T UM

INSTITUT FURINFORMATIK

Exploiting Independent State For Network
Intrusion Detection

Robin Sommer, Vern Paxson

TUM-10420
November 08

TECHNISCHE UNIVERSITATMUNCHEN

TUM-INFO-11-10420-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2004

Druck: Institut f ur Informatik der
Technischen Universit at Munchen

Exploiting Independent State For Network Intrusion Detection

Robin Sommer Vern Paxson
TU Miinchen ICSI/LBNL
Germany Berkeley, CA, USA

sommer@in.tum.de vern@icir.org

Technische Universitat MUinchen
Technical Report #TUM-10420

November 8, 2004

Abstract 1 Introduction

Network intrusion detection systems (NIDSs) of any

Network intrusion detection systems (NIDSs) re|§/ophistication rely on managing a significant amount
on managing a significant amount of state oft&}} state. The state reflects the NIDS’s model of the
much of this state resides solely in the volatile prgoMmmunications currently active in the network and

cessor memory accessible to a single user-level pf=° the NIDS's analysis over time, both in the past
cess on a single machine. In this work we develop g}€Vious activity by hosts or users, suspicion lev-

architecture that facilitatdadependent statée., in- ©€!S; relationships between connections) and in the fu-
ternal fine-grained state that can be propagated fr#f€ (timers used to model protocol interactions and

one instance of a NIDS to others running either colf2 drivé detection algorithms). Managing this state
currently or subsequently. raises significant issues, among which are its sheer

volume and how the NIDS can efficiently retrieve el-
Our unified architecture provides us with a weal@ments from it. A third issue, however, and one that
of possible applications that hold promise for e date has received less attention than the first two,
hancing the power of a NIDS. We examine how w&oncerns the degree to which the state is often tied to
can leverage independent state for distributed pfbSingle executing process.
cessing, load parallelization, selective preservationThat is, often much of a NIDS’s state resides
of state across restarts and crashes, dynamic reamiely in the volatile processor memory accessible to
figuration, high-level policy maintenance, and supesingle user-level process on a single machine. Usu-
port for profiling and debugging. We have expeslly, any state that exists more broadly than in the
imented with each of these applications in sever@ntext of a single process is a minor subset of the
large environments and are now working to integralDS process’s full state: either higher-level results
them into the sites’ operational monitoring. (often just alerts) sent between processes to facilitate

correlation or aggregation, or log files written to disacross multiple CPUs in a variety of ways; se-
for processing in the future. The much richer (ardctively preserving key state across restarts and
bulkier) internal state of the NIDS remains exactlgrashes; dynamically reconfiguring the operation of
that, internal. It cannot be accessed by other pthe NIDS on-the-fly; tracking the usage over time
cesses unless a special means is provided for doifighe elements of a NIDS'’s scripts to support high-
so, and it is permanently lost upon termination of tHevel policy maintenance; and enabling detailed pro-
NIDS (which, due to a crash, may happen unexpefiting and debugging. We have implemented all of
edly). these and will discuss them in depth after presenting
In this work we develop an architecture that fahe architecture.
cilitatesindependent statéor the Bro intrusion de- As a first example, consider a set of NIDSs at dif-
tection system [Pax99]. The goal of the architectuferent locations of a network, each able to identify
is to enable much of the semantically rich, detailemlispicious activity in its network segment. Tradi-
state that hitherto could exist only within a single exionally, either each NIDS works independently of its
ecuting process to become independent of that ppeers, or there is an explicit mechanism to send, re-
cess. We consider two basic types of independesive and incorporate alerts. With independent state,
state. Spatially independergtate can be propagated is possible tdransparentlyleverage the others’ re-
from one instance of a NIDS (such as a Bro process)its. We simply tell the systems what state should
to other, concurrently executing, instancd&mpo- be synchronized among them. This state can span
rally independenstate continues to exist after an inthe range of individual analysis variables, low-level
stance (or all instances) of a NIDS has exited. F@.g., packet signature match) or high-level (e.qg.,
both types of independence, the state in a sense xccessful SSL negotiation) events, large tables stor-
ists “outside” of any particular process. ing accumulated context, or operator alerts. We fur-
Our contribution concerns not the fundamental ntier emphasize that this is only one of many applica-
tion of state that can be shared between processesams for independent state, as we will develop sub-
accessed over time—that already appears in existgggjuently.
systems—but rather an architecture for doing so thatn general, we can distinguish between several
(i) is unified i.e., it covers all of the systems’ stat¢ypes of state. We will refer to state that does not
in the same way, an(li) encompassefine-grained change over the course of the execution of an in-
state. This second is particularly important to tretance of a NIDS astatic state Such state often in-
architecture’s power: because we keep fine-graindddes the NIDS’s configuration (e.g., the signature
state, rather than only aggregated state such as alegtsit uses) and perhaps a database of information
or activity summaries, we can continue to proceabout the network it is protecting, such as the types
the independent state using the full set of mechaf-operating systems installed on the monitored hosts
nisms provided by the system. We believe no e@r their “active mapping” profiles [SP03a]. We note
isting NIDS incorporates such a general mechanisthat the latter might in fact change over the course
Independent, fine-grained state provides us withexecution, but if the NIDS does not have a means
a wealth of possible applications that hold gre&d incorporate such changes, the state is effectively
promise for enhancing the power of a NIDS. Thestatic.
include coordinating distributed monitoring; increas- We refer to NIDS state that does change, on the
ing NIDS performance by splitting the analysis loadther hand, agdynamic state Here, we make a fur-

2

ther distinction: we will refer to state that effectivelynew general concept for network intrusion detection.
exists at only a single slice (quantum) of time akhis is important to keep in mind, in particular when
volatile state and state that exists over an interval af the following we necessarily have to delve into
time asnon-volatile stateFor Bro, slices of time aredetails of Bro.
quantized in terms of the arrival and processing of in-In the next section, we give an overview of previ-
dividual network packets. Examples of volatile statgis work related to our efforts. K8 we then discuss
include events generated by Bro’s event engine, the different types of state relevant to Bro, and4n
the values of local variables when Bro invokes poliajie design and implementation of our architecture.
script functions (since Bro specifies the execution We examine ir5 the powerful features and applica-
such functions as atomic, i.e., they run to completidions mentioned above that fine-grained independent
before Bro considers any further input). state enables, and summarizeé;t

The ultimate goal for our architecture is to sup-
port making all of Bro's state both temporally and
spatially independent. Our first observation is tha&t Related work
this should be easy for static state. Since, by def-
inition, static state cannot change over time, thef@ our knowledge, the unifying concept of indepen-
must already be a means to specify it upon stagient state has not been previously formulated in net-
up, which we can use again to recreate the statew@rk intrusion detection research. Some of its as-
other instances. However, we will also develop thects, however, can be found in earlier NIDSs. A
theme that converting static state to dynamic statgmber of NIDSs facilitate distributing the detection
extends the flexibility of a NIDS, so our architecprocessing across multiple locations in a network.
ture aims to accommodate doing so. Our secohtiey employ different approaches to do so, but dis-
observation is that volatile state, by definition, catrbution implicitly requires the exchange of state.
not be independent. Hence, we also aim to findNetSTAT [VK99] describes attack scenarios using
ways to convert volatile state to non-volatile statfate transition diagrams. If, due to the characteris-
to enable making it independent. In summary, oties of an attack scenario, a single NetSTAT probe is
goal is to convert as much state as possible to beable to detect an attack solely by itself, it is con-
ing dynamic, non-volatile, and thus temporally- arfijured with a partial scenario and communicates its
spatially-independent. analysis to other probes, thereby transferring state.

While our architecture for independent state is inMetaSTAT [VKBO1] adds dynamic reconfiguration
plemented for Bro, we believe that other systemsgpabilities to the STAT framework.
would likewise significantly benefit from indepen- Emerald [PN97] hierarchically organizes moni-
dent state. However, depending on the flexibilityrs which exchange messages to propagate results
of the particular system, some applications might baed subscribe to services. GrIDS [SCCIB] mod-
harder to realize than others. In particular, mudts large-scale attacks by activity graphs. Its com-
power is lost if a NIDS does not provide a user-levplonents monitor traffic at multiple locations and
scripting language. This is why we chose Bro @a®mmunicate by sending or requesting information.
our target platform: its flexible, policy-neutral apAAFID [SZ00] builds on autonomous agents which
proach is ideal for taking full advantage of indesommunicate their results to hierachically organized
pendent state. Nevertheless, independent state mamitors. AAFID’s design specifically addresses dy-

3

namic reconfiguration and acknowledges the utilitihe user to arbitrarily change and extend the standard
of persistent state, although the prototype does set of scripts (and in fact the user is expected to do
implement it. S0, to express site-specific policy). Since this layer

Finally, the “Intrusion Detection Message Exequips the user with a full scripting language pro-
change Format” (IDMEF [IDM]) aims at defining aviding a rich set of control constructs and compound
standard format to exchange alerts between differelata types, the corresponding types of state are only
NIDSs. It differs from our work by its focus on inter-determined when the scripts are loaded at run-time.
operablity and its restriction to the exchange of only

high-level state. 3.1 Event engine state
By setting up a network of communicating NIDS

S : . .
we are building a distributed system. Principles Eﬁhere_ are four main _types of internal, event-engme
such systems are discussed for example in [Tsoﬁtfte in Bro: connect_|on state, a_nalyzer_state, timers,
To make a system’s state independent, our main t85'fj control state. Using our earlier terminology, they

is a serialization framework, for which [Sou94] dis?® all dyn_am|c and n10n—V(_)Iat|Ie_. L
cusses different approaches Connection state Bro’s main unit of organization

is a connection. By definition, each packet belongs
to exactly one connectioh.Bro keeps a map of all
3 Bro’s State currently active connections.
With each connection it associates a variety of in-

To develop independent state, our first task is to iddgtmation such as its start time, the hosts (IP ad-
tify the different types of state present in a NIDglresses) involved, the amount of data transferred so
While there is a common subset of state held by mék transport protocol state, and so on. In terms of
NIDSs (e.g., connection state), we delve into Bro¥lume, the per-connection state is by far the most

explore the architectural notion. important to implement a sophisticated expiration

For Bro, there are two main layers of Operap_olicy to avoid resource exhaustion. Bro uses an ex-

tion, each of which stores a significant amount Bqnsive set of timeouts for this, as well as transport-
state. The “event engine” layer, implemented Rfotocol analysis. (By default, state for TCP connec-
C++, analyzes network traffic in policy-neutral tions is kept indefinitely, until the connection termi-
fashion, producing a stream of events reflecting tA@tes due to a FIN exchange oraRST.)

activity present in the traffic stream. The activity Analyzer state Bro contains an extensive set of
encompasses different semantic levels: individUiotocol-specific analyzers, e.g., decoders for TCP
packets, byte-stream signatures, connections, apﬁﬂd HTTP, which maintain their own set of internal
cations, and interrelationships between connectictgte- For example, the TCP analyzer buffers out-of-
(e.g., stepping stones [ZP00]). While the event efffduence data, and the HTTP analyzer accumulates
gine's operation is tunable by redefining user-visibfdient and server headers. Since most analyzers work
parameters, its algorithms—and therefore the ty&i & per-co.nnectlon paS|s, they attach their state to
of state it stores—are fixed. On the other hand, tREC’'S generic connection state. Some analyzers also

policy scriptlayer, which executes scripts written in - ithe notion of a connection is obvious for TCP. For UDP
a custom language over the stream of events, allosts ICMP, Bro uses a flow-like definition.

4

store global data, however, which is therefore nhobmmunicating hostgji) another counting to how
linked to a particular connection. One example is tingany different hosts a particular host has attempted
stepping stone analyzer [ZP00], which keeps a settofinitiate connections, anii) in fact 21 additional
candidate stepping stone connections. tables and sets. For automatic expiration, Bro keeps
Timers: Bro’s main mechanism for expiring statéimestamps for the entries in the various tables (and
is via timeouts. The number of concurrently activeets) indicating either their oment of creation or last
timers can easily reach tens of thousands on a higiccess (depending on the table’s declaration in the
volume link. script) which then drives timeouts used to delete the
Control state: There are several parameters thantries.
control the operation of the event engine. The user'sData operations Depending on the data type, dif-
scripts can dynamically change them. The most sigrent types of operations exists. For example, for
nificant of these are timeout values and the curraables we can insert or remove an entry. Ordinarily,
packet filter (intcpdump [TCP] syntax), which im- operations would be viewed not as state but as trans-
plicitly controls which analyzers execute. Whiléormations to state. However, with our definition of
these parameters are small in terms of volume, tHeyplatile” state, we can view specific instances of
have a major effect on the performance of the sysperations as momentarily existing in and of them-

tem. selves, and thus constituting dynamic, volatile state.
Designating them as such then gives us an oppor-
3.2 Policy script state tunity to consider transforming them into dynamic,

non-volatile state, which we return to §4.1.2.
The policy script layer includes six types of state: the Event generation Similar to data operations, we
scripts themselves, data stored by the scripts, op&jw the generation of an event as a form of dynamic,
tions on this data (see below for why we term thegg|atile stat&?
a form of “state”), event generation, function calls, pynction calls: Function calls in Bro are quite
and byte-level signatures (not discussed further dygilar to the invocation of an event handler, and
to limited space). _ _ so we likewise view calls as dynamic, volatile state.
Scripts: The scripts are static, non-volatile statérhe principle difference is that function calls return
They define the behavior of the system by definiRgyes, while event handler invocations do not.
types, event handlers and functions. Signatures Bro actually has two scripting lan-
Data: Event handlers and functions are able {9,5qes: one for specifying event handlers, and a sec-
store global and local data by defining variablegng for writing efficient, byte-stream intrusion de-
Both are dynamic, but while global data is Nofgction signatures [SPO3B]. These signatures are
volatile, local data is volatile since Bro fully executesiatic non-volatile state. For some NIDSs (e.g.
function calls within a single (uninterrupted) slice of
time. A number of different data types exist, with 2post events are generated inside Bro’s core, so one could
tables indexed by a set of types and yielding an arbigue whether they are indesdript-levelstate. We decided to
trary type being particularly common. For exampl@}“ them here because their role is as triggers for scrygt-le

) . . tions. The event engine does not itself process evermslyit
Bro’s scan detector—which detects horizontal arz nerates them 9 P by

Vertica_l scanning, as well as paSSWO_rd_ gues_Sing_3Throughout the text, when using the term “script” we al-
keeps(i) a large script-level table containing pairs afiays refer to the former.

5

Snort [Roe99]), signatures comprise the main typserializes all attributes unique to the class itself.
of script-level state. We simply followed this approach, using a generic
SerializationFormat class as the interface to
)) convert between C++ data types and an external rep-
4 Architecture Design and Imple- |esentation. Doing so keeps the serialization process
mentation independent of the underlying external format, so we
are, for example, able to create both a (portable) bi-
After identifying the types of states that Bro storesary version and an XML version.
we proceed to investigate how to make each oneFor memory management, Bro uses reference
dynamic and, particularly, independent. The magounting extensively. To recreate the reference struc-
mechanism for this is aerializationframework that ture when de-serializing, objects may be assigned a
enables us to convert all of Bro's main data struset of unique identifiers. Such an object is fully seri-
tures into a self-contained binary representation aalized only once, when encountered for the first time.
back. Once we have this, we can, for example, maldpon subsequent serialization requests, e.g., due to
state temporally independent by serializing it into lzeing referenced by some other object, we only store
file at the termination of a Bro instance. A new inits ID.
stance can then read it back upon start-up. Similarly,A basic problem that arises is thame needed
to make state spatially independent, we can sendoitserialize state. Bro is a real-time system that
over the network to some remote instance. must keep up with a high-volume stream of pack-
Making data structures serializable is, by itselgts. If it spends too much time on other things
fairly straightforward. But adding full serializabil-than processing packets, it risks dropping packets
ity to a complex system like Bro, which was not dgsee [DFPS04]). Therefore, we implementadre-
signed with this in mind, raises numerous subtle isientalserialization: serialization proceeds in steps
sues we must address. Therefore, we first describiermixed with packet processing. In this way, it
the implementation in more detail. We then presetatkes more time to finish the serialization, but our
the corresponding interface available to the user, aaility to keep pace with the packet stream improves.
finally we discuss some of the issues involved@ Incremental serialization leads to another prob-
curely sending state over the network. Our impldem, though. By serializing chunks of the state at dif-
mentation has been integrated into the latest devielrent points of time, we may incur inconsistencies.
opment version of Bro, and we are now using it ofconsider, for example, two script-level tables that
erationally. contain related data derived from the same connec-
tion. It could happen that after the first table has been
serialized, we process some packets that remove the
connection data from the second table. Thus, serial-
Given an object-oriented design, the methodologging it in the next step would leave the two tables
of adding serializability to a class hierarchy is wellbut of synchronization.
established [Sou94]. Each class gets two new methWe have not yet addressed this problem—it has
ods, one for serializing and one for de-serializingot arisen in our operational use so far—but our strat-
When called, each of them first calls the corresponelgy for doing so is to use a transaction model [TS02],
ing method of the class’s ancestor, and then (der which we have implemented partial support by

4.1 Serialization

6

funneling all state-changing data operations throughAs a consequence, we have not yet implemented
a common location during serialization. By converserialization for all analyzer-specific connection
ing them into non-volatile state (as discussed belostate. While all transport-layer protocols are fully se-
we would produce a transaction log which could thefalizable, so far the only supported application-layer
be replayed upon reinstantiation. protocol is FTP (we do not need it for SSH as, due
We now turn to looking at the different types ofo the encrypted nature of the payload, Bro presently
state, discussing some of the particulars involved anly decodes the initial handshake and then confines
their serialization, along with some points not yatself to the generic TCP analysis). But adding se-
fully implemented. As we will discuss, for some ofializability to other protocols as needed should be
these latter, it is not in fact clear whether supportraightforward.
ing them makes sense. For others, adding support isr

. imers: The main problem when de-serializing
straightforward, but to date we have not found a ne{ed . L .
. . imers is deciding for temporally-independent state
for them in operational use.

when to schedule them for expiration. Two ap-
proaches come to mind: first, keep the original ex-
4.1.1 Serialization of event engine state piration time and execute it immediately if that has

Connection state Connection state (and the atglready passed; second, adjust_the_ time by subtract—
g the difference between termination of the old in-

tachedanalyzer statgis rather easy to serialize and!

to restore. The most important problem is the pote?nt—amce and start of the new one. Observing that most

. . imers are set to some absolute time plus some time-
tially very large number of concurrent active conne&- o P i
gut (for example, the initiation of a connection plus

tions. For example, on one of the high-volume link ; . .
P g ﬁe time interval after which a response should have

we monitor operationally, we regularly find mor . "
. een seen), we took the former option. Additionally,
than 30,000 concurrent connections even when U

. . . w%en deserializing multiple timers, we make sure to
ing aggressively small timeouts. 9 b

This leads to two major problems. First, the vofXPIre t_hem n tr_u_elr original order to preserve their
semantic causalities. So far, we only implemented

ume of the data gets high: a single connection en-. .~ . . , .
. sFrlallzatlon for timers related to Bro’'s connection
try can exceed 1 KB in-memory, and the externa . .
: . . management, but supporting the other types will be
representation—which we have not optimized for .
. simple as the need arises.
space—is even larger.

Second, and more importantly, it simply does not Control state: Unfortunately, Bro’s control state
make sense to stoadl connections: the vast majoris not located at some well-defined point of the class
ity are quite short (100s of msec or a few secondgjerarchy, but distributed in several places. For user-
Considering that it takes some time to serialize theredefinable timeouts, we can simply leverage the se-
(particularly given incremental serialization as detalization of script-level data described below. For
scribed above), most of them will already be finishdte packet filter, we added a method to store a string
before they are read back. Therefore, we only ssntaining the filter specification and then read it
lectively store connections specifically requested byck and change the filter to reflect it. We note that
the user. For example, the user can restrict statiee system may need some time to compile and in-
independence to types of connections expected toshbal a new specification; usually a couple of millisec-

long-lived, like FTP or SSH sessions. onds. Additionally, at least on FreeBSD, it clears the

current packet buffers.As therefore we will likely to static variables in C++.)
miss some packets, there is a tradeoff involved whenrA final performance issue arises with serializing
installing a new filter. tables: they can get huge (many thousands of en-
tries), and thus serializing them all at once can take
too long and incur packet drops. The natural solu-
tion here is to make the current incremental serial-
Scripts: The main components of scripts are typeation mechanism more fine-grained, with the in-
definitions, global variables, functions, and evegtemental unit being not an entire value, but an ele-
handlers. All of them are fully serializable and dament of a value. In this fashion, we could serialize
serializable. a large table a few elements at a time. Of course,
In addition, we added support fmhangingthe this again raises the issue of consistency already dis-
definition of a function and adding new event harussed above, again requiring transaction logging.
dlers during run-time. Thus, this type of state is no Data operations As mentioned earlier, we in-
longer static but dynamie. clude data operations as part of a broader notion of
Data: The most obvious state to serialize is th&tate,” in particular as a form of volatile state. Our
global data amassed by the scripts. We added serglal in doing so is to expose them as amenable to
ization to all of Bro’s different kinds of values, witha form of “independence” similar to that which we
full type-checking during reinstantiation. While nostrive to provide for data objects. In particular, if
articulated as such in Bro’s design, there are two hae have fully independent data, then we can prop-
sic types of values, static and mutable. Static valgate changes to the data in termsdefcriptions
ues (of which all are atomic values that do not coof the operations to perform on the datather than
tain other values) are not themselves changeablehat full (and probably mostly unmodified) data itself.
the script-level, since they are deep-copied upon &r example, when we insert an element into a large
signment, similar to annt or double in C++. set, we can simply propagate “insert element ‘foo’
Mutable values are container values (e.g., tables antb set ‘bar’ ”. (Propagating operations may intro-
records) into which other elements can be insertetlice synchronization problems, though, as discussed
thereby changing their values. Mutable values are§4.2.2.)
shallow-copied, similar to C++ objects manipulated Implementing this independence for operators
via pointers. Serialization of static values is straighturned out to be quite difficult. We first identified
forward, as there is naliasinginvolved. For muta- all the atomic operations that can be performed upon
ble values, we recreate the reference structure wiBao script values, for example: binding a value to a
deserializing (seg4.1). global identifier, changing the value of an element in
We do not serialize data local to functions, ascontainer, or adding/deleting elements to/from con-
this volatile state is of no use outside of a partictainers. We then implemented a serialization for an
lar function execution. (Bro does not presently supbstraction of the operator. The main problem here
port permanent, local function variables analogoussts in the need toamea value: when we want

"We dovised <D kernel - s flushi tr? change a value, we need to say which value we
buﬁ:y: evised a FreeBSD kernel patch that avoids flushing 1. -, Obviously, this is not a problem for static

5We explicitly do not allow changing type definitions during/@lues—they cannot be mOdiﬁe_d' bUt only t?e cre-
run-time as this would circumvent Bro’s static type chegkin - ated and bound to some global identifier (which, by

4.1.2 Serialization of policy script state

definition, has a name). For mutable values, hotwn. We chose the former; s§é.3 for further dis-
ever, we had to introduce a naming mechanism, @assion.
one Bro instance can communicate to another whichSignatures A final type of state in Bro, currently
value (e.g., which element of a table) it has modifiegtatic in nature, is the set of byte-stream signatures
We solved this problem by introducing a new, norused by its signature engine [SP03b]. Because we
user-visible global namespace. Each mutable valhaye not yet tackled making this type of state inde-
on which operations are to be tracked, is bound pendent, we do not discuss it further (the optimized
a hidden identifier unigue among multiple instancetta structures used for signatures are not amenable
of Bro (by incorporating hostname and process M9 incremental updates).
into its name). If multiple instances share indepen-We would like to convert these to dynamic state,
dent state, they agree on these names first. Sulggebling us to change signatures on-the-fly and send
quent operations are then expressed in terms of thékg#m from one Bro instance to another. Imple-
names. For container values, each included mutahienting this change, however, is quite challenging
element gets its own unique identifier. This ensurbecause the optimized data structures Bro uses in-
that shallow-copied values are treated correctly. ternally to match signatures with high performance
Event generation Given serialization of Bro are not amenable to incremental updates. Chang-
types, it now becomes easy to also serialize Birfg a single signature currently requires recomput-
events, since an event is simply a name plus a setrf the entire decision tree used to determine (prior
typed values. In addition, we keep the time wheo regular-expression matching) which rules are can-
the event was generated. The ability to serializhdates for matching a given byte stream. Because
events—transforming event generation from a forme have not yet tackled making this type of state in-
of volatile state to non-volatile state—is very powdependent, we do not discuss it further.
erful. It means we can now send events between
multiple concurrent Bro instances (leveraging spati@_lz
independence) and record events to disk and later re-
play them (temporal independence). We now turn to how the user interacts with the se-
Function calls. Unlike event handlers, functionrialization framework presented in the previous sec-
calls return values, and hence are inherently sytien. The framework itself is internal to Bro’s event
chronous rather than asynchronous. In Bro, funeagine and hidden from the user, while the interface
tion calls are very similar to event handler invocas defined via new semantics expressed at the pol-
tions. The only difference is that function calls rdey script level. The development of the elements of
turn a value, while event handler invocations do ndhe interface has been mainly driven by the needs of
the latter being asynchronous while function calls aparticular applications, and thus will continue to be
inherently synchronous. extended as we gain more experience with using it.
This difference has major implications for staté/e note that having the general serialization frame-
independence. Because of the synchronous semaork in place, the semantic interface was quite easy
tics of function calls, we cannot change them froto add, and we expect this to hold for future exten-
volatile state to non-volatile state without violatingions, too.
either those semantics, or incurring potentially lethal First, we illustrate how the user can cre-
blocking delays waiting for calls to complete and rexte temporally-independent state, which essentially

Interface

9

means writing different elements of Bro’s state into The reason we structure the interface so that the
files and reading them back again later, possillger explicitly marks which state to keep persis-
after having first modified them using other intent, with all other state by default remaining non-
stances of Bro. We then discuss controlling spatiallgersistent, is both that the volume of the entire set of
independent state, which is done in the context sthte can be very large, and also that we find that pol-
communication between multiple instances of Brizy scripts are often written in a style that presumes
All the language constructs and functions are accéisat state exists only during the execution of a single
sible at the script-level. To ease their use, we hawstance of Bro. We will return to this point when we
also developed standard scripts to accomplish a nuitiscuss checkpointing i§b.1.

ber of common tasks. Along with &persistent , we also provide
a function make_connection _persistent ,
4.2.1 Temporally Independent State which tells Bro to store the associated state of a

) _particular connection. There is also an associated
To make state temporally independent, we store itdfh \qard policy script that uses this function to
files. These files can then be read by another instaggg,matically save state for all connections belong-
at'?rlgt?rzc?silgtb(\)/%hn;eﬁse of temporally indepen 4ol 10 @ user-definable set of services (like FTP
state is to make datpersistent The data is storedg d SSH). In addition to automatically writing all

into a set of files just before a Bro process terminat@?,rS'Stent state at termination, the script function

and re-read when a new instance starts up. Insté4§ckpoint can be called anytime during opera-
of storing all global data per default, we let the us&en. It uses incremental serialization to avoid packet
selectively define which script-level data to save lrops and can be called by another standard policy

adding an attribut&persistent to its type dec- script to save Bro’s state at regular time intervals.

laration. For example, Similarly, the functionrescan _state reads
global saw_Blaster: set[addr] state back from disk. While by itself this is not of
&persistent; much use during operation, we can also tloepy

declares a set of addresses for which any changide files from one Bro instance to another and
to the set will be propagated to future invocatiorigcorporate them directly into the second instance
of Bro. Such a set is useful, for example, in trackvhile it runs One application here is to transfer data

ing which addresses have already generated al&dswveen two Bro instances. Another is more pow-
in the past in order to reduce the volume of futukgful: we have added a new command-line option
alerts. Since our policy may be that once weMat tells Bro to write all state contained in one of

detected a Blaster infection, we don't need to h‘ﬁ?g scripts into files. That means we get access to

about it again. Furthermore, because temporar%/- lobal identifiers es, functions, and event han-
independent state includes its associated timesta }Bg i » types, o
ers. By copying one of these files into another run-

and timers, we could also use: d_ _ _ _ _
ning instance, we caohangeits configuration on-

the-fly—both the values of its global variables but
also the values of its functions and event handlers,
and Bro will delete each set element 30 days aftei.#., we can change the code it executes.

was added, so we will be reminded of all still-active Here we see some of the broader potential of the
Blasters once a month. move from static state to dynamic state. Of course,

global saw_Blaster: set[addr]
&persistent &create_expire=30days;

10

such flexibility also requires discipline: otherwise intrusion detection. For example, when combined
can lead to confusion and disarray if we lose traekith event capturing, it gives us a more abstract view
of just what code and data a given instance of Broa$ network activity than raw packets, but remains
executing. But we were motivated to add this funecrachine parsable. In addition, when coupled with
tionality by the observation of a corresponding opean XML reader, this facility will enable us to di-
ational need for rapid reconfiguration. Often whemctly manipulate Bro’s state using whatever tools we
running Bro operationally, we will encounter a newave available for editing XML. While such “outside
traffic pattern for which the current Bro configurathe system” editing has the potential for introducing
tion is deficient (e.g., it fails to generate alerts farasty, hard-to-find bugs, they can also prove to be
a newly discovered attack, or it generates a flotite-savers during emergencies that sometimes arise
of alerts for a new type of traffic that is in fact beeperationally.
nign). To date, accommodating such changes in
the configuration has required terminating the ex:2.2 Spatially Independent State
isting instance of Bro—losing all of its state in the _ _
process—and starting up a new instance. But by fQr spatlally—lndepe_ndent state, we need to_ transfer
ing rescan _state , we can make the changes igtate from one Bro instance to another running con-
the configuration, test it using a separate instarfed"ently. While one way to do this would be via the
of Bro, and, once satisfied that the changes are c@f¢ady-mentionedheckpoint /rescan _state
rect, incorporate them into the running, operationfinctions (coupled with manually copying the files),
instance without the need to restart it. doing so would be crude and quite limited in power
Along with script variables and function definiPecause it would hide the presence of multiple Bro’s

tions, we also developed a way to make event gendf@M One another.

: ; ; . A more direct way is to establish network connec-
tion temporally mdependen@. By ca_llllng the funCtIOﬂons between the instances. To do so, one of the in-
capture _events , our policy script can tell Bro

stances calls the new functitisten , which opens

to write all events raised during run-time into a filey port on the local host waiting for connections from
One use is to later replay these events in another gher instances:

stance of Bro for debugging and exploring alterna;te
analyses. ; :
Tfi/is can be very helpful for debugging, as we q#% for SSL-authenticated connections.
! JIisten_ssl(10.0.0.1, 47756/tcp);
not need real network packets to reproduce a situ-
ation. Although this is not suitable for all cases-These in turn initiate connections by means of the
if we need access to event engine state, replayfifgfyconnect function:
events is not sufficient—it suffices in many situas connect to 10.0.0.1:47756, using SSL.
tions. There is one other means for manipulating pebnnect_ssl(10.0.0.1, 47756/tcp);
sistent state, which is to print it. We can do so either . . .
in a “pretty-printed” human-readable form, or enc nce a connection is established, there are

several ways to exchange state. Using

coded as XML, although this latter is notfullylmple-request remote _events one side can request

mented at this point. Once we have finished implg-set of events, meaning that whenever the other
menting the XML output, we expect this to be highlgide generates one of the events, it automatically
useful for traffic analysis independent of the task &frwards the event to the other side:

Listen on interface 10.0.0.1:47756

11

Request all HTTP events from peer. determine that the same source address has gener-
request_remote_events(10.0.0.1, ated an alert. If the processes share a common, inde-
47756/tcp, /http_>/); pendent table, then one of them modifying the table

At the receiving end the event looks the same as orHt'aqht EXperience a race condition W't.h another_pro-

i ._cess modifying the table at the same time; the winner
generated locally (although by calling the function . . .
) : S of the race will overwrite the new value provided by
is _remote _event the script can distinguish be-

... the loser, and the net effect is that the source address
tween local and remote events, and then, addition-

. : . may be charged with only one new alert against it
ally, callingevent _source to retrieve more infor-

: . rather than two.
mation about the originator). T id th diti d h
In addition to sharing events, multiple Bro in- 0 avol €se race conditions, we wou ave

stances may share data, too. When a global scrigt-ensure mutu_ally-exclusive data operatiqns, for
level identifier is declared a&synchronized , €xample by using a token-based reservation sys-
modifications to its value will be propagated ttem [TS02]. But this would violate Bro’s real-time

all peers for which the identifier is also declaregrocessing constraints: before performing an opera-
&synchronized tion, an instance would have tgait until access is
granted. Since this in untenable, we explicitly use
loose synchronizatignwhich incurs the race condi-
tions described above.
In addition, we can explicity request the full On the other hand, if in the above example the
set of persistent state (i.e., all data declaredtion being performed is incrementing an alert
&persistent , and all connections marked byounter, the operation is in fact not “set it to the value
make_connection _persistent) from another n+ 1" but rather “increment it”. If we propagate this
host, reinstantiating it locally. operation rather than the resulting value{1), then
Finally, for the event engine’s control state, thihe increment will be performed twice and we obtain
new function send _capture filter sends a the correct value in the table af + 2. Indeed, “in-
tcpdump filter to the other side, which then decidesrement” and “decrement” are two of the types of
(as discussed in the next section) whether to installaperations which our implementation propagates.
Because the filter fundamentally determines the typeThus, there are not any synchronization problems
of traffic available for analysis, it effectively controlsvhen using Bro’s++/-- operators on independent
which analyzers are activated, and thus the remadt&a (with the exception of a potential lag until all
Bro’s processing load vs. degree of detailed morinstances received the operation). For operations we
toring. cannot treat in this fashion, we include the old value
We implement synchronized tables by propagatthen propagating an event. (For example, the opera-
ing data operations as discussed4nl.2. We have tion “assign 7 to the globallert _level ”is prop-
to be aware, though, that this may lead to synchragated as “assign 7 to the globalert _level
nization problems. For example, consider a synchiits previous value was 12”.) By doing this, we are
nized table that counts alerts generated by a partiable to at least detect and report desynchronizations
lar source address. If we have parallelized our NIO® this case, if when changirglert _evel to7,
processing by having multiple processes performimge notice that its value before the change is not in
different types of analysis, then each of them migfact 12).

global saw_Blaster: set[addr]
&synchronized,;

12

4.3 Robust and Secure Communication but defined within Bro’s event engine core, and

script functions. We examined all internal functions
The design of our new inter-Bro communication sygs of Bro version 0.8a39 (about 100 total), and
tem emphasizes robust and secure operation. Rfmd only a few that actually have semantics that
garding robustness, a key point is that, from the pegquire both being called remotely and returning
spective of a Bro process’s main functionality, inte yalue. It turns out that all of these can either be
Bro communication should be unobtrusive. In Parti?eplaced by some additional script-layer logic, or

ular, inevitable networking difficulties such as timehey are not in fact used by any of Bro’s default
outs or unexpected termination should not pertuggripts. (The functionsactive _connection
the main operation. Therefore, rather than addiggnnection _exists |, lookup _connection

a network communication component directly intgnq connection _record could be
the current event engine / script interpreter structuf@placed by using active.bro ; for
we chose to leave Bro's current single-process desight |ogin _state we could add a new
intact, and to instead spawn a second process exglisnt: get _orig _seq and get _resp _seq
sively dedicated to handling the communication Witlye only used in terminate _connection

peers. The two processes communicate by meangffch (usually) has to be called locally
a Unix pipe. (We did not use threads in order to ke%l?lyway; and get _matcher _stats and
their address spaces separate.) On muIti-proceqj‘,@lr _contents _type are unused. Consider-
systems, using two processes has the additional g script functions, we see that instead of calling
vantage of making use of more than one CPU. In thisem remotely, we can as well call them locally,
case, the ngtwork communication does not add '%@eraging&synchronize 'd state if necessary for
to Bro’s main component. their operation.) We conclude that the inability to
The next element of our design was to baserémotely call functions is not a severe limitation.
on semantically unidirectional communication. Thisinally, we note that the unidirectionality of commu-
means that while two peers may both send state oM@fation only affects the core-level communication
the same network connection, Bro’s processing neygitween two instances. For example, it is still
expects one side to reply to something the othgiiite possible to build ascript-level handshake
side sent. In particular, we do not use any form @iechanism by passing a sequence of events between
application-layer acknowledgments. While doing $@o peers. In fact, théandovermechanism shown
restricts error detection and handling somewhat,fit5.1 does exactly this.
also significantly eases implementation by avoiding For reasons similar to those that lead us to rely on
having to deal with unreceived replies (which woulose synchronization (séd.2.2), we do not make
require timeouts and a failure-recovery scheme). \lgly timing guarantees for the communication. For
believe that the decrease in complexity wins more é&le, transfering large amounts of data may de-
terms of robustness than we lose in terms of ernagg the reception of an event. Also, while all state
processing. from one endpoint will always arrive in the order in
The only major drawback of this design decisiowhich it was sent, state from multiple endpoints may
is that we cannot remotely call functions that returntee received intermixed.
value §4.1.2). There are two types of Bro functions: Along with designing for robust communication,
internal functions accessible from the script levele also need to consider securing the communica-

13

tion, i.e., providing for confidentiality and authentrust. Feeding us state requires more trust, and con-
tication. To do so, we provide a simple scriptrolling our operation (e.g., by sending us a filter that
level means to specify the use of SSL for securiigrns on more analyzers) demands full trust.
the communication, which we implemented using The need for these sorts of different levels imme-
OpenSSL [Opef. Enabling encryption for confi- diately arises operationally. For peers with which
dentiality is straightforward. For authentication we/e have not developed any monitoring agreement,
make use of signed certificates. Peers are configutiee first level of trust (no access) is appropriate. For
with the public keys of trusted certification authorsites that we wish to help but we do not know if they
ities. They only approve a connection if the othéhemselves are run competently, the second level is
endpoint presents a certificate signed by one of CAgst. For sites with which we have a close working
We note that we always have both peers authenticegationship, the third may be. Finally, when using
themselves (in contrast to server-only SSL authemtultiple NIDS instances internally, for example for
cation as is often used). load-balancing, the fourth level likely makes sense.
A NIDS necessarily gathers a great deal of infor- Accepting state from a peer (i.e., trust level 2 and
mation, the access to which is often restricted aatlove) illustrates another implication: due to the
not to be shared with other parties. Therefore, trusimplex semantics of the state, we cannot reason-
is a vital issue when accepting connections froably validate that the input is well-formed. Consider
peers. Given the capabilities presented above, witbr example shallow-copied objects: when a serial-
out further restrictions any peer could easily acceigation references another object, it only includes a
our state as well as send us arbitrary, perhaps migique ID. Upon deserialization, there is no appar-
leading, state. In general, we can identify four levetit way to validate that the referenced objecseas

of increasing trust: manticallycorrect (we do ensure type safety though).
Thus, accepting state entails trusting the peer to send
1. Peer may not talk to us at all. valid data, and this consideration must be kept in

2. Peer may get state from us, but we do not accgﬂ)'fqd when assigning trust levels. _ .
any state All four levels rely on a correct identification of

the remote side, which we can achieve via SSL-based
3. Peer may get state from us, and we accept N@ithentication (and firewalling to enforce the first

control state. level). While we have not currently implemented an
4. Peer may get state from us, and we accept @plicit framework to directly state “peeris on trust
state. levely”, we have implemented hooks to enforce such

trust-levels at the script-level by the user. For exam-
The levels are ordered in the way that more trust gle, when a remote peer has successfully connected,
lows more activity on the other side. If already corthe event engine generates an event to tell us so. Our
nected, just passively receiving state needs the lowgglicy script can then decide whether we want to ac-
cept state from the peer by calling a corresponding

f _:WG prefef”ed _Ssh_?vef Ot:er means. i‘:lc'“ o 'Ptst‘:lcv Z‘Tg%ﬁﬁ:tion. If we receive control-state (which currently

the usor does ot need 10 nstal adtional inffastictates 5 G2 0Ny be a packet filter), the decision to use it is
particularly important for fostering distributed, indegently- @dain left to an event handler that needs to be pro-

administered confederations. vided by the user.

14

5 Applications den. While Bro provides a variety of timers for use in
state management, from operational experience we
We now describe several powerful applications of ifrave found that state still inexorably accrues, in part
dependent state in network intrusion detection. Wee to our reluctance to assign timers to every data
first show how we can use independent state item because it's hard to determine gaopriori set-
greatly enhance Bro’s traditional model of regulaings for these, or even identify all of them (there are
checkpointing, including support for robust crash réundreds of script-level variables).
covery. Then we discuss distributed intrusion detec-To date, Bro’s only support for large-scale state
tion, concentrating on the utility of the spatially inreclamation has been the brute force approach of
dependent state. Finally, we show how independsjivinply starting over from scratch. That s, to run Bro
state can be used for dynamic reconfiguration, pr24x7 we (and other Bro users) resortdmeckpoint-
filing, and debugging. ing, which in this context means periodically starting
We implemented each of these applicationgp a new instance of Bro and killing off the old one.
Given independent state, combined with the NIDS%Ve go in that order to avoid a monitoring outage
flexibility, we found all rather easy to achieve. Alduring the changeover.) The frequency with which
though at first sight each may seem to be yet-anothgiis is done ranges from daily (LBNL) to every few
extension of Bro’s generally-extensible functionahours (MWN, UCB).
ity, the easeof implementation proves the power of The main advantages of this sort of checkpointing
the approach. That the single concept of independern¢ its simplicity and the robustness it provides, a sort
state enables such a diversity of new applications ¢ “memory management in depth” when coupled
lustrates itsarchitecturalnature. with Bro’s fine-grained state management mecha-
Our experiences with these applications conmésms. But, clearly, simply throwing away all of a
from monitoring the access links in severadlIDS’s state at certain times is not the best approach.
large environments: the Munchner Wissenschaltieally, we would like to retain a selected subset of
snetz MWN; research network including twoimportant state, while reclaiming all of the rest.
universities—Technische Universitat Munchen, For Bro, the two main types of state lost
Ludwig-Maximilians-Universitat ~ Munchen—andwhen checkpointing are internal connection state
other institutions, Gbps, heavily loaded), the Un{including analyzer-specific state and attached
versity of California, BerkeleyYCB; Gbps, heavily timers) and script-level data. The concept of
loaded), and the Lawrence Berkeley Nationgkrsistence described if4.2.1 now enables us
Laboratory [BNL, Gbps, medium load). to individually choose connections (by calling
make_connection _persistence) and script-
level data (via&persistent declarations) to be
made independent, thus enabling the new Bro in-
IDS's face fundamental state management probleratance to use them as part of its initial state. Do-
Either the system uses a static allocation of state fng so allows us to continue longer-running forms of
its analysis, in which case it becomes vulnerable doalysis uninterrupted, such as tracking scans, long-
easy forms of attacker evasion; or it allocates diffdived interactive connections, usernames, inferred
ent types of state dynamically, in which case maseftware versions (see below), alerts already gener-
aging and reclaiming that state becomes a major bated, and addresses that Bro has blocked in the past

5.1 Checkpointing

15

using its dynamic blocking facility. avoid duplication, (2) remembering hosts which have

While temporally-independent state thus enablégne “something” (e.g., propagating a worm), (3)
us to keep key state across restarts, implementinggsociating additional state with connections (e.g.,
soundly also requires a dynami@ndovermecha- Which FTP data connections have been negotiated
nism. The problem here is that the current instan¥ a control channel), (4) holding configuration data,
of Bro has to save its persistent state at some spedi€h as particular hosts allowed to do “something”,
point in time,after which the new instance can begif€.g., connect to a certain host; this data is more or
executing. If we have to wait for it to start up, we willess fixed), (5) remembering additional data derived
incur a monitoring outagé. We solve this problem from the script's analysis (e.g., software installed on
by recognizing that instead of using temporal ind@-host).
pendent state, we can use spatial independence. Weaking the MWN environment as a test case, we
implement dynamic handover by starting up the nawade all tables belonging to the first group persis-
instance and having it connect via a (local) netwot&nt. Most of these tables are rather low in volutne.
connection to the old instance, requesting its curreamtid suppressing unnecessary log messages is a Vvi-
set of persistent state. After this has been succes$-NIDS capability [Axe99, Jul03]. For the second
fully transmitted, the old instance terminates itseljroup, we differentiated between short-term (min-
and the new one starts processing. utes or less) and longer-term data. The former is

As already discussed, we intentionally did néiften quite large in volume and often not worth keep-
simply makeall state persistent. Doing so would deng. For example, the script recognizing the Blaster
feat the purpose of checkpointing. But having th&orm [Bla] by its scanning activity keeps two tables:
tools now to selectively make state persistent, thge tracking pairs of hosts which have communi-
next step is to identify the state for which this maketed over TCP port 135 within the last five minutes,
sense. For our operational environments, we haded the second remembering all already-identified
decided to keep internal connection state for intékorm sources. We decided to make only the latter
active services that tend to have long-lived conneeersistent.
tions. We do this using new default policy scripts that The third group is more problematic. Ideally, we
trigger persistence for FTP, SSknet andrlogin would like to keep information for afpersistentcon-
connections. (This list is easily customizable. Inmections, but discard all the rest. But to do so the
addition, one could choose to add connections feeripts would need significant restructuring, as their
which some malicious activity was already seersgmantics vary too much to automatically deduce
For script-level data, we took Bro’s default policyvhich information is associated with persistent con-
scripts (as of version 0.8a57) as representative factions. There are some tables, though, for which
the usage of state in Bro scripts. Our first observae know they always correspond to state for persis-
tion is that nearly all of the scripts store their relgent connections. (For example, the FTP analyzer
vant data in tables or sets. We found five basic wseript remembers FTP connections.) We made these
ages: (1) remembering messages already loggedkitals of tables persistent, but left all other tables un-

’If we start the new instance first, and have it read in the ®With the notable exception of the tableeird _ignore
persistent state while already processing packets, we sigu recording all the “crud” [Pax99] In large networks, we seesto
nificant analysis inconsistencies. of crud.

16

modified (i.e., ephemeral). due to programming errors, and, hitherto, always lost
We also left the fourth group untouched, as confitiie complete state of system as a consequence— but
urations are mostly static and better changed matso in a production environment, where crashes still
ually if the need arises. Finally, for the last grougre a fact of life, particularly due to resource exhaus-
we found we needed to make case-by-case decisidim). Not only does crash recovery allow us to con-
For example, to keep vulnerability profiles [SPO3lihue operating with only a minor loss of state (in
one of the scripts detects the software versions ugetns of the importance of the state), but the check-
by different hosts, an excellent example of informaoint also allows us to analyze the particularly sig-
tion we do not want to lose. Consequently, we da#icant state post-mortum (c§5.4).
clared it&persistent . In addition, we are planning to extend the han-
We observed that adding persistence to a table d@bver mechanism described §b.1 by running a
most always implies adding an expiration timeoutshadow” instance of Bro. It would connect to the
too, as it generally does not make sense to store staten Bro process but otherwise stands idle, regularly
forever. We implementedead and write timeouts, checking responses to are-you-alive events. If so, it
which expire for each table element a given amouretquests a copy of the main Bro’s current state; if not,
of time after the last access or modification to thben it can use the last transferred state as the starting
element. Similar to&create _expire discussed point for its own analysis.
above, these work for persistent tables as well as
Qphemeral. One exception we made to always e?@r_g Distributed Analysis
ing persistent state, however, was for vulnerability
profiles, where we prefer to keep the information &ne we've provided a means for a NIDS to com-
long as possible. If required, we can always deletgmunicate its state, we can then use that mechanism
manually by deleting the corresponding state file ¢ distribute its analysis. To date, distributed NIDS
disk. have generally imposed a specific model on the form
of distribution. For example, DIDS [SBD®1] was
the first to employ a sensor model, gathering low-
level data remotely while performing the higher level
A related application of persistent state is better reemantic analysis centrally. On the other hand,
covery from crashes. Three main reasons for tRenerald [PN97] builds up a hierarchical structure
crash of a NIDS are resource exhaustion, attacksed to propagate information up to the root level.
and programming errors [Pax99]. In most systems,Independent, fine-grained state opens up new de-
including Bro, in each case we lose all the statgees of flexibility for distributed analysis. In this
so far collected by the system. But by using theection we look at three different models for doing
checkpoint function (seet4.2.1) regularly, we so, all of which we have been able to implement
can significantly mitigate the effects of crashes, smd experiment with by means of Bro’s independent
that we only lose data accumulated since the lasate. The first model supports load-balancing for
checkpoint. monitoring high-volume links. The second supports
Our experience is that crash recovery is invalthe well-known “distributed sensor” model, and the
able. This is not only the case when actively devehird looks at propagating information between oth-
oping the IDS —where we often experience crasheswise decoupled systems.

5.2 Crash Recovery

17

5.3.1 Load-balancing munication they would require. We found that there
is one dominant case where without communication
we would lose information: several scripts store in-

difficult to analyze the full packet stream WIﬂ}ormation about individual hosts, usually of the form

a single NIDS (unless one utilizes custom harchost ab.c.d did something[times]’. For exam-
ware [KVVKOZ]). One strategy for coping with suc le, the worm detection script keeps a table storing

a load is to distribute the analysis across several fi- already-known worm infectees. Not propagat-
chines, each doing only a part of the work. A kei¥1g this state among the concurrent Bro’s would have

question thep 's how to cqordinate their QperatioRNo effects: (i) each of the instances would alert in-
Currently, using Bro operationally we do this by rundividually if it recognizes the worm, angii) more

ning several independent instances on different sli ortantly, if an instance cannot identify the worm

of_the network trafflc.. But Wlthout any state sharln%y itself, it obviously cannot use this information
this loses important information. Thus, our goal

to retain the depth of analysis a single Bro could
principle achieve if it could cope with the load.

On today’s high-volume link8, it is exceedingly

R other contexts (e.g., treat signatures matching a
Khown worm infectee different from other matches).

i i : _ With spatially independent state, however, we can
To this end, we first need to decide how to CIEasily solve these problems by declaring the tables

vide the traffic between the multiple systems. W§synchronized (per§4.2.2). Now each instance

can either do statically (each system gets all paCkBF%pagates its state to the peers. In fact, this is an
matching some fixed criteria) or dynamically (e.g, ’

¢ h X decide individuall hi deal situation for loose synchronization: the propa-
or eac ponnectlon_we ecide individually WhiCH o g updates are “add this element to the table” and
system will analyze it). Our efforts so far have foz

increase this element’s counter”. Both are indepen-

cused on static approaches due to their simplicialem of the order in which they are applied (as long

with the two obvious ones being distribute based OLX clements are not removed. but in most cases this
() the local IP space, dii) the application. '

- .) happens, if at all, due to automatic expiration, which
Dividing by IP space To fruitfully split up the lo-

: dk ed b h each instance already does by itself). Also, for this
cal IP space, we need knowledge about the Netwek, - 5 short interval of desynchronization is not of
to find a division so that the individual NIDS SyStemﬁ\uch importance

receive comparable loads. From our operational X\ 4re currently working on exploring division by
perience, measuring the volume and leveraging tllﬁespace operationally at MWN
expertise of the network’s administrators to do so iSDividing by application: To aivide the load by

not hard. The main advantage of distribution basggplication, we delegate applications that make up

on dividing the 1P space is the ease of further digqjoniticant share of the load to dedicated systems.
tributing the load by introducing additional systemﬁ, for example, there is a large fraction of HTTP

T_he main disadvantage is that, WIFhOUt any comMyzstic. we could exclude HTTP processing from the
nication, we cannot correlate traffic between d'ﬁthain system and move its analysis to another ma-
ent subnets anymore, such as detecting scans. chine. This is in fact what we do operationally at

To assess this approach, we examined the Bign pyt this approach lacks general scalability:
0.8a53 policy scripts to determine the degree of COfle load is only significantly reduced if Bro does in-

SE.g., the traffic level in the MWN (UCB) environment sus€€d spend quite some time processing the particular
tains more than 250 (300) Mbps averaged over an entire dayapplication. This is true for HTTP (due to Bro’s de-

18

tailed analysis of the HTTP sessions), and also foployment. Its architecture already clearly separates
few other applications, but these total only a handfldetween low-level and high-level analysis by means

Again we examined the scripts to assess where di-ts division into event engine and policy script in-
vision by application would require inter-Bro comterpreter. The main interface between these two lay-
munication. While usually for application-specifiers are the events. So, the most obvious way to ap-
analysis no communication is needed, one exceptjay the distributed sensor model to Bro is to spatially
is the FTP analyzer. It parses the negotiation of FEBparate the event engine from the script layer. This
data connectionsPORT PAS\). A more general becomes easy to achieve using spatially independent
problem concerns analyzers that need to see traffiate.
from all applications, such as the scan detector. ForTo test this approach, we ran two instances of Bro
detection of vertical port scans, it counts connecti@s sensors on a dual-processor monitor machine at
attempts to different ports (applications) per hos¥iWN's uplink, load-balancing the network traffic
Other examples include the ICMP analyzer, whidby dividing the IP space. We ran a third Bro on a
correlates ICMP “unreachable” messages with teecond system which acted as the analyzer, receiv-
corresponding connections, and the analyzer that @&t and processing all the events generated by the
rives vulnerability profiles [SPO3b]. sensors’ event engines. This worked without a hitch.

It appears clear that the communication for theseThen, to compare the processing loads, we set
analyses can be addressed using spatially indepam-a single sensor instance on the dual-processor
dent state, and we expect to gain operational expeenitor, and an analyzer on the second machine.
rience in doing so at LBNL, where it has long beehhe total load across both CPUs of the monitor was
desired to coordinate the separate HTTP Bro. @inly slightly less than what it would have been if it
nally, we note that the two techniques of dividing bywas doing the full work by itself, because for the
IP space and dividing by application can in principl8WN setup the main processing burden is on the
be combined (dividing by both) in environments witeensors—offloading the analysis from them is in ab-
a large number of analysis hosts available. Spatiafiglute terms a relatively minor gain, and the bigger
independent state should be able to support this gesin in that environment comes from dividing up the
eralization, too, although we do not have concrelie space. However, due to our use of a separate pro-
plans to try this out operationally. cess to manage inter-Bro communicatigd.g8), the
CPU running the main analysis benefited from con-
siderably reduced load.

While we have not experimented with it yet, an-
A well-established architecture for distributedther approach made possible by spatially indepen-
network intrusion detection is the sensatent state would be to partition the processing a layer
model [Am099], in which we placesensorsat up. That is, the sensors would perform the usual
different points in the network, usually performingcript-level analysis in addition to their event engine
low-level analysis like protocol-decoding or byteprocessing, with those scripts synchronized as dis-
signature matching. The sensors then send thaissed ir§5.3.1, and then we would dedicate an ad-
results to aranalyzerwhich correlates the data fromditional CPU to correlating their combined output at
all of its input sources. a meta-level, for example by using established cor-

Bro is conceptually well-suited for this kind of derelation methods [DWO01, KTK01, VS01]. (Indeed,

5.3.2 Sensor model

19

from our experience, even just combining the log Along these lines, a more ambitious scheme we
messages coherently and in a single place woulddye working on implementing is #me machine
of operational benefit.) Here, the second analyzer maintains a (very) large,
rolling buffer consisting of all recent network traf-
fic to the extent that available storage permits. Upon
receiving an event with a suspect IP address, it can
Another potentially valuable application of spatiallyhen extract not only any new traffic that a host sends,
independent state is using it to tell other systerhat also itsprevioustraffic to the extent available in
some facts about our analysis. Although less amtite buffer. If, for example, the buffer is a 500 GB
tious than fully distributed correlation, it can be quitdisk partition, then this could track many minutes or
powerful. We discuss two examples here, the fidsdurs of traffic, providing we can structure the sys-
(intensifying analysis for suspicious hosts) of whictem to stream the traffic to the disk (and delete it as
we have already experimented with, and the secadnéxpires) sufficiently quickly.
(propagate IPs that we have chosen to dynamically
block) of which we plan to set in place in the near
future.

Suspicious hosts As mentioned above, due to
the large load on a high-volume link, a single sys-
tem cannot run detailed analysis on the full traffic. Propagating blocked hosts Our LBNL environ-
One solution is to run only coarse-grained analysisent currently runs several Bro’s at different entry
on all of the traffic, but to intensify the inspectiompoints into the network. As discussed in [JPBB04],
for hosts found to be conspicuous. For exampleBNL'’s security policy includes dynamically block-
often administrators observe that attackers first perg scanners detected by Bro by modifying the entry
form scans of the network before actually targetimguter's access control list. Because not infrequently
some hosts. Large scans are easily detectable usirgganner first probes a set of addresses correspond-
coarse-grained analysis. After identifying a scannéig to one entry point and then later another set cor-
we can then look at the packets coming from thresponding to a different entry point, there is consid-
same source in more detail. erable operational interest in enabling the different

We implemented this by running two instances @&fro’s to communicate their blocking decisions to one
Bro. The first instance watches a large fraction ahother. This way, a malicious host can freac-
the traffic but only runs a modest set of policy scripts/ely blocked from probing the addresses behind the
(most notably the scan detector). When it generat&rond entry point, rather thaeactively blocked
an alert for some host, it also sends an event contaivhich could come too late in terms of preventing
ing the host’s IP address to the second Bro instandamage). We plan to support this information shar-
By default, the second instance does not see any tiaf by modifying the operational Bro's to generate
fic at all. But if it receives such a suspicious addressyents when blocking new hosts and broadcasting
it modifies its analysis to include all packets comirtipem to their peers. We also plan to experiment with
from that source. In addition to using more scriptsroader sharing of such information across the dif-
and a large set of signatures, it saves the complfeent institutions (MWN, LBNL, UCB) where we
set of packets to disk. operate security monitoring.

5.3.3 Propagating information

20

5.4 Dynamic Reconfiguration, Profiling and uration changes for tuning is that the effects of the
Debugging changes often do not show up immediately. Until

_ o _ now, making such changes has required restarting
The final set of applications for independent stafge NIDS, with the consequent loss of the system’s

that we look at leverage that our framework not onlytate In addition, the effects of many changes are
enables data values to become independent stateolpw visible when the system has built up a signifi-
also broader notions of “values” such as the fungant amount of state, which can take a long time after
tions and event handlers in policy scripts. Hetg conventional restart. This is particularly true for
we realize the benefits made possible by convertiggnfiguration parameters like timeouts and thresh-
Bro’s static state into dynamic state. Such indepeggs. \We can ameliorate this problem somewhat by
dent state allows us, first, to both tune and retarg®fllecting traffic traces and testing against them off-
the system without having to restart it; and, secoqﬁge, but such traces can be huge and unwieldy to
to inspect the system'’s state during run-time in s&¥prk with.
eral different ways. While our enhanced checkpointing can help, it
Dynamic Reconfiguratiornt We can use the inde-does not fully solve the problem. Often when mak-
pendence of broader forms of state such as functigRg many small changes in a short time, we do not ac-
and event handlers to dynamically reconfigure a ruiirally want the controlled loss of state which check-
ning Bro. Doing so supports both operational fleXpointing achieves, but prefer to keefl state. We
bility and tuning. want ideally to have the system just pick up the
In terms of operational flexibility, frequently durchanges and keep running, similar to the fire-fighting
ing daily operations the need arises to change fkeanges discussed above.
configuration of the NIDS in response to a newly The way we do this in practice is as follows.
perceived threat or problem. For example, we hag@nsider an already-running Bro whose configura-
detected a break-in and now want to alert on any n we would like to change in some respect. We
turn by the attacker to their backdoor; or, we haf@gst make the modification to the static state, i.e.,
learned a new attack signature and want to immethe scripts. We then convert the full configuration
ately start using it; or, a new source of benign traffiato persistent state, stored in individual files, as de-
has appeared which is overwhelming the NIDS ardribed in§4.2.1. Finally, we copy the files contain-
we want to skip processing it for now. These all cang state affected by our change into a directory reg-
occur in afire-fightingmode, i.e., we really need toularly checked by the running instance, which no-
deploy the change immediately. With independetites the update, loads it, and switches to using it.
state, we can introduce such changes—including other state is lost.
modified function and event handler definitions— Profiling and Debugging Another significant
directly, without incurring the loss of fine-grainegroblem when operating a NIDS is understanding its
state that we would using our enhanced checkpoibehavior during operation. When developing policy
ing. scripts, we find they can work in unexpected ways,
Another use of dynamic reconfiguration is to sughue to either programming errors, or to encountering
porttuning, i.e., optimizing the NIDS’s configurationnetwork traffic with different characteristics than we
for the local environment. From our experience, omxpected. These kinds of problems are very hard to
of the most common problems with making configrack down, as often they only manifest themselves

21

Figure 1: Port scans at two times (addresses altered).

ID reported_port_scans = {

[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01
[138.112.68.194, 108.45.144.114, 50] @01/21-10:59
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

}
@

ID reported_port_scans = {

[138.112.68.194, 108.45.144.114, 50] @01/21-10:59
[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01
[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[163.184.146.140, 146.74.170.189, 50] @01/21-13:16
[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[163.184.146.140, 146.74.170.189, 100] @01/21-13:16

(b)

[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[138.112.68.194, 108.45.144.114, 50] @01/21-10:59
+ [163.184.146.140, 146.74.170.189, 100] @01/21-13:16
+ [163.184.146.140, 146.74.170.189, 50] @01/21-13:16
[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

(©

22

Figure 2: Function fromscan.bro
tamps.

with times-

ID check hot = check_hot

(@01/21-12:23 #4715580)

{

local id = c$id;

local service = id$resp_p;

if (service in allow_services ||

c$service == "ftp-data”)

(@01/21-12:23 #2932175)
return (F);

if (state == CONN_ATTEMPTED)
(@01/21-12:23 #1138955)
check_spoof(c);

else
(@01/21-12:23 #644450)
[...]

}

ners at a given point of time. Included in the output
are timestamps when the entries were last accessed.
In Figure 1(b), we see the same table from about
1.5 hours later. For larger tables, the differences may
be hard to see, though. However, the ASCII output
formats are also suitable for processing with Unix
utilities such assort and diff, as illustrated in Fig-

ure 1(c). Now the differences become obvious; we
can actuallyseethe scan detector working.

Along with data values, independent state pro-
vides timestamping for script functions, too. Fig-
ure 2 shows a checkpoint of tlineck _hot func-
tion from the default scan detection script. The dif-
ferent basic blocks in the code are annotated with
timestamps indicating the last time they were exe-
cuted, and with counts of how many times they have
been executed. We can again use toolsdiketo dy-
namically track which portions of the code are being
executed, and how frequently. The counts are partic-
ularly useful: if they differ significantly from what
we expect, there is either a coding error, or a misun-
derstanding of the network traffic. Finally, we aim
to eventually also use this information for long-term

after a considerable amount of run-time. This meap§||cy script maintenance, for example by locating

that they cannot be reasonably targeted with Brgsglicy script elements that have become stale and are
existing tracing and interactive debugging mechgp longer needed.

nisms.

We find it is a great help if we can take a look
at Bro's current state. With independent state, tfis Summary
is easy to achieve, since the files generated by
checkpoint contain all the necessary informatn this work we developed an architecture fode-
tion. Included in our output are timestamps when tipendent statén network intrusion detection. While
entries were last accessed. Additionally, the ASGiften much of a NIDS’s state resides solely in
output formats are also suitable for processing witllatile memory, we set out to make all of a NIDS’s
Unix utilities such assort anddiff. In Figure 1, for state exist “outside” of any particular process. To
example, we see how the table containing all cuhis end, we developed the notionsspfatially inde-
rently known port scanners has changed between fpendent statéstate that can be propagated from one
points of time. Here, we can actualigethe scan de- instance of the NIDS to another concurrently run-
tector working. In Figure 1(a), for example, we seging process) angemporally independent stafstate
the table containing all currently known port scarithat continues to exists after the termination of all in-

23

stances, and which can later be incorporated by n@wr architecture has been included into the latest Bro
processes). Our architectureusifiedin that it en- development version, and we are in the process of
compasses all of the internal, fine-grained state of thetting up our monitoring environments to use inde-
NIDS. Thereby, we can continue to process indepgrendent state operationally. We expect that in regular
dent state using the full set of mechanisms providegerational use, the power of independent state will
by the system. soon become invaluable.

Our architecture facilitates independent state for
the Bro intrusion detection system [Pax99]. In the
process of making all of its semantically rich, def ~ Acknowledgments
tailed state independent of any particular instance,
we convert (i)static state (e.g., configuration andWe would like to thank the Lawrence Berkeley
user-written scripts) todynamic state becoming National Laboratory (LBNL), Berkeley, USA; the
changeable during run-time; and (iiplatile state Leibniz-Rechenzentrum, Minchen, Germany; and
(state that exists during only a single quantum tife University of California, Berkeley, USA. We
time, e.g., events and operations on datanéem- would also like to thank Anja Feldmann for support-
volatile state. ing our work, and Mark Allman and Scott Campbell

The main internal mechanism of our architectufer their helpful comments.
is aserialization frameworkWhile its implementa- This work was made possible by the U.S. National
tion was straight-forward in general, the system’s iScience Foundation grant STI-0334088, for which
ternal complexity gave us a number of subtle issug@ are grateful.
to solve. Having the serialization in place, we added
a user-level interface driven by our operational ap-
plications. It enables the user to selectively declaReferences
state to be independent. To achieve temporal inde-
pendence, we serialize state into files, either whpxmo99] Edward G. Amoroso. Intrusion De-

an instance exits, or incrementally as it executes. A tection: An Introduction to Internet
subsequent process can then read it back. To achieve Surveillance, Correlation, Trace Back
spatial independence, we added secure network com- and Response Intrusion.Net Books,

munication to the NIDS, allowing instances to share New Jersey, 1999.

state across different locations.
The architecture provides us with a wealth of pofAxe99] Stefan Axelsson. The base-rate fallacy

sible applications. We enhanced Bro’s traditional and its implications for the difficulty
model of regular checkpointing by allowingcan- of intrusion detection. IMACM Con-
trolled loss of state, added crash-recovery, examined ference on Computer and Communica-
different approaches for distributing the monitoring tions Securitypages 1-7, 1999.

and analysis, enabled run-time policy management,

and greatly extended the system’s profiling and d&la] CERT Advisory CA-2003-20
bugging facilities. These applications were driven by W32/Blaster worm. http://

our operational experiences, and we experimented www.cert.org/advisories/

with all of them in several large-scale environments. CA-2003-20.html

24

[DFPS04]

[DWO1]

[IDM]

[JPBB04]

[Jul03]

[KTKO1]

[KVVKO02] Christopher Krigel,

Holger Dreger, Anja Feldmann, Vern
Paxson, and Robin Sommer. Oper-
ational experiences with high-volume
network intrusion detection. Ifroc. LOP€l
11th ACM Conference on Computer

and Communications Secur,it¥004. [Pax99]

Hervé Debar and Andreas Wespi. Ag-
gregation and Correlation of Intrusion-
Detection Alerts. InProc. of Recent
Advances in Intrusion Detectipnum- [PNO7]
ber 2212 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

Intrusion Detection Message Ex-
change Format. http://lwww.
ietf.org/html.charters/

idwg-charter.html [Roe99]

Jaeyeon Jung, Vern Paxson, Arthur W
Berger, and Hari Balakrishnan. Fast
portscan detection using sequential hy-
pothesis testing. 12004 IEEE Sympo-
sium on Security and Privacg2004.

Klaus Julisch. Clustering intrusion de-
tection alarms to support root cause
analysis. ACM Transactions on Infor-
mation and System Securit(4):443—
471, 2003.

Christopher Kruigel, Thomas Toth, and
Clemens Kerer. Decentralized Event
Correlation for Intrusion Detection .
In Proc. of Information Security and
Cryptology volume 2288 oflLecture
Notes in Computer Scienc2001.

Fredrik Valeur,
Giovanni Vigna, and Richard A. Kem-
merer. Stateful intrusion detection for
high-speed networks. IRroc. IEEE

25

[SBD*91]

[SCCCF96]

Symposium on Security and Privacy
2002.

OpenSSL
openssl.org

http://www.

Vern Paxson. Bro: A system for de-
tecting network intruders in real-time.
Computer Networks31(23—-24):2435—
2463, 1999.

Phillip A. Porras and Peter G. Neu-
mann. EMERALD: Event monitor-
ing enabling responses to anomalous
live disturbances. IiNational Informa-
tion Systems Security ConferenBal-
timore, MD, October 1997.

Martin Roesch. Snort: Lightweight in-
trusion detection for networks. Froc.
13th Systems Administration Confer-
ence (LISA)pages 229-238. USENIX
Association, 1999.

Steven R. Snapp, James Brentano, Gi-
han V. Dias, Terrance L. Goan, L. Todd
Heberlein, Che-Lin Ho, Karl N. Levitt,
Biswanath Mukherjee, Stephen E.
Smaha, Tim Grance, Daniel M. Teal,
and Doug Mansur. DIDS (distributed
intrusion detection system) — motiva-
tion, architecture, and an early proto-
type. InProc. 14th NIST-NCSC Na-
tional Computer Security Conference
1991.

S. Staniford-Chen, S. Cheung,
R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS - A graph-based
intrusion detection system for large
networks. InProc. 19th NIST-NCSC

[Sou94]

[SPO03a]

[SPO3D]

[SZ00]

[TCP]

[TS02]

[VK99]

[VKBO1]

National Information Systems Security
Conference1996.

Jiri Soukup. Taming C++ — Pat-
tern Classes and Persistence for Large/S01]
Projects Addison-Wesley, 1994.

Umesh Shankar and Vern Paxson. Ac-

tive Mapping: Resisting NIDS Eva-

sion Without Altering Traffic. InProc.

IEEE Symposium on Security and Pri-
vacy, 2003. [ZP0Q]

Robin Sommer and Vern Paxson. En-
hancing byte-level network intrusion

detection signatures with context. In

Proc. 10th ACM Conference on Com-
puter and Communications Security

2003.

Eugene H. Spafford and Diego Zam-
boni. Intrusion detection using au-
tonomous agentComputer Networks
34(4):547-570, 2000.

tcpdump .
tcpdump.org

http://www.

Andrew S. Tanenbaum and
Maarten Van Steen. Distributed
Systems — Principles and Paradigms
Prentice Hall, 2002.

Giovanni Vigna and Richard A. Kem-
merer. Netstat: A network-based intru-
sion detection systendournal of Com-
puter Security7(1):37-71, 1999.

Giovanni Vigna, Richard A. Kem-
merer, and Per Blix. Designing a Web
of Highly-Configurable Intrusion De-
tection Sensors. IProc. of Recent

26

Advances in Intrusion Detectipnum-
ber 2212 in Lecture Notes in Computer
Science, 2001.

Alfonso Valdes and Keith Skinner. Pro-
bilistic Alert Correlations. InProc.
of Recent Advances in Intrusion De-
tection number 2212 in Lecture Notes
in Computer Science. Springer-Verlag,
2001.

Yin Zhang and Vern Paxson. Detecting
stepping stones. IRroc. 9th USENIX
Security Symposiunmpages 171-184.
The USENIX Association, 2000.

