
Towards Illuminating a Censorship Monitor’s Model to Facilitate Evasion

Sheharbano Khattak∗ Mobin Javed† Philip D. Anderson∗ Vern Paxson†�

∗Independent researcher †U.C. Berkeley �International Computer Science Institute

Abstract
Censorship systems that make dynamic blocking decisions
must inspect network activity on-the-fly to identify content to
filter. By inferring the analysis models of such monitors we can
identify their vulnerabilities to different forms of evasions that
we can then exploit for circumvention. We leverage the obser-
vation that censorship monitors essentially work on the same
principles as Network Intrusion Detection Systems (NIDS) and
therefore inherit the same evasion vulnerabilities already dis-
cussed in the NIDS context for years. Using this past work
as a guide, we illustrate the power of illuminating a monitor’s
analysis model by conducting extensive probing to test for vul-
nerabilities in the Great Firewall of China. We find exploitable
flaws in its TCB creation and destruction, fragment and seg-
ment reassembly, packet validation, (in)completeness of HTTP
analysis, and state management.

1. Introduction
Any censorship system that makes dynamic blocking

decisions will employ a particular analysis model for
dynamically inspecting activity. More powerful mod-
els enable more accurate decisions while also resisting
attempts by users to evade detection; but such models
present the censor with costly tradeoffs in terms of ease
of implementation and scalability of performance versus
the richness of analysis that a given model provides. In
general, users can attempt to shape their network traffic
in various ways so that the censor’s system fails to ac-
curately identify activity the censor wishes to suppress.
Such anti-censorship evasions can then spur an “arms
race” in which the censor modifies their system to plug
holes in its coverage.

We premise our work on the observation that if we can
illuminate the model used by a censorship system, we
can identify classes of evasions that can elude its control:
ways that users can alter network traffic that will both
avoid detection and, crucially, require the censor to make
expensive changes to the system’s basic model to remedy.

We focus our effort on one widely used technology
for censorship systems, an on-path network monitor that
passively observes network traffic and effects censorship
disruption by packet injection (e.g., forged RSTs or DNS
replies). These systems, which we will refer to simply as
monitors, afford more scalability than in-path elements
that forward traffic (and can directly manipulate it), and
this technology underlies much of the functionality used
by the Great Firewall of China (GFW).

Particularly significant for our purposes, from a
technical perspective such monitors function in the
same manner as Network Intrusion Detection Systems
(NIDS)—and for well over a decade researchers have
studied the problem of the many ways that the analysis
model of a NIDS renders it vulnerable to evasions, some
very difficult to remedy [15] without requiring some
form of in-line operation [11]. Potential monitor models
span a wide range of basic architectures: simple stateless
packet inspection; stateful but incomplete (lacking full
protocol coverage); complete for a single set of imple-
mentation choices (such as how to resolve ambiguities);
or assessing multiple possible implementation choices in
parallel. In addition, stateful approaches must make de-
cisions regarding state management that can render them
vulnerable to either state exhaustion attacks or manipu-
lation of state-holding to subvert the monitor’s analysis
capabilities. All of these present evasion opportunities.

To explore this space, we perform extensive probing
of the GFW monitor. We treat it as a black-box that
given HTTP/TCP/IP traffic provides indications of posi-
tive censorship decisions in terms of producing spoofed
TCP RST packets1 (we leave analysis of its other com-
ponents, such as poisoning of DNS/UDP/IP traffic, for
future work). In particular, we employ HTTP requests

1 As noted in prior work [20], we confirmed that in particu-
lar it sends 3 spoofed RSTs with varying gaps between their
sequence numbers. After this disruption, a ≈ 90 sec blocking
period bars any communication from the client to server on the
given server port [2].

1



that selectively contain banned keywords or hostnames
along with varying forms of traffic permutation in order
to map out a model of how GFW’s analysis works, in-
cluding its state management. As we make observations
of its structural vulnerabilities, we confirm the viability
of the corresponding evasions by employing them to re-
trieve banned content.

We find that GFW performs stateful analysis of the
client side of HTTP streams, but not the server side. It
lacks certain low-level protocol coverage such as val-
idating checksums that renders it vulnerable to misdi-
rection, but which the implementors can easily fix. It
also suffers from deeper problems, including vulnera-
bilities to ambiguities due to overlapping IP fragments
and TCP segments; TCB manipulation via TTL-limited
SYN, FIN or RST packets; limited analysis of pipelined
HTTP requests and URL encodings; and state manage-
ment that will retain state for extensive periods of time
(hours) but will discard state in lieu of very modest TCP
bytestream buffering (1KB). We confirmed numerous
evasions due to monitor’s limited semantic model, illus-
trating the power of conducting such an exploration. We
aim in follow-on work to then develop anti-censorship
tools based on these findings.

2. Related Work

Numerous efforts have examined the operation of
GFW [6,8,9,13], finding it uses NIDS-like functionality
to match sensitive keywords and terminates TCP connec-
tions by injecting RST packets. The authors of [13] find
that GFW rarely filters HTTP responses, and apparently
ceased so entirely between Aug. 2008 and Jan. 2009.

Evasion attacks on NIDS [11, 15, 17] have been
studied for more than a decade, and a number
of tools (fragroute [18], sniffjoke [1] and
idsprobe [12]) implement these techniques. However,
evasion attacks have only recently received attention by
anti-censorship efforts. Clayton et al.’s study found that
discarding the RST packets a censor injects protects ef-
fectively against keyword-based censorship [8]. This cir-
cumvention technique, however, does not provide full
“evasion” because the censor has already noticed the ac-
tivity and may employ other steps (e.g., IP blocking) to
suppress further activity. It also requires both client-side
and server-side changes, and impairs the intended use of
RSTs for terminating connections for benign reasons.

WestChamber is a community research effort by a
group of Chinese netizens [3–5]. It uses two approaches
to evade GFW injection: (a) each end host sends a RST
packet to fool GFW into viewing the connection as ter-
minated, and (b) the client drops DNS replies injected
by GFW based on fingerprint signatures. The authors
caution that their techniques can fail in the future due to

GFW updates. brdgrd [21] leverages GFW’s lack of
TCP segment reassembly for TLS negotiations to evade
the detection of Tor Bridges via active scanning.

Effort (a) of WestChamber has the most relevance for
our work, which concerns crafting traffic in such a fash-
ion that GFW will not be triggered at all. In general, our
efforts aim to foster the development of similar evasion
tools in the specific context of on-path monitoring.

3. Methodology
We deduce GFW’s analysis model by treating it as a

black box and using scapy [7] to actively probe it with
specially crafted packets, some of which include a trig-
gering keyword. Observing GFW responding to such
packets indicates its processing enabled it to observe the
keywords in context; a lack of response indicates a fail-
ure of its analysis model to make such an observation.

Accurate design of our probe tests involves determin-
ing whether GFW is stateful (confirmed in § 5) and at
which stage of packet/stream processing it triggers. For
the latter, we probed it placing a censored keyword in
an IP fragment, full IP packet, TCP segment, incomplete
HTTP request, and full HTTP request (with and without
accompanying HTTP response). We find that GFW only
censors HTTP requests containing a sensitive keyword.
This result confirms that filtering on HTTP response has
likely discontinued [13]. Consequently, we always send
probes with at least one complete HTTP request.

Experimental Setup. We use two machines for our
evaluation, a client in China and an Apache webserver
in USA. In reality a nation-wide censorship system like
GFW surely comprises multiple heterogeneous moni-
tors, but our use of a single network path means we
should generally encounter the same particular compo-
nents. Using the traceroute-based technique described
by Xu et al. [23] we confirmed that we always encoun-
tered the same GFW IP address, though our activity may
have triggered additional filtering devices along the path.

Soundness. To ascertain the integrity of our tests and
the insights consequently obtained, we must ensure that
(i) our tests work as intended, and (ii) we accurately iden-
tify RST packets injected by GFW. For the former, we
first carry out all the tests locally without GFW in the
picture, giving us a baseline against which to compare
and contrast GFW’s inferred analysis model. For the lat-
ter, we capture traces at both client and server, which en-
ables us to accurately detect GFW-injected RST packets
by observing RSTs at the receiver not sent by the sender.

4. Model Elements to Probe
In this section we frame design considerations for

stateful monitors and the corresponding probe tests we
can use to infer their analysis models. We categorize the

2



Figure 1: Terminology for overlapping fragments: (a) Frag 1 and Frag 2
are original fragments, while the others are subsequent fragments w.r.t.
arrival time. (b) Frag 3 is left-long to Frag 1, Frag 4 is left-short, while
Frag 2 and 5 are left-equal. (c) Frag 3 is right-short to Frag 1, Frag 4
is right-long, and Frag 2 and Frag 5 are right-equal. (d) Frag 3 and
Frag 4 partially overlap Frag 1, while Frag 5 fully overlaps Frag 2.
(e) Offsets 6 and 7 represent a hole.

design decisions into TCB creation, reassembly (pack-
ets/bytestream), TCB teardown, state management, and
protocol message interpretation. We base our probe tests
largely upon prior techniques [11, 15].

TCB Creation. Stateful analysis of TCP requires that
a monitor uses some criteria to determine when to instan-
tiate state, i.e., a Transmission Control Block (TCB) for
TCP connections. The monitor can do so upon observa-
tion of a proper three-way handshake, but can also do so
based on more partial observation.

To infer a stateful monitor’s TCB creation policy, we
can test (i) an initial SYN but no responding SYN-ACK,
(ii) a SYN-ACK but no initial SYN, or (iii) both SYNs.
After each we send a packet with banned content (its
ACK completes the handshake) and see whether we ob-
serve disruption, indicating that the monitor has tracked
the connection and thus presumably instantiated a TCB.

Reassembly. To fully recover application data, a mon-
itor must reassemble fragmented packets as well as re-
cover the TCP bytestream. In addition, overlapping frag-
ments or TCP segments that differ in their contents ren-
der the correct reassembly ambiguous. If the monitor
uses a different interpretation than the receiver, opportu-
nities for evasion arise.

Figure 1 shows our terminology for discussing re-
assembly overlap. We test each of the 18 possible over-
lap cases that can arise to see how the monitor acts to
resolve the ambiguous overlap, i.e., whether it reacts to
a censored keyword that appears only in one version of
the overlap. The same approach applies for reassembly
of both IP fragments and overlapping TCP segments.

State Management. Due to resource constraints, any
stateful monitor must define a policy for ultimately dis-
carding state (for long-running connections), typically
framed in terms of how long and/or how much state to
keep. Inducing the monitor to discard state can then
open up an evasion opportunity. We can infer a mon-
itor’s state-holding capabilities and policies using per-

sistent HTTP connections over which we introduce in-
creasing amounts of time and volume of non-sensitive
data prior to sending a sensitive request. In addition, a
monitor may time out connections with holes (pending
undelivered data) using a different policy, which we can
probe in an analogous manner.

TCB Teardown. Similarly, a monitor must decide
when to stop maintaining any information about a con-
nection. Normally it makes sense to do so upon observ-
ing one side transmit a RST, or both engage in a FIN
handshake. However, connections can also cease due
to other reasons, such as a loss of network connectiv-
ity, for which the monitor must ultimately recover using
a timeout, the choice of which will necessarily trade off
in-depth analysis versus available resources.

We can infer a monitor’s teardown policy by estab-
lishing a connection, transmitting a termination message
crafted so that the intended receiver will ignore them, and
then subsequently attempting to access censored content.
Success for the latter indicates the monitor tore down the
TCB in response to the termination message.

Protocol Message Interpretation. In addition to con-
nection management and recovery of data, a basic mon-
itor analysis issue concerns correct and full interpreta-
tion of the meaning of various messages. Here, im-
plementation shortcomings can result in failures to val-
idate values for different header fields (particularly true
of edge cases), but more fundamentally the monitor’s job
becomes difficult in the face of messages that diverge
from the protocol specification. For lower-layer proto-
cols exploiting such deficiencies can prove difficult (e.g.,
a packet with bad IP header checksum will be dropped
before even reaching the monitor), but more opportuni-
ties arise at higher layers—particularly, for our purposes,
when considering HTTP messages.

Even given full, correct implementation, monitors face
difficult analysis decisions due to incomplete informa-
tion. For example, by itself a monitor will have sig-
nificant problems determining whether a given packet’s
IP TTL suffices for delivery of the packet to the re-
ceiver. Prior work has shown that a monitor can resolve
many protocol-based ambiguities by observing an end
machine’s response to special probes that comprehen-
sively explore a protocol in all perceivable contexts [17].
Given limited space we do not explore this approach
comprehensively, but in the next section present a sub-
set that reflects the most significant aspects.

5. Illuminating GFW’s Analysis Model

We now turn to using the probe tests identified in the
last section to deduce GFW’s analysis model. While we
conducted 40+ such tests, due to limited space here we
only report tests leading to interesting observations.

3



Notation. For unambiguous presentation of our re-
sults, we introduce notation (inspired by [20]) as follows.
We denote the temporal sequence of packets sent by the
client and the web sever as (pi, pi+1, . . ., pm) and (p j,
p j+1, . . ., pn), respectively. We represent packet(s) in-
jected by GFW to the client and server by g and g (we
omit the number of such packets when repeated), and the
shorthand reset refers to (g,g). We capture a packet’s
TCP flags using superscripts—for example, pFA means
with FIN and ACK set—and optional flags with paren-
theses, such as pR(F) for a RST with or without FIN. We
prefix a flag with negation ¬ to indicate that it is not set.

p(D) refers to a data packet, for D ∈ {Bad,Good},
meaning carrying a censored keyword or not. We rep-
resent back-to-back data packets collectively carrying
data D as p(D)+ and D’s total size by δ (D). seq(p)
and ack(p) represent p’s TCP sequence and ack. num-
bers. τ(t) refers to the passage of t units of time, and
tuple(p) represents the connection 5-tuple of a packet
p. Hole refers to one or more missing data packets
for which packets later in the sequence space have ar-
rived. The predicate abovehole(p) expresses a packet
p for which seq(p) falls within the advertised window
but above a gap in the received bytestream. Finally, we
include any additional information using a leading sub-
script. For example, IP(T T L=<low>)p indicates a packet
with an IP TTL low enough to not make it to the receiver
(but high enough to be seen by the monitor).

Given this notation, Table 1 summarizes our findings.
In the table, insertion refers to inducing the monitor to
process data that the receiver will not, while evasion
refers to undermining the monitor’s processing so that
it fails to recognize data that the receiver will process.
In some cases, insertion of data might lead to evasion
of subsequent data, which we represent by insertion-
evasion. All the evasion opportunities listed in the table
involve client-side traffic manipulation, however some
cases presume specific processing style on the server end.
We indicate this under “Receiver Dependent?”.

TCB Creation. We find that GFW creates a TCB
directly upon observing pS, enabling an evasion attack
(TCP1): transmitting IP(T T L=<low>)pS past GFW and
then establishing a connection with the same tuple but
different initial sequence numbers enables successful
retrieval of a censored web page. We note that this
TCB creation behavior renders GFW vulnerable to SYN-
flooding-style attacks that exhaust its available memory.

Reassembly. Different from [22] and [13], we find
GFW can assemble both IP fragments and TCP segments
for HTTP connections, suggesting that GFW employs
different policies for different protocol (or has subse-
quently changed its operation). However, it prefers the
original IP fragment for all cases except where Fsub is
left-long and right-long to Forig, per the terminology in

Figure 1 (IP2). For reassembly of overlapping TCP seg-
ments, we find that if a subsequent left-equal segment ar-
rives, GFW prefers it (TCP5). For all other cases, GFW
does not react to any keyword placement, enabling us to
successfully retrieve the censored content.

State management. We find that GFW maintains
state for a connection for as long as 10 hours (TCP7),
and for as much as 1 GB data transferred from client
to server (TCP8). (Note, these values correspond to the
maxima we tested, rather than precise thresholds. We ob-
tained consistent results over repeated measurements for
the values listed, but the boundaries used at a given time
could depend on the monitor’s operational load.)

We repeated these tests but with a preceding hole, find-
ing that GFW abandons state more readily, doing so af-
ter having to buffer 1KB of data above the hole (TCP9).
Likewise, GFW purges state after 60–90 minutes elapses
for a connection that includes a hole (TCP10).

TCB Teardown. To identify GFW’s TCB teardown
policy (TCP6a), we send pR(A) and (separately) pF(A)

from client to server. GFW’s acceptance of these al-
lows us to force TCB teardown (for example, using in-
sufficient TTL for the termination packet to make it to
the receiver), after which we verified we can success-
fully access banned content. Moreover, simply sending
pF suffices to induce GFW to tear down connection state
(TCP6b), even though the receiver will drop the packet
due to the lack of an ACK.

Protocol Message Interpretation. We test GFW for
resilience against a number of issues regarding protocol
validation, completeness, and ambiguous messages. One
telling observation is that GFW accepts a packet with
wrong ack. number (TCP2). RFC [14] states that hosts
should drop incoming segments that acknowledge data
the host has not sent (and send an ACK in response).
GFW also processes data packets that lack ACK (TCP3)
or have incorrect checksums (TCP4). All three test cases
allow us to insert packets into the monitor’s processing.

Regarding HTTP processing, we find that GFW in-
spects both GET and POST requests, but not others such
as HEAD or DELETE. In addition, GFW only analyzes
the URI and headers of POST requests, but not the fol-
lowing message body. These tests establish that GFW
does not perform blind regular-expression matching on
complete HTTP packets, but instead selectively inspects
only the header information.

We performed two tests to inspect GFW’s behavior
when receiving requests that deviate from the specifi-
cation [10], due to either an extra space between the
Method and the Request-URI, or between the Host:
header name and its value. The first successfully evades
GFW, but the monitor does process the second. We also
find that the monitor does not look beyond 2,048 bytes
into the Request-URI (HTTP2).

4



Test Evasion Class Description Circumvention
Opportunities

Fixing
Cost

Receiver
Dependent?

IP1 Ambiguity IP(T T L=<low>)p(Bad) =⇒ reset Insertion High

IP2 Reassembly Overlapping fragment processing Insertion High 3

TCP1 TCB creation IP(T T L=<low>)pS
i , pS

i+1, pi+2(Bad) ∧ (tuple(pi) =

tuple(pi+1)) ∧ (seq(pi) 6= seq(pi+1)) =⇒ ¬ reset
Insertion-Evasion Low

TCP2 Incompleteness IP(ack=<bad>)p(Bad) =⇒ reset Insertion Low

TCP3 Incompleteness IP(chksum=<bad>)p(Bad) =⇒ reset Insertion Low

TCP4 Incompleteness p¬A(Bad) =⇒ reset Insertion Low

TCP5 Reassembly Overlapping segment processing Insertion High 3

TCP6a TCB Teardown IP(T T L=<low>)pR(A)
i , pi+1(Bad) =⇒ ¬ reset Insertion-Evasion High

TCP6b TCB Teardown IP(T T L=<low>) pF
i , pi+1(Bad) =⇒ ¬ reset Insertion-Evasion Low

TCP7 State Management τ(≤ ≈ 10 hr), pi(Bad) =⇒ reset State exhaust. High

TCP8 State Management (pi(Good)+ ∧δ (Good)≤ ≈ 1 GB), pi+1(Bad) =⇒ reset State exhaust. High

TCP9 State Management hole, (pi(Good)+ ∧ δ (Good) ≥ 1 KB ∧ abovehole(pi)),
pi+1(Bad) =⇒ ¬reset

State exhaust. High 3

TCP10 State Management hole, τ(y)≥ 60 min, (pi(Bad)∧abovehole(pi)) =⇒ ¬reset State exhaust. High 3

HTTP1 Ambiguity GET with > 1 space between method and URI =⇒ ¬ reset Evasion Low

HTTP2 Incompleteness GET with keyword at location > 2048 =⇒ ¬ reset Evasion Low

HTTP3 Incompleteness GET with keyword in ≥ 2nd of multiple requests in single
segment =⇒ ¬ reset

Evasion Low

HTTP4 Incompleteness GET with URL encoded (except %-encoding) =⇒ ¬ reset Evasion Low 3

Table 1: Evasion opportunities in GFW’s analysis of network traffic.

Next, we aim to establish how comprehensively GFW
will look into an HTTP packet to extract these fields,
which has relevance because HTTP allows multiple out-
standing requests (“pipelining”), and TCP segmentation
can cause these to appear in a single packet. Thus, cor-
rect monitor processing requires extracting all requests
present in a packet, not just the first. However, we
find that GFW inspects only the first Request-URI and
Host: value (HTTP3). But for some Host: values,
GFW detects them even if placed in subsequent pipelined
requests, indicating it must contain two separate black-
lists evaluated by separate code paths (or two separate
devices operate along the same path). One of these ap-
pears to have the form “Host: *.baddomain.com”, for
which it scans the entire bytestream, while the other con-
tains keywords for which it only scans the first instance
of a URI and a Host: header in a packet.

Finally, we test GFW’s decoding capabilities by en-
coding sensitive URIs using different encoding tech-
niques. The tests reveal that GFW only processes
standard URI percent-encoding, but not numerous oth-
ers [16]. Many of the latter have only partial support
amongst web servers, but for those that do support them,
they provide quite convenient evasion.

6. The Cost of Fixing Evasion Bugs

In the last section we identified a number of evasion
opportunities to counter GFW censorship. Here we dis-
cuss the potential level of difficulty that GFW implemen-
tors likely face to address issues such as these, basing our
rationale on our own experiences with implementing net-
work monitors.

High Difficulty. We can readily cause GFW to pro-
cess packets that receivers will not by using a low IP TTL
value (IP1). This vulnerability appears hard to fix, as
monitor has little ability to validate the IP TTL through
passive monitoring, given a discrepancy of just one hop
suffices for the evasion. Hop counts can vary organically
due to routing changes, making an accompanying deci-
sion process difficult to determine.

Removing ambiguities arising from reassembly of
partially overlapping fragments (IP2) and TCP streams
(TCP5) appears expensive for monitor. It requires either
in-line normalization [11,19], imposing performance and
robustness concerns, or prior knowledge of end host im-
plementation behavior [17], unscalable for a nation-wide
censorship system.

TCB teardown (TCP6a) marks the point at which a
monitor decides to stop maintaining information about

5



a connection.2 This is a critical decision because if a
monitor deletes the TCB of a connection that has not ac-
tually terminated, it loses any further monitoring oppor-
tunities. In principle, the monitor could kill connections
for which it discards state, but doing so would incur large
collateral damage if either the monitor has state-holding
problems, or if routing changes bring new active flows by
one of its monitors. A similar problem arises for the state
management issues sketched in TCP7–TCP10, i.e., dis-
tinguishing timed-out connections from those that sim-
ply lie dormant. GFW’s current design choice of keeping
state for lengthy periods of time (except for connections
with holes) renders it vulnerable to resource-exhaustion
attacks. However, the alternate option of timing out in-
active connections risks evasion possibilities.

One other approach GFW could implement would be
to use “cold start” to re-instantiate state for connections
that continue to be active after the monitor has either dis-
carded state for them or observed them to apparently ter-
minate [11]. This would enable it to recover memory
for connections that have genuinely terminated, but still
monitor those that somehow continue. However, this at
best provides a partial solution. The cold-start approach
of [11] relied on the fact that the local side of each con-
nection could be deemed trustworthy. In our context,
this is not the case, and can be leveraged for evasion
by, for example, splitting a banned keyword across the
bytestream as seen prior to a connection’s state apparent
termination versus after its reappearance.

Low Difficulty. A number of the evasions we list
(TCP1–TCP4, HTTP1–HTTP4) are simple to fix, likely
requiring only modest modifications to the existing code
base. For example, the censor can address TCB creation
issues (TCP1) by creating a TCB only upon seeing both
a SYN and the corresponding SYN-ACK, since the latter
is difficult to spoof.

However, some of these will reflect design decisions
to trade off performance for completeness. Thus, even
fixing these simple problems could represent significant
burdens for the implementors.

7. Conclusion and Future Directions

Our work focuses on the observation that monitors that
dynamically inspect and censor network traffic funda-
mentally must employ some sort of analysis model to
determine whether the traffic includes prohibited content.
Inference of this model can then enable systematic iden-
tification of evasion opportunities that users can exploit
to access restricted content by permuting their network
traffic accordingly.

2 TCP6b reflects a similar state-holding issue as TCP6a, but
one easy to fix as it is based on an incorrect implementation of
the TCP specification.

We explore this problem space inspired by prior work
analyzing the vulnerabilities of NIDS to forms of eva-
sion. We consider general classes of evasions to which
monitors can be vulnerable and develop an extensive set
of probe tests for each category, using the tests to illu-
minate the analysis model of China’s GFW. Based on
GFW’s responses (or lack thereof) to our probes, we
identified a number of facets of how it performs its mon-
itoring:

• GFW operates in a stateful manner, but limits its
analysis to one direction only (client-to-server) .

• We can manipulate GFW’s connection manage-
ment state (TCB) both in terms of inducing state
for connections that do not actually exist (creat-
ing SYN-flooding and unsynchronized-monitoring
vulnerabilities) and triggering tear-down of state
for connections that still exist (spoofed termination
packets, timeouts, accelerated timeouts for connec-
tions with sequence holes).

• GFW is prone to state exhaustion attacks, as it
maintains state for ≥ 10 hours of inactivity.

• GFW employs specific fragment and TCP segment
reassembly policies, enabling evasions by overlap-
ping fragments or segments for receivers whose
policies differ.

• GFW’s HTTP request processing has numerous
omissions and limitations (syntax tweaks can un-
dermine blacklist matching; elements of pipelined
requests go unanalyzed).

Our preliminary results suggest numerous directions
for further exploration: (1) automated model extraction
(turn-key generation of full analysis profiles of moni-
tor); (2) evasion tools (using the output of such extrac-
tion to automatically configure tools for permuting a sys-
tem’s traffic to facilitate circumvention); (3) assessment
of analysis incongruity (e.g., tracking how GFW’s anal-
ysis components both differ across various points in the
network, and evolve over time); (4) policy discrepancies
(e.g., whether a censor employs different policies for dif-
ferent protocols or web sites).

Acknowledgments
This work was supported by the National Science Foun-
dation under grants 1223717 and 1237265, Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.

8. References
[1] sniffjoke. http:

//www.delirandom.net/sniffjoke/.

6

http://www.delirandom.net/sniffjoke/
http://www.delirandom.net/sniffjoke/


[2] HTTP URL/keyword detection in depth.
http://gfwrev.blogspot.jp/2010/03/http-url.html,
2010.

[3] Scholar Zhang: Intrusion detection evasion and
black box mechanism research of the Great
Firewall of China.
https://code.google.com/p/scholarzhang/, 2010.

[4] west-chamber-season-2.
https://code.google.com/p/west-chamber-season-
2/,
2010.

[5] west-chamber-season-3.
https://github.com/liruqi/west-chamber-season-3/,
2011.

[6] D. Anderson. Splinternet Behind the Great
Firewall of China. Queue, 10(11):40:40–40:49,
Nov. 2012.

[7] P. Biondi. Scapy. http:
//www.secdev.org/projects/scapy/.

[8] R. Clayton, S. J. Murdoch, and R. N. M. Watson.
Ignoring the Great Firewall of China. In
G. Danezis and P. Golle, editors, Proceedings of
the Sixth Workshop on Privacy Enhancing
Technologies (PET 2006), pages 20–35,
Cambridge, UK, June 2006. Springer.

[9] J. R. Crandall, D. Zinn, M. Byrd, E. Barr, and
R. East. Conceptdoppler: a weather tracker for
Internet censorship. In Proceedings of the 14th
ACM conference on Computer and
communications security, CCS ’07, pages
352–365, New York, NY, USA, 2007. ACM.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616: Hypertext Transfer Protocol – HTTP/1.1,
1999.

[11] M. Handley, V. Paxson, and C. Kreibich. Network
Intrusion Detection: Evasion, Traffic
Normalization, and End-to-end Protocol
Semantics. In Proceedings of the 10th conference
on USENIX Security Symposium - Volume 10,
SSYM’01, pages 9–9, Berkeley, CA, USA, 2001.
USENIX Association.

[12] L. Juan, C. Kreibich, C.-H. Lin, and V. Paxson. A
tool for offline and live testing of evasion resilience
in network intrusion detection systems. In
Proceedings of the 5th international conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’08, pages
267–278, Berlin, Heidelberg, 2008.
Springer-Verlag.

[13] J. C. Park and J. R. Crandall. Empirical Study of a
National-Scale Distributed Intrusion Detection
System: Backbone-Level Filtering of HTML
Responses in China. In Proceedings of the 2010

IEEE 30th International Conference on
Distributed Computing Systems, ICDCS ’10, pages
315–326, Washington, DC, USA, 2010. IEEE
Computer Society.

[14] J. Postel. RFC 793: Transmission Control
Protocol, Sept. 1981.

[15] T. H. Ptacek and T. N. Newsham. Insertion,
Evasion, and Denial of Service: Eluding Network
Intrusion Detection. Technical report, Secure
Networks, Inc., Suite 330, 1201 5th Street S.W,
Calgary, Alberta, Canada, T2R-0Y6, 1998.

[16] D. Roelker. HTTP IDS Evasion Revisited.
Technical report, Aug. 2003.

[17] U. Shankar and V. Paxson. Active Mapping:
Resisting NIDS Evasion without Altering Traffic.
In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, SP ’03, pages 44–,
Washington, DC, USA, 2003. IEEE Computer
Society.

[18] D. Song. fragroute. http://www.monkey.
org/~dugsong/fragroute/.

[19] M. Vutukuru, H. Balakrishnan, and V. Paxson.
Efficient and Robust TCP Stream Normalization.
In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, SP ’08, pages 96–110,
Washington, DC, USA, 2008. IEEE Computer
Society.

[20] N. Weaver, R. Sommer, and V. Paxson. Detecting
Forged TCP Reset Packets. In NDSS, 2009.

[21] P. Winter. brdgrd. https:
//git.torproject.org/brdgrd.git.

[22] P. Winter and S. Lindskog. How the Great Firewall
of China is blocking Tor. In Proceedings of the
USENIX Workshop on Free and Open
Communications on the Internet (FOCI 2012),
August 2012.

[23] X. Xu, Z. M. Mao, and J. A. Halderman. Internet
censorship in China: where does the filtering
occur? In Proceedings of the 12th international
conference on Passive and active measurement,
PAM’11, pages 133–142, Berlin, Heidelberg,
2011. Springer-Verlag.

7

http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://www.monkey.org/~dugsong/fragroute/
http://www.monkey.org/~dugsong/fragroute/
https://git.torproject.org/brdgrd.git
https://git.torproject.org/brdgrd.git

	1 Introduction
	2 Related Work
	3 Methodology
	4 Model Elements to Probe
	5 Illuminating GFW's Analysis Model
	6 The Cost of Fixing Evasion Bugs
	7 Conclusion and Future Directions
	8 References

