.1 The Filter-In Principle
The key to obtaining a robust and coherent anonymization

scheme is to apply the “filter-in” principle, which is that the anony-
mization policy script explicitly specifies what data to leave in
the clear, and everything else is anonymized (or removed). Thus,
“filtering-in” implies using “white lists” of what is okay instead of
“black lists” of what is disallowed. The design choice in ourframe-
work of “explicit rewriting” also reflects the “filter-in” principle.

It is critical to employ “filter in” instead “filter out”. Anonymiz-
ing FTP traffic is complex enough that if we try to “filter out” pri-
vate information by enumerating all the sensitive data fields, it is
very likely that we will miss some of them. Also, a “filter-out”
scheme would be hard to verify, unless the verifier can themselves
enumerate all of the sensitive fields.

Following the “filter-in” principle, the difference between a
crude anonymization script and a refined one is that the refined
script will preserve more nonsensitive information in the output
trace; but the two scripts should be equally privacy-safe (though
we must keep in mind the maxim that complexity is the enemy of
robust security). Also, a “filter-in”-style anonymizationscheme is
to some degree self-explaining—verification of the scheme does
not require enumerating every possibility.

4.4.2 Selected Details of FTP Anonymization

IP addresses: (which appear in IP headers, PORT arguments, and
some reply messages such as reply to the PASV command) are se-
quentially numbered, since the site views preserving client privacy
as vital. (Recognizing IP addresses in reply messages is discuss in
Section 4.4.4.)

User IDs: (arguments of USER/ACCT commands) are
anonymized except for “anonymous”, “guest”, and “ftp”.
However, the anonymizer leaves a user ID in the clear if the login
attempt fails and the user ID is one of the IDs defined as sensitive
in Bro’s default security policy (for example, “backdoor ”,
“bomb”, “ issadmin ”, “ netphrack ”, “ r00t ”, “ sync ”,
“y0uar3ownd ”, and many others). This allows us to preserve
one form of attack, namely attempted backdoor access, without
exposing any actual account information.

When we anonymize a user ID, we apply HMAC-MD5, anno-
tating the user ID prior to hashing with 1) the server IP to prevent
“shared-text” matching, and 2) an indication of whether thelogin
was successful to prevent “known-text” matching.

Password: we replace the arguments of PASS commands with the
string “<password> ”. (An alternative would be to hash pass-
words for anonymous logins, with the email addresses annotated
with the client IP address to achieve “knowledge separation”.)

File/directory names: are replaced by the string “<path> ” for
non-anonymous logins. For anonymous logins, file names are left
in the clear if they appear on a white list of well-known sensitive file
names (e.g., “/etc/passwd ”), in order to preserve occurrences

of attacks; and anonymized with hashing otherwise. The hashing
input is the absolute path annotated with the server IP to minimize
shared-text matching across directories or servers. The reason to
anonymize file names even for anonymous FTP traffic is that we
cannot readily tell truly public files apart from private (hidden) ones
that happen to be access using anonymous FTP, but only by users
who know the otherwise unpublicized location of the file.

Arguments of commands with pre-defined argument sets:
(TYPE, STRU, MODE, ALLO, REST, MACB): are left intact if
well-formed. For example, a TYPE argument should match the
regular expression/([AE]([NTC])?)|I|(L[0-9]+)/ ac-
cording to RFC 959. However, the anonymizer does not assume
clients follow the RFC—it checks whether the argument matches
the pattern, and leaves it in the clear only if that is the case, other-
wise anonymizing the argument as a string.

We apply similar techniques for the “HELP” and “SITE” com-
mands, for which we only expose the arguments if they match a
manually determined “white list” of privacy-safe HELP/SITE ar-
guments.

Unrecognized commands: are anonymized along with their argu-
ments and recorded for optional manual inspection.

Timestamps/dates: are left in the clear. While timestamps could
help an adversary match up known traffic (such as traffic they in-
jected) with its occurrence in the trace, there are enough other ways
the adversary can perform such matching (by making the injected
traffic singular) that leaving them intact costs little. On the other
hand, timestamps are valuable for various research purposes.

File sizes: are considered to be safe. As argued when analyzing fin-
gerprinting, exposing file sizes may allow the adversary to identify
public files. But this is not a concern for LBNL.

Server software version/configuration: is also considered to be
safe, as the information that can be inferred from the trace can be
readily obtained through other means (since the servers arepublic).

4.4.3 Refining with Manual Inspection
Whether data is to be left in the clear or anonymized, the anony-

mous script logs the decision and the reason for later inspection.4

Identical entries are only logged once. Inspection of the log (with
various text processing tools) helps us to discover 1) privacy holes
(or to demonstrate the absence of holes), and also 2) overly con-
servative anonymization of nonsensitive information (important for
working towards more refined scripts). We discuss log inspection
techniques in detail below.

A “filter-in”-style script always makes conservative judgments
on unknown data. Sometimes it can be too conservative, miss-
ing an opportunity to expose interesting, nonsensitive data, e.g., a
mistyped command like “UUSER” or a user id like “annonymous”.
It is difficult to hardwire such commands and user names into the
general anonymization script, as they may appear in unpredictable
forms. Nevertheless, these special cases do not appear veryoften in
traces, so we can afford tomanually inspecteach case by looking
at the log after anonymization and then customizing the script to
expose the nonsensitive ones. Figure 4 shows three log entries we
have seen: the first entry records a common-case anonymization of
a path name; while the other two, recording anonymizations of the
“UUSER” command and user name “annonymous”, are the kinds
of entries we look for during manual inspection.

4Here we assume that the administrator of the trace anonymization can
see the original trace—this helps in verifying results and generating better
traces.

Note that the customization for special cases should beoptional.
The script should always first anonymize any unknown data, and
should make no assumptions about whether the log will be manu-
ally inspected.

As most entries in the anonymization log record the anonymi-
zation of “common” cases, the trick to digging up special cases
is to look for deviant entries throughtext classification. Here, we
examine command arguments as an example to illustrate how we
discover special cases:

First, we classify entries by the type of data being anonymized.
The type can be, for example, a non-guest user name (e.g.,
“annonymous”), or a non-public file name, or the argument of
a PORT command. Some types of anonymization, e.g., of path
names and passwords, happen very often, while others rarelyap-
pear in the log. These rare types of anonymization often present
interesting cases. For example, for a trace of an FTP server that
only allows anonymous login, there can still be a few user names
being anonymized. We have seen: “anno ”, “ anonyo\010 ”,
“anonymouse ”, “ help ”, and “anamouse ”, as well as a pass-
word mistyped for aUSERcommand. Except for the password, all
of the other user names actually do not reveal any private informa-
tion. But it’s important to catch the password.Note that none of
these strange user names will appear in the output trace unless we
modify the script to explicitly allow them, so the password will not
appear without specific action to keep it.

Furthermore, we look for “malformed” path names—those
do not match a heuristic pattern for well-formed path names.
We find, for example: “#”, “ \xd0\xc2\xce\xc4\xbc\xfe
\xbc\xd0 ”, “ /n/nThis file was not retrieved by
Tele-port Pro, because it did not meet the
project ”. 5

In addition, applying similar techniques lets us find misspelled
commands, or commands containing control characters: e.g.,
“USE”, “ UUSER”, “ RETR<BS><BS><BS><BS>”, all of which
we have seen in practice (these commands likely indicate users typ-
ing directly rather than using client software).

4.4.4 Reply Anonymization
An FTP reply consists of a reply code and a text message. We

leave reply codes in the clear, as they do not reveal any private
information. Reply messages, on the other hand, do often contain
sensitive information and are hard to anonymize because there is
no standard format for most reply messages—the format depends
on the server implementation and its configuration.

One possibility is to discard the original text (except for replies
to PASV, which are well-defined) and replace it with a dummy mes-
sage. This has the virtue of being simple. On the other hand, re-
ply messages do sometimes carry useful information that cannot be
inferred from the reply codes. For example, a reply of code 530
(denial of login) usually explains why the login was rejected–it can
be “guest login not permitted” or “Sorry, the maximum numberof
users from your host are already connected.”. Such information can
be valuable in some cases. So we explored methods to anonymize
FTP replies.

As messages may contain variables such as file names/sizes,
dates, and domain names, there can be countless distinct messages.
However, we observe that there is only a limited set of message
templates, as the number of templates is bounded by the number of
different server software/configurations at the site. And we can ex-
tract templates (along with human assistance) by comparingmes-
sages against each other and distilling the common parts. Figure 5
shows a few example message templates. Once we have extracted
5Teleport Pro is the name of an offline browser.

anonymize_arg: (path name) [CWD] "conferencing" to "U42117b96U" in [xxx.xxx.xxx.xxx/xxxx > xxx.xxx.xxx.xxx/ftp]
anonymize_cmd: (unrecognized command) "UUSER" [anonymous] to "U7b402a69U" in [xxx.xxx.xxx.xxx/xxxx > xxx.xxx.xxx.xxx/ftp]
anonymize_arg: (user name) [USER] "annonymous" to "Ufb6db9afU" in [xxx.xxx.xxx.xxx/xxxx > xxx.xxx.xxx.xxx/ftp]

Figure 4: Anonymization Log Entries

the message templates, we can parse messages by matching them
against the templates and thereby understanding the semantics of
the data elements in the text.

Message templates are first automatically extracted by a script
then manually sanitized before used for template matching.The
automated template extraction is done in three steps: splitting, ab-
straction, and merging (as shown in Figure 6). We firstsplit a mes-
sage into parts—each part contains a word or a data element such as
an IP address or a file name. Next, inabstraction, we try to guess
whether each part is a variable or a constant part of the message
template. Throughabstractionwe are able to find most of variable
slots in message templates, andmerginghelps to reveal the rest of
them. We merge two templates when they are identical on all but
one part, and this process is iterated till no templates can be further
merged.

The message extraction process is refined through the accumu-
lation of experience. We found that the key issue in abstraction is
to recognize the corresponding command argument echoed in the
reply message. This is tricky because the echoed argument issome-
times different from the original argument, particularly when it is
a file name. For example, the echoed argument can be the absolute
file path or only contain the base file name with the directory parts.
Therefore we need to recognize variants of the argument. Thekey
for good message splitting is to know wherenot to split. By default
we split at spaces and punctuation; however, we do not want tosplit
an IP address or a file name, otherwise they cannot be recognized
during abstraction.

Extracted message templates need to be examined and sanitized
before being used for message matching. This can be a tedious
process and we strived to minimize the required effort. Currently,
when extracting templates from a set of ten-day long FTP traces,
which contain more than 1.4 M lines of replies in 22.6 K connec-
tions to 318 distinct servers, we wound up with 461 message tem-
plates for 32 kinds of reply codes. Among the 461 templates, 25
require sanitization to remove server identity information. Exam-
ining a few hundreds of templates is feasible but still not easy—
perhaps this is the price for processing free format text.

4.4.5 Verification
Verification is a fundamental step of the anonymization process.

No matter how much thought we apply to the anonymization policy,
the safety of the anonymization also depends on the correctness of
the policy script and on the underlying Bro mechanisms. Therefore,
besides inspecting the anonymization description and script, it is
also important to examine the output trace directly.

Ideally, the verification process would guarantee that the trans-
formed trace complies with theintendedanonymization policy.
This is a different notion that theexpressedanonymization policy,
due to the possiblity of errors occurring in coding up the expres-
sion. Our strategy therefore is to attempt to analyze the general
properties of the transformed trace without tying these tooclosely
to the anonymization script that was used to effect the transfor-
mation. As such, we cannot guarantee that there are no “hole”in
the anonymized trace (but indeed doing so appears fundamentally
intractable). Instead, we aim to provide another dimensionof pre-
caution. In general, it is particularly important to have a strong

“verification story” in order to persuade sites that the anonymiza-
tion process will meet their requirements.

For verification we do not use Bro to parse the output trace’s
packets—doing so would introduce a common point of failure
across anonymization and verification. Instead, we look at the
packets directly, using different tools. Automating the verification
process remains an open problem—currently, it requires human as-
sistance, although some of the steps can be automated to reduce the
burden.

For packet headers, we inspect the source and destination IPad-
dresses. As the anonymized addresses are sequentially numbered,
verification that these lie in the expected range can be performed
automatically.

For FTP requests in packet payloads, we enumerate all distinct
commands and arguments present in the trace, except those which
are already hashed (hash results follows a particular textual format
and thus can automatically excluded). When the text parts ofre-
ply messages are discarded, it is straightforward to verifythat FTP
replies only contain reply codes and a placeholder of dummy text.

When we choose to anonymize reply messages, verification con-
sists of two parts, checking vocabulary and numbers, respectively.
Vocabulary checking is similar to message template extraction, but
simpler and implemented separately. Messages are again split at
blanks and punctuation, this time without worrying about special
cases as in splitting for message template extraction. Nextwe ab-
stract the parts by two rules: 1) if a part is a decimal number,sub-
stitute it with the string “<num>”; 2) if a part is a hashing output,
substitute it with the string “<hash> ”. This way we can reduce
1.4 M anonymized messages to about 600 patterns. We then man-
ually inspect these, which can be expedited by first sorting them so
that similar patterns are clustered.

In checking numbers we are mainly concerned about numbers
constituting IP addresses. Accordingly, we look for any four con-
secutive number parts in split messages and record each instance
that does not fall within the range of anonymized addresses.In-
terestingly, such casesdo appear, though they are quite rare, and
safe—e.g., part of a software version string such as “wu-2.6.2(1)”.

Verification helped us find a potential hole in an earlier version
of our anonymization script. We found two suspicious command
arguments: “GSSAPI” and “KERBEROS_V4”. Though the strings
themselves do not disclose any private information, their appear-
ance is alarming because they are not defined anywhere to be “safe”
in the script.

Looking into the logs revealed that they were arguments for two
rejected “AUTH” commands. According to RFC 2228, the argu-
ment for the “AUTH” command specifies the authentication mech-
anism. Thus, a rejected mechanism seems safe to expose. How-
ever, doing so overlooks the possibility that a user might mistak-
enly specify sensitive information, such as a password, instead of
an authenticationmechanism. A “fail-safe” solution is to white list
“GSSAPI” and “KERBEROS_V4” and anonymize any unknown
argument for the “AUTH” command.

150 |opening| |ascii, binary| |mode| |data| |connection| |for| |˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|
211 |connected| |to| |˜ domain, ˜ ip|
220 |welcome| |to| |˜ *| |ftp| |server|
550 |˜ arg| |not| |a| |directory|

Figure 5: FTP Reply Message Templates

message: "150 Opening BINARY mode data connection for /def.pdf (123.45.67.89,50034) (156678 bytes)"
split → "150 |opening| |binary| |mode| |data| |connection| |for| |/def.pdf| |123.45.67.89| |50034| |156678| |bytes|"
abstract→ "150 |opening| |binary| |mode| |data| |connection| |for| |˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|"
merge→ "150 |opening| |ascii, binary| |mode| |data| |connection| |for| |˜ arg| |˜ ip| |˜ num| |˜ num| |bytes|"

Figure 6: Message Template Extraction

4.4.6 Discussion

Integrity of Output Trace : Besides the absence of private infor-
mation, we also want to check whether the packets, TCP flows,
and FTP requests and replies in the anonymized trace are allwell-
formed. To do so, we run Bro’s FTP analyzer on the anonymized
traces to see whether Bro can reassemble the TCP flows and parse
the FTP requests and replies. We compare the FTP logs from both
traces. Bro’s FTP log records start and finish of FTP sessionsand
all requests and replies in the session. For a day-long FTP trace of
80 MB, 8,871 connections, and 86,908 request-reply pairs, we find
that the two logs have the same FTP session starting timestamps,6

request command sequences (not including the arguments) and re-
ply code sequences, also at the same timestamps. For command
arguments and reply messages, we cannot compare them directly
as of course many of them are anonymized. We randomly picked a
few sessions and manually checked the arguments and messages.

Anonymized Traces for Intrusion Detection: As mentioned ear-
lier, packet traces are particularly valuable for researchon network
intrusion detection. So we very much want trace anonymization to
preserve intrusion-like activities. This applies both to preserving
actual attacks, but, even more so, unusual-but-benign traffic that
stresses the false-positive/false-negative accuracy of intrusion de-
tection algorithms. This latter is particularly importantbecause it
is often a key element missing from assessments of network in-
trusion detection mechanisms—it is easy for researchers to attain
traces of actual attacks, because they can generate these using the
plethora of available attack tools, but it is much more difficult today
for researchers to attain detailed traces of background traffic.

Generally whether an attack survives anonymization depends on
both its characteristics and how it is detected. Some FTP intrusions
are recognized by signatures of files or user IDs the intrudertries to
access or login as. For example, directory name “tagged ” is often
associated with FTP warez attacks; failed “root ” or “ sysadm ”
login attempts suggest server backdoor probing. Preserving these
attacks requires leaving relevant identifiers in the clear.Fortunately
the identifiers are mostly well-known and do not expose private
identities, so they can kept through anonymization by establishing
a white list for “sensitive” file names and user IDs to leave inthe
clear. To do so, however, requires knowing the attack signatures
beforehand; thus, attacks with unknown signatures may still be lost
in anonymization.

Other types of intrusions are recognized by activity patterns
rather than identifier signatures. Most of these attacks cansurvive
anonymization. For instance, port scanning is marked by unan-
swered (or responded by TCP-RST) TCP-SYN packets from the
same source host to different destination hosts; successive failed

6In some cases, Bro’s connection termination is triggered bya timer, which
results in slightly different session finish timestamps.

FTP analyzer 131 seconds
FTP analyzer + anonymizer 1009 seconds
FTP analyzer + dummy rewriter 192 seconds

Figure 7: Execution time of various FTP policy scripts

attempts at creating directories on multiple servers may imply an
FTP warez attack.

Performance: Figure 7 shows the CPU time spent on a 1 GHz Pen-
tium III processor running on the day-long trace mentioned above.
We see that the FTP anonymizer, which also requires the FTP an-
alyzer, is 7.7 times slower than the FTP analyzer. To understand
where time is spent, we also tested Bro with a dummy FTP trace
rewriter, which simply writes the original requests and replies to
the output trace. We find that the execution overhead of the anony-
mizer script itself heavily dominates, comprising 81% of the to-
tal processing. The time is spent performing numerous hash ta-
ble lookups, string operations, and regular expression matches, and
generating a 3.8 MB anonymization log. We find this performance
adequate, especially for off-line anonymization. It even suffices for
on-line anonymization for FTP, though when extended to a higher
volume protocol such as HTTP may prove problematic.7

5. CHALLENGES AND NEW DIREC-
TIONS

We view our work as an early push towards making richer packet
traces available to the research community. There is still much to
be done in this area. From our experience, we believe the main
challenges include: 1) to formalize security considerations and the
process of developing an anonymization scheme; 2) to automate the
process of anonymization and verification; 3) to keep more packet
dynamics in the transformed traces. Below we briefly discusseach
of these.

Formalizing Anonymization: In Section 4 we described our
methodology for trace anonymization and analyzed four types of
inference techniques, but our analysis is far from being formal or
complete. While accumulation of experience will help us have a
better understanding of the relationship among various data ele-
ments, developing a formal model for anonymization would bea
big step forward beyond the intuitive methods. A formal model
would mean that users can have a complete view of the threats and
rigorously deduce a detailed anonymization scheme from theobjec-
tives. However, a major difficulty in pursuing such models isthe
degree to which anonymization inherently involves knowledge of
7Note that the HTTP rewriter used to reduce HTTP packet tracesas dis-
cussed in Section 3.4 runs on-line, processing nearly 100 times the daily
data volume, though in a simpler fashion.

semantics, including sometimes quite high-level abstractions, and
also corner cases that can inadvertently leak information.

Automating the Anonymization Process: Although the anony-
mization process has been much simplified by operating at the
application-protocol level, currently we still need humanassistance
in tailoring scripts for traces (4.4.3), processing free-format texts
(4.4.4), and result verification (4.4.5). The first two, though being
optional, often largely improve the quality of the output trace. The
last (verification) is an essential step which we cannot do without
human interaction. On the other hand, fully automating anonymi-
zation will bring substantial benefits: 1) it will minimize human
effort in releasing traces, making it easier for sites to make traces
available; 2) it is critical for environments where the trace providers
themselves are not allowed to see the original traces (e.g.,for traces
collected at some ISPs); 3) automated verification will foster a
model of “script↔data” exchange, where users send anonymiza-
tion scripts to data owners who use them to easily generate traces
returned to the users [13].

The key for automating result verification is to make the anony-
mization scheme “understandable” to the verifier program. One
way is to design a declarative (instead of procedural) language for
the anonymization scripts. Being declarative, the anonymization
scheme specification is also amenable to verification, whichis nec-
essary to ensure that the scheme is correctly specified.

Keeping Traffic Dynamics: One fundamental difficulty of keeping
the original traffic dynamics is that lengths of data may be changed
during transformation, and the new lengths must be reflectedin
TCP/IP headers to keep packets “well-formed”. Therefore there is
not a single best way to keep the original dynamics. We are investi-
gating ways to retain as much of the dynamics as possible without
dragging the user into low-level packet processing. One possibility
is to create an out-of-band channel to convey information such as
original packet lengths, fragmentation, retransmission,etc.

Also it is particularly difficult to process two parallel versions of
the data, for instance, in the presence of inconsistent TCP retrans-
missions, because traffic parsing is stateful. So we have to remove
at least one version from the anonymized stream, even thoughin
some contexts (e.g., analyzing possible intrusion detection evasions
seen in practice [16]) it would be very useful to have both copies of
inconsistent retransmissions retained.

6. RELATED WORK
TCPdpriv [12] anonymizestcpdump traces by stripping packet

contents and rewriting packet header fields. One of its features
is a form of “prefix-preserving” anonymization of IP addresses
(the “-A50” option). [22] analyzes the security implications of
this anonymization, proposing an approach that might be used to
crack the “-A50” encoding by first identifying hosts with well-
known traffic pattern (e.g., DNS servers). Xu et al proposed a
cryptography-based scheme for prefix-preserving address anony-
mization [21]. The scheme can maintain a consistent anonymiza-
tion mapping across multiple anonymizers using a shared crypto-
graphic key. Peuhkuri presented an analysis of the private infor-
mation contained in TCP/IP header fields and proposed a scheme
to anonymize packet traces and store the results in a compressed
format [17]. Peuhkuri’s scheme for network addresses anonymi-
zation cannot be directly applied to our work because the scheme
generates 96 bits instead of 32 bits for each address, and we are
constrained by needing to generate output intcpdump format. All
of these works address only the anonymization of TCP/IP headers,
with no mechanisms for retaining packet payloads.

NetDuDe (NETwork DUmp data Displayer and Editor) [9] is a

GUI-based tool for interactive editing of packets intcpdump trace
files. NetDuDe itself does not parse application level protocols, but
allows user to write plug-in’s for packet processing, e.g.,a check-
sum fixer plug-in can recompute checksums and update the check-
sum fields in TCP and IP headers.

There has also been considerable work on extracting application-
level data from online traffic, though without significant applica-
tions to content-preserving anonymization. Gribble et al built an
HTTP parser to extract HTTP information from a network snif-
fer [7]. Feldmann in [5] describes BLT, a tool to extract com-
plete HTTP headers from high-volume traffic, and discusses var-
ious challenges in extracting accurate HTTP fields. Pandora[14]
is a component-based framework for monitoring network events,
which contains, among others, components to reconstruct HTTP
data from packets. It is similar in spirit to Windmill [11]. Ethereal
is able to reconstruct TCP session streams, and parses the stream
to extract application protocol level data fields [3]. The fields can
be used to filter the view of the trace. Ethereal has a GUI-based
interface to display trace data. There are also numerous commer-
cial network monitoring systems that can extract application-level
information, e.g., EtherPeek[20].

There are also efforts on setting up honeypots [8] and break-in
challenges [2] to collect traces of network intrusions. Such pure
intrusion traces have the virtue of containing little private informa-
tion, as the target hosts are not used for other purposes. Forthe
same reason, however, the traces do not contain background traffic
with various unusual-but-benign activities, and thus are very differ-
ent from traffic at an operational site.

Finally, Mogul argues “Trace Anonymization Misses the Point”
[13], proposing an alternative strategy to trace anonymization—
instead of sharing anonymized traces, researchers send reduction
agents to the site that has the source trace data. We believe our tool
is in fact complementary to this sort of approach. Mogul raises the
question: what kind of code should be sent to the source sites? Our
answer is: “a Bro script for trace transformation.”

7. SUMMARY
In this work we have designed and implemented a new tool for

packet trace anonymization and general purpose transformation.
The tool offers a great degree of freedom and convenience fortrace
transformation by providing a high-level programming environ-
ment in which transformation scripts operate on application-level
data elements.

Using this framework, we developed an anonymization scriptfor
FTP traces and applied it to anonymizing traces from LBNL for
public release. Unlike previous packet trace anonymization efforts,
packet payload contents are included in the result. We discussed
the key anonymization principle of “filter-in” as opposed to“filter-
out”, and the crucial problem ofverifying the correctness of the
anonymization procedure. We also analyzed a class of inference
attacks and how we might defend against them.

We believe this tool offers a significant step forward towards
ending the current state of there beingno publicly available packet
traces with application contents. As such, we hope to help open up
new opportunities in Internet measurement and network intrusion
detection research.

Acknowledgements
We would like to thank the Lawrence Berkeley National Labora-
tory, and Jim Rothfuss and Sandy Merola in particular, for working
with us to realize the public release of traces of LBNL trafficthat
include packet contents; Larry Peterson for his support through-

out this work; the anonymous SIGCOMM reviewers; our shepherd
Greg Minshall; Lujo Bauer, Ed Felten, Brent Waters, Chi Zhang,
and other colleagues at Princeton for their insights and suggestions;
and the staff of the Princeton Department of Computer Science for
providing us traces for testing. This work was supported in part by
NSF grant ANI-9906704, DARPA contract F30602–00–2–0561,
and the Intel Corporation.

8. REFERENCES

[1] S. Axelsson. The base-rate fallacy and the difficulty of intrusion
detection.ACM Transactions on Information and System Security,
3(3):186–205, August 2000.

[2] Capture the capture the flag. http://www.shmoo.com/cctf/.
[3] G. Combs.The Ethereal Network Analyzer.

http://www.ethereal.com/.
[4] Federal Committee on Statistical Methodology. Report on statistical

disclosure limitation methodology (statistical policy working paper
22), 1994. http://www.fcsm.gov/working-papers/spwp22.html.

[5] A. Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP. In
Proceedings of WWW-9, May 2000.

[6] Anonymized FTP traces.
http://www-nrg.ee.lbl.gov/anonymized-traces.html.

[7] S. D. Gribble and E. A. Brewer. System design issues for Internet
middleware services: Deductions from a large client trace.In Proc.
USENIX Symp. on Internet Technologies and Systems, December
1997.

[8] The honeypot challenge. http://project.honeynet.org/misc/chall.html.
[9] C. Kreibich.NetDuDe (NETwork DUmp data Displayer and Editor).

http://netdude.sourceforge.net/.
[10] R. Lippmann, S. Webster, and D. Stetson. The effect of identifying

vulnerabilities and patching software on the utility of network
intrusion detection. InProceedings of Recent Advances in Intrusion
Detection, number 2516 in Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[11] G. R. Malan and F. Jahanian. An extensible probe architecture for
network protocol performance measurement. InProceedings of ACM
SIGCOMM, 1998.

[12] G. Minshall.TCPdpriv: Program for Eliminating Confidential
Information from Traces. Ipsilon Networks, Inc.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html.

[13] J. Mogul. Trace anonymization misses the point. Presentation on
WWW 2002 Panel on Web Measurements.

[14] S. Patarin and M. Makpangou. Pandora: A flexible network
monitoring platform. InProceedings of the USENIX 2000 Annual
Technical Conference, San Diego, June 2000.

[15] V. Paxson.Bro: A System for Detecting Network Intruders in
Real-Time. http://www.icir.org/vern/bro-info.html.

[16] V. Paxson. Bro: A system for detecting network intruders in real
time.Computer Networks, December 1999.

[17] M. Peuhkuri. A method to compress and anonymize packet traces. In
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop, November 2001.

[18] S. Savage. Private communication.
[19] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanabhan, and

L. Qiu. Statistical identification of encrypted web browsing traffic. In
Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 2002.

[20] WildPackets, Inc.EtherPeek. http://www.etherpeek.com/.
[21] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and

performance of prefix preserving IP traffic trace anonymization. In
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop, November 2001.

[22] T. Ylonen. Thoughts on how to mount an attack on tcpdpriv’s “-a50”
option. http://ita.ee.lbl.gov/html/contrib/attack50/attack50.html.

APPENDIX

A. A SAMPLE HTTP TRACE TRANSFOR-
MATION

The original trace was collected bytcpdump recording a re-
trieval of the www.google.com homepage. Thetcpdump output
(with wrapped packet summary lines and TCP payloads) of the
original trace is shown on the next page.

We use our tool to transform the trace with a script that:

1. Replaces the data entity with its MD5 hash value (in this case,
“867119294265e3f445708c3fcfb2144f ”);

2. Rewrites theContent-length field to reflect the length of
the MD5 hash value;

3. Adds the header: “X-Actual-Data-Length: 2709; gap=0,
content-length= 2709” to record the original Content-length
field and how many bytes are actually transferred.

The tcpdump output of the transformed trace is also on the next
page.

Note that “Write-Deferring” is applied here: the new headers are
written at the position of the originalContent-length header,
even though the actual data size is not determined until all of the
data is seen. The script defers writing the headers until theend of
the message and then writes back to the reserved position.

Furthermore, by changing only one line of the script, from:

msg$abstract = md5_hash(data);

to:

msg$abstract =
subst_string(data, "Google", "Goooogle");

the script then replaces every occurrence of “Google” in thedata
entity with “Goooogle”, instead of replacing the whole dataentity
with its MD5 hash value. Next page shows part of the transformed
trace. (There are four occurrences of “Google” in the original mes-
sage, thus the Content-length increases from 2709 to 2717.)Note
that sequence and acknowledgment numbers between the traces
differ due to packet reframing and the addition of X-Actual-Data-
Length headers.

Original trace:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101.80:
S 1352447574:1352447574(0) win 57344
<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0> (DF)

1044328495.632608 216.239.51.101.80 > 192.150.187.28.1472:
S 3009119707:3009119707(0) ack 1352447575 win 1460
<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wscale 0> (DF)

1044328495.632647 192.150.187.28.1472 > 216.239.51.101.80:
. ack 1 win 57920
<nop,nop,timestamp 92919823 752104543> (DF)

1044328495.632966 192.150.187.28.1472 > 216.239.51.101.80:
P 1:81(80) ack 1 win 57920
<nop,nop,timestamp 92919823 752104543> (DF)

0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTTP/1
0x0040 2e30 0d0a 5573 6572 2d41 6765 6e74 3a20 .0..User-Agent:.
0x0050 5767 6574 2f31 2e35 2e33 0d0a 486f 7374 Wget/1.5.3..Host
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google.com
0x0070 3a38 300d 0a41 6363 6570 743a 202a 2f2a :80..Accept:.*/*
0x0080 0d0a 0d0a
1044328495.716691 216.239.51.101.80 > 192.150.187.28.1472:

. ack 81 win 30660
<nop,nop,timestamp 752104551 92919823> (DF)

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:
P 1:1449(1448) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2032 3730 390d 0a43 6f6e 6e65 gth:.2709..Conne
0x0060 6374 696f 6e3a 2043 6c6f 7365 0d0a 5365 ction:.Close..Se
0x0070 7276 6572 3a20 4757 532f 322e 300d 0a44 rver:.GWS/2.0..D
0x0080 6174 653a 2054 7565 2c20 3034 2046 6562 ate:.Tue,.04.Feb
0x0090 2032 3030 3320 3033 3a31 343a 3535 2047 .2003.03:14:55.G
0x00a0 4d54 0d0a 436f 6e74 656e 742d 5479 7065 MT..Content-Type
0x00b0 3a20 7465 7874 2f68 746d 6c0d 0a43 6163 :.text/html..Cac
0x00c0 6865 2d63 6f6e 7472 6f6c 3a20 7072 6976 he-control:.priv
0x00d0 6174 650d 0a53 6574 2d43 6f6f 6b69 653a ate..Set-Cookie:
0x00e0 2050 5245 463d 4944 3d31 6538 6337 3538 .PREF=ID=1e8c758
0x00f0 6231 6632 3965 3836 643a 544d 3d31 3034 b1f29e86d:TM=104
0x0100 3433 3238 3439 353a 4c4d 3d31 3034 3433 4328495:LM=10443
0x0110 3238 3439 353a 533d 6638 344d 6753 7948 28495:S=f84MgSyH
0x0120 3347 452d 3439 5070 3b20 6578 7069 7265 3GE-49Pp;.expire
0x0130 733d 5375 6e2c 2031 372d 4a61 6e2d 3230 s=Sun,.17-Jan-20
0x0140 3338 2031 393a 3134 3a30 3720 474d 543b 38.19:14:07.GMT;
0x0150 2070 6174 683d 2f3b 2064 6f6d 6169 6e3d .path=/;.domain=
0x0160 2e67 6f6f 676c 652e 636f 6d0d 0a0d 0a3c .google.com....<
0x0170 6874 6d6c 3e3c 6865 6164 3e3c 6d65 7461 html><head><meta
0x0180 2068 7474 702d 6571 7569 763d 2263 6f6e .http-equiv="con
0x0190 7465 6e74 2d74 7970 6522 2063 6f6e 7465 tent-type".conte
0x01a0 6e74 3d22 7465 7874 2f68 746d 6c3b 2063 nt="text/html;.c
0x01b0 6861 7273 6574 3d49 534f 2d38 3835 392d harset=ISO-8859-
0x01c0 3122 3e3c 7469 746c 653e 476f 6f67 6c65 1"><title>Google
0x01d0 3c2f 7469 746c 653e 3c73 7479 6c65 3e3c </title><style><
...
0x0360 3237 3620 6865 6967 6874 3d31 3130 2061 276.height=110.a
0x0370 6c74 3d22 476f 6f67 6c65 223e 3c2f 7464 lt="Google"></td
...
1044328495.737951 216.239.51.101.80 > 192.150.187.28.1472:

P 2897:3025(128) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 6f6e 743e 0a3c 703e 3c66 6f6eont>.<p><fon
0x0040 7420 7369 7a65 3d2d 323e 2663 6f70 793b t.size=-2>©
0x0050 3230 3033 2047 6f6f 676c 653c 2f66 6f6e 2003.Google</fon
0x0060 743e 3c66 6f6e 7420 7369 7a65 3d2d 323e t><font.size=-2>
0x0070 202d 2053 6561 7263 6869 6e67 2033 2c30 .-.Searching.3,0
...
1044328495.737987 192.150.187.28.1472 > 216.239.51.101.80:

. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.738022 216.239.51.101.80 > 192.150.187.28.1472:
F 3025:3025(0) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

1044328495.738054 192.150.187.28.1472 > 216.239.51.101.80:
. ack 1449 win 57920
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:
P 1449:2897(1448) ack 81 win 31856
<nop,nop,timestamp 752104553 92919823> (DF)

0x0030 0589 d80f 2f66 6f6e 743e 3c2f 613e 3c2f/font></
0x0040 7464 3e3c 7464 2077 6964 7468 3d31 353e td><td.width=15>
0x0050 266e 6273 703b 3c2f 7464 3e3c 7464 2069 </td><td.i
0x0060 643d 3320 6267 636f 6c6f 723d 2365 6665 d=3.bgcolor=#efe
0x0070 6665 6620 616c 6967 6e3d 6365 6e74 6572 fef.align=center
...
0x0370 7562 6d69 7420 7661 6c75 653d 2247 6f6f ubmit.value="Goo
0x0380 676c 6520 5365 6172 6368 2220 6e61 6d65 gle.Search".name
...
1044328495.739318 192.150.187.28.1472 > 216.239.51.101.80:

. ack 3026 win 56344
<nop,nop,timestamp 92919833 752104553> (DF)

1044328495.741006 192.150.187.28.1472 > 216.239.51.101.80:
F 81:81(0) ack 3026 win 57920
<nop,nop,timestamp 92919834 752104553> (DF)

1044328495.823516 216.239.51.101.80 > 192.150.187.28.1472:
. ack 82 win 31856
<nop,nop,timestamp 752104562 92919834> (DF)

Replacing data entity with MD5 hash value:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101.80:
S 1352447574:1352447574(0) win 57344
<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0>

1044328495.632608 216.239.51.101.80 > 192.150.187.28.1472:
S 3009119707:3009119707(0) ack 1352447575 win 1460
<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wscale 0>

1044328495.632647 192.150.187.28.1472 > 216.239.51.101.80:
. ack 1 win 57920
<nop,nop,timestamp 92919823 752104543>

1044328495.632966 192.150.187.28.1472 > 216.239.51.101.80:
P 1:130(129) ack 1 win 57920
<nop,nop,timestamp 92919823 752104543>

0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./.HTTP/1
0x0040 2e30 0d0a 5553 4552 2d41 4745 4e54 3a20 .0..USER-AGENT:.
0x0050 5767 6574 2f31 2e35 2e33 0d0a 484f 5354 Wget/1.5.3..HOST
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google.com
0x0070 3a38 300d 0a41 4343 4550 543a 202a 2f2a :80..ACCEPT:.*/*
0x0080 0d0a 0d0a 582d 4163 7475 616c 2d44 6174X-Actual-Dat
0x0090 612d 4c65 6e67 7468 3a20 303b 2067 6170 a-Length:.0;.gap
0x00a0 3d30 2c20 636f 6e74 656e 742d 6c65 6e67 =0,.content-leng
0x00b0 7468 3d0d 0a th=..
1044328495.716691 216.239.51.101.80 > 192.150.187.28.1472:

. ack 130 win 30660
<nop,nop,timestamp 752104551 92919823>

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:
P 1:371(370) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2033 320d 0a58 2d41 6374 7561 gth:.32..X-Actua
0x0060 6c2d 4461 7461 2d4c 656e 6774 683a 2032 l-Data-Length:.2
0x0070 3730 393b 2067 6170 3d30 2c20 636f 6e74 709;.gap=0,.cont
0x0080 656e 742d 6c65 6e67 7468 3d20 3237 3039 ent-length=.2709
0x0090 0d0a 434f 4e4e 4543 5449 4f4e 3a20 436c ..CONNECTION:.Cl
0x00a0 6f73 650d 0a53 4552 5645 523a 2047 5753 ose..SERVER:.GWS
0x00b0 2f32 2e30 0d0a 4441 5445 3a20 5475 652c /2.0..DATE:.Tue,
0x00c0 2030 3420 4665 6220 3230 3033 2030 333a .04.Feb.2003.03:
0x00d0 3134 3a35 3520 474d 540d 0a43 4f4e 5445 14:55.GMT..CONTE
0x00e0 4e54 2d54 5950 453a 2074 6578 742f 6874 NT-TYPE:.text/ht
0x00f0 6d6c 0d0a 4341 4348 452d 434f 4e54 524f ml..CACHE-CONTRO
0x0100 4c3a 2070 7269 7661 7465 0d0a 5345 542d L:.private..SET-
0x0110 434f 4f4b 4945 3a20 5052 4546 3d49 443d COOKIE:.PREF=ID=
0x0120 3165 3863 3735 3862 3166 3239 6538 3664 1e8c758b1f29e86d
0x0130 3a54 4d3d 3130 3434 3332 3834 3935 3a4c :TM=1044328495:L
0x0140 4d3d 3130 3434 3332 3834 3935 3a53 3d66 M=1044328495:S=f
0x0150 3834 4d67 5379 4833 4745 2d34 3950 703b 84MgSyH3GE-49Pp;
0x0160 2065 7870 6972 6573 3d53 756e 2c20 3137 .expires=Sun,.17
0x0170 2d4a 616e 2d32 3033 3820 3139 3a31 343a -Jan-2038.19:14:
0x0180 3037 2047 4d54 3b20 7061 7468 3d2f 3b20 07.GMT;.path=/;.
0x0190 646f 6d61 696e 3d2e 676f 6f67 6c65 2e63 domain=.google.c
0x01a0 6f6d 0d0a 0d0a om....
1044328495.737987 192.150.187.28.1472 > 216.239.51.101.80:

. ack 371 win 57920
<nop,nop,timestamp 92919833 752104553>

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:
FP 371:403(32) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 3836 3731 3139 3239 3432 3635867119294265
0x0040 6533 6634 3435 3730 3863 3366 6366 6232 e3f445708c3fcfb2
0x0050 3134 3466 144f
1044328495.739318 192.150.187.28.1472 > 216.239.51.101.80:

. ack 404 win 56344
<nop,nop,timestamp 92919833 752104553>

1044328495.741006 192.150.187.28.1472 > 216.239.51.101.80:
F 130:130(0) ack 404 win 57920
<nop,nop,timestamp 92919834 752104553>

1044328495.823516 216.239.51.101.80 > 192.150.187.28.1472:
. ack 131 win 31856
<nop,nop,timestamp 752104562 92919834>

Substituting “Google” with “Goooogle”:

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:
P 1:373(372) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2032 3731 370d 0a58 2d41 6374 gth:.2717..X-Act
0x0060 7561 6c2d 4461 7461 2d4c 656e 6774 683a ual-Data-Length:
0x0070 2032 3730 393b 2067 6170 3d30 2c20 636f .2709;.gap=0,.co
0x0080 6e74 656e 742d 6c65 6e67 7468 3d20 3237 ntent-length=.27
0x0090 3039 0d0a 434f 4e4e 4543 5449 4f4e 3a20 09..CONNECTION:.
...
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:

P 373:1821(1448) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

...
0x0080 3838 3539 2d31 223e 3c74 6974 6c65 3e47 8859-1"><title>G
0x0090 6f6f 6f6f 676c 653c 2f74 6974 6c65 3e3c oooogle</title><
...
0x0230 743d 3131 3020 616c 743d 2247 6f6f 6f6f t=110.alt="Goooo
0x0240 676c 6522 3e3c 2f74 643e 3c2f 7472 3e3c gle"></td></tr><
...
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:

F 1821:3090(1269) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

...
0x0230 7574 2074 7970 653d 7375 626d 6974 2076 ut.type=submit.v
0x0240 616c 7565 3d22 476f 6f6f 6f67 6c65 2053 alue="Goooogle.S
0x0250 6561 7263 6822 206e 616d 653d 6274 6e47 earch".name=btnG
...
0x04c0 7079 3b32 3030 3320 476f 6f6f 6f67 6c65 py;2003.Goooogle
0x04d0 3c2f 666f 6e74 3e3c 666f 6e74 2073 697a <font.siz
...

