
A Survey of Support For Implementing Debuggers

Vern Paxson
CS 262

Prof. Anderson
October 30, 1990

Abstract

The degree to which hardware and operating systems support debugging strongly influ-

ences the caliber of service that a debugger can provide. We survey the different forms in

which such support is available. We limit our survey to lower-level debugger design issues

such as accessing the debugged program’s state and controlling its execution. The study

concentrates on those types of support that make overall debugger performance efficient

and that support debugger features for ferreting out hard-to-find bugs. We conclude with

an overview of state-of-the-art debuggers and a proposal for a new debugger design.

Introduction

Debugging is one of the fundamental aspects of software development. Once
software has been specified and designed, it enters a well-known edit–compile–
test–debug–repeat implementation cycle. During this cycle there is clearly
a need for tools that aid debugging: one study of experienced programmers
[1] found that 78% had bugs that took longer than one day to find, and 34%
had bugs that took more than a month to find.

Breakpoint debuggers are now widely available. These debuggers allow a
programmer to suspend a program’s execution at a particular point, inspect
and possibly modify the program’s state, and then continue the program.
In their usual form breakpoint debuggers are adequate for a number of de-
bugging tasks, but they provide little support for particularly difficult bugs,
such as those whose effects are not apparent until long after their erroneous
action occurs.

More powerful debuggers are available which can aid in rapidly locating
such bugs. As we shall see, the degree to which hardware and operating

1



systems support debugging strongly influences the caliber of service that a
debugger can provide. This study concentrates on these support issues and
how they affect debugger design.

First we consider what kinds of bugs are difficult to find with standard
breakpoint debuggers. The characteristics of these bugs will provide a context
with which to evaluate the merits of different debugger features. Next we
give an overview of the different features that a debugger can offer, some
of which we will explore further, and some of which are beyond the scope
of this paper. We then discuss the basic mechanisms underlying breakpoint
debugging. With this background in place, we first look at hardware support
for debugging, followed by a discussion of the most basic issue in debugger
design: whether the debugger executes in the same process as the debuggee1

or in a separate process; and, if in a separate process, what types of services
are available for communication between the debugger and the debuggee.
Next we look at systems for supporting checkpointing and reverse execution,
which combine to offer a powerful but at the moment rarely available form
of debugging support. We then present an overview of some state-of-the-art
debuggers and the support they require, and conclude with a summary of
the themes that have emerged and how some of them might be integrated
into a new debugger design.

Hard-to-Find Bugs

Simple breakpoint debuggers excel at finding certain types of bugs. Any bug
that immediately causes a program fault is caught in the act. Bugs involving
taking incorrect execution paths can also be instantly found by breakpointing
at the beginning of the incorrect path2. In general, bugs whose effects are
almost immediately manifested can be found with simple breakpoint debug-
gers by setting a breakpoint at the point of manifestation and then mentally
looking back along the execution path a few steps.

Where debugging becomes difficult is with bugs whose effects remain
masked for a lengthy period of execution. These include bugs where incorrect
values are computed but then not consulted for a while, or invalid data values
are accessed, or “out-of-bounds” modifications occur due to pointer misuse.

1A program being debugged is a debuggee.
2Providing that the path is only rarely taken. This will be discussed more fully

momentarily.

2



While bugs that occur in obvious places can usually be found quite eas-
ily, if the location where the bug occurs is heavily traveled then it can be
very difficult to find the bug using a simple breakpoint due to the number of
extraneous breakpoints that the programmer must consciously ignore. For
example, if after several thousand calls to a routine, the routine corrupts one
of its internal data structures (without causing a fatal fault), then simply
getting the program to the particular state where the data structure has just
been corrupted can be inordinately tedious. The process is also prone to
painful mistakes, where, numbed with boredom, the programmer acciden-
tally allows the debuggee to continue past the desired state, and must begin
the process afresh. These sorts of bugs are ideal candidates for conditional
breakpoints (see below).

Another type of bug that can be difficult to find is one in which some
property of a data type is violated. An example is a link list into which a cycle
is erroneously introduced. Debuggers typically have a very low-level view of
a program’s semantics, operating in terms of the values of individual registers
and memory locations. To find these types of bugs efficiently requires the
ability to dynamically add high-level assertion checks into the debuggee.

One of the tools for finding these sorts of bugs is the watchpoint , which is
a type of breakpoint that is triggered whenever a particular memory location
is read or written. Another tool is the conditional breakpoint—a breakpoint
that interrupts the debuggee’s execution only when a particular condition
holds. A simple type of conditional breakpoint is one that interrupts execu-
tion after the breakpoint has been reached n times. Such a facility is very
useful for finding bugs in heavily-traveled locations; binary search can be
used to locate the precise value of n for reproducing the program state at the
onset of the bug. When a conditional breakpoint’s condition is expressed in
low-level terms it is similar in power to a watchpoint. With some debuggers,
though, the condition can be expressed at the same semantic level as that
in which the program was written, in which case the conditional breakpoint
becomes extremely powerful (though difficult to implement efficiently).

Conditional breakpoints have historically often been extremely inefficient,
leading perhaps to an underappreciation of their value [2]. In our survey we
will pay especially close attention to support for efficient conditional break-
points.

A particularly difficult-to-find type of bug is a sporadic one: one that is
not readily reproducible. These bugs can be due, for example, to referencing

3



uninitialized memory, to interprocess interactions that have an element of
indeterminism in them (typically due to scheduling), or to real-time effects
where indeterminism is introduced by the behavior of the world external to
the computer.

A very nasty form of sporadic bug is a Heisenbug [3]. This is the (some-
what whimsical) name given to a bug whose manifestation disappears when
a debugger is used to find it. Timing-related bugs and those involving illegal
memory references are examples.

The principle tools for finding sporadic bugs are checkpointing and reverse
execution. The principle method of avoiding Heisenbugs is to design the
debugger to execute as a process separate from that of the debuggee’s. Both
of these will be discussed in detail.

An Overview of Debugger Features

There are many different services that a debugger can provide, more than can
be adequately treated in a short paper. Some that we will not be discussing
further are: graphical interfaces (some examples are the Joff debugger [4],
Bugbane [5], Dbxtool [6], Pi [7], and pdb [8]); debugging optimized code
([9] is the classic reference); issues in source-level debugging [10] and symbol
table management [6, 11, 12]; interpretive debuggers, such as Saber-C [13];
transfer tracing, where each discontinuity in the program counter is recorded
[14]; debugging real-time software [15]; and multi-lingual debuggers [11, 16].
We also will not be discussing debugging of multi-threaded, parallel, or dis-
tributed programs (of which there is a substantial body of literature; [17] is a
good starting place) except where those techniques also pertain to debugging
single-threaded uniprocessor programs.

The debugger features we will be discussing further are:

• single-stepping : executing one instruction, source-level statement, or
procedure of the debuggee at a time;

• conditional breakpoints: breakpoints that are triggered when reached
only if a particular condition is true;

• watchpoints : “data” breakpoints that are triggered when a memory
location is read or written;

4



• teledebugging : debugging programs remotely, with the (main part of)
the debugger executing on one host and the debuggee executing on
another;

• attachment : the ability to begin debugging a process that is already
executing;

• meta-debugging : debuggers that can be used to debug themselves;

• kernel debugging : the ability to debug the operating system;

• checkpointing : taking a snapshot of the complete state of an executing
program; and,

• reverse execution: the ability to roll back execution to a previous pro-
gram state.

Each of these features can prove invaluable for certain types of debugging
tasks. As we discuss different forms of support for breakpoint debugging, we
will comment on how the support can be used for these features.

Breakpoint Mechanisms

Breakpoints provide a fundamental type of support for debugging. They
give a debugger the ability to suspended the debuggee when its thread of
control reaches a particular point. The program’s call stack and data values
can then be examined, data values possibly modified, and program execution
continued until the program encounters another breakpoint location, faults,
or terminates.

Breakpoints are usually implemented by replacing the instruction (or in-
structions) at the desired location in the program with a trap instruction3.
The replaced instruction is remembered for later execution.

When the trap instruction is executed it causes a fault that is detected
by the operating system. The operating system them informs the debugger
(either via a message, by completing a system call that the debugger is exe-
cuting, or by a straight transfer of program control) that a fault has occurred.

3Johnson [18] and Gondzio [19] give thorough discussions of different types and imple-
mentations of breakpointing and single-stepping.

5



The debugger inspects the type of fault and reports it to the programmer.
At this point the programmer may wish to inspect or modify the debuggee’s
state. If the debugger shares its address space or part of its address space
with the debuggee, this process is quite simple. If not, the debugger calls
upon the operating system to provide a form of access to the debuggee’s
state.

When the programmer decides to continue execution, the program must
be resumed starting at the instruction that was replaced by the trap in-
struction. Some systems provide a service to emulate the instruction; with
others, the debugger must replace the trap instruction with the remembered
instruction, single-step the debuggee, set the trap instruction again, and fi-
nally continue the debuggee’s execution.

Conditional breakpoints are usually implemented using nonconditional
breakpoints. Each time the debuggee stops at a breakpoint the debugger
checks the condition. If it is false, the debugger continues the debuggee
without informing the programmer. If it is true, the programmer is so in-
formed.

When operating system support is required for detecting breakpoints and
continuing debuggee execution, as it often is, this implementation of condi-
tional breakpoints will have very low performance when the breakpoint is
frequently encountered and the condition is usually false.

Instruction-level single-stepping is usually supported in hardware; we
discuss such support below. Once a mechanism exists for instruction-level
stepping, statement-level stepping can be implemented simply by repeated
instruction-level stepping. Procedure-level stepping is more simply imple-
mented by breakpointing the return address of the procedure.

Hardware Support

Hardware support for debugging comes in varying degrees. At a minimum,
some form of trap instruction is necessary for implementing breakpoints, and
virtually all processors provide this in some form. Beyond trap instructions,
hardware can provide debugging support that has the major advantage of
being non-intrusive: the debuggee runs wholly unmodified until the hardware
detects a debugging-related event. This completely eliminates Heisenbugs.

Most processors support single-stepping and instruction emulation by
providing a bit in the PSW that indicates that a trap should be generated

6



after the next instruction is executed. On processors without such support,
such as the SPARC and R2000 architectures, the debugger must be able to
decode the instruction to be single-stepped, compute its successor (or pos-
sible successors), breakpoint the successor, continue the program, trap the
resulting breakpoint, and remove the successor breakpoint [20].

Hardware page protection can be used to implement watchpoints by mak-
ing pages read-only (to catch modifications) or inaccessible (to catch any
form of access) [11, 21]. The author’s experience using this feature with
VAX DEBUG is that it works well. It is not clear from the literature why
this approach is not used more commonly. Possibly the success of VAX DE-
BUG is due to Vax’s small page size (512 bytes), which limits the number of
false alarms that must be processed. On machines with larger page sizes the
overhead may become too high.

One powerful form of hardware debugging support is the availability of
comparators that trigger upon specific execution or memory access patterns
and then record the present execution state [22]. Snow [23] describes using
an external logic analyzer for capturing such software states. The general
mechanism was in turn used to implement a debugger [24]. Breakpoints
were implemented by using hardware comparators to trap when a partic-
ular address was about to be loaded into the program counter. Similarly,
watchpoints were implemented to trap reading, writing, or the writing of a
particular value to a given address. Their implementation suffered, though,
from the availability of only two simultaneous breakpoints, and from the in-
terrupt delay of the external analyzer causing the debuggee to actually be
stopped several instructions later than the breakpoint address itself.

Tsai [15] describes a system that makes sophisticated use of a logic ana-
lyzer for detecting high-level events such as process creation, system calls, in-
terrupts, shared memory access, synchronization between multiple processes,
interprocess communication, I/O completion, and process termination. The
events are detected by triggering upon access or execution of addresses re-
lated the events. Tsai’s system records precise timing information for each
event, to allow debugging of real-time programs.

Another form of hardware debugging support is an instruction counter
[25]. Cargill and Locanthi describe such a counter as being loaded with a
value that is decremented upon the execution of each instruction. When the
counter reaches zero, an interrupt is generated. Instruction counters provide
a simple way to profile code by determining the number of instructions exe-

7



cuted. They also provide support for conditional breakpoints: the debuggee
can be periodically stopped and the breakpoint condition inspected. When
the condition is found to be true, execution can be restarted and binary
search on the number of instructions executed used to find the exact point
where the breakpoint condition becomes true. In a similar vein, an instruc-
tion counter can be used for reverse execution by counting the number of
instructions executed until a fault and then restarting and running for just
a few instructions less, to achieve the state where the debuggee is about to
fault but has not yet done so. Finally, an instruction counter can be used to
estimate elapsed program execution time by assuming that execution time
is linearly proportional to the number of instructions executed. The authors
implemented a 32-bit instruction counter for the Motorola MC68020 using
6 chips, but unfortunately they give no solid information about how the
implementation was used or integrated into a debugging facility4.

While Cargill and Locanthi make a compelling argument that an instruc-
tion counter gives a considerable benefit for a low hardware cost, Mellor-
Crummey and LeBlanc describe how an instruction counter can be imple-
mented wholly in software [27]. Their key observation is that for implement-
ing watchpoints and reverse execution an instruction count is not needed;
instead, what is needed is simply a unique identification of each state the
program has entered, along with a way to recover the state corresponding to
the identification. The value they associate with each program state is the
pair (program counter , software instruction counter), where software instruc-
tion counter is incremented at least each time the program makes a backward
branch or a subroutine call.

They implement their software instruction counter by modifying the as-
sembly code of the program to be monitored. At each target of a backward
branch and at the beginning of each subroutine body they add code to in-
crement the software instruction counter and test whether it has reached a
predetermined value. If so, a trap is generated or a branch made to a handler.

By keeping the software instruction counter in a general register, the over-
head of the counter is minimized. Their measured overhead on a Motorola
MC68020 machine ranges from negligible (< 0.1%) for an execution of the

4Ditzel, McLellan, and Berenbaum [26] report that the CRISP microprocessor has a
built-in timer/instruction counter, but also do not elaborate on the uses to which it has
been put.

8



lex program up to 12% for an execution of grep with a particular pattern.
Unfortunately, they predict that the overhead on a RISC processor will range
from 15-23%, depending on the processor’s instruction set. This overhead,
combined with the necessity for special compilation to use the instruction
counter, argues in favor of a hardware implementation.

The forms of hardware support for debugging considered so far are rel-
atively cheap to implement. A much more expensive but powerful form of
debugging support can be attained by using a tagged architecture, where each
memory location has some type information associated with it. Johnson’s
SPAM architecture [18] uses tagging to implement watchpoints, run-time
type checking, and catching access to uninitialized data, as well as many
types of breakpoints (trap before instruction execution, after instruction ex-
ecution, before successful branch, and on procedure entry and exit).

Another expensive form of debugging support is sheaved memory [28].
This is a method of grouping together a number of physical pages into one
logical page. Writes to the logical page result in each member of the group
being modified; reads come from the primary member of the group. Sheaved
memory supports checkpointing and reverse execution. To create a check-
point, one page is simply removed from each group. To reexecute at a given
point the pages corresponding to the given checkpoint are copied to the
primary member (and to any other members currently in the group) and ex-
ecution is restarted. Sheaved memory systems are clearly memory-intensive
when used for checkpointing, but if integrated with a copy-on-write paging
system, perhaps no more so than other checkpointing schemes (see below).
When checkpointing is not in use then each physical page is available for sep-
arate use; thus, the feature does not cost any additional memory except when
used, only some additional hardware logic and operating system support.

While hardware support can clearly yield substantial benefits in debug-
ger support5, if present trends towards RISC-style architectures continue,
debugger support will probably remain spare—a trap instruction and per-
haps a PSW trace bit—since most hardware-supported debugging features
can, with some effort and loss of performance, be done entirely in software.
The fundamental tenet of RISC—that every feature supported by hardware

5It also can clearly be carried too far: Johnson mentions that proposals have been
made for hardware support for mapping the program location to the corresponding source-
language location!

9



be thoroughly justified—appears to require a greater emphasis on the impor-
tance of debugging than is now made.

Same-Process Debuggers

A major issue in debugger design is whether the debugger executes in the
context of the same process as the debuggee or as a separate process (pos-
sibly on a remote machine). Both approaches are full of possibilities and
limitations for debugging support. We look at each in turn.

A same-process debugger is one that executes in the context of the same
process as the debuggee. Consequently, the debugger also shares the de-
buggee’s memory.

The main advantages of same-process debuggers are:

• they can directly access the debuggee’s memory, making both setting
breakpoints and examination and modification of the debuggee’s state
a simple matter. This eliminates the need for operating system sup-
port to provide these features, which can result in substantially better
performance (see below).

• the “context switch” from the debuggee to the debugger or vice versa
can be extremely fast—as quick as a branch instruction. This can be
especially valuable when faults are frequent, such as with programs
that use floating-point emulation, since the performance degradation is
much lower than when using a separate-process debugger.

There are, however, some serious disadvantages to same-process debug-
gers:

• The debugger’s presence deprives the debuggee of some of its resources
(such as virtual memory or open files).

• A bug that causes the debuggee to scribble on arbitrary memory can
wipe out the debugger, rendering it useless for finding the bug.

• Same-process debuggers cannot be attached to already-running pro-
cesses, nor can they support kernel debugging, teledebugging, or meta-
debugging.

10



• Finally, same-process debuggers are susceptible to Heisenbugs.

The modern examples of same-process debuggers tend to be those that
run on microprocessors, such as Farley and Thompson’s cdb debugger [29],
designed to run on the DEC Rainbow 100, and Gondzio’s MD-86 [19], de-
signed for the Intel 8086. Workstation and minicomputer debuggers tend
to be separate-process, no doubt because operating system support is avail-
able for separate-process debugging. One well-known same-process debugger
that runs on minicomputers, however, is VAX DEBUG [11], which provides
a large number of features, including multilingual debugging, source-level
debugging, and watchpoints.

As is common with same-process debuggers, VAX DEBUG is imple-
mented as a collection of exception handlers. When an exception is detected
by the VAX hardware, the operating system first checks whether the faulting
process has registered a primary exception handler. If so, it transfers control
to the handler; otherwise, it walks up through the call stack looking for an
exception handler. Provisions are made for registering additional exception
handlers in case the stack walk fails to find one or encounters a corrupted
stack frame. VAX DEBUG registers such exception handlers and thereby
catches all program faults.

Separate-Process Debuggers

Most debuggers are designed as processes separate from the debuggee. The
challenge with separate-process debuggers is keeping the overhead of manip-
ulating the debuggee low.

Usually such manipulation is done via operating system calls.6 On Unix
systems, ptrace is used. This grab-bag system call provides mechanisms
for processes to declare themselves as candidates for debugging as well as
allowing a debugger to read and modify the debuggee’s memory and access

6A wholly different approach is to use the file system instead. The Mesa “world-swap”
debugger [30] works by utilizing a low-level system service that creates a file containing a
(restartable) image of the debuggee’s complete state. The debugger can then inspect and
modify the debuggee’s state by simply using file system operations. The chief drawback
of this approach is that, as implemented, each world-swap takes tens of seconds to switch
between the debuggee and the debugger.

11



additional state (such as registers and pending signals)7. A major flaw in
the ptrace design is that all access and modification of debuggee state occurs
one word or register at a time, and is done in the debuggee’s context, so one
system call plus two context switches are required for each word accessed.

Adams and Muchnick [6] found that ptrace system call overhead was a
serious bottleneck in the performance of dbx; by extending ptrace to provide
more bulk services (reading and writing of multiple data words and registers)
they were able to reduce the number of ptrace calls by 2/3. Linton, the author
of dbx , and Olsson et. al. also stress the need to reduce the number of system
calls and context switches in order to achieve good debugger response [2, 31].

Context switches can be greatly reduced by making the debuggee’s state
directly available via system calls. For example, the /proc mechanism sup-
ported in System V Release 4 Unix systems [32] provides a virtual file system
directory in which there is a file for each process. The “contents” of the file
are the process’s memory and system state. A particular part of the state can
be read or modified by seeking to the appropriate address (offset) within the
file and using the usual read and write system calls. No context switches are
involved, only system calls. While /proc enhances performance and simpli-
fies access to the debuggee’s state, the system call overhead may well prove
too high for state-access-intensive operations such as conditional breakpoints.

Teledebugging

When it becomes apparent that the debugger need not share the same process
as the debuggee, the natural next step in separating the debugger from the
debuggee is to provide support for remote execution of the debugger. With
most separate-process debuggers it is the operating system that provides the
necessary services for controlling the debuggee and accessing its state. If
such system services are in general available to remote processes then it is
straight-forward to write a remote debugger.

Unix does not make its system services available remotely, but other op-
erating systems do. Mach, for example, provides a rather general exception
facility [33]. The philosophy behind the design is that exception handling
falls into two major classes: error handlers and debuggers8. Error handlers

7ptrace has been extended to provide for attachment, single-stepping, setting watch-
points, and accessing a process’ symbol table: see, for example, [20, 21].

8A third class is that of emulators for instructions that are not present in the hardware

12



deal with low-level, correctable exceptions that may be unusual but are not
necessarily due to bugs (for example, arithmetic conditions such as under-
flow). Mach provides a mechanism for registering an exception handler for
either a thread (a particular thread of control within an address space) or a
task (all threads of control within an address space). The former is intended
for error handlers and the latter for debuggers.

When a thread generates an exception, it is trapped by the operating
system and in turn forwarded to the exception handler for the particular
thread, if any. If no handler has been registered, the exception is forwarded
to the task’s exception handler. Thus in some respects the Mach facility views
debuggers simply as exception handlers, similar to same-process debuggers.
There are some crucial differences, however:

• Because the registry mechanism uses the general Mach “port” facility,
the debugger need not execute on the same machine as the debuggee.
The port facility automatically forwards messages via the network if
the destination process executes remotely.

• Unlike with same-process debuggers, Mach debuggers must rely on sys-
tem services for manipulating the debuggee. These include services to
get or set a thread or task’s state and to read and write another task’s
address space.

• Because “attaching” a debugger to a task simply involves the debugger
registering itself as an exception handler for the task, Mach debuggers
may trivially attach themselves to already-executing tasks.

Caswell and Black [34] describe a version of GDB, a ptrace-based debugger
[35], that has been modified to use the Mach exception facility. Their paper
emphasizes issues concerning debugging multithreaded applications.

Another debugger that can be used for teledebugging is the Amoeba de-
bugger [36]. The Amoeba debugger is “kernel independent” in the sense that
no special kernel hooks are required for it—it is implemented using the more
general mechanisms already provided by the operating system. The Amoeba
debugger supports event-stream debugging as well as breakpoint debugging.
Event streams are generated by linking the debuggee with a special run-time
library that replaces the system call stubs with routines that generate events

instruction set. These are similar to error handlers.

13



reporting the system call. These event streams can be routed to an arbitrary
destination (i.e., a local or remote debugger) using the standard Amoeba
message facilities. The event streams are then filtered using finite state ma-
chines to find events of interest. Interesting events can then be logged and
later used with a general Amoeba facility for checkpointing and restarting
to support reverse execution. Unfortunately the paper does not give any de-
tails as to how the exceptions caused by breakpoints are communicated to the
remote debugger nor how the remote debugger manipulates the debuggee’s
state, nor does it give references for these features. One assumes from the
general introduction in the paper that these facilities are implemented in a
fashion similar to Mach: an exception facility that can deliver exceptions to
an arbitrary message recipient, and a capability-based set of system calls for
manipulating a program’s state.

Local Agents

While one of the primary goals in the Amoeba debugger design was that it
be “kernel independent”, and with Mach that debugging be incidentally sup-
ported by a more general facility, another approach to designing teledebug-
gers is by having a particular local agent that provides local (to the debuggee)
support for a remote debugger.

An early example of this type of debugger is Joff [12], a debugger for
programs running on the Blit programmable bitmap terminal [37]9. The bulk
of the debugger runs on the remote host to which the Blit is connected. The
local agent is a lightweight process running on the Blit that has immediate
access to the debuggee’s address space10. Since the agent shares resources
with the debuggee, care was taken to limit the resources required by the agent
to minimize impact on the debuggee and related Heisenbugs. This required
using fixed data structures instead of dynamic ones (for example, a maximum
of 32 breakpoints is supported) and resulted in a basic design decision to do
as much work as possible on the remote host. Because most of the work is
done remotely, communication between the remote host and the local agent
is via a simple, low-level protocol, with the remote host as master and the

9Note that Joff debugs programs that are running on the Blit itself ; it is not a general-
purpose debugger that simply uses the Blit for its user-interface.

10The Blit operating system is simple and permissive enough that the agent requires no
special privileges.

14



local agent as slave. Because the protocol is so low-level (a typical request
might be to fetch the contents of one long word at a particular location),
complex debugging interactions such as conditional breakpoints require a
great deal of interaction between the host and the agent, with consequent
poor performance.

In some sense the Mesa “world-swap” debugger described above also
makes use of a local agent, namely the low-level system service that writes
the checkpoint images to disk. Because this system service is fairly indepen-
dent of the rest of the operating system, it makes operating system debugging
possible, too, since the service can be used to write a checkpoint image of the
operating system itself. It is not difficult to envision modifying this service to
support remote access in lieu of writing out the checkpoint image, for greatly
improved performance, and this was done in the subsequent Cedar system,
as (briefly) described in [38].

A more recent example of a debugger using a local agent is the Topaz
TeleDebug (TTD) facility, described by Redell in [39]. Among the design
goals for TTD were that it support remote debugging, that all levels of
software from the interrupt and virtual memory systems on up to user-level
applications be debuggable with the same debugger, and that the debugging
system be resilient in the face of network and debugger crashes.

TTD consists of three components: the remote debugger, the TTD server
(i.e., the local agent), and the TTD protocol, used for communication be-
tween the two. In line with the design goals, the protocol uses UDP/IP
datagrams and thus supports a high degree of remote access, and the server
maintains all critical state (thread state and breakpoints) locally so if the
remote debugger crashes or the network fails another remote debugger can
be activated to continue the debugging session.

In order to support both low-level system debugging and high-level appli-
cation debugging, two versions of the TTD server were needed11. One version
of the server, LowTTD, operates at an extremely low level, unable to use the
memory management, scheduling facilities, or interrupt services provided by
the operating system. HighTTD resides at the same level of the system as
the operating system. HighTTD must still do its own storage management
and exception handling, but can use some system services such using (a fixed

11Redell gives an interesting discussion of how the final design of these versions emerged
from experience with a seemingly reasonable but actually problematic initial design.

15



number of) internal threads, accessing the network driver12, and having a set
of “good samaritan” functions be performed on its behalf by other processes.
While LowTTD is at such a low-level that only operating system internals
are visible to it, HighTTD is at a high enough level that it can provide access
to user processes (but not the operating system internals).

Both LowTTD and HighTTD use the same TTD protocol, which consists
of commands for reading and writing memory (in up to 1024 byte chunks), re-
trieving and modifying process state, setting and clearing breakpoints, single-
stepping, and conveying the TTD server state to a newly activated remote
debugger so it can pick up where another debugger left off.

Local agents thus have three major benefits: they make kernel debugging
possible, they make teledebugging simple, and they provide a natural way to
modularize those aspects of an operating system that pertain to debugging.

Checkpointing and Reverse Execution

A very powerful debugging tool is the ability to inspect the debuggee’s pre-
vious states and possibly restart execution from one of them. Making a
snapshot of a program’s state at a particular point in its execution is check-
pointing ; “undoing” execution by returning to a previous state is reverse
execution. The utility of such a tool is nicely illustrated in Feldman and
Brown’s discussion of their IGOR reverse execution system [40]. They ad-
dress the debugging problem of a programmer discovering that a supposedly
acyclic list contains a cycle: one of the elements points to a previous element.
To find the bug responsible, the programmer would like to ask the debugger
the question, “When did this tree first get an illegal cycle?” To answer this
question, the debugger needs both to know how to recognize an illegal cycle
(which might be specified by a program fragment) and to inspect previous
checkpoints of the debuggee’s execution until it finds the first one in which
the tree contains an illegal cycle. The cycle must then first have appeared
between that checkpoint and the previous one. By restarting the program
from the previous checkpoint, the exact point where the cycle was introduced
can be found.

An early implementation of reverse execution was done by Zelkowitz [41],

12The network driver contains a special hack that recognizes debugging packets and
passes them along to HighTTD.

16



who modified a PL/C compiler to generate code to maintain a trace table
in which all assignments to variables were logged. The implementation suf-
fered from performance problems, though: it appears from the article that
execution could only be reversed up the current call stack, and not back to
procedures previously invoked but now exited; code expansion was about
40%; and execution slowed down by a factor of 2.

These limitations seem fundamental to the approach of generating extra
code to keep a “running checkpoint” in memory. The IGOR system, on
the other hand, generates checkpoints by writing the program state to disk
at fixed intervals13. The checkpoint includes those pages that have been
modified since the last checkpoint along with the names, modes, and file
pointers of all open files. The checkpoints can then be browsed, restarted
with new functions dynamically bound to them, or executed by an object-
code interpreter to find the exact point at which a bug occurs. The present
IGOR implementation is a prototype, with no debugger integration, very high
performance overhead (40-380%), and very simple criteria for detecting the
onset of bugs, but the authors make reasonable arguments that these hurdles
are not insurmountable. The tool opens the door for easy pinpointing of a
wide variety of previously hard-to-find bugs.

Such debugging tasks are very difficult to carry out using a conventional
debugger. They involve repeated restarts of the program and a manual binary
search to find the onset of the error. The search may be exceptionally tedious
as it is often difficult for a programmer to know what point in a program’s
control flow represents approximately half way between two other points (an
instruction counter would greatly aid the search).

If program execution includes some indeterminacy (due to parallel execu-
tion or real-time considerations), restarting the program may not reproduce
the problem. The IGOR prototype cannot help with finding bugs in such
programs. Not surprisingly, researchers interested in debugging parallel pro-
grams have devised a number of tools that provide for reverse execution in
which indeterminacy is eliminated to varying degrees.

Instant Replay [42] works by recording the order in which locks are made
for access to shared objects. It does not provide a checkpointing facility, but
by enforcing the locking order upon reexecution a degree of reproducibility is

13The IGOR authors added a ualarm system call that generates a signal after a specified
quantity of user CPU time has elapsed.

17



obtained. Bugnet [43] logs each interprocess communication (IPC) message
along with a timestamp. It assumes that IPC is all done with system provided
services, and thus cannot deal with shared memory IPC. A global checkpoint
is made every 15 to 30 seconds, resulting in about a 2% performance impact.
During replay, instead of actually delivering IPC messages, the contents of
the message are retrieved from the log and delivered at the same time as
before. The Bugnet author finds that the replay timing error is < 0.01
seconds, and conjectures that it would be even lower if the indeterminacies
introduced by the paging system could be eliminated.

Support for State of the Art in Debugger Design

In this section we take a look at some existing or proposed debuggers incor-
porating state-of-the-art features and the support they require.

Recap is a state of the art reverse execution system now being built by
Pan and Linton [44]. Their checkpointing design is wonderfully simple—just
fork! The forked child then remains dormant; by definition, it holds the
entire execution state as it existed at that moment. The debuggee can be
replayed by sending a signal to the appropriate forked child, which first fork ’s
another copy of itself so the debuggee can be restarted at that point again,
and then proceeds to continue execution. The efficiency of this approach
naturally depends on the fork operation being implemented using copy-on-
write; but as this is the trend in operating systems, the assumption appears
well-founded.

Recap programs will link with a special run-time library that, as well as
arranging for periodic checkpointing, logs the times of system calls and signals
in order to eliminate these sources of indeterminism. The log is consulted
upon playback to ensure the same order of execution as before. Recap will
also include compiler hooks for generating code that logs access to shared
memory. This log can then be used to enforce the same access ordering when
reexecuting programs.

Recap promises to provide a comprehensive reverse execution facility, but
relies on copy-on-write operating system support and compiler modifications.

The Parasight system [45] combines some of the ideas of same-process
debugging and local agents. The system provides a mechanism for dynami-
cally attaching parasite programs to a debuggee. These programs use shared
memory facilities to access the debuggee’s address space. Parasites run in

18



parallel with the debuggee and can be used to continually monitor the de-
buggee’s state, looking for problems. In addition, the authors have imple-
mented an intriguing scan-point facility. Scan-points are lightweight hooks
that are patched into the running debuggee. When the scan-point is reached,
control jumps to a procedure that has been dynamically linked into the de-
buggee. In this way, the programmer can write custom debug procedures,
compile them, and dynamically “drop” them into a running program. The
system includes a number of such “canned” procedures.

Parasight is now in the research prototype stage. It requires support for
shared memory and dynamic linking. The main benefit of Parasight is that
it provides very cheap yet protected debugging agents (the parasites) and a
completely extensible (but not protected) mechanism for attaching arbitrary
procedure calls to a running program. This latter facility can be used to
provide extremely cheap conditional breakpoints.

Linton [2] briefly discusses the Ndb debugger, presently being designed
by Pan. Ndb is a local agent-style debugger with a protocol similar to that
used by TTD. The Ndb design focuses on the agent being a server that may
provide access to a process for a variety of clients, including different debug-
gers and profilers. The use of a fixed Ndb protocol will allow Ndb clients
to be written portably, without any knowledge of the particular implemen-
tation of the Ndb server. Thus, for example, an Ndb server could access
a debuggee’s memory in a safe fashion by mapping it into a portion of the
server’s address space, if the local operating system provides such support.
If not, it will use whatever other debugging service that is provided by the
operating system. A particularly intriguing aspect of Ndb is that it could be
used in conjunction with a compiler server : a programmer could enter the
code for a conditional breakpoint to the debugger, which would pass it along
to the compiler server; when the compiler server returns the compiled code
to the debugger, the debugger would pass the code to the Ndb server which
would patch the code directly into the debuggee. In this fashion, very high
performance conditional breakpoints could be supported.

One other area of debugger support where interesting work is on-going
is that of “debugger languages” [1, 46]. These are languages used by a pro-
grammer to describe debugging commands and events-of-interest to a debug-
ger. The most recent of these, Dalek [31], is event-oriented. Debugger- and
user-defined events are held in event queues, from which the most recent or
any previous event can be inspected. Debugging “programs” are written in

19



a combination dataflow (for events) and procedural (for actions) language;
these programs then generate further events. Built in facilities such as a
CPU time variable and “broadcast breakpoints” (breakpoints at every func-
tion whose name matches a regular expression) make it possible to write very
powerful debugging programs such as profilers with a few lines of Dalek code.
Another use of the facilities is for “on-the-fly code patching”: the debugging
language is rich enough that one can set a breakpoint at the site of a bug,
have the debugger execute an interpreted version of the corrected code, and
then branch around the faulty code upon restarting the debuggee.

Dalek is a prototype, built as an extension to GDB. It does not require any
additional operating system support other than the ptrace call used by GDB,
but since it hides much of the low-level interaction with the debuggee from
the programmer, the programmer can easily write a debugging program that
results in thrashing due to the high number of ptrace calls. The authors are
presently considering reducing such overhead by switching to a /proc facility
or to a method of using direct mapping of the debuggee’s address space to
access the debuggee’s state, similar to the approach used by Parasight.

Summary and a Possible Future Direction

We have considered a number of themes concerning debugger support:

• Conditional breakpoints, though perhaps underappreciated, can pro-
vide powerful debugging support.

• Same-process debugging is valuable for performance reasons, but defi-
cient due to resource-sharing, protection, and Heisenbug problems. It
cannot be used for kernel debugging, remote debugging, attachment,
or meta-debugging.

• Separate-process debugging is valuable for protection reasons, attach-
ment, and meta-debugging. It suffers from performance problems.

• Teledebugging can be easily supported by an operating system that in-
cludes a network-transparent message service among its facilities, par-
ticularly if it supports remote operating system calls.

• Local agents provide a way to modularize the design of the entire debug-
ging support system, as well as providing a natural means of supporting

20



kernel debugging. Like teledebugging, debugging with local agents can
suffer performance problems if a great deal of IPC is required for com-
municating between the debugger and the agent (or operating system).

• Hardware support for debugging tends to be spare. Even debugging
aids as simple as instruction counters, which can greatly simplify the
implementation of reverse execution, are rare. RISC trends will prob-
ably keep hardware debugging support minimal.

• Reverse execution can be used for “time-travel” watchpoints and in
debugging indeterminate programs. A particularly elegant implemen-
tation is to simply use the fork system service, providing copy-on-write
is supported.

• Present work includes an emphasis on using local agents and shared
memory to reduce debugging overhead, the ability to dynamically at-
tach arbitrary code fragments to running programs to support condi-
tional breakpointing, and investigations into powerful debugging lan-
guages to elevate the semantic level at which debugging is done.

Several of these themes might be gathered together in a debugger design
as follows. We have argued that conditional breakpoints provide a very pow-
erful debugging facility, yet in almost every debugger they are implemented
by having the debugger evaluate the condition, resulting in at worst a large
number of context switches and at best a considerable amount of debugger-
agent message traffic as the debugger instructs the agent to fetch various
words from the debuggee’s memory for use in evaluating the condition. Ide-
ally one would like the agent to perform the condition evaluation, since its
access to the debuggee’s state is much cheaper than the debugger’s. Parasight
attempts to do this by dynamically attaching procedures to the debuggee,
but this scheme is slow, as it requires separate coding and compilation of
the procedure, and is limited by the scope rules that the procedure must
observe14. Furthermore, one would like to keep the agent’s model of inter-
acting with the debuggee as simple as possible, so one can support powerful
debugging languages such as Dalek that are built up from simple debugging
notions.

14For example, the procedure cannot inspect another procedure’s local variables.

21



The problem is therefore how to effectively use the IPC channel between
the debugger and the agent so that the agent can perform complex condi-
tional breakpoint tests on behalf of the debugger. This problem is similar
in structure to, for example, that faced by window system servers, in which
one wishes to minimize the IPC traffic between the client (debugger) and the
server (local agent) and yet have the server perform complicated actions on
behalf of the client. An interesting design for solving this problem with win-
dow system servers is that used by NeWS—rather than using a particular,
fixed protocol for communicating between client and server, the client sends
programs over the IPC channel to the server, which then executes them on
its behalf.

The proposed debugger design then is to extend the usual debugger-
agent protocol to include a facility for downloading programs into the agent.
The agent would then use a lightweight scan-point facility like Parasight’s
to breakpoint the debuggee. When the debuggee triggered the scan-point
the agent would then execute the corresponding downloaded program to
determine whether the breakpoint condition was satisfied.

To completely minimize the agent’s overhead, the agent would run in
the context of the debuggee. While this would make it susceptible to the
resource-sharing, protection, and Heisenbug problems of same-process de-
buggers, the effects could be minimized by keeping the agent as small as
possible and providing mechanisms for loading the agent to an arbitrary lo-
cation in memory, so the probability of the debuggee accessing the agent’s
memory is minimal15. If the operating system supports dynamic linking then
the agent can be loaded into running programs, supporting attachment.

Once loaded, the agent opens a user-level IPC connection with the debug-
ger. When the programmer wishes to set a breakpoint, the debugger sends a
message to the agent specifying where the breakpoint should be placed. The
agent then patches that location to branch into the agent’s code, such as is
done by Parasight. When the debuggee executes the breakpoint, the agent
immediately gains control and sends a breakpoint message to the debugger.

To implement conditional breakpoints, the debugger compiles the pro-
grammer’s condition into a program and downloads it to the agent. When
the debuggee executes a breakpoint, the agent executes the corresponding

15This relocation requires operating system support for non-contiguous virtual address
spaces.

22



program and sends a breakpoint message to the debugger if the program
so indicates; otherwise, it jumps back into the debuggee’s code. The ini-
tial design would be for the programmer’s condition to be compiled into an
intermediate form, that would then be interpreted by the agent; this limits
the complexity of the debugger, preventing it from needing to know how to
generate machine code for the debuggee’s processor. If this design proved
too inefficient, the debugger could be extended to download fully-compiled
code. In either case, the conditional code would execute in the context of
the breakpointed procedure—its local variables and registers would all be
available to the conditional breakpoint code—and would have the necessary
low-level support for walking further up the execution stack to access other
variables and inspect calling patterns.

The agent could also handle checkpointing requests by making fork system
calls, and watchpoints by adjusting its (and, hence, the debuggee’s) page
protection and registering an access-violation handler.

This design provides for extremely fast “context-switching” between the
debuggee and the agent; uninhibited access to the internal state of the
debuggee, unlike with Parasight; fast translation between a condition the
programmer wishes to explore and the subsequent “hooks” being ready in
the debuggee, unlike Ndb or Parasight, which require separate compilation
phases; and hooks for watchpoints and reverse execution. Finally, by writing
a low-level version of the agent, support for kernel debugging could also be
included.

References

[1] Bernd Bruegge. Adaptability and Portability of Symbolic Debuggers.
PhD thesis, Department of Computer Science, Carnegie-Mellon Univer-
sity, September 1985. CMU-CS-85-174.

[2] Mark A. Linton. The evolution of dbx. In Proceedings of the 1990 Usenix
Summer Conference, Anaheim, CA, June 1990.

[3] W.C. Gramlich. Debugging methodology (session summary). In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on High-Level Debugging [50], pages 1–3.

23



[4] Thomas A. Cargill. The Blit debugger (preliminary draft). In Pro-
ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on High-Level Debugging [50], pages 190–200.

[5] Warren Teitelman. The Cedar programming environment: A midterm
report and examination. Technical report, Xerox Corporation, Palo Alto
Research Center, June 1984. CSL-83-11.

[6] Evan Adams and Steven S. Muchnick. Dbxtool: A window-based sym-
bolic debugger for Sun workstations. Software–Practice and Experience,
16(7):653–669, July 1986.

[7] Thomas A. Cargill. Pi: A case study in object-oriented programming.
In Proceedings of the Usenix C++ Workshop, Santa Fe, NM, pages 282–
303, November 1987.

[8] Paul Maybee. pdb: A network oriented symbolic debugger. In Proceed-
ings of the 1990 Usenix Winter Conference, Washington, D.C., January
1990.

[9] John Hennessy. Symbolic debugging of optimized programs. ACM
Transactions on Programming Languages and Systems, 4(3):323–344,
1982.

[10] John D. Johnson and Gary W. Kenney. Implementation issues for a
source level symbolic debugger (extended abstract). In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on High-
Level Debugging [50], pages 149–151.

[11] Bert Beander. Vax debug: An interactive, symbolic, multilingual de-
bugger. In Proceedings of the ACM SIGSOFT/SIGPLAN Software En-
gineering Symposium on High-Level Debugging [50], pages 173–179.

[12] Thomas A. Cargill. Implementation of the Blit debugger. Software–
Practice and Experience, 15(2):153–168, February 1985.

[13] Stephen Kaufer, Russell Lopez, and Sesha Pratap. Saber-C: An
interpreter-based programming environment for the C language. In Pro-
ceedings of the 1988 Usenix Summer Conference, San Francisco, CA,
June 1988.

24



[14] D. E. McLear, D. M. Scheibelhut, and E. Tammaru. Guidelines for
creating a debuggable processor. In Symposium on Architectural Support
for Programming Languages and Operating Systems [49].

[15] Jeffrey Tsai et. al. A noninterference monitoring and replay mechanism
for real-time software testing and debugging. IEEE Transactions on
Software Engineering, 16(8), August 1990.

[16] James R. Cardell. Multilingual debugging with the SWAT high-level
debugger. In Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High-Level Debugging [50].

[17] Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging. SIGPLAN Notices 24(1), January 1989.

[18] Mark Scott Johnson. Some requirements for architectural support of
software debugging. In Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems [49], pages 140–148.

[19] Marek Gondzio. Microprocessor debugging techniques and their applica-
tion in debugger design. Software–Practice and Experience, 17(3):215–
226, March 1987.

[20] Sun Microsystems. Ptrace(2), SunOS Reference Manual, Vol. II, Jan-
uary 1990.

[21] Digital Equipment Corporation. Ptrace(2), Ultrix documentation,
March 1990.

[22] W. Morven Gentleman and Henry Hoeksma. Hardware assisted high
level debugging (preliminary draft). In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on High-Level De-
bugging [50].

[23] C.R. Snow. Integrated tools for hardware/software debugging, final re-
port. Technical report, University of Newcastle upon Tyne, Novem-
ber 1987. Technical Report Series No. 247, S.E.R.C. Research Project
GR/C/35974.

25



[24] W.Y.P. Wong and C.R. Snow. Implementation of an interactive remote
source-level debugger for C programs. Technical report, University of
Newcastle upon Tyne, January 1987. Technical Report Series No. 229.

[25] T.A. Cargill and B.N. Locanthi. Cheap hardware support for software
debugging and profiling. In Proceedings of the 2nd International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems [48].

[26] David R. Ditzel, Huber R. McLellan, and Alan Berenbaum. Design
tradeoffs to support the C programming language in the CRISP micro-
processor. In Proceedings of the 2nd International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
[48].

[27] J. M. Mellor-Crummey and T. LeBlanc. A software instruction counter.
In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems [47].

[28] Mark E. Staknis. Sheaved memory: Architectural support for state
saving and restoration in paged systems. In Proceedings of the Third In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems [47].

[29] Michael Farley and Trevor Thompson. A C source language debugger. In
Proceedings of the 1983 Usenix Summer Conference, Toronto, Ontario,
Canada, July 1983.

[30] R.E. Sweet. The Mesa programming environment. In Proceedings of the
ACM Symposium on Language Issues in Programming Environments,
pages 216–229. SIGPLAN Notices 20(7), July 1985.

[31] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. Dalek:
A GNU, improved programmable debugger. In Proceedings of the 1990
Usenix Summer Conference, Anaheim, CA, June 1990.

[32] T.J. Killian. Processes as files. In Proceedings of the 1984 Usenix Sum-
mer Conference, Salt Lake City, Utah, June 1984.

26



[33] David L. Black et. al. The Mach exception handling facility. In Proceed-
ings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Dis-
tributed Debugging [17].

[34] Deborah Caswell and David Black. Implementing a Mach debugger for
multithreaded applications. In Proceedings of the 1990 Usenix Winter
Conference, Washington, D.C., January 1990.

[35] R. M. Stallman. GDB manual (the GNU source-level debugger). Techni-
cal report, The Free Software Foundation, January 1989. Third Edition,
GDB version 3.1.

[36] I.J.P. Elshoff. A distributed debugger for Amoeba. Technical re-
port, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands, July 1988. Report CS-R8828.

[37] R. Pike. The Blit: a multiplexed bitmap terminal. AT&T Bell Lab-
oratories Technical Journal, Computing Science and Systems, October
1984.

[38] D. Swinehart et. al. A structural view of the Cedar programming envi-
ronment. ACM Transactions on Programming Languages and Systems,
8(4):419–490, October 1986.

[39] David D. Redell. Experience with Topaz teledebugging. In Proceedings
of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging [17].

[40] Stuart I. Feldman and Channing B. Brown. Igor: A system for pro-
gram debugging via reversible execution. In Proceedings of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging
[17].

[41] M.V. Zelkowitz. Reversible execution. Communications of the ACM,
16(9):566, September 1973.

[42] T. LeBlanc and J. Mellor-Crummey. Debugging parallel programs with
Instant Replay. IEEE Transactions on Computers, 36(4):471–482, April
1987.

27



[43] Larry D. Wittie. Debugging distributed C programs by real time replay.
In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel
and Distributed Debugging [17].

[44] Douglas Z. Pan and Mark A. Linton. Supporting reverse execution
of parallel programs. In Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging [17].

[45] Ziya Aral, Ilya Gertner, and Greg Schaffer. Efficient debugging prim-
itives for multiprocessors. In Proceedings of the Third International
Conference on Architectural Support for Programming Languages and
Operating Systems [47].

[46] Mark Scott Johnson. Dispel: A run-time debugging language. Computer
Languages, 6(2), 1981.

[47] Proceedings of the Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. SIGPLAN No-
tices 24(Special issue), May 1989.

[48] Proceedings of the 2nd International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. SIGPLAN No-
tices 22(10), October 1987.

[49] Symposium on Architectural Support for Programming Languages and
Operating Systems. SIGPLAN Notices 17(4), April 1982.

[50] Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on High-Level Debugging. SIGPLAN Notices 18(8), August
1983.

28


