
Using Strongly Typed Networking to Architect for Tussle

Chitra Muthukrishnan†, Vern Paxson‡,¶, Mark Allman‡, Aditya Akella†

†University of Wisconsin-Madison, Madison, WI, USA
‡International Computer Science Institute, Berkeley, CA, USA

¶University of California-Berkeley, Berkeley, CA, USA
{chitra,akella}@cs.wisc.edu, {vern,mallman}@icir.org

ABSTRACT
Today’s networks discriminate towards or against traffic for
a wide range of reasons, and in response end users and their
applications increasingly attempt to evade monitoring and
control, resulting in an ongoing tussle whose roots run deep.
In this work we explore an architectural paradigm that can
accommodate such tussles in a systematic and transparent
fashion. The key idea at the core of our design is strongly
typed networking: the notion that application messages con-
tain type information that fully describes the content be-
ing transferred. Our framework allows for transparency be-
tween parties which then leads to dialog and choice for both
users and service providers. While in the early stages, we
provide a possible framework for directly addressing the tus-
sle between end users and “the network” without resorting to
an ever-increasing degree of obfuscation and inference.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design

General Terms
Design

1. INTRODUCTION
Modern networks no longer follow the Internet’s origi-

nal design tenet of remaining agnostic to the nature of the
traffic they carry. Today’s networks discriminate towards or
against traffic for a variety of reasons, including resisting
attacks, imposing acceptable-use policies, permitting law
enforcement monitoring, preventing users from consuming
too many resources, tuning performance, and blocking users
from using competing services. Some decry these realities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

as an unfortunate state of affairs, and many end users de-
sire freer access than such discrimination imposes, but surely
these practices reflect a reality that is here to stay: they are
rooted in compelling business, economic, and governmental
concerns. Accordingly, they constitute a tussle space that we
must determine how to accommodate rather than resist [4].

The means used to identify traffic for purposes of dis-
crimination and control are often crude and hidden, leaving
even expert users with no understanding of why a partic-
ular activity fails or behaves differently than expected. In
turn, users—and their applications—often try to evade these
discrimination mechanisms. These tensions have lead to an
arms race resulting in tangled layers of protocols and en-
codings, and network elements making sometimes heavy-
handed policy enforcement decisions that aim to at best
“mostly work right”. This morass of obfuscated protocols
then leads to a system that is both brittle and difficult to de-
bug. We view this state of affairs as untenable, given its
woeful trajectory towards evermore entanglement and mis-
decision as the arms race progresses.

Some would argue that we need to return to a “neutral net-
work” whereby differential treatment of traffic is not permit-
ted, but rather ISPs must treat all traffic equally regardless
of type. However, relying on such an approach is problem-
atic for a number of reasons: (i) not all middleboxes make
distinctions between traffic, rather some attempt to aid all
traffic (e.g., proxy caches), (ii) any legal notion of “network
neutrality” is unlikely to be universally binding and (iii) use
of middleboxes in private networks will still fall outside the
bounds of anything developed for society at large. Therefore
we do not view a non-technical network neutrality approach
to be universally viable, and hold out little hope that the fun-
damental tension will go away. Thus, alternatively, we must
ask: How can we architect our way out of this mess?

In this paper we explore a possible architectural frame-
work for doing so. We root our framework in the pursuit of
two core goals. First, the architecture must provide trans-
parency to (i) end systems (users) in terms of what restric-
tions and transformations the network imposes on their traf-
fic, and (ii) network control elements (NEs) in terms of
visibility into the semantics of the traffic they carry. Sec-
ond, the architecture must facilitate choice for end systems

1

with regard to which aspects of their communication the net-
work may inspect or modify, and which aspects remain in-
violable and perhaps wholly private. The notion of choice
includes the opportunity when possible to select among mul-
tiple paths offering differing degrees of network control vs.
cost. Such choice is vital in order to allow tussles to play
out in a productive fashion. (Note that “paths” here refers
to routing along either network-layer forwarding or higher-
level overlays.)

After briefly describing the problem space’s basic con-
straints in §2, the remainder of this paper develops the el-
ements of our framework. We emphasize that our goal in
doing so is to conduct a thought experiment regarding the
viability of a coherent architecture for end-system/NE tus-
sles. We explicitly do not in this work address issues of
performance or overhead, and for purposes of clarity we
employ an approach based on the use of XML that clearly
in its present form incurs significant inefficiencies. Our fo-
cus remains strongly on exploring what sort of conceptual
complexity appears required to architect our way out of this
mess. We in fact do not get all that far towards addressing
the many issues that arise; our overarching goal is instead to
spur further exploration by the research community of this
difficult problem space. We leave to future efforts the major
problems of turning concepts such as those we sketch into
an effective, acceptably efficient working system. Finally,
when reflecting on the difficult remaining issues, we wish
the reader to consider: if we do not develop something like
this approach, then where will the future take us?

2. PROBLEM SPACE CONSTRAINTS
Before proceeding we note two fundamental constraints

regarding mediation of communication between a sender S

and a receiver R that traverses some number of network con-
trol elements, NE1...n. While we cannot ultimately avoid
these constraints, our framework is designed to address them
to the degree possible.

First, any NE can simply thwart communication by not
forwarding traffic. While this would seem to give the
NEs the upper hand in determining policy, our architectural
framework calls for offering end hosts both transparency in
terms of why particular communication is being blocked and
choice in terms of the path to use (and, hence, the policies to
accept).

Second, S and R can collude to transmit disallowed mes-
sages. Our framework explicitly includes the concept of ver-
ification of messages to help combat this problem. While
this may curtail casual establishment of covert channels and
may limit their effective bandwidth, in the limit it is essen-
tially impossible to prevent steganography and covert chan-
nels from being established between willing partners. We
note this limit is present in today’s traffic, as well. Further-
more, pushing disallowed traffic towards steganography in-
creases the costs on the malicious actors, and is likely the
best ultimate outcome we can hope for.

Figure 1: Unencrypted HTTP message

3. ARCHITECTURAL COMPONENTS
We next turn our attention to the high-level concepts of the

envisioned architectural framework. These will be discussed
in more detail in subsequent sections.
Typing: At the heart of our architectural approach is a no-
tion we term strongly typed networking. In programming
languages, the notion of typing provides semantic context
for what are otherwise simply bits in memory cells. Simi-
larly, for networking we envision ubiquitous use of typing as
transforming the current strongly layered model: rather than
a transport protocol simply serving to transfer opaque binary
payloads, what it carries includes exposed type information
that governs the semantics of how the receiver of the data
will interpret it. These types are both (i) extensive, ranging
from atomic values (IP addresses and TCP ports) to higher-
level constructs (URLs, command names, status codes) to
aggregated objects (MIME, HTTP request/replies, SMTP di-
alog) and (ii) exhaustive, i.e., everything is typed without ex-
ception. Typing addresses the transparency goal described
in §1. Figure 1 shows an an HTTP message marked up in
XML and annotated with type information.
Dialog: The goals of transparency and choice and the no-
tion of typing facilitate dialog: the ability for end systems
to engage with NEs in order to explicitly agree upon what
types of visibility and control may be applied to the given
traffic, and what facets remain out of bounds (unexamined
or unperturbed by the network).

A dialog begins with the end-systems selecting the degree
to which they are willing to expose an application’s seman-
tics to NEs within the network. These semantics might in-
clude names and types of data items to be transferred, iden-
tifiers to associate with activity, explicit indications of what
portions of the session will be hidden via encryption, per-
haps a pledge to use only a recognized subset of the appli-
cation protocol’s full functionality,1 and so on. NEs inspect
the end system’s description of these semantics to determine
whether the information provides the NE with enough con-
text to correctly carry out its function. If the NE finds the in-
formation provided by the application insufficient, it can re-
ject the session. It does so in an explicit fashion, by inform-
ing the application what additional information/permissions
it would require to accept the session.

We emphasize that the nature of such a dialog already oc-
curs today, but much more crudely. To first order, today’s
version is that the application advertises what it is doing

1E.g., avoiding the CONNECT method in an HTTP session.

2

via a TCP or UDP port number, and perhaps via the ini-
tial payloads it sends. If the network dislikes the offered
information, it declines to forward the traffic; perhaps com-
pleting the “dialog” by returning an ICMP or TCP RST
packet [5]. As sketched in §2 this basic balance of power will
not change—the network will always have the upper hand in
that, if dissatisfied, it can block communication. However,
if visibility continues to decline, increasingly operators will
find themselves forced to impose draconian restrictions on
allowed traffic that will exacerbate collateral damage.
Choice: In response to a rejected session the application de-
cides whether it is willing to provide the additional informa-
tion. If not, the application can attempt to seek an alternate
path that imposes less burdensome requirements, if avail-
able. If no alternative path is available and the application
(user) is unwilling to yield the required information or con-
trol, then communication will not occur—but with the cause
of the failure in full view.
Verification: By the notion of strongly typed networking,
we mean that NEs can have confidence that the payloads
they analyze will indeed be interpreted according to their
purported types. As discussed in §2, ultimate confidence
cannot be determined in the limit. However, our architec-
tural framework includes a verification mechanism in the
form of attesters that can verify a payload item’s type. These
could be located in the end host (as trusted modules verified
by a TPM) or trusted third-party services that are not part of
the communication.

4. INITIAL DESIGN
We now turn our attention from architectural concepts to a

sketch of how the framework may work in practice (in high-
level terms). We stress—as noted in §1—that our goal in this
paper is to simply explore the type of architecture required to
address the current tensions in the network and not to present
a finished technical design.

4.1 User Choice Via Encryption
A key aspect of our framework is to provide end-hosts

with choices with regard to various aspects of their commu-
nication that NEs can inspect or modify versus those that are
private. In our framework, we use selective encryption as a
way of enabling this choice.

Specifically, the sender provides a given decryption key
to a given NE if it is willing to allow that NE to inspect
the corresponding element. The sender then encrypts differ-
ent portions of its message with the appropriate keys. We
also include integrity checks tied to keys; these may be the
same as the encryption keys, or different. Possession of an
integrity key allows an NE to modify the corresponding el-
ement; possession of only the encryption key allows it to
inspect, but not to modify (as the integrity check would then
fail at the receiver).

We now illustrate the important steps in selective encryp-
tion, and highlight underlying design issues, using simple
examples.

Figure 2: Exchange of symmetric key K1 with NE1

Key Establishment. After the sender chooses a path, it
exchanges the requisite keys with NEs along the path by
sending separate key exchange messages, one per NE. Us-
ing a separate key exchange message, the recipient is also
provided with a master set of keys that include the keys for
NEs and a recipient-specific key. We note that keys once es-
tablished could be applied to all flows between a sender and
a recipient as long as the path between them remains stable
(we discuss path stability further in §6).

Figure 2 shows an example key exchange message. The
sender uses the public key of NE1 (PK1) to encrypt the
NE’s symmetric key K1 (lines 2-8). The message also in-
cludes “key names” (lines 3 and 10), used by the sender
to indicate parts of its messages that an NE could access.
Thus, in this example whomever owns the key names PK1

can decrypt and read CipherData containing the encrypted
value of K1. Note that the fields in this key exchange mes-
sage are protected from tampering by on-path NEs with an
integrity checksum computed using the private key of the
server, (PrKserver) (lines 9-12).

Messages. Once keys are established, a sender encrypts
each message with the appropriate keys. In Figure 3, we il-
lustrate this for an HTTP reply message exchanged between
the server and the client for the example shown in Figure 4.
(For ease of exposition, the example described is simplistic
and not as exhaustive as it would necessarily be.)

In this message, lines 3 through 21 are encrypted using
the symmetry key of NE1 (key K1). However, a portion of
the message, between lines 6 and 13, is only visible to the
recipient and not to NE1. This is encrypted using the recip-
ient’s public key (PKclient). In effect, the NE only has vis-
ibility into lines 3 through 5 and 14 through 21 of the reply
message, i.e. into the executable component of the message.
The checksum in line 11, protected using the server’s private
key, facilitates detection of any unauthorized modifications
by the NE to the earlier portion of the message.

Access to the context. In many cases, the specific ac-
tion taken by NEs on data of certain types depends for its
correctness (and to thwart evasion) on the higher-level con-
text within which the data type occurs. For example, an NE
might have different heuristics to decide if an executable is
harmful or not depending on whether it was sent as a HTTP

3

Figure 3: Encrypted HTTP reply via NE1

reply or as an email attachment. If just the executable data
is exposed to the NE, it would lack knowledge about this
high-level context needed to operate on it. To facilitate us-
ing context in policies, whenever an NE requires access to a
field, our framework also provides the NE access to the (po-
tentially nested) parent fields. For instance, within an HTTP
reply an NE given access to some file would also be given
access to the fact that it was coming as part of a reply being
sent over HTTP (see example reply in §4.2).

Permission to modify. Note that in this example, the NE
also possesses an integrity key (line 17), which in this case
is the same as the symmetric key K1. Hence, the sender has
permitted the NE to modify the executable component. If
the NE does modify the executable content, it updates the
integrity checksum in line 18 so that the recipient can vali-
date the modification.

When NEs have the ability to modify message fields, then
the sender and the receiver may end up with different notions
of what content actually reached the receiver. It is important
in such situations that the sender synchronize with the re-
ceiver to understand what data eventually arrived. The syn-
chronization could be handled at the application level, using,
for instance, queries about the presence of a certain type of
field, or the hash or size of content elements.

4.2 Communication Overview
Figure 4 shows a small sample network and labels the var-

ious facets of instantiating communication.
1. Route Discovery: A sender that wishes to commu-

nicate with a destination first must discover the available
routes, which could be network-level, overlay or multi-
homed paths. This process also yields the public keys of all
the involved network elements. While route discovery is out
of scope for this paper we believe there are methods that can

Figure 4: Sample HTTP communication (chooses path
via NE1)

largely support our framework (e.g., NIRA [12] and Pathlet
routing [8]).

2. Policy Discovery: After discovering candidate routes
a sender must discover the policies of the NEs along these
paths. To do so the sender transmits a query that includes the
kinds of messages that will be sent, the fields the application
wishes to keep private and the fields the application is will-
ing to expose, as well as annotations indicating which fields
the application will allow to be modified or deleted by the
NEs. Each NE then inspects the query and decides whether
the given restrictions are acceptable and informs the sender
of desired changes. For instance, in an HTTP transaction
the application may be willing to expose cookies while one
of the NEs may require access to executable content. The
negotiation can span multiple rounds as necessary. The poli-
cies are also encrypted with the appropriate keys to ensure
the policies are only exposed to the end points and particular
NEs implementing the given policy.

An alternate style would operate instead in an implicit
fashion, with no separate discovery phase. Here, the sender
simply goes ahead and transmits its messages protected how-
ever it wishes. Intervening NEs that require greater visibil-
ity or control over the communication drop the messages
and return control notifications to the sender highlighting
what would have to change in the protections the sender
has employed, similar to IP’s MTU Discovery mechanism.
This approach has the advantage of simplicity and robust-
ness in the presence of routing changes. Further, it is useful
for caching and re-using policies that are not likely to have
changed along a particular path between two end hosts—
thus avoiding the time- and resource-consuming discovery
phase. However, such implicit discovery could also lead
to inefficiencies that arise when an end host discovers their
operations are not permitted mid-stream (e.g., because the
end host then decides to change paths and so effort has been
wasted when compared to up-front negotiation).

3. Selection of Paths: Once the source determines the
policies in place on each path, it chooses a path based on
the detected policies and any of the other path characteris-
tics available (e.g., delay and loss).

4

4. Key Exchange: Once a path is chosen the sender ex-
changes symmetric keys with the NEs that have played a
part (passive or active) in the transaction. More than one
key per NE may be necessary as the NE may have access to
inspect some fields, while being allowed to modify others.
Further, each key is shared with the receiver as the receiver
will ultimately be responsible for validating and decrypting
the message for the application.

5. Encrypted Data Transfer: The sender then encrypts
messages according to the negotiated policy and source
routes them along the chosen path. The NEs decrypt and in-
spect or modify the portions of the messages that have been
so negotiated. Whenever an NE modifies a field it appends
an integrity checksum to prevent other NEs from rewriting
that field. These checksums are also used by the receiver to
identify the NE that modified a field.

6. Message Reception: The receiver decodes the message
fields with the corresponding keys.

5. VERIFICATION
Verification is fundamental to any system that has com-

peting stakeholders, and therefore is an important aspect of
our design: Our framework not only helps parties agree on
policies and communicate according to them, but also pro-
vides confidence to stakeholders that either communication
did proceed as agreed to, or there is a way to detect that there
was a violation.

First, as discussed in §4, applications ensure NEs read and
modify only authorized fields within a message by appropri-
ate use of encryption. Similarly, NEs can be certain that they
have access to the portions of a message that the negotiated
policy requires. In the encryption mechanism described in
§4.1, the sender could hide a field that an NE wishes to in-
spect by encrypting it with a key the NE does not possess,
thereby evading the NE’s policies. The NE in turn could
drop the traffic as being outside the negotiated policy.

As discussed in §2, the sender and receiver can collude to
evade the NEs’ policies. While in the limit it is nearly impos-
sible to thwart such efforts while still providing a communi-
cations channel, there are steps an NE can take to mitigate
the risk. In particular we describe two kinds of attesters to
aid NEs in enforcing policy.
End-Host Attesters: The first category of attester is run on
the end hosts themselves. In this case, a known attester is
bootstrapped and validated by the host’s TPM module. The
attester appends attestations of type information to the mes-
sages for the NEs to consult.
Third-Party Attesters: These entities are independent of
the communication flow and can be used to verify a particu-
lar message is of the claimed type. As part of an NE’s policy
an end host may have to route traffic through such an at-
tester and give the attester access to the given message. This
may be more palatable to the end hosts (and users) than pro-
viding an ISP—which naturally already has a broad view of
their traffic—access to the messages. A neutral third-party

can give the NE confidence in the message type (although,
obviously not a complete guarantee).

Another technique that an NE can employ is a form of
“normalization” to try to remove any non-crucial parts of a
transmission that may represent a covert channel. For in-
stance, scrubbing comments out of HTML markup or con-
verting simple images from one common format supported
by all browsers (e.g., jpeg) to another (e.g., png). This re-
quires the NE to negotiate permission to change the content
during the dialog phase. But, it could be a useful technique
in mitigating the covert channel problem.

6. ADDITIONAL CONSIDERATIONS
In this section we briefly touch on possible extensions to

our framework.
Routing Changes. One of the reasons the current Inter-
net architecture calls for a “dumb middle” is so that rout-
ing changes within the network—e.g., caused by a network
failure—do not hinder communication. Therefore, one prac-
tical issue that our framework must address concerns rout-
ing changes. As the network alters its forwarding to route
around an outage, traffic from active flows will begin to ap-
pear at NEs that have no prior context for the communication
and thus may lack sufficient information to soundly analyze
the flow beginning mid-stream. Such NEs may therefore not
forward the traffic.

To avoid the brittleness of routing changes, we might con-
sider developing notions of type-safe handoffs, i.e., mecha-
nisms by which an existing flow can present to a new NE
information regarding what has previously transpired on the
flow along its old route, such that the new NE can deter-
mine whether it has sufficient information to safely accept
the flow. Perhaps we could realize such a mechanism by NEs
periodically issuing certificates documenting the progress of
ongoing flows. In the presence of a routing change, the end
system would roll back communication to the point covered
by the most recent set of certificates and then proceed for-
ward from there, after priming the NEs along the new path
with the information from the certificates. Alternatively, if
we used an implicit-style approach for policy negotiation as
briefly sketched above, that might suffice to accommodate
routing changes too.
Transport Properties. A different issue concerns the fact
that NEs might base their control decisions not only on
an understanding about the semantics of communication,
but also its transport properties, such as its rate of transfer,
fanout, or aggregate volume (across a number of flows). Our
initial framework does not provide a ready means for NEs
to express such constraints (nor for end systems to hide such
information if they choose), because such properties are dy-
namic, structural, and contextual, rather than rooted in the
content of communication. We view accommodating trans-
parency and dialog for these sorts of NE decision-criteria as
an important problem to address when architecting for tus-
sle, and while our type-based approach is not an ideal match

5

the foundation provided by the system of exchanging struc-
tured information with NEs may be useful in grappling with
these issues in the future.
Cooperating Actors. While we have focused in this work
heavily on the issues that arise when users and NEs view
one another as potential adversaries, our principles of fa-
cilitating transparent dialog and imposing a discipline of
strongly typed communication can also open up new pos-
sibilities among cooperating entities. Unambiguous knowl-
edge of the semantics of messages can enable NEs to per-
form operations on behalf of end systems in order to reap
performance gains or realize network-based services. As a
simple example, consider a transcoding NE that knows how
to rewrite images in different formats to smaller representa-
tions suitable for display on mobile devices or to conserve
bandwidth over low-speed links. With strongly typed net-
working, the NE can correctly locate and transform any in-
stance of a rewritable image, whether located in a Web page,
a chat session, a file transfer, or some new application with
unknown broader semantics. End systems transferring items
they do not wish transformed can simply deny the NE the
ability to modify the item.

7. RELATED WORK
Some of the key design goals underlying our framework

have been previously explored in other contexts. Several
architectural components for interposing middleboxes atop
network communication in a ground-up, rather than an add-
on, fashion have been explored (e.g., [11, 9]). Additionally,
several recent studies have also explored how to improve
the transparency of network communication. For instance,
X-Trace [7] and Packet Obituaries [1] call for the network
to inform hosts about certain properties, while labeling [3]
calls for end-hosts to inform network intermediaries about
properties of the content they are transferring. Finally, the
literature is filled with one-off negotiation mechanisms for
various purposes (e.g., option negotiation in TCP, content
type negotiation in HTTP [6], reconciling objectives of peer
ISPs [10], etc.). Our work differs from these previous efforts
in two key respects. First, while previous work has consid-
ered traversal, transparency and negotiation in isolation and
for specific purposes, our work combines these themes in
a general and coherent fashion. Second, much of the prior
work assumes a cooperative setting whereby end hosts and
network elements are working together to facilitate commu-
nication. In contrast, we architect for an adversarial set-
ting wherein end-hosts desire greater freedom and privacy
in communication, while network entities desire a high de-
gree of visibility and control.

In addition, labeling has previously been suggested as
a way of informing NEs about communication properties
(e.g., generically in [3] and for specific tasks such as the
DiffServ code points [2]). Our architectural framework is
similar to these previous efforts in that there is explicit meta-
information shared between components of the system. Our

contribution is to identify types as a specific instance of la-
beling that is both (i) more general than task-specific labels
for particular applications and (ii) more specific than an ar-
bitrary labeling scheme, so that general policies and verifi-
cation across protocols and services become tractable. We
view this intermediary point in the design space as provid-
ing two significant benefits: enforceability, thus being suit-
able for adversarial settings, and semantic clarity (i.e., an NE
knows how to correctly process a given label), advantageous
in both adversarial and non-adversarial settings.

8. SUMMARY
In this paper we have outlined an architectural framework

that uses a notion of strongly typed protocols to design for
the ongoing tussle between users and networks. Rather than
accept the evolutionary and ad-hoc approach of users in-
creasing the layering and obfuscation of their communica-
tions and operators trying to cope by designing crude meth-
ods for dealing with traffic that appears to violate policies,
we step back and pose the question “can we architect our
way out of this mess?” Our initial exploration is merely
meant to provide a basis for thinking about how to construct
a network dialog to allow various actors in the system the
ability to reason about and synchronize policies for a par-
ticular communication stream. The system discussed in this
paper is a conceptual framework that is far from a concrete
and efficient reality in many ways. While we do not wish
to downplay the importance of such issues, our goal is first
to grapple with the overall complexity of devising an archi-
tecture to directly deal with the real and frequent tussles that
arise in networks everyday.
Acknowledgments — This work has benefited from discus-
sions with Somesh Jha, Kevin Fall, Eric Rescorla and Scott
Shenker. This work is funded in part by NSF grants CNS-
0626889, CNS-0722035, CNS-0831535, CNS-0831780 and
CNS-0905134.

9. REFERENCES
[1] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing packet

obituaries. In ACM SIGCOMM HotNets, 2004.
[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An

Architecture for Differentiated Service, Dec. 1998. RFC 2475.
[3] M. S. Blumenthal and D. D. Clark. Rethinking the design of the internet: the

end-to-end arguments vs. the brave new world. ACM Trans. Internet Technol.,
1(1):70–109, 2001.

[4] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle in cyberspace:
defining tomorrow’s internet. In ACM SIGCOMM, 2002.

[5] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi. Detecting
BitTorrent Blocking. In Internet Measurement Conference, 2008.

[6] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, Jan. 1997. RFC 2068.

[7] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A
pervasive network tracing framework. In NSDI, 2007.

[8] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet Routing. In ACM
SIGCOMM, Aug. 2009.

[9] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. SIGCOMM
Comput. Commun. Rev., 37(4):181–192, 2007.

[10] R. Mahajan, D. Wetherall, and T. Anderson. Negotiation-based routing between
neighboring ISPs. In Proc. NSDI’05.

[11] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In Proc. USENIX OSDI, San
Francisco, CA, December 2004.

[12] X. Yang. NIRA: a new Internet routing architecture. In Proc. FDNA ’03. ACM.

6

