A High-level Programming Environment for Packet Trace
Anonymization and Transformation

Ruoming Pang

Department of Computer Science
Princeton University

rpang@cs.princeton.edu

ABSTRACT

Packet traces of operational Internet traffic are invalkeidbl net-
work research, but public sharing of such traces is sevéiraly
ited by the need to first remove all sensitive information.rr€ot
trace anonymization technology leaves only the packetdrsad-
tact, completely stripping the contents; to our knowleddpere
are no publicly available traces of any significant size tuaitain

Vern Paxson
International Computer Science Institute
vern@icir.org

to eliminate any private information (e.g,, IP addressasr UDs,
passwords) before they can be shared among researchers.

To date, Internet packet trace anonymization has beerelinbit
only retaining TCP/IP headers [21, 17], with IP addressesire
bered and packet payloads completely removed. To our knowl-
edge, there armo publicly available traces of any significant size
that contain TCP payloads. The lack of such traces greatly li

packet payloads. We describe a new approach to transform anOits research on application protocols. It is especiallpmling for

anonymize packet traces. Our tool provides high-level uagg
support for packet transformation, allowing the user taevshort
policy scripts to express sophisticated trace transfaamst The
resulting scripts can anonymize both packet headers aridgutsy
and can perform application-level transformations suckdisng
HTTP or SMTP headers, replacing the content of Web items with
MD5 hashes, or altering filenames or reply codes that matangi
patterns. We discuss the critical issue of verifying thatrgmiza-
tions are both correctly applied and correctly specified, expe-
riences with anonymizing FTP traces from the Lawrence Beyke
National Laboratory for public release.

Categories and Subject Descriptors: C.2.m [Computer-
Commnication Networks]: Miscellaneous—packet trace psce
ing; D.3.4 [Programming Languages]: Processors—netwaitetr
rewriting

General Terms: Security, Measurement

Keywords: packet trace, anonymization, transformation, Internet,
privacy, measurement, network intrusion detection

1. INTRODUCTION

Researchers often use tools suchhgglump to capture net-
work packet traces. Packet traces recording real-worédet traf-
fic are especially useful for research on traffic dynamicstqmol
analysis, workload characterization, and network inbmsietec-
tion. However, sharing of Internet packet traces is venjtéoh
because real-world traces contain many kinds of sensitife-i
mation, such as host addresses, emails, personal web;@agks
even authentication keys. The traces must be first “anorgafiz

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providaticpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCOMM’'03,August 25-29, 2003, Karlsruhe, Germany.

Copyright 2003 ACM 1-58113-735-4/03/000855.00.

network intrusion detection research, forcing reseasctedevise
synthetic attack traces that often lack the verisimilitedectual
traffic in critical ways, resulting in errors such as groasfyleres-
timating the false positive rate of “anomaly detection"heicjues.
[10, 1]
In this work we develop a new method to allow anonymization

of packet payloads as well as headers. Traces are procesbeed
steps:

1. Payloads are reassembled and parsed to generate appficat
protocol-level, semantically meaningful data elements.

2. A policy script transforms data elements to remove sensi-
tive information and sends the resulting elements to the-com
poser.

3. The trace composer converts application protocol daa el
ments back to byte sequences and frames the bytes into pack-
ets, matching the new packets to the originals as much as
possible, in order to preserve the transport protocol dynam
ics.

Parsing allows the trace transformation policy script t@rep
ate on semantically meaningful data elements, such asames)
passwords, or filenames, making policy scripts more coraigk
comprehensible than those operating directly on packetsytar
sequences. Working at a semantic level also gives the apport
nity for less draconian anonymization policies. For examphe
added information that the stringdot " appears in a filename
(“/root/.cshrc ") rather than as a username might, depending
on a site’s anonymization policy, allow the string to app@aan
anonymized trace, whereas a purely textual anonymizatiaundv
have to excise it, because it could not safely verify thatabeur-
rence did not reflect a username.

The design of trace composer aims to generate “correctésrac
for instance, as payload data is modified, checksums, seguen
numbers, and acknowledgments will be accordingly adjustee
output traces just look as if they were collected from thé Irgar-
net, except that they do not carry private information. Adagly,
analysis tools that work on raw traces will likewise work dre t
anonymized traces.

In order to make the anonymization process amenable toavalid
tion, we follow a “filter-in” principle throughout our degigof the
anonymizer: instead of focusing on “filtering out” senstinfor-
mation, the anonymizer focuses on what, explicitlyretain (or
insert, in a modified form) in the output trace. With this ipie,
it becomes much easier to examine a policy script for privegs.

An optional “manual inspection” phase can keep more nonsen-
sitive information in the output trace as the general anangtion
script may have to make conservative judgments for someeatata
ements; for example, whether to allow the commabitlSER to
appear in a trace of anonymous FTP traffic (the presence bf suc
a typo can be useful for some forms of analysis, such as agyomal
detection).

We implemented the anonymizer as an extension to Bro [16], a
network intrusion detection system, to take advantagesaippli-
cation parsers and its built-in language support for paimypts.

Beside anonymization, our tool can also be used for genade t
transformations, providing a great degree of freedom amyezo
nience for various types transformation. For example, wetake
a trace of FTP traffic and remove from it all the connections fo
which the user name was naarfonymous ”; or all the ones for
which the FTP authentication was unsuccessful; or thosediha
uploads but not downloads. A different type of transforratis
for testing network intrusion detection systems by insgrtttacks
into actual background traffic by slightly altering exiggirbenign
connections present in a trace. Still another type of t@nsition
is to remove large Web items from HTTP connections (inclgdin
persistent sessions with multiple items) in order to sask gpace
(see Section 3.4 below).

In a sense, the tool spells the end of traces as being stand-al
evidence of any sort of activity, since it makes it so easy oalify
what a trace purports to show.

We developed trace transformations for FTP, SMTP, HTTR, Fin
ger, and ldent. As a test of the approach, we anonymized BEB4r
from the Lawrence Berkeley National Laboratory (LBNL). RiEs
testing the technology, one of the important questionsraktiie
exercise was to explore what sort of anonymizations a sitghimi
require, and being willing to abide, for public release atts with
contents. To this end, working with the site we devised amgamd-
zation policy acceptable to the site and approved for publ&ase.
The corresponding traces are available from [6].

The rest of this paper is organized as follows. In the nexi@ec
we present our goals. We describe generic packet tracddrares
tion in Section 3, trace anonymization in Section 4, and lwesb
problems and new directions in Section 5. We discuss relatek
in Section 6 and summarize in Section 7.

2. GOALS

We designed the transformation tool with the following goal
mind:

1. Policy scripts operate on application-protocol-levetiadval-

Input Packet —-{ TCP Flow Reassembly P Byte Sequences —-{ Application Protocol Parsers ‘

Events

TCP/IP Headers ‘ Data Transformation Script ‘

Rewrite Function Calls

Output Packet(s) Packet Framer Byte Sequences Rewrite Functions

Figure 1: Data Flow in Trace Transformation

protocol data has correct syntaso that other programs can
process the transformed traces in the same way that they han-
dle originaltcpdump traces.

. The mechanism supports generic trace transformations be
sides anonymization.

. The anonymization is “fail safe” and amenable to verifica-
tion. Fail-safety means that the privacy resulting from the
anonymization does not depend on the tool and the policy
script being completely correct. Being amenable to verifi-
cation means it is easy to examine and validate the policy
script, the anonymization process, and the output trace.

The first and third goal dictate where to separate mechamnisim a
policy: 1) the mechanism part should parse the input traegfiose
all application-protocol semantic elements, e.g., comadaareply
codes, MIME header types; 2) the mechanism should not cestri
how the values will be changed, but leave that to the policipsc
We will discuss mechanism and anonymization policy in the ne
two sections, respectively.

3. GENERIC TRACE TRANSFORMATION

Trace transformation consists of three steps: parsing, tdats-
formation, and composition. These are shown as the right-ha
components of Figure 1. The parsing and composition partetio
depend on the type of trace transformation, and we have imple
mented them in Bro as built-in mechanisms. The second s&ep (d
transformation) is fully programmable, however, and sariple-
mented as a Bro policy script.

We will first look at the process from the viewpoint of the pyli
script, focusing on the trace input/output interface, drhtdiscuss
details of trace parsing and composition.

3.1 Policy Script Programming Environment

The Bro policy script language is procedural, with strong-ty
ing that includes support for several network-specific $yfeg.,
addresses and ports), as well as relative and absolute diggeg-
gate types (associative tables, records), regular expresstch-
ing, and string manipulation. More details about Bro largguean
be found in [16, 15].

From the point of view of a policy script, the parsing part i®8

ues. This means that instead of operating on packets or TCPevent engine, and the composer is a family of library fumgjo

flows, a policy script sees typed and semantically meaning-
ful values (e.g., HTTP method, URI, and version). Likewise,
the trace transformation scripts also specify application
protocol-level data to the output trace, without needing to
dictate the details of generating the actual packets.

. The output traces contain well-formed connections: pack

which we call “rewrite functions”.

A policy script for a protocol usually contains several “evkan-
dlers”, which are execution entry points of the script. Tyl
event parameters, each event handler receives protavalrsie
data elements as well as a record corresponding to the yartic
TCP connection. An event handler may call other functionzte
cess the data, and writes the transformed data to the ougmat t

ets have correct checksums and lengths, TCP flows canigr not, if the policy script decides to keep the “dirtines$tie original

be reassembled from the resulting packets, and application

trace.

by calling the rewrite functions. When calling a rewrite ¢tion,
the policy script specifies a connection, and sometimesditso-
tion of the flow, to write the data to. The destination coniwects
usually the same connection of the event, but can also bethay o
connection present in the input trace at the same time.

For example, a line in an SMTP messageMAIL
From:<alice@bob.org> \r\n” arriving on connection
C will generate the event:

smtp_request(
conn: connection = C,
command: string = "MAIL",
argument: string = "From: <alice@bob.org>")

The policy script receives the command and argument andekeci
what to write to the output trace—e.g., it could call:

rewrite_smtp_request(
C,
"MAIL",
"From: <namel23@domain111>")

to change the sender in the trace froalice@bob.org " to
“namel23@domainl11”.

There is usually a correspondence between protocol evadts a
rewrite functions: e.g., for eversimtp_request , there is func-
tion rewrite_smtp_request , and they have the same or very

similar set of parameters.

Explicit Rewriting : Note that the trace composer API requires ex-
plicit rewrites, i.e., for a data element to get into the omitpace, it
must be explicitly placed there by the policy script callagewrite
function. Alternatively, another style we could have chofe the
composer API would be to have the policy script only specdted
elements that should lmbhangedand pass the rest through unmod-
ified. With this style, we could implement a single generieiface

by which scripts would directly specify the element to charigor
example, the SMTP rewrite above would be specified as:

modify_element(
smtp_request_arg,
"From: <namel23@domain111>")

and the composer would alter the location in output tracel-occ
pied by the variablemtp_request_arg to contain the new text
rather than the original.

While appealing because a single rewrite function would suf
fice for all protocols (though the application parsers wdste to
annotate each script variable with its location in the catina’s
byte stream), instead of having a family of rewrite functidor
various protocols, we choose the heavier API because ieptes
a safer interface for trace anonymization. First, reqgigmplicit
rewrite forces the policy script writer to put consideratiato ev-
ery element, so it will be less likely that they overlook avpay
hole. Second, it is easier for other people to examine aystidpt
for privacy leaks, as the examiner only needs to look at ehsne
written in the script (rather than having to keep in mind ladl pro-
tocol elements that are implicitly not being changed beeahsy
don’t show up in the script). This design choice shows how the
“filter-in” principle affects our design. Additionally, th interface
allows type-checking on trace-rewrite operations to catchnsis-
tency between output data elements.

3.2 Trace Parsing

Trace parsing usually consists of three steps: flow readsemb
(optional) line breaking, and protocol-specific parsing.

Flow Reconstruction Bro’s application parsing begins by re-

stream. (We ignore here Bro’s UDP processing, though ounr-tec
niques could be applied to it, too.) In case of TCP retransigmsor
packet reordering, the bytes that arrive first are not dediveintil

the gap is filled, at which point the bytes are delivered togetFor
example, suppose an SMTP command arrives in three packéts wi
the last two in reverse orderMAIL Fro ”, “bob.org> \r\n”,

and ‘m:<alice@ . The reassembler will emitMAIL Fro ” on

the first packet arrival, nothing on the second because iesamt

of order, and f:<alice@bob.org> \r \n” after processing the
third packet.

Breaking into Lines: Many protocols (e.g., SMTP, FTP, the non-
data part of HTTP) process application data one line at a tiroe
such protocols, there is an intermediate step that stesthe bytes
from reassembler into lines before protocol-specific parsiFol-
lowing the above example, the line divider will emit a lindAIL
From: <alice@bob.org> " afteritsees\r \n.

Protocol-Specific Parsing The parser takes plain bytes as input
and emits typed and semantically meaningful data fieldssktdi-
vides the bytes according to protocol syntax, then conbsptiss of
each field to typed values—e.g., string, integer, booleaurde—
and groups the values by events, finally placing the evengin
event queue. (As event parameters, each data elemenscagée
mantic meaning.) Currently Bro has parsers for DNS, FingéR,
HTTP, ICMP, Ident, MIME, NTP, Netbios, Rlogin, SMTP, SSH,
and Telnet.

A major challenge in parsing is that the parser often cannot
strictly follow the RFCs that define the application protocince
in practice there are frequently deviations from the letitthe
standards, or deficiencies in the traffic being analyzed. pam
ticular difficulties relevant for our discussion are:

Line Delimiters: Line-oriented protocols (e.g., SMTP, HTTP) gen-
erally are specified to use the two-byte sequence CRLKN() as
the delimiter between lines. However, some end hosts alepiret
single LF {n) and/or CR \r) as the end of the line. Ideally, we
would like to identify which delimiter each host uses, andsis-
tently apply that interpretation.

Content Gaps For traces captured under high-volume traffic con-
ditions, sometimes the packet filter fails to capture allhef pack-
ets. Such “content gaps” are generally unsolvable, but wado
that most of them occur within the data-transfer sectionrofp-
plication dialog rather than in the command/reply exchangé
developed a content gap recovery mechanism for SMTP and HTTP
that skips over gaps that appear consistent with being wicoth-
tained within a data transfer. With this heuristic, we findttmost
content gaps no longer disrupt parsing. (We note that cogegrs
are also delivered as events, and the policy script may edoid
eliminate them, keep them, or even insert new content gafygein
output trace.)

In summary, there can be some loss of fidelity when data goes
through the trace parser. This is in fact a general problenarig
network monitoring tools.

3.3 Trace Composer

The trace composer consists of rewrite functions and a packe
generator. As discussed above, the rewrite functions deslaiur-
ing event processing. A rewrite function generates a byiegsbn
each invocation and buffers the string for the packet geoerAf-
ter processing events, Bro invokes the packet generataotess
buffered bytes and generate output packets. Below we val &t

assembling IP fragments and then reassembling the TCP bytethe rewrite functions and packet generation in detail.

Write a finger request to trace.
rewriter finger_request %(full: bool,
username: string, hostpart: string%)
%{
const int is_orig = 1;
it (full)
@WRITE@(is_orig, "W ");
@WRITE@(is_orig, username);
if (hostpart->Len() > 0)

{
@WRITE@(is_orig, "@");
@WRITE@(is_orig, hostpart);

}
@WRITE@(is_orig, "\r\n");
%}

Figure 2: Source Code of a Rewrite Function

3.3.1 Rewrite Functions

A rewrite function performs the inverse of parsing: it psithe
typed data elements to a byte string in a protocol specifinéor
placing them in the right order and adding proper delimitétsr
example,rewrite_finger_request takes four parameters:
¢ (the associated connection, of typennection , which is a
record of connection informatiorfyll (a boolean flag indicating
whether the Finger request was for the “full” formatgername
andhostpart (both strings). The rewrite function concatenates
username andhostpart , adds\r\n to the end, and inserts
“/W " to the beginning of the line whefull s true. Thus,
with parameterqT, "alice”, "host123") , the function
generates the stringW alice@host123\r\n " and with pa-
rametergF, "bob", ™) , it generatesob\r\n ”

Rewrite Function Compiler: When implementing the rewrite
functions for various protocols, we found a number of common
alities: they all need to convert Bro values to C++ nativeugal
and fetch the connection object, and for each built-in fiomctve
need to write a Bro-language prototype declaration and @itielt
ization code to bind the Bro built-in function to the C++ fiioo.
So we looked for ways to facilitate code reuse to avoid theted
and error-prone task of repeating the similar code at eadepl

To do so, we developed a “rewrite function compiler”. We
write rewrite functions with Bro-style function prototypeand
C++ bodies. The compiler inserts code for the value conver-
sion and connection record fetch, extracts Bro functiontgro
types, and generates function binding code. With the rewrit
compiler, most rewrite functions can be implemented withuad
10 lines of code each. Figure 2 shows the source code of
“rewrite_finger_request ". Note that each rewrite func-
tion has a hidden first parametec:“ connection ", which is
insegted into the C++ code and the Bro prototype during ctanpi
tion.

Currently we have implemented rewrite functions for FTP,
HTTP, SMTP, Finger, and Ident.

3.3.2 Packet Generation: Framing

After rewriter functions emit byte sequences, taeket framer
decides how to pack the bytes into packets. It cares about
1) whether the bytes should fit into a single packet or be aptibss
multiple ones, and 2) what timestamp to attach to each packet

The central concern of the packet framing algorithm is topkee
the traffic dynamics as close to the original as possible atdoy
remain transparent to the policy scripts. For example, amMie-

2The boolean variable “isrig = 1” means the direction of the TCP flow is
from the connection originator (the Finger client).

guest can be transmitted line-by-line, one packet per éin@jl in
one packet; for each of these cases, we would like the rewnig-
quest to maintain the original packet structure and thesiamaps.

Note that we cannot directly reuse the packet structureptés
the input trace because there is not necessarily a oneetoraip-
ping between bytes in the input and output traces, as a patityt
can change data lengths, insert or remove objects, or cltarge
ordering among objects. So in general it is only possibkgiarox-
imate the original dynamics. Also, as the policy script does not
have to specify the origin of data when it calls a rewrite tiom,
the trace composer does not know an explicit mapping between
original and new data objects and has to derive an implioipte
ral relation to map bytes to packets, as follows.

In the common case, transformed data is written to the sanfe TC
flow (i.e., same direction of a TCP connection) as the inpakea
currently being processed. The framer places the bytesiouh
rent output packet. If the payload size exceeds the MTU riege
ates another output packet with the same timestamp to helctt
of the data.

Usually the data written by the policy script originatesifrdata
in the current input packet; thus, the output trace has ala@imi
packet structure as the input trace. However, there are asesc
in which the data to write actually comes from an earlier ¢era
input packet:

1. When an event consists of data from multiple packets, the
data may range across packet boundaries or appear in re-
transmitted packets. In this case, the transformed data wil
be written with respect to the last packet associated wih th
event, i.e., the packet whose arrival makes the trace parser
generate the event.

. When the policy script cannot decide immediately what to
write before seeing later data. For example, when rewrit-
ing HTTP messages, the new Content-Length header for an
HTTP entity cannot be decided until the entity is entirely
transformed. In another example, when anonymizing FTP
traces, user names in unsuccessful login attempts might be
treated differently than user names in successful logias (b
cause the unsuccessful ones can leak sensitive information
such as passwords mistyped for user names), so the script
needs to see the server reply before it can decide how to
anonymize the argument of the “USER” command.

For the first of these, we find it tolerable to simply associhge
data with the event's last packet, because to do otherwisgdwo
require a great deal of work—tracing each event parametegso
throughout the trace reassembly and parsing hierarchydier o
know from exactly which input packet the data originates.

Deferring Writes: The second case, of the policy script having
to defer its transformation decision, presents a largeolpro, be-
cause it not only leads to imprecise timestamps for outpcieia,
but also causes inconvenience for transformation scripgram-
ming: in the HTTP message case, the Content-Length header ha
to be written before the data entity, so the script must buiffeall
the transformed data entity until it finishes processingetitae en-
tity. To address this problem, we added support for defgmirites
so that the script can essentially write packets out of order

The trace composer supports deferring writes by allowirgg th
policy script to reserve slots in current output packetse $tript
may then seek the reserved slot at a later point, write dataaind
release the slot. (See Figure 3)

3.3.3 Packet Generation: TCP/IP header fields

when the original Content-Length header H H H

artives on connection ¢ 3.4 Trace Rewriters for Trace Size Reduction
msg$header_slot = reserve_rewrite_slot(c); As a demonstration of the utility of trace transformatiorait

after the entire data entity is processed dition to anonymization, we implemented trace rewriters-fa TP
seek_rewrite_slot(c, msg$header_slot); and SMTP to reduce theizeof traces rather than the privacy of
rewrite_http_header(c, is_orig, "Content-Length”, their embedded contents. At LBNL, for example, the volume of

fmt(" %d", data_length));

release_rewrite_slot(c, msgSheader slot) HTTP traffic often exceeds 50 GB per day. The site wants to con-

tinuously record this traffic (for intrusion detection ayss), but
the volume proves problematic.

Figure 3: Deferring Writes to HTTP Content-Length Header HTTP trace rewriter : Replaces HTTP entities beyond a speci-

fied size with their MD5 hash values, changes the Contengiben

header to reflect the new data length, and keeps the original

Once packet payloads are determined, the trace composer at-C ontent-Length and the actu_a | data length in an "X-Ac@uatfeD
' - Length” header (see Appendix A for an example). Testing iaon

\tlsr(i:'ggﬁ I-:-]th eacr:ﬁr:;the;:dkzrtsct%lguLpuutttE:i:(;é: coArIﬁO(')gegz :joata ' 729 MB trace file, and setting the threshold to 0 bytes (sordit e
P yele, P ties are replaced by hashes), the rewriter reduces the srze¢o

C?nzggc:kigv?/fekgt rtsecr:]?”i%/ ae-lr;ngtfclazga(nSZnT, tR S-;ccl)(rerg\rlr)d?ar;;m- 25 MB, a factor of 29. If we compare thzippedsizes of the traces
ply 9 g Pty p (which the site often does with traces, in order to keep tramgér

the headers to it. before the disk fills up), the reduction becomes a factor fi@®n

For every output packet, the trace composer first fetchesaie ;77 MB to 5.5 MB). Alternatively, we can implement more selec
and IP headers of the most recent input packet on the same TCP. - - A
tive size reductions, such as stripping out only non-HTMjeots

flow and generate the new headers by modifying the following in order to keep the cross-reference structure intact. &ipaally,

header fields: the site keeps the first 512 bytes of each entity, and keeps tho
1. If the trace is being anonymized, the source and destimati with a MIME. type of tgxt in their er?‘"e‘y; this rgsults '“?m’”‘ a
. . - -factor of 10 in size savings, yet retains enough informatiohelp

addresses in the IP header are anonymized, as discussed ir .

Section 4.4.2 analyze most HTTP attacks to determine whether they suedeed

SMTP trace rewriter: Replaces mail bodies with MD5 hash val-

2. Asthe output trace does not have IP fragments (Bro reassem yes and size information, but keeps all SMTP commandsé=pli

bles fragments early in its protocol processing, makingdtt gnd mail headers.

difficult to track their contribution to the final byte stregm

the composer clears fragment bits in the IP header. 4. TRACE ANONYMIZATION

3. The composer keeps the original IP identification field, un In this section we discuss general issues in trace anontioniza
less the (source IP, ID) pair has already appeared in the out- analyze four types of possible attacks, and present ouryamien
put trace, in which case we increment the ID till no conflict zation scheme for LBNL FTP traces. Although the scheme is in-
is found. evitably dependent on the specific policy approved by tres Hie

general techniques are also applicable to other sites anadqots.

4. TCP sequence/acknowledgment numbers are adjusted to re-
flect new data lengths, as is the IP packet length field. The 4.1~ Objectives of Anonymization
composer then recomputes the TCP and IP checksums. (Note The information we try to hide through anonymization fatttoi
that, similar to the case of fragments in the input trace, be- two categories:identities including identity of users, hosts, and
cause Bro discards packets with checksum failures early in data; and confidentiattributes e.g., passwords, or specifics of
its processing, it is too difficult to propagate checksunorsrr sensitive user activity [4].
into the transformed output.) The first step of developing an anonymization scheme is to de-

)) cide what information in the trace we need to hide. For exarripl

5. Currentlyl the composer discards IP options, because Bro anonymizing FTP traces, we aim to hidgentitiesof clients, pri-
lacks an interface to access them, and some of them would yate data (hidden files), and private servers; and senaitiibutes
take significant effort to address. The composer keeps cer- g g, passwords, authentication keys, and in some casesits.
tain TCP options, such as maximum segment size, window confidential information can be exposed via direct mean-or
scaling and SACK negotiation (but not SACK blocks, due to ferred via indirect means. Therefore, to hide the identity of dien
the ambiguity of the Iopatlon of the SACK’d datain the tran§- hosts, it may not be enough to just anonymize their IP adesess
formed stream), and timestamps; and replaces other optionsyye will shortly analyze four kinds of inference attacks thaay
with NOP. reveal confidential information through indirect meang, iefore

doing so we first discuss the anonymization primitives, hew we

6. TCP flags are propagated, except that the composer removesanonymize basic data elements

the FIN flag. This is because additional packets may be in-
serted after the last one present in the input stream, asd the 4.2 Anonymization Primitives

must still be numbered in the sequence space before the final

FIN to comply with TCP semantics. We can imagine a “con- Constant Substitution: One way to anonymize a data element is
ceptual” FIN that is reordered together with the payloads an to substitute the data with a constant, e.g., replace arsiwoad
comes only at the end of the data flow. Therefore, the trace with the string ‘<password> .

composer inserts a FIN flag only when the flow reassembler ~ Constant substitution is usually used to anonymize cortfialen
has delivered, and the transformation script has processed attributes. Applying constant substitution to identifiéeg., IP ad-
the last chunk of the flow. dresses), however, is generally undesirable, as we woald rib

longer be able to precisely distinguish objects from onétaaroIn-
stead, identifiers are usually anonymized with a 1-1 mapsugh
as sequential numbering or hashing, so that the anonynieedi-
fiers are still unique, as follows.

Sequential Numbering We can sequentially number alistinct
identifiers in the order of appearance, e.g., mapping filesesao
“filel ” “file2 ", etc.

Hashing: One shortcoming ofequential numberings that we
have to keep the whole mapping history to maintain a contiste
mapping during the anonymization process and across anpaym
tions. Instead, we can use a hash function as the mappingqgDoi
S0 requires no additional state during the anonymizatiotgss,
and in addition using the same hash function across anoaymiz
tions will render a consistent mapping (assuming that thgeaf
the hashing function is large enough so that likelihood difsion

is negligible). To preserve confidentiality, the hash fiorctmust
be one-way and preferably resistant to chosen plain-téxtlatso
that an adversary can neither discover the input from thpubut
nor compute the hash by themselves. HMAC-MD5 (with a secret
key) satisfies these requirements. Assuming the adveraarpei-
ther reverse MD5 nor extract the secret HMAC Kegshingis as
secure asequential numbering

Prefix-Preserving Mapping: Sometimes it is valuable to preserve
some of the structural relationships between the idergifighich
sequential numberingndhashingcannot do. For example, IP ad-
dresses can anonymized in a prefix-preserving way [12, 28] su
that any two IP addresses sharing a prefix will share a prefitveof
same length in their anonymized form. Prefix-preservingpirap
can be similarly applied on the directory components of fimas.
While being valuable for some forms of analysis, prefix-presg
mapping also reveals more information about the identifierd
thus is more vulnerable to attacks [22].

Adding Random Noise We can add noise to numeric values, e.g.,
file sizes, to make the result more resistant to fingerpigraitacks
such as matching file sizes in the trace with public files [Mf
have not applied this primitive in our experiments, howgserwe
do not have experience regarding how effective it is and dggek

to which it diminishes the value of the trace.

4.3 Inference Attacks

Besides anonymizing certain identifiers and attributeditoie
nate direct exposure of identities and secret data, we alssider
rewriting other data fields to preveimdirect exposureln order to
understand which data should be anonymized, we need tozanaly
how an adversary might use additional data to infer confident
information. Below we will discuss four kinds of inferencech-
nigues and how they relate to our FTP anonymization efforts.

4.3.1 Fingerprinting

“Fingerprinting” is the notion of an adversary recoverirge t
identity of an object by comparing its attributes to atttésiof ob-
jects known by the adversary. In order to do so the adverssyh
know the fingerprints of the candidate objects. Thus, theyog
for example, discover a previously unknown FTP server tiinou
fingerprinting.

We present here a brief analysis of possible fingerprintmgur
anonymized FTP traces, to convey the flavor of problem:

1. Fingerprinting files: possible for public files, by loogiffior
matches in file sizes, similar in spirit to the techniquesurf S
et al [19].

2. Fingerprinting servers: possible for public servers,ttoy
structure of their reply messages (especially2B8 greet-
ing banner), help replies, SITE commands, or through fin-
gerprinting files on the server. Itis unclear to us whethir it
possible to fingerprint servers by analyzing response gmin

3. Fingerprinting clients: there are at least two possibégsv
to fingerprint clients: 1) when the client displays some pe-
culiar behavior known to the adversary; 2) through “active”
fingerprinting: the adversary inserts a fingerprint for & cer
tain client by sending packets to the trace collection sith w
a forged source address of the client’s host address, and the
looks for how these were transformed in the anonymized
trace.

While fingerprinting of files and servers can expose usage pat
terns, this does not appear to be a serious issue besdusaade
the access is not exposed.

Fingerprinting clients, on the other hand, would in somegin-
stances pose a significant privacy threat. But this is gépeti
ficult for the adversary to accomplish. For the first type ofjéin
printing, the client’s sessions must possess peculiatiiat survive
the anonymization process, and the adversary must distioese.
For the second type of fingerprinting, the fingerprint hasears
serted during trace collection. We discuss a defense dgaitige
fingerprinting, “knowledge separation”, in Section 4.3.4.

A particular threat is that a class of clients displayingtaier
peculiar behaviors will stand out from other clients. If wamnw
to eliminate this threat, we should eliminate or blur thetides
tion among client behaviors—which might significantly reeltice
value of the trace.

4.3.2 Structure Recognition

Similar to fingerprinting, the adversary may also exploi th
structure among objects to infer their identities. For eglatraces
of Internet traffic will often include sequential addresarss made
by attackers probing for vulnerable hosts. By assuming dmat
anonymized trace probably includes such scans, an adyaraar
hunt for their likely presence, such as by noting that a seoie
unanswered SYN packets occur close together in one parteof th
trace, or that (when usingequential numberigsuddenly a group
of new hosts appears in the trace. They can then infer thenatig
addresses of other hosts by the sequence they occupy inahg sc
given the assumption that the scan started at a particutar dd-
dress and proceeded sequentially up from it [18]. In addljififcthe
adversary has identified a single host in the trace (say akmeivn
server), they can then calibrate their inference by configntihat it
shows up in the scan in the expected sequence.

4.3.3 Shared-Text Matching

When attributes or identifiers of different objects shasedame
text, the unmasking of one can lead to exposure of the othar.
example, if there is both a user name “alice” and a file namiegdl
the user name will be exposed if the adversary can identifyik.
To avoid this attack, we apply “type-separation”: the usena “al-
ice” should be anonymized as the string “user+alice”, ardfille
name as “file+alice”. Generally it is good practice to avosihg
the same text for distinct objects (e.g., files with the saaraeon
different servers) unless there is some trace analysig waldoing
so. The attack on prefix-preserving IP anonymization algtoés
shared-text matching for cascading effects, where thedhaxt is
the prefix.

4.3.4 Known-Text Matching

When both the original text and the anonymized text are
known to the adversary, they can identify all appearancethef
anonymized text in the trace. The knowledge required foroakn
text attack is often obtained through fingerprinting.

One example is a “known server log” attack: if the adversary
obtains the log of a server present in the trace, they may lee ab
to identify the mapping between client addresses and aniaegim
addresses through fingerprinting, and then unmask thetgliacr
tivities on other servers. (Obtaining such logs is sometimet
difficult—for example, occasionally a query to a search eagjill
find them, because the logs are maintained in a publicly aities
manner.)

Another example is if the adversary can insert traffic witregi
strings, such as a particular user ID, into the trace, simdladhe
“active fingerprinting” discussed above. They can then plese
how the string was mapped, and look for other occurrencelseof t
resulting text in order to unmask instances of the samer@igéxt.

A general method to counter known-text attacks is through
“knowledge separation”. This is similar to the type-sefiarade-
fense against shared-text matching discussed above. &ompé,
to counter a “known server log” attack, we can anonymizeentli
IP differently depending on the server it accesses. To eouhe
user ID insertion attack, we can anonymize user IDs diffiyeate-
pending on whether the login is successful or not (an altmma
is to anonymize user IDs depending on the client's IP adjlress
Similarly, “active fingerprinting” with forged source IPsm de-
feated by anonymizing addresses differently for connaestithat
are never established, since the adversaries will fail toptete
the TCP three-way handshake unless they can conduct ad-initi
sequence-number guessing attack.

When we apply “knowledge separation”, a single object can
have multiple identifiers in the anonymized trace, whichures
the value of the trace for some types of analysis. This is &bas
trade-off, and the choice of the degree to incur it will beigol
dependent.

4.4 Case Study: FTP Anonymization

In light of these possible attacks and defenses, we nowaithet
anonymization scheme we used for LBNL's FTP traces. Though
the scheme is inevitably dependent on the specific policycapep
by the site, and thus may not be directly applicable to ofives.sve
believe the considerations and techniques, for instahe€fitter-
in” principle, will be also applicable to other site polisiand other
application protocols. Accordingly, we discuss in detalevant
points of the resulting anonymization process. The fulkssh can
be found at [6].

The FTP traces were collected at the Internet access padga{G
bit Ethernet) of LBNL, and contain incoming anonymous FTR-co
nections to port 21. The traces do not include any of the fearesl
FTP items (files uploaded or downloaded, or directory cdsteor-
responding to the FTP “LIST” command), but only requests and
replies in the traces.

As stated above, our objectives are: 1) ensure that the ariony
zation hides the identity of clients, non-public FTP sesyeand
non-public files, as well as confidential authenticatioroinfa-
tion;®, and 2) the anonymization keeps the original request/reply
sequence and other nonsensitive information intact.

In some ways, these goals and the resulting traces are qoite m
est. But we believe that the path to site’s becoming openl¢éase
ing traces with packet contents is one that must be treadribfi

3Here, hiding a “non-public” serverffile means that if an ageey does not
know where to find the server/file beforehand, they will notbé to find
it after looking at the anonymized traces.

as sites quite naturally must develop a solid sense thatitrtise
anonymization process is warranted.

Self-Explaining: Besides the above objectives, we designed the
anonymization scheme to Iself-explaining it should be easy for
other people to examine and validate the scheme by merdty loo
ing at the scheme description or the policy script, withoein
familiar with every detail of FTP. We believe this is partiatly
important in order for the policy makers at a site to undecstand
accept trace anonymization.

4.4.1 The Filter-In Principle

The key to obtaining a robust and coherent anonymization
scheme is to apply the “filter-in” principle, which is thatethnony-
mization policy script explicitly specifies what data to \eain
the clear, and everything else is anonymized (or removebtus,T
“filtering-in” implies using “white lists” of what is okay istead of
“black lists” of what is disallowed. The design choice in tniame-
work of “explicit rewriting” also reflects the “filter-in” pnciple.

Itis critical to employ “filter in” instead “filter out”. Anoymiz-
ing FTP traffic is complex enough that if we try to “filter outfip
vate information by enumerating all the sensitive data $ieitlis
very likely that we will miss some of them. Also, a “filter-Gut
scheme would be hard to verify, unless the verifier can themse
enumerate all of the sensitive fields.

Following the “filter-in” principle, the difference betwerea
crude anonymization script and a refined one is that the ckfine
script will preserve more nonsensitive information in theput
trace; but the two scripts should be equally privacy-safeugh
we must keep in mind the maxim that complexity is the enemy of
robust security). Also, a “filter-in"-style anonymizati@eheme is
to some degree self-explaining—verification of the schemesdo
not require enumerating every possibility.

4.4.2 Selected Details of FTP Anonymization

IP addresses (which appear in IP headers, PORT arguments, and
some reply messages such as reply to the PASV command) are se-
quentially numbered, since the site views preserving tjemacy

as vital. (Recognizing IP addresses in reply messagesdgstisn
Section 4.4.4.)

User IDs. (arguments of USER/ACCT commands) are
anonymized except for “anonymous”, “guest’, and “ftp”".
However, the anonymizer leaves a user ID in the clear if thylo
attempt fails and the user ID is one of the IDs defined as $emsit
in Bro's default security policy (for example,backdoor ”,
“bomb”, “issadmin “netphrack “root ", “sync”,
“yOuar3ownd ", and many others). This allows us to preserve
one form of attack, namely attempted backdoor access, witho
exposing any actual account information.

When we anonymize a user ID, we apply HMAC-MD5, anno-
tating the user ID prior to hashing with 1) the server IP to/pre
“shared-text” matching, and 2) an indication of whether Ilthgin
was successful to prevent “known-text” matching.

” ”
’ ’

Password we replace the arguments of PASS commands with the
string “<password> ". (An alternative would be to hash pass-
words for anonymous logins, with the email addresses atetbta
with the client IP address to achieve “knowledge separajion

File/directory names are replaced by the string<path> " for
non-anonymous logins. For anonymous logins, file namesedtre |
in the clear if they appear on a white list of well-known séwsifile
names (e.g.,/etc/passwd "), in order to preserve occurrences

of attacks; and anonymized with hashing otherwise. Theihgsh Note that the customization for special cases shouloptienal

input is the absolute path annotated with the server IP tonnime The script should always first anonymize any unknown datd, an
shared-text matching across directories or servers. Tdsoneto should make no assumptions about whether the log will be manu
anonymize file names even for anonymous FTP traffic is that we ally inspected.

cannot readily tell truly public files apart from privateddien) ones As most entries in the anonymization log record the anonymi-
that happen to be access using anonymous FTP, but only by user zation of “common” cases, the trick to digging up specialesas
who know the otherwise unpublicized location of the file. is to look for deviant entries throudiext classification Here, we

examine command arguments as an example to illustrate how we
discover special cases:

First, we classify entries by the type of data being anongahiz
The type can be, for example, a non-guest user name (e.g.,
“annonymous”), or a non-public file name, or the argument of
a PORT command. Some types of anonymization, e.g., of path
names and passwords, happen very often, while others rapely
pear in the log. These rare types of anonymization ofteneptes
interesting cases. For example, for a trace of an FTP sema¢r t
only allows anonymous login, there can still be a few useremm
being anonymized. We have seenanhio”, “anonyo\010 ",
“anonymouse ”, “help ”, and “anamouse”, as well as a pass-
word mistyped for &JSERcommand. Except for the password, all
Unrecognized commandsare anonymized along with their argu- Of the other user names actually do not reveal any privaterimd-
ments and recorded for optional manual inspection. tion. But it's important to catch the passwordNote that none of

)) o these strange user names will appear in the output tracesuwie
Timestamps/dates are left in the clear. Whlle timestamps coulql modify the script to explicitly allow them, so the passworill mot
_help an e_tdv_ersary match up known traffic (such as traffic they i appear without specific action to keep it.
jected) with its occurrence in the trace, there are enouggr etays Furthermore, we look for “malformed” path names—those
the adversary can perform such matching (by making thetegec 4o not match a heuristic pattern for well-formed path names.
traffic singular) that leaving them intact costs little. O tother We find, for example: #”, “\xd0\xc2\xce\xc4\xbc\xfe

Arguments of commands with pre-defined argument sets
(TYPE, STRU, MODE, ALLO, REST, MACB): are left intact if
well-formed. For example, a TYPE argument should match the
regular expressiof([AE](_[NTC])?)|I|(L[0-9]+)/ ac-
cording to RFC 959. However, the anonymizer does not assume
clients follow the RFC—it checks whether the argument matche
the pattern, and leaves it in the clear only if that is the caieer-
wise anonymizing the argument as a string.

We apply similar techniques for the “HELP” and “SITE” com-
mands, for which we only expose the arguments if they match a
manually determined “white list” of privacy-safe HELP/&Tar-
guments.

hand, timestamps are valuable for various research pwspose Wbc\xd0 7, “/n/nThis file was not retrieved by
File sizes are considered to be safe. As argued when analyzing fin- T€/€-port Pro, because it did not meet the
gerprinting, exposing file sizes may allow the adversargémtify project . . _ _ _
public files. But this is not a concern for LBNL. In addition, applying similar techniques lets us find misigpk
commands, or commands containing control characters:, e.g.

Server software version/configuration is also considered to be “USE, “UUSER “RETR<BS><BS><BS><BS% all of which
safe, as the information that can be inferred from the tracebe we have seen in practice (these commands likely indicats tge
readily obtained through other means (since the servepuate). ing directly rather than using client software).
4.4.3 Refining with Manual Inspection 4.4.4 Reply Anonymization

Whether data is to be left in the clear or anonymized, theyanon An FTP reply consists of a reply code and a text message. We
mous script logs the decision and the reason for later inispet leave reply codes in the clear, as they do not reveal anytpriva
Identical entries are only logged once. Inspection of tige(leith information. Reply messages, on the other hand, do oftetairon
various text processing tools) helps us to discover 1) pyiveles sensitive information and are hard to anonymize because the
(or to demonstrate the absence of holes), and also 2) ovenly ¢ no standard format for most reply messages—the format depend
servative anonymization of nonsensitive information (@riant for on the server implementation and its configuration.
working towards more refined scripts). We discuss log inspec One possibility is to discard the original text (except feplies
techniques in detail below. to PASV, which are well-defined) and replace it with a dummygme

A “filter-in"-style script always makes conservative judgms sage. This has the virtue of being simple. On the other hand, r
on unknown data. Sometimes it can be too conservative, miss-ply messages do sometimes carry useful information thatatdre
ing an opportunity to expose interesting, nonsensitiva,dag., a inferred from the reply codes. For example, a reply of code 53

mistyped command like “UUSER” or a user id like “annonymaus” (denial of login) usually explains why the login was rejettit can
It is difficult to hardwire such commands and user names imo t be “guest login not permitted” or “Sorry, the maximum numbér

general anonymization script, as they may appear in ungiedile users from your host are already connected.”. Such infoomaan
forms. Nevertheless, these special cases do not appeasftamyn be valuable in some cases. So we explored methods to anaymiz
traces, so we can afford tnanually inspeceach case by looking ~ FTP replies.
at the log after anonymization and then customizing thepstoi As messages may contain variables such as file names/sizes,
expose the nonsensitive ones. Figure 4 shows three logeme dates, and domain names, there can be countless distinshgess
have seen: the first entry records a common-case anonyomz#ti However, we observe that there is only a limited set of messag
a path name; while the other two, recording anonymizatidriseo templatesas the number of templates is bounded by the number of
“UUSER” command and user name “annonymous”, are the kinds different server software/configurations at the site. Ardoan ex-
of entries we look for during manual inspection. tract templates (along with human assistance) by companies;
sages against each other and distilling the common pagsiré-b
4Here we assume that the administrator of the trace anontiorizaan shows a few example message templates. Once we have extracte

see the original trace—this helps in verifying results aadegating better -
traces. °Teleport Pro is the name of an offline browser.

anonymize_arg: (path name) [CWD] "conferencing” to "U42117b96U" in [XXX.XXX.XXX.XXX/XXXX > XXX.XXX.XXX.XXX/ftp]
anonymize_cmd: (unrecognized command) "UUSER" [anonymous] to "U7b402a69U" in [XXX.XXX.XXX.XXX/XXXX > XXX.XXX.XXX.XXX/ftp]
anonymize_arg: (user name) [USER] "annonymous" to "Ufb6db9afU" in [XXX.XXX.XXX.XXX/XXXX > XXX.XXX.XXX.XXX/ftp]

Figure 4: Anonymization Log Entries

the message templates, we can parse messages by matching the“verification story” in order to persuade sites that the amoiza-

against the templates and thereby understanding the semant
the data elements in the text.

Message templates are first automatically extracted byiptscr
then manually sanitized before used for template matchiFige
automated template extraction is done in three stepstispliib-
straction, and merging (as shown in Figure 6). We it a mes-
sage into parts—each part contains a word or a data eleménasuc
an IP address or a file name. Nextabstraction we try to guess
whether each part is a variable or a constant part of the messa
template. Througlabstractionwe are able to find most of variable
slots in message templates, andrginghelps to reveal the rest of
them. We merge two templates when they are identical on &ll bu
one part, and this process is iterated till no templates ednrher
merged.

tion process will meet their requirements.

For verification we do not use Bro to parse the output trace’s
packets—doing so would introduce a common point of failure
across anonymization and verification. Instead, we lookhat t
packets directly, using different tools. Automating theifieation
process remains an open problem—currently, it requires hasa
sistance, although some of the steps can be automated trertsiu
burden.

For packet headers, we inspect the source and destinatamh IP
dresses. As the anonymized addresses are sequentiallyereanb
verification that these lie in the expected range can be peed
automatically.

For FTP requests in packet payloads, we enumerate all elistin
commands and arguments present in the trace, except thocle wh

The message extraction process is refined through the aecumu are already hashed (hash results follows a particularaéfdtmat

lation of experience. We found that the key issue in abstrads
to recognize the corresponding command argument echoée in t
reply message. This is tricky because the echoed argumsanhis-
times different from the original argument, particularlyew it is

and thus can automatically excluded). When the text parte-of

ply messages are discarded, it is straightforward to véniy FTP

replies only contain reply codes and a placeholder of dunaxiy t
When we choose to anonymize reply messages, verification con

a file name. For example, the echoed argument can be the bsolu sists of two parts, checking vocabulary and numbers, réispbc

file path or only contain the base file name with the directamtp
Therefore we need to recognize variants of the argumentkéye
for good message splitting is to know whewat to split. By default
we split at spaces and punctuation; however, we do not watito
an IP address or a file name, otherwise they cannot be reeabniz
during abstraction.

Extracted message templates need to be examined and e@nitiz

Vocabulary checking is similar to message template extmacbut
simpler and implemented separately. Messages are ag#iratspl
blanks and punctuation, this time without worrying aboutcal
cases as in splitting for message template extraction. WNexb-
stract the parts by two rules: 1) if a part is a decimal numé;
stitute it with the string £num>"; 2) if a part is a hashing output,
substitute it with the string<hash>". This way we can reduce

before being used for message matching. This can be a tediousl.4 M anonymized messages to about 600 patterns. We then man-

process and we strived to minimize the required effort. €ntty,
when extracting templates from a set of ten-day long FTRetac
which contain more than 1.4 M lines of replies in 22.6 K conrnec
tions to 318 distinct servers, we wound up with 461 message te
plates for 32 kinds of reply codes. Among the 461 templatgs, 2
require sanitization to remove server identity informatidccxam-
ining a few hundreds of templates is feasible but still natyea
perhaps this is the price for processing free format text.

4.45 \Verification

Verification is a fundamental step of the anonymization pssc
No matter how much thought we apply to the anonymizatiorcgpli
the safety of the anonymization also depends on the corssiof
the policy script and on the underlying Bro mechanisms. @toze,
besides inspecting the anonymization description angbtsatiis
also important to examine the output trace directly.

Ideally, the verification process would guarantee that thest
formed trace complies with theatendedanonymization policy.
This is a different notion that thexpressednonymization policy,
due to the possiblity of errors occurring in coding up theresp
sion. Our strategy therefore is to attempt to analyze thergén
properties of the transformed trace without tying theseclosely
to the anonymization script that was used to effect the foans
mation. As such, we cannot guarantee that there are no “lole”
the anonymized trace (but indeed doing so appears fundaliyent
intractable). Instead, we aim to provide another dimensiqore-
caution. In general, it is particularly important to haveteoisg

ually inspect these, which can be expedited by first sortiegitso
that similar patterns are clustered.

In checking numbers we are mainly concerned about numbers
constituting IP addresses. Accordingly, we look for anyrfoon-
secutive number parts in split messages and record eacmaest
that does not fall within the range of anonymized addresses.
terestingly, such casefo appear, though they are quite rare, and
safe—e.g., part of a software version string such as “w2eL..

Verification helped us find a potential hole in an earlier i@rs
of our anonymization script. We found two suspicious comdhan
arguments: GSSAPI" and “"KERBEROS_V4 Though the strings
themselves do not disclose any private information, thepear-
ance is alarming because they are not defined anywhere tate “s
in the script.

Looking into the logs revealed that they were argumentsior t
rejected “AUTH” commands. According to RFC 2228, the argu-
ment for the “AUTH” command specifies the authentication mec
anism. Thus, a rejected mechanism seems safe to expose. How-
ever, doing so overlooks the possibility that a user mighdtah-
enly specify sensitive information, such as a passworde&usof
an authenticatiomechanismA “fail-safe” solution is to white list
“GSSAPI" and “KERBEROS_V4and anonymize any unknown
argument for the “AUTH” command.

150 |opening| |ascii, binary| |mode| |data] |connection| |for| |* arg| " ip] [7 num| |7 num| |bytes|
211 |connected| |to| |© domain, ~ ip|

220 |welcome| [to]| | *| |ftp| |server|

550 |* arg| |not| |a| |directory|

Figure 5: FTP Reply Message Templates

message: "150 Opening BINARY mode data connection for /def.pdf (123.45.67.89,50034) (156678 bytes)"

split — "150 |opening| |binary| |mode| |data| |connection| [for| |/def.pdfl |123.45.67.89| |50034| |156678| |bytes|"
abstract— "150 |opening| |binary| |mode| |data| |connection| [for| |” arg| " ip| |7 num| |7 num| |bytes|"
merge— "150 |opening| |ascii, binary| |mode| |data] |connection| |for| [* arg| |* ip|] |7 num| |7 num| |bytes|"

Figure 6: Message Template Extraction

4.4.6 Discussion FTP analyzer 131 seconds

FTP analyzer + anonymizer 1009 seconds
Integrity of Output Trace : Besides the absence of private infor- FTP analyzer + dummy rewriter 192 seconds
mation, we also want to check whether the packets, TCP flows,
and FTP requests and replies in the anonymized trace anei| Figure 7: Execution time of various FTP policy scripts
formed To do so, we run Bro’s FTP analyzer on the anonymized
traces to see whether Bro can reassemble the TCP flows ara pars
the FTP requests and replies. We compare the FTP logs fram bot attempts at creating directories on multiple servers maylyjiran
traces. Bro's FTP log records start and finish of FTP sessiods ~ FTP warez attack.
all requests and replies in the session. For a day-long Fde of
80 MB, 8,871 connections, and 86,908 request-reply pae<ijmd
that the two logs have the same FTP session starting timpsfam
request command sequences (not including the argumemtsgan
ply code sequences, also at the same timestamps. For comman
arguments and reply messages, we cannot compare themydirect
as of course many of them are anonymized. We randomly picked a
few sessions and manually checked the arguments and message

Performance Figure 7 shows the CPU time spent on a 1 GHz Pen-

tium 11l processor running on the day-long trace mentionieova.

We see that the FTP anonymizer, which also requires the FTP an
lyzer, is 7.7 times slower than the FTP analyzer. To unaedst
here time is spent, we also tested Bro with a dummy FTP trace

rewriter, which simply writes the original requests andlieepto

the output trace. We find that the execution overhead of thayan

mizer script itself heavily dominates, comprising 81% of tio-

Anonymized Traces for Intrusion Detectiont As mentioned ear- tal processing. The time is spent performing numerous hash t

lier, packet traces are particularly valuable for researchetwork ble lookups, string operations, and regular expressiosimeat and
intrusion detection. So we very much want trace anonynunat generating a 3.8 MB anonymization log. We find this perforogan
preserve intrusion-like activities. This applies both teserving adequate, especially for off-line anonymization. It eveffises for
actual attacks, but, even more so, unusual-but-benigfictthgt on-line anonymization for FTP, though when extended to aénig
stresses the false-positive/false-negative accuracgtofsion de- volume protocol such as HTTP may prove problemétic.

tection algorithms. This latter is particularly importdrgcause it

is often a key element missing from assessments of netwerk in 5. CHALLENGES AND NEW DIREC-

trusion detection mechanisms—it is easy for researchertaima TIONS

traces of actual attacks, because they can generate tlingethes . L

plethora of available attack tools, but itis much more dificoday We view our work as an early push towards making richer packet

for researchers to attain detailed traces of backgrouffiittra traces available to the research community. There is stiftito
Generally whether an attack survives anonymization depend P& done in this area. From our experience, we believe the main

both its characteristics and how it is detected. Some FTBsiuns challenges include: 1) to formalize security consideratiand the

are recognized by signatures of files or user IDs the intrtraer to process of developing an anonymization scheme; 2) to adéctima

access or login as. For example, directory natagded " is often process of anonymization and verification; 3) to keep moaketa

associated with FTP warez attacks; faileddt ” or “sysadm” dynamics in the transformed traces. Below we briefly diseash

login attempts suggest server backdoor probing. Presethizse of these.

attacks requires leaving relevant identifiers in the clEartunately Formalizing Anonymization: In Section 4 we described our

the identifiers are mostly well-known and do not expose feiva methodology for trace anonymization and analyzed four gyqfe

identities, so they can kept through anonymization by distabg inference techniques, but our analysis is far from beinghédror

a white list for “sensitive” file names and user IDs to Ieayehe complete. While accumulation of experience will help usehav

clear. To do so, however, requires knowing the attack sigeat petter understanding of the relationship among varioua eée-

beforehand; thus, attacks with unknown signatures maystibst ments, developing a formal model for anonymization woulcabe

in anonymization. , , o big step forward beyond the intuitive methods. A formal nlode
Other types of intrusions are recognized by activity pager \youid mean that users can have a complete view of the thredts a

rather than identifier signatures. Most of these attackssoavive rigorously deduce a detailed anonymization scheme frorotifee-

anonymization. For instance, port scanning is marked byruna tjyes. However, a major difficulty in pursuing such modelshie

swered (or responded by TCP-RST) TCP-SYN packets from the gegree to which anonymization inherently involves knogkeaf
same source host to different destination hosts; suceetsied

“Note that the HTTP rewriter used to reduce HTTP packet trasedis-
61n some cases, Bro’s connection termination is triggered tiyer, which cussed in Section 3.4 runs on-line, processing nearly 106stithe daily
results in slightly different session finish timestamps. data volume, though in a simpler fashion.

semanticsincluding sometimes quite high-level abstractions, and
also corner cases that can inadvertently leak information.

Automating the Anonymization Process Although the anony-

mization process has been much simplified by operating at the

application-protocol level, currently we still need hunzasistance
in tailoring scripts for traces (4.4.3), processing fregxfat texts
(4.4.4), and result verification (4.4.5). The first two, thbwbeing
optional, often largely improve the quality of the outpwde. The
last (verification) is an essential step which we cannot dbaut
human interaction. On the other hand, fully automating gmon
zation will bring substantial benefits: 1) it will minimizeuman
effort in releasing traces, making it easier for sites to enakces
available; 2) itis critical for environments where the gg@roviders
themselves are not allowed to see the original traces ferdgraces
collected at some ISPs); 3) automated verification will dost
model of “script~data” exchange, where users send anonymiza-
tion scripts to data owners who use them to easily generatedr
returned to the users [13].

The key for automating result verification is to make the gnon
mization scheme “understandable” to the verifier progranme O
way is to design a declarative (instead of procedural) laggufor
the anonymization scripts. Being declarative, the anomgition
scheme specification is also amenable to verification, wisiokc-
essary to ensure that the scheme is correctly specified.

Keeping Traffic Dynamics. One fundamental difficulty of keeping
the original traffic dynamics is that lengths of data may benged
during transformation, and the new lengths must be refleicted
TCP/IP headers to keep packets “well-formed”. Therefoeeettis
not a single best way to keep the original dynamics. We aesiiv
gating ways to retain as much of the dynamics as possibleutith
dragging the user into low-level packet processing. Onesipibisy

is to create an out-of-band channel to convey informatiarh s
original packet lengths, fragmentation, retransmisssoa,

Also it is particularly difficult to process two parallel \&ons of
the data, for instance, in the presence of inconsistent EGBns-
missions, because traffic parsing is stateful. So we havenove
at least one version from the anonymized stream, even thiough
some contexts (e.g., analyzing possible intrusion deteeasions
seen in practice [16]) it would be very useful to have bothiespf
inconsistent retransmissions retained.

6. RELATED WORK

TCPdpriv [12] anonymizepdump traces by stripping packet
contents and rewriting packet header fields. One of its featu
is a form of “prefix-preserving” anonymization of IP address
(the “-A50" option). [22] analyzes the security implicat® of
this anonymization, proposing an approach that might bd tse
crack the “-A50” encoding by first identifying hosts with el
known traffic pattern (e.g., DNS servers). Xu et al proposed a
cryptography-based scheme for prefix-preserving addnessya
mization [21]. The scheme can maintain a consistent anarasmi
tion mapping across multiple anonymizers using a sharept@ry
graphic key. Peuhkuri presented an analysis of the privdte-i
mation contained in TCP/IP header fields and proposed a schem
to anonymize packet traces and store the results in a cosgutes
format [17]. Peuhkuri’s scheme for network addresses amény
zation cannot be directly applied to our work because therseh
generates 96 bits instead of 32 bits for each address, andenve a
constrained by needing to generate outpatpdump format. All
of these works address only the anonymization of TCP/IPérsad
with no mechanisms for retaining packet payloads.

NetDuDe (NETwork DUmp data Displayer and Editor) [9] is a

GUI-based tool for interactive editing of packetd¢égpdump trace
files. NetDuDe itself does not parse application level proks, but
allows user to write plug-in’s for packet processing, eagcheck-
sum fixer plug-in can recompute checksums and update thé&chec
sum fields in TCP and IP headers.

There has also been considerable work on extracting afiptea
level data from online traffic, though without significantpéipa-
tions to content-preserving anonymization. Gribble etulttan
HTTP parser to extract HTTP information from a network snif-
fer [7]. Feldmann in [5] describes BLT, a tool to extract com-
plete HTTP headers from high-volume traffic, and discusses v
ious challenges in extracting accurate HTTP fields. Panfath
is a component-based framework for monitoring network tssen
which contains, among others, components to reconstrud@PHT
data from packets. It is similar in spirit to Windmill [11].tlkereal
is able to reconstruct TCP session streams, and parsege¢henst
to extract application protocol level data fields [3]. Thédgecan
be used to filter the view of the trace. Ethereal has a GUl¢base
interface to display trace data. There are also humerousnenm
cial network monitoring systems that can extract applicatevel
information, e.g., EtherPeek[20].

There are also efforts on setting up honeypots [8] and bireak-
challenges [2] to collect traces of network intrusions. tSpare
intrusion traces have the virtue of containing little ptevenforma-
tion, as the target hosts are not used for other purposesth&or
same reason, however, the traces do not contain backgrmaffid t
with various unusual-but-benign activities, and thus amy differ-
ent from traffic at an operational site.

Finally, Mogul argues “Trace Anonymization Misses the RPoin
[13], proposing an alternative strategy to trace anonytitina—
instead of sharing anonymized traces, researchers seudticed
agents to the site that has the source trace data. We belietead
is in fact complementary to this sort of approach. Mogulesithe
question: what kind of code should be sent to the source?stbes
answer is: “a Bro script for trace transformation.”

7. SUMMARY

In this work we have designed and implemented a new tool for
packet trace anonymization and general purpose transfioma
The tool offers a great degree of freedom and conveniendesfoe
transformation by providing a high-level programming eowi
ment in which transformation scripts operate on applicatavel
data elements.

Using this framework, we developed an anonymization séoipt
FTP traces and applied it to anonymizing traces from LBNL for
public release. Unlike previous packet trace anonyminatitorts,
packet payload contents are included in the result. We sisszli
the key anonymization principle of “filter-in” as opposed‘itter-
out”, and the crucial problem oferifying the correctness of the
anonymization procedure. We also analyzed a class of imfere
attacks and how we might defend against them.

We believe this tool offers a significant step forward tovgard
ending the current state of there bemgpublicly available packet
traces with application contents. As such, we hope to hedm ap
new opportunities in Internet measurement and networkisian
detection research.

Acknowledgements

We would like to thank the Lawrence Berkeley National Labora
tory, and Jim Rothfuss and Sandy Merola in particular, forkivay
with us to realize the public release of traces of LBNL traffiat
include packet contents; Larry Peterson for his supporutin-

out this work; the anonymous SIGCOMM reviewers; our shegher
Greg Minshall; Lujo Bauer, Ed Felten, Brent Waters, Chi Zjan
and other colleagues at Princeton for their insights andestépns;
and the staff of the Princeton Department of Computer Seiéoic
providing us traces for testing. This work was supportedairt py
NSF grant ANI-9906704, DARPA contract F30602—-00—2—-0561,
and the Intel Corporation.

8. REFERENCES

[1] S. Axelsson. The base-rate fallacy and the difficultyrfision
detection. ACM Transactions on Information and System Security
3(3):186—205, August 2000.

Capture the capture the flag. http://www.shmoo.corf¥/cct

G. Combs.The Ethereal Network Analyzer
http://www.ethereal.com/.

Federal Committee on Statistical Methodology. Reporstatistical
disclosure limitation methodology (statistical policy skimg paper
22), 1994. http://www.fcsm.gov/working-papers/spwip2il.

A. Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP. In
Proceedings of WWW;:-®ay 2000.

Anonymized FTP traces.
http://www-nrg.ee.lbl.gov/anonymized-traces.html.

S. D. Gribble and E. A. Brewer. System design issues farhet
middleware services: Deductions from a large client trac@roc.
USENIX Symp. on Internet Technologies and SystBersember
1997.

The honeypot challenge. http://project.honeynetraigc/chall.html.

C. Kreibich.NetDuDe (NETwork DUmp data Displayer and Editor)
http://netdude.sourceforge.net/.

R. Lippmann, S. Webster, and D. Stetson. The effect erfitiflying
vulnerabilities and patching software on the utility ofwetk
intrusion detection. IfProceedings of Recent Advances in Intrusion
Detection number 2516 in Lecture Notes in Computer Science.
Springer-Verlag, 2002.

G. R. Malan and F. Jahanian. An extensible probe arctaite for
network protocol performance measuremenPtaceedings of ACM
SIGCOMM 1998.

G. Minshall. TCPdpriv: Program for Eliminating Confidential
Information from Traceslpsilon Networks, Inc.
http://ita.ee.Ibl.gov/html/contrib/tcpdpriv.html.

J. Mogul. Trace anonymization misses the point. Priegiem on
WWW 2002 Panel on Web Measurements.

S. Patarin and M. Makpangou. Pandora: A flexible network
monitoring platform. InProceedings of the USENIX 2000 Annual
Technical ConferengeSan Diego, June 2000.

V. PaxsonBro: A System for Detecting Network Intruders in
Real-Time http://www.icir.org/vern/bro-info.html.

V. Paxson. Bro: A system for detecting network intrigler real
time. Computer NetworkDecember 1999.

M. Peuhkuri. A method to compress and anonymize paciees. In
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop November 2001.

S. Savage. Private communication.

Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanabhad
L. Qiu. Statistical identification of encrypted web browgimaffic. In
Proceedings of IEEE Symposium on Security and Privacy,aDdkl
CA, USA May 2002.

WildPackets, IncEtherPeekhttp://www.etherpeek.com/.

J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and
performance of prefix preserving IP traffic trace anonyniratin
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop November 2001.

T. Ylonen. Thoughts on how to mount an attack on tcpdptha50”
option. http://ita.ee.lbl.gov/html/contrib/attack&@ack50.html.

[2]
(3]

(4]

(5]

[6

[11]

[12]

(23]

[14]

[15]
[16]

[17]

(18]
[19]

[20]
[21]

[22]

APPENDIX

A. A SAMPLE HTTP TRACE TRANSFOR-
MATION

The original trace was collected lgpdump recording a re-
trieval of the www.google.com homepage. Thepdump output
(with wrapped packet summary lines and TCP payloads) of the
original trace is shown on the next page.

We use our tool to transform the trace with a script that:

1. Replaces the data entity with its MD5 hash value (in thieca
“867119294265e3f445708c3fcfb2144f ");

2. Rewrites th&€ontent-length
the MD5 hash value;

3. Adds the header: “X-Actual-Data-Length: 2709; gap=0,
content-length= 2709” to record the original Content-kbng
field and how many bytes are actually transferred.

field to reflect the length of

Thetcpdump output of the transformed trace is also on the next
page.

Note that “Write-Deferring” is applied here: the new headae
written at the position of the origin@ontent-length header,
even though the actual data size is not determined untilfdhe
data is seen. The script defers writing the headers untiétiteof
the message and then writes back to the reserved position.

Furthermore, by changing only one line of the script, from:

msg$abstract = md5_hash(data);
to:

msg$abstract =
subst_string(data, "Google", "Goooogle");

the script then replaces every occurrence of “Google” indhi
entity with “Goooogle”, instead of replacing the whole datsity

with its MD5 hash value. Next page shows part of the transéatm
trace. (There are four occurrences of “Google” in the oagines-
sage, thus the Content-length increases from 2709 to 2 Natg

that sequence and acknowledgment numbers between the trace
differ due to packet reframing and the addition of X-ActiDsta-
Length headers.

Original trace:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101.80:

S 1352447574:1352447574(0) win 57344

<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0> (DF)
1044328495.632608 216.239.51.101.80 > 192.150.187.28.1472:

S 3009119707:3009119707(0) ack 1352447575 win 1460

<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wscale 0> (DF)
1044328495.632647 192.150.187.28.1472 > 216.239.51.101.80:

. ack 1 win 57920

<nop,nop,timestamp 92919823 752104543> (DF)
1044328495.632966 192.150.187.28.1472 > 216.239.51.101.80:

P 1:81(80) ack 1 win 57920

<nop,nop,timestamp 92919823 752104543> (DF)
0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET./HTTP/1
0x0040 2e30 0dOa 5573 6572 2d41 6765 6e74 3a20 .0..User-Agent:.
0x0050 5767 6574 2f31 2e35 2e33 0dOa 486f 7374 Wget/1.5.3..Host
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google.com
0x0070 3a38 300d 0Oa4l 6363 6570 743a 202a 2f2a :80. Accept:.*l*
0x0080 0dOa 0dOa
1044328495.716691 216.239.51.101.80 > 192.150.187.28. 1472

. ack 81 win 30660

<nop,nop,timestamp 752104551 92919823> (DF)
1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:

P 1:1449(1448) ack 81 win 31856

<nop,nop,timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2032 3730 390d 0a43 6f6e 6e65 gth:.2709..Conne
0x0060 6374 696f 6e3a 2043 6¢6f 7365 0dOa 5365 ction:.Close..Se
0x0070 7276 6572 3a20 4757 532f 322e 300d Oad4 rver:.GWS/2.0..D
0x0080 6174 653a 2054 7565 2c20 3034 2046 6562 ate:.Tue,.04.Feb
0x0090 2032 3030 3320 3033 3a31 343a 3535 2047 .2003.03:14:55.G
0x00a0 4d54 0dOa 436f 6e74 656e 742d 5479 7065 MT..Content-Type
0x00b0 3a20 7465 7874 2f68 746d 6c0d 0ad43 6163 :.text/html..Cac
0x00cO 6865 2d63 6f6e 7472 6f6c 3a20 7072 6976 he-control:.priv
0x00d0 6174 650d 0a53 6574 2d43 6f6f 6b69 653a ate..Set-Cookie:
0x00e0 2050 5245 463d 4944 3d31 6538 6337 3538 .PREF=ID=1e8c758
0x00f0 6231 6632 3965 3836 643a 544d 3d31 3034 blf29e86d:TM=104
0x0100 3433 3238 3439 353a 4c4d 3d31 3034 3433 4328495:LM=10443
0x0110 3238 3439 353a 533d 6638 344d 6753 7948 28495:S=f84MgSyH
0x0120 3347 452d 3439 5070 3b20 6578 7069 7265 3GE-49Pp;.expire
0x0130 733d 5375 6e2c 2031 372d 4a6l 6e2d 3230 s=Sun,.17-Jan-20
0x0140 3338 2031 393a 3134 3a30 3720 474d 543b 38.19:14:07.GMT;
0x0150 2070 6174 683d 2f3b 2064 6f6d 6169 6e3d .path=/;.domain=
0x0160 2e67 6f6f 676c 652e 636f 6d0d 0a0d Oa3c .google.com....<
0x0170 6874 6d6c 3e3c 6865 6164 3e3c 6d65 7461 html><head><meta
0x0180 2068 7474 702d 6571 7569 763d 2263 6f6e .http-equiv="con
0x0190 7465 6e74 2d74 7970 6522 2063 6f6e 7465 tent-type".conte
0x01a0 6e74 3d22 7465 7874 2f68 746d 6¢3b 2063 nt="text/html;.c
0x01b0 6861 7273 6574 3d49 534f 2d38 3835 392d harset=1SO-8859-
0x01cO 3122 3e3c 7469 746c 653e 476f 6f67 6¢65 1"><title>Google
0x01d0 3c2f 7469 746¢ 653e 3c73 7479 6¢65 3e3c </title><style><

0x0360 3237 3620 6865 6967 6874 3d31 3130 2061 276.height=110.a
0x0370 6¢74 3d22 476f 6f67 6¢c65 223e 3c2f 7464 It="Google"></td

1044328495.737951 216.239.51.101.80 > 192.150.187.28.1472:

P 2897:3025(128) ack 81 win 31856

<nop,nop,timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 6fée 743e Oa3c 703e 3c66 6f6eont>.<p><fon
0x0040 7420 7369 7a65 3d2d 323e 2663 6f70 793b t.size=-2>©
0x0050 3230 3033 2047 6f6f 676c 653c 2f66 6f6e 2003.Google</fon
0x0060 743e 3c66 6f6e 7420 7369 7a65 3d2d 323e t><font.size=-2>
0x0070 202d 2053 6561 7263 6869 6e67 2033 2c30 .-.Searching.3,0

1044328495.737987 192.150.187.28.1472 > 216.239.51.101.80:

. ack 1449 win 57920

<nop,nop,timestamp 92919833 752104553> (DF)
1044328495.738022 216.239.51.101.80 > 192.150.187.28.1472:

F 3025:3025(0) ack 81 win 31856

<nop,nop,timestamp 752104553 92919823> (DF)
1044328495.738054 192.150.187.28.1472 > 216.239.51.101.80:

. ack 1449 win 57920

<nop,nop,timestamp 92919833 752104553> (DF)
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:

P 1449:2897(1448) ack 81 win 31856

<nop,nop,timestamp 752104553 92919823> (DF)
0x0030 0589 d80f 2f66 6f6e 743e 3c2f 613e 3c2f/font></
0x0040 7464 3e3c 7464 2077 6964 7468 3d31 353¢ td><td.width=15>
0x0050 266e 6273 703b 3c2f 7464 3e3c 7464 2069 </td><td.i
0x0060 643d 3320 6267 636f 6¢6f 723d 2365 6665 d=3.bgcolor=#efe
0x0070 6665 6620 616c 6967 6e3d 6365 6e74 6572 fef.align=center

0x0370 7562 6d69 7420 7661 6c75 653d 2247 6f6f ubmit.value="Goo
0x0380 676c 6520 5365 6172 6368 2220 6e6l 6d65 gle.Search”.name

1044328495.739318 192.150.187.28.1472 > 216.239.51.101.80:
. ack 3026 win 56344
<nop,nop,timestamp 92919833 752104553> (DF)
1044328495.741006 192.150.187.28.1472 > 216.239.51.101.80:
F 81:81(0) ack 3026 win 57920
<nop,nop,timestamp 92919834 752104553> (DF)
1044328495.823516 216.239.51.101.80 > 192.150.187.28.1472:
. ack 82 win 31856
<nop,nop,timestamp 752104562 92919834> (DF)

Replacing data entity with MD5 hash value:

1044328495.549695 192.150.187.28.1472 > 216.239.51.101.80:

S 1352447574:1352447574(0) win 57344

<mss 1460,nop,wscale 0,nop,nop,timestamp 92919815 0>
1044328495.632608 216.239.51.101.80 > 192.150.187.28.1472:

S 3009119707:3009119707(0) ack 1352447575 win 1460

<mss 1460,nop,nop,timestamp 752104543 92919815,nop,wscale 0>
1044328495.632647 192.150.187.28.1472 > 216.239.51.101.80:

. ack 1 win 57920

<nop,hop,timestamp 92919823 752104543>
1044328495.632966 192.150.187.28.1472 > 216.239.51.101.80:

P 1:130(129) ack 1 win 57920

<nop nop,timestamp 92919823 752104543>
0x0030 2cd4 345f 4745 5420 2f20 4854 5450 2f31 ,.4_GET..HTTP/1
0x0040 2630 0d0a 5553 4552 2d41 4745 4e54 3a20 .0.USER-AGENT:.
0x0050 5767 6574 2f31 2e35 2e33 0dOa 484f 5354 Wget/1.5.3..HOST
0x0060 3a20 7777 772e 676f 6f67 6c65 2e63 6f6d :.www.google.com
0x0070 3a38 300d 0a4l 4343 4550 543a 202a 2f2a :80..ACCEPT:.*/*
0x0080 0dOa 0dOa 582d 4163 7475 616¢ 2d44 6174X-Actual-Dat
0x0090 612d 4c65 6e67 7468 3a20 303b 2067 6170 a-Length:.0;.gap
0x00a0 3d30 2c20 636f 6e74 656e 742d 6¢c65 6e67 =0, content Ieng
0x00b0 7468 3d0d Oa
1044328495.716691 216.239.51.101.80 > 192.150.187.28. 1472

. ack 130 win 30660

<nop,hop,timestamp 752104551 92919823>
1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:

P 1:371(370) ack 130 win 31856

<nop,nop,timestamp 752104553 92919823>
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2033 320d 0a58 2d41 6374 7561 gth:.32..X-Actua
0x0060 6c2d 4461 7461 2d4c 656e 6774 683a 2032 |-Data-Length:.2
0x0070 3730 393b 2067 6170 3d30 2c20 636f 6e74 709;.gap=0,.cont
0x0080 656e 742d 6c65 6e67 7468 3d20 3237 3039 ent-length=.2709
0x0090 0dOa 434f 4ede 4543 5449 4fd4e 3a20 436c ..CONNECTION:.CI
0x00a0 6f73 650d 0a53 4552 5645 523a 2047 5753 ose.SERVER:GWS
0x00b0 2f32 2e30 0dOa 4441 5445 3a20 5475 652c /2.0..DATE:.Tue,
0x00cO 2030 3420 4665 6220 3230 3033 2030 333a .04.Feb.2003.03:
0x00d0 3134 3a35 3520 474d 540d 0a43 4f4e 5445 14:55.GMT..CONTE
0x00e0 4e54 2d54 5950 453a 2074 6578 742f 6874 NT-TYPE:.text/ht
0x00f0 6d6c OdOa 4341 4348 452d 434f 4e54 524f ml..CACHE-CONTRO
0x0100 4c3a 2070 7269 7661 7465 0dOa 5345 542d L:.private..SET-
0x0110 434f 4f4b 4945 3a20 5052 4546 3d49 443d COOKIE:.PREF=ID=
0x0120 3165 3863 3735 3862 3166 3239 6538 3664 1e8c758b1f29e86d
0x0130 3a54 4d3d 3130 3434 3332 3834 3935 3adc :TM=1044328495:L
0x0140 4d3d 3130 3434 3332 3834 3935 3a53 3d66 M=1044328495:S=f
0x0150 3834 4d67 5379 4833 4745 2d34 3950 703b 84MgSyH3GE-49Pp;
0x0160 2065 7870 6972 6573 3d53 756e 2c20 3137 .expires=Sun,.17
0x0170 2d4a 616e 2d32 3033 3820 3139 3a31 343a -Jan-2038.19:14:
0x0180 3037 2047 4d54 3b20 7061 7468 3d2f 3b20 07.GMT;.path=/;.
0x0190 646f 6d61 696e 3d2e 676f 6f67 6c65 2e63 domain google.c
0x01a0 6f6d 0dOa OdOa
1044328495.737987 192. 150 187.28.1472 > 216.239.51. 101 80

. ack 371 win 57920

<nop,hop,timestamp 92919833 752104553>
1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:

FP 371:403(32) ack 130 win 31856

<nop,nop,timestamp 752104553 92919823>
0x0030 0589 d80f 3836 3731 3139 3239 3432 3635867119294265
0x0040 6533 6634 3435 3730 3863 3366 6366 6232 e3f445708c3fcfb2
0x0050 3134 3466 144f
1044328495.739318 192.150.187.28.1472 > 216.239.51.101.80:

. ack 404 win 56344

<nop,hop,timestamp 92919833 752104553>
1044328495.741006 192.150.187.28.1472 > 216.239.51.101.80:

F 130:130(0) ack 404 win 57920

<nop,hop,timestamp 92919834 752104553>
1044328495.823516 216.239.51.101.80 > 192.150.187.28.1472:

. ack 131 win 31856

<nop,nop,timestamp 752104562 92919834>

Substituting “Google” with “Goooogle™:

1044328495.737787 216.239.51.101.80 > 192.150.187.28.1472:

P 1:373(372) ack 130 win 31856

<nop,nop,timestamp 752104553 92919823>
0x0030 0589 d80f 4854 5450 2f31 2e30 2032 3030HTTP/1.0.200
0x0040 204f 4b0d 0a43 6f6e 7465 6e74 2d4c 656e .OK..Content-Len
0x0050 6774 683a 2032 3731 370d 0a58 2d41 6374 gth:.2717.X-Act
0x0060 7561 6c2d 4461 7461 2d4c 656e 6774 683a ual-Data-Length:
0x0070 2032 3730 393b 2067 6170 3d30 2c20 636f .2709;.gap=0,.co
0x0080 6e74 656e 742d 6¢c65 6e67 7468 3d20 3237 ntent-length=.27
0x0090 3039 0dOa 434f 4ede 4543 5449 4fde 3a20 09..CONNECTION:.

ib44328495.739267 216.239.51.101.80 > 192.150.187.28.1472:
P 373:1821(1448) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0080 3838 3539 2d31 223¢ 3c74 6974 665 3e47 8859-1"><title>G
0x0090 6f6f 6f6f 676c 653c 2f74 6974 6¢65 3e3c oooogle<i/title><

0x0230 743d 3131 3020 616c 743d 2247 6f6f 6f6f t=110.alt="Goooo
0x0240 676c 6522 3e3c 2f74 643e 3c2f 7472 3e3c gle"></td></tr><

1044328495.739267 216.239.51.101.80 > 192.150.187.28.1472:
F 1821:3090(1269) ack 130 win 31856
<nop,nop,timestamp 752104553 92919823>

0x0230 7574 2074 7970 653d 7375 626d 6974 2076 ut.type=submit.y
0x0240 616c 7565 3d22 476f 6f6f 6167 665 2053 alue="Goooogle.S
0x0250 6561 7263 6822 206e 616d 653d 6274 6e47 earch".name=btnG

0x04c0 7079 3b32 3030 3320 476f 6f6f 6167 6C65 py;2003.Goooogle
0x04d0 3c2f 666f 6e74 3e3c 666f 6e74 2073 697a <font.siz

