
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Exploiting Independent State For Network
Intrusion Detection

Robin Sommer, Vern Paxson

TUM-I0420
November 08

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-11-I0420-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
�

2004

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Exploiting Independent State For Network Intrusion Detection

Robin Sommer Vern Paxson
TU München ICSI / LBNL

Germany Berkeley, CA, USA
sommer@in.tum.de vern@icir.org

Technische Universität München
Technical Report #TUM-I0420

November 8, 2004

Abstract

Network intrusion detection systems (NIDSs) rely
on managing a significant amount of state. Often
much of this state resides solely in the volatile pro-
cessor memory accessible to a single user-level pro-
cess on a single machine. In this work we develop an
architecture that facilitatesindependent state, i.e., in-
ternal fine-grained state that can be propagated from
one instance of a NIDS to others running either con-
currently or subsequently.

Our unified architecture provides us with a wealth
of possible applications that hold promise for en-
hancing the power of a NIDS. We examine how we
can leverage independent state for distributed pro-
cessing, load parallelization, selective preservation
of state across restarts and crashes, dynamic recon-
figuration, high-level policy maintenance, and sup-
port for profiling and debugging. We have exper-
imented with each of these applications in several
large environments and are now working to integrate
them into the sites’ operational monitoring.

1 Introduction

Network intrusion detection systems (NIDSs) of any
sophistication rely on managing a significant amount
of state. The state reflects the NIDS’s model of the
communications currently active in the network and
also the NIDS’s analysis over time, both in the past
(previous activity by hosts or users, suspicion lev-
els, relationships between connections) and in the fu-
ture (timers used to model protocol interactions and
to drive detection algorithms). Managing this state
raises significant issues, among which are its sheer
volume and how the NIDS can efficiently retrieve el-
ements from it. A third issue, however, and one that
to date has received less attention than the first two,
concerns the degree to which the state is often tied to
a single executing process.

That is, often much of a NIDS’s state resides
solely in the volatile processor memory accessible to
a single user-level process on a single machine. Usu-
ally, any state that exists more broadly than in the
context of a single process is a minor subset of the
NIDS process’s full state: either higher-level results
(often just alerts) sent between processes to facilitate

1

correlation or aggregation, or log files written to disk
for processing in the future. The much richer (and
bulkier) internal state of the NIDS remains exactly
that, internal. It cannot be accessed by other pro-
cesses unless a special means is provided for doing
so, and it is permanently lost upon termination of the
NIDS (which, due to a crash, may happen unexpect-
edly).

In this work we develop an architecture that fa-
cilitates independent statefor the Bro intrusion de-
tection system [Pax99]. The goal of the architecture
is to enable much of the semantically rich, detailed
state that hitherto could exist only within a single ex-
ecuting process to become independent of that pro-
cess. We consider two basic types of independent
state.Spatially independentstate can be propagated
from one instance of a NIDS (such as a Bro process)
to other, concurrently executing, instances.Tempo-
rally independentstate continues to exist after an in-
stance (or all instances) of a NIDS has exited. For
both types of independence, the state in a sense ex-
ists “outside” of any particular process.

Our contribution concerns not the fundamental no-
tion of state that can be shared between processes or
accessed over time—that already appears in existing
systems—but rather an architecture for doing so that
(i) is unified, i.e., it covers all of the systems’ state
in the same way, and(ii) encompassesfine-grained
state. This second is particularly important to the
architecture’s power: because we keep fine-grained
state, rather than only aggregated state such as alerts
or activity summaries, we can continue to process
the independent state using the full set of mecha-
nisms provided by the system. We believe no ex-
isting NIDS incorporates such a general mechanism.

Independent, fine-grained state provides us with
a wealth of possible applications that hold great
promise for enhancing the power of a NIDS. These
include coordinating distributed monitoring; increas-
ing NIDS performance by splitting the analysis load

across multiple CPUs in a variety of ways; se-
lectively preserving key state across restarts and
crashes; dynamically reconfiguring the operation of
the NIDS on-the-fly; tracking the usage over time
of the elements of a NIDS’s scripts to support high-
level policy maintenance; and enabling detailed pro-
filing and debugging. We have implemented all of
these and will discuss them in depth after presenting
the architecture.

As a first example, consider a set of NIDSs at dif-
ferent locations of a network, each able to identify
suspicious activity in its network segment. Tradi-
tionally, either each NIDS works independently of its
peers, or there is an explicit mechanism to send, re-
ceive and incorporate alerts. With independent state,
it is possible totransparentlyleverage the others’ re-
sults. We simply tell the systems what state should
be synchronized among them. This state can span
the range of individual analysis variables, low-level
(e.g., packet signature match) or high-level (e.g.,
successful SSL negotiation) events, large tables stor-
ing accumulated context, or operator alerts. We fur-
ther emphasize that this is only one of many applica-
tions for independent state, as we will develop sub-
sequently.

In general, we can distinguish between several
types of state. We will refer to state that does not
change over the course of the execution of an in-
stance of a NIDS asstatic state. Such state often in-
cludes the NIDS’s configuration (e.g., the signature
set it uses) and perhaps a database of information
about the network it is protecting, such as the types
of operating systems installed on the monitored hosts
or their “active mapping” profiles [SP03a]. We note
that the latter might in fact change over the course
of execution, but if the NIDS does not have a means
to incorporate such changes, the state is effectively
static.

We refer to NIDS state that does change, on the
other hand, asdynamic state. Here, we make a fur-

2

ther distinction: we will refer to state that effectively
exists at only a single slice (quantum) of time as
volatile state, and state that exists over an interval of
time asnon-volatile state. For Bro, slices of time are
quantized in terms of the arrival and processing of in-
dividual network packets. Examples of volatile state
include events generated by Bro’s event engine, or
the values of local variables when Bro invokes policy
script functions (since Bro specifies the execution of
such functions as atomic, i.e., they run to completion
before Bro considers any further input).

The ultimate goal for our architecture is to sup-
port making all of Bro’s state both temporally and
spatially independent. Our first observation is that
this should be easy for static state. Since, by def-
inition, static state cannot change over time, there
must already be a means to specify it upon start-
up, which we can use again to recreate the state in
other instances. However, we will also develop the
theme that converting static state to dynamic state
extends the flexibility of a NIDS, so our architec-
ture aims to accommodate doing so. Our second
observation is that volatile state, by definition, can-
not be independent. Hence, we also aim to find
ways to convert volatile state to non-volatile state
to enable making it independent. In summary, our
goal is to convert as much state as possible to be-
ing dynamic, non-volatile, and thus temporally- and
spatially-independent.

While our architecture for independent state is im-
plemented for Bro, we believe that other systems
would likewise significantly benefit from indepen-
dent state. However, depending on the flexibility
of the particular system, some applications might be
harder to realize than others. In particular, much
power is lost if a NIDS does not provide a user-level
scripting language. This is why we chose Bro as
our target platform: its flexible, policy-neutral ap-
proach is ideal for taking full advantage of inde-
pendent state. Nevertheless, independent state is a

new general concept for network intrusion detection.
This is important to keep in mind, in particular when
in the following we necessarily have to delve into
details of Bro.

In the next section, we give an overview of previ-
ous work related to our efforts. In§3 we then discuss
the different types of state relevant to Bro, and in§4
the design and implementation of our architecture.
We examine in§5 the powerful features and applica-
tions mentioned above that fine-grained independent
state enables, and summarize in§6.

2 Related work

To our knowledge, the unifying concept of indepen-
dent state has not been previously formulated in net-
work intrusion detection research. Some of its as-
pects, however, can be found in earlier NIDSs. A
number of NIDSs facilitate distributing the detection
processing across multiple locations in a network.
They employ different approaches to do so, but dis-
tribution implicitly requires the exchange of state.

NetSTAT [VK99] describes attack scenarios using
state transition diagrams. If, due to the characteris-
tics of an attack scenario, a single NetSTAT probe is
unable to detect an attack solely by itself, it is con-
figured with a partial scenario and communicates its
analysis to other probes, thereby transferring state.
MetaSTAT [VKB01] adds dynamic reconfiguration
capabilities to the STAT framework.

Emerald [PN97] hierarchically organizes moni-
tors which exchange messages to propagate results
and subscribe to services. GrIDS [SCCC+96] mod-
els large-scale attacks by activity graphs. Its com-
ponents monitor traffic at multiple locations and
communicate by sending or requesting information.
AAFID [SZ00] builds on autonomous agents which
communicate their results to hierachically organized
monitors. AAFID’s design specifically addresses dy-

3

namic reconfiguration and acknowledges the utility
of persistent state, although the prototype does not
implement it.

Finally, the “Intrusion Detection Message Ex-
change Format” (IDMEF [IDM]) aims at defining a
standard format to exchange alerts between different
NIDSs. It differs from our work by its focus on inter-
operablity and its restriction to the exchange of only
high-level state.

By setting up a network of communicating NIDSs,
we are building a distributed system. Principles of
such systems are discussed for example in [TS02].
To make a system’s state independent, our main tool
is a serialization framework, for which [Sou94] dis-
cusses different approaches.

3 Bro’s State

To develop independent state, our first task is to iden-
tify the different types of state present in a NIDS.
While there is a common subset of state held by most
NIDSs (e.g., connection state), we delve into Bro’s
particulars here as they provide a variety of ways to
explore the architectural notion.

For Bro, there are two main layers of opera-
tion, each of which stores a significant amount of
state. The “event engine” layer, implemented in
C++, analyzes network traffic in apolicy-neutral
fashion, producing a stream of events reflecting the
activity present in the traffic stream. The activity
encompasses different semantic levels: individual
packets, byte-stream signatures, connections, appli-
cations, and interrelationships between connections
(e.g., stepping stones [ZP00]). While the event en-
gine’s operation is tunable by redefining user-visible
parameters, its algorithms—and therefore the types
of state it stores—are fixed. On the other hand, the
policy script layer, which executes scripts written in
a custom language over the stream of events, allows

the user to arbitrarily change and extend the standard
set of scripts (and in fact the user is expected to do
so, to express site-specific policy). Since this layer
equips the user with a full scripting language pro-
viding a rich set of control constructs and compound
data types, the corresponding types of state are only
determined when the scripts are loaded at run-time.

3.1 Event engine state

There are four main types of internal, event-engine
state in Bro: connection state, analyzer state, timers,
and control state. Using our earlier terminology, they
are all “dynamic” and “non-volatile.”

Connection state: Bro’s main unit of organization
is a connection. By definition, each packet belongs
to exactly one connection.1 Bro keeps a map of all
currently active connections.

With each connection it associates a variety of in-
formation such as its start time, the hosts (IP ad-
dresses) involved, the amount of data transferred so
far, transport protocol state, and so on. In terms of
volume, the per-connection state is by far the most
dominant internal state. Therefore, it is particularly
important to implement a sophisticated expiration
policy to avoid resource exhaustion. Bro uses an ex-
tensive set of timeouts for this, as well as transport-
protocol analysis. (By default, state for TCP connec-
tions is kept indefinitely, until the connection termi-
nates due to a FIN exchange or a RST.)

Analyzer state: Bro contains an extensive set of
protocol-specific analyzers, e.g., decoders for TCP
and HTTP, which maintain their own set of internal
state. For example, the TCP analyzer buffers out-of-
sequence data, and the HTTP analyzer accumulates
client and server headers. Since most analyzers work
on a per-connection basis, they attach their state to
Bro’s generic connection state. Some analyzers also

1The notion of a connection is obvious for TCP. For UDP
and ICMP, Bro uses a flow-like definition.

4

store global data, however, which is therefore not
linked to a particular connection. One example is the
stepping stone analyzer [ZP00], which keeps a set of
candidate stepping stone connections.

Timers: Bro’s main mechanism for expiring state
is via timeouts. The number of concurrently active
timers can easily reach tens of thousands on a high-
volume link.

Control state: There are several parameters that
control the operation of the event engine. The user’s
scripts can dynamically change them. The most sig-
nificant of these are timeout values and the current
packet filter (intcpdump [TCP] syntax), which im-
plicitly controls which analyzers execute. While
these parameters are small in terms of volume, they
have a major effect on the performance of the sys-
tem.

3.2 Policy script state

The policy script layer includes six types of state: the
scripts themselves, data stored by the scripts, opera-
tions on this data (see below for why we term these
a form of “state”), event generation, function calls,
and byte-level signatures (not discussed further due
to limited space).

Scripts: The scripts are static, non-volatile state.
They define the behavior of the system by defining
types, event handlers and functions.

Data: Event handlers and functions are able to
store global and local data by defining variables.
Both are dynamic, but while global data is non-
volatile, local data is volatile since Bro fully executes
function calls within a single (uninterrupted) slice of
time. A number of different data types exist, with
tables indexed by a set of types and yielding an arbi-
trary type being particularly common. For example,
Bro’s scan detector—which detects horizontal and
vertical scanning, as well as password guessing—
keeps(i) a large script-level table containing pairs of

communicating hosts,(ii) another counting to how
many different hosts a particular host has attempted
to initiate connections, and(iii) in fact 21 additional
tables and sets. For automatic expiration, Bro keeps
timestamps for the entries in the various tables (and
sets) indicating either their oment of creation or last
access (depending on the table’s declaration in the
script) which then drives timeouts used to delete the
entries.

Data operations: Depending on the data type, dif-
ferent types of operations exists. For example, for
tables we can insert or remove an entry. Ordinarily,
operations would be viewed not as state but as trans-
formations to state. However, with our definition of
“volatile” state, we can view specific instances of
operations as momentarily existing in and of them-
selves, and thus constituting dynamic, volatile state.
Designating them as such then gives us an oppor-
tunity to consider transforming them into dynamic,
non-volatile state, which we return to in§4.1.2.

Event generation: Similar to data operations, we
view the generation of an event as a form of dynamic,
volatile state.2

Function calls: Function calls in Bro are quite
similar to the invocation of an event handler, and
so we likewise view calls as dynamic, volatile state.
The principle difference is that function calls return
values, while event handler invocations do not.

Signatures: Bro actually has two scripting lan-
guages: one for specifying event handlers, and a sec-
ond for writing efficient, byte-stream intrusion de-
tection signatures [SP03b].3 These signatures are
static, non-volatile state. For some NIDSs (e.g.,

2Most events are generated inside Bro’s core, so one could
argue whether they are indeedscript-levelstate. We decided to
put them here because their role is as triggers for script-level
actions. The event engine does not itself process events, itonly
generates them.

3Throughout the text, when using the term “script” we al-
ways refer to the former.

5

Snort [Roe99]), signatures comprise the main type
of script-level state.

4 Architecture Design and Imple-
mentation

After identifying the types of states that Bro stores,
we proceed to investigate how to make each one
dynamic and, particularly, independent. The main
mechanism for this is aserializationframework that
enables us to convert all of Bro’s main data struc-
tures into a self-contained binary representation and
back. Once we have this, we can, for example, make
state temporally independent by serializing it into a
file at the termination of a Bro instance. A new in-
stance can then read it back upon start-up. Similarly,
to make state spatially independent, we can send it
over the network to some remote instance.

Making data structures serializable is, by itself,
fairly straightforward. But adding full serializabil-
ity to a complex system like Bro, which was not de-
signed with this in mind, raises numerous subtle is-
sues we must address. Therefore, we first describe
the implementation in more detail. We then present
the corresponding interface available to the user, and
finally we discuss some of the issues involved inse-
curely sending state over the network. Our imple-
mentation has been integrated into the latest devel-
opment version of Bro, and we are now using it op-
erationally.

4.1 Serialization

Given an object-oriented design, the methodology
of adding serializability to a class hierarchy is well-
established [Sou94]. Each class gets two new meth-
ods, one for serializing and one for de-serializing.
When called, each of them first calls the correspond-
ing method of the class’s ancestor, and then (de-

)serializes all attributes unique to the class itself.
We simply followed this approach, using a generic
SerializationFormat class as the interface to
convert between C++ data types and an external rep-
resentation. Doing so keeps the serialization process
independent of the underlying external format, so we
are, for example, able to create both a (portable) bi-
nary version and an XML version.

For memory management, Bro uses reference
counting extensively. To recreate the reference struc-
ture when de-serializing, objects may be assigned a
set of unique identifiers. Such an object is fully seri-
alized only once, when encountered for the first time.
Upon subsequent serialization requests, e.g., due to
being referenced by some other object, we only store
its ID.

A basic problem that arises is thetime needed
to serialize state. Bro is a real-time system that
must keep up with a high-volume stream of pack-
ets. If it spends too much time on other things
than processing packets, it risks dropping packets
(see [DFPS04]). Therefore, we implementedincre-
mentalserialization: serialization proceeds in steps
intermixed with packet processing. In this way, it
takes more time to finish the serialization, but our
ability to keep pace with the packet stream improves.

Incremental serialization leads to another prob-
lem, though. By serializing chunks of the state at dif-
ferent points of time, we may incur inconsistencies.
Consider, for example, two script-level tables that
contain related data derived from the same connec-
tion. It could happen that after the first table has been
serialized, we process some packets that remove the
connection data from the second table. Thus, serial-
izing it in the next step would leave the two tables
out of synchronization.

We have not yet addressed this problem—it has
not arisen in our operational use so far—but our strat-
egy for doing so is to use a transaction model [TS02],
for which we have implemented partial support by

6

funneling all state-changing data operations through
a common location during serialization. By convert-
ing them into non-volatile state (as discussed below)
we would produce a transaction log which could then
be replayed upon reinstantiation.

We now turn to looking at the different types of
state, discussing some of the particulars involved in
their serialization, along with some points not yet
fully implemented. As we will discuss, for some of
these latter, it is not in fact clear whether support-
ing them makes sense. For others, adding support is
straightforward, but to date we have not found a need
for them in operational use.

4.1.1 Serialization of event engine state

Connection state: Connection state (and the at-
tachedanalyzer state) is rather easy to serialize and
to restore. The most important problem is the poten-
tially very large number of concurrent active connec-
tions. For example, on one of the high-volume links
we monitor operationally, we regularly find more
than 30,000 concurrent connections even when us-
ing aggressively small timeouts.

This leads to two major problems. First, the vol-
ume of the data gets high: a single connection en-
try can exceed 1 KB in-memory, and the external
representation—which we have not optimized for
space—is even larger.

Second, and more importantly, it simply does not
make sense to storeall connections: the vast major-
ity are quite short (100s of msec or a few seconds).
Considering that it takes some time to serialize them
(particularly given incremental serialization as de-
scribed above), most of them will already be finished
before they are read back. Therefore, we only se-
lectively store connections specifically requested by
the user. For example, the user can restrict state-
independence to types of connections expected to be
long-lived, like FTP or SSH sessions.

As a consequence, we have not yet implemented
serialization for all analyzer-specific connection
state. While all transport-layer protocols are fully se-
rializable, so far the only supported application-layer
protocol is FTP (we do not need it for SSH as, due
to the encrypted nature of the payload, Bro presently
only decodes the initial handshake and then confines
itself to the generic TCP analysis). But adding se-
rializability to other protocols as needed should be
straightforward.

Timers: The main problem when de-serializing
timers is deciding for temporally-independent state
when to schedule them for expiration. Two ap-
proaches come to mind: first, keep the original ex-
piration time and execute it immediately if that has
already passed; second, adjust the time by subtract-
ing the difference between termination of the old in-
stance and start of the new one. Observing that most
timers are set to some absolute time plus some time-
out (for example, the initiation of a connection plus
the time interval after which a response should have
been seen), we took the former option. Additionally,
when deserializing multiple timers, we make sure to
expire them in their original order to preserve their
semantic causalities. So far, we only implemented
serialization for timers related to Bro’s connection
management, but supporting the other types will be
simple as the need arises.

Control state: Unfortunately, Bro’s control state
is not located at some well-defined point of the class
hierarchy, but distributed in several places. For user-
redefinable timeouts, we can simply leverage the se-
rialization of script-level data described below. For
the packet filter, we added a method to store a string
containing the filter specification and then read it
back and change the filter to reflect it. We note that
the system may need some time to compile and in-
stall a new specification; usually a couple of millisec-
onds. Additionally, at least on FreeBSD, it clears the

7

current packet buffers.4 As therefore we will likely
miss some packets, there is a tradeoff involved when
installing a new filter.

4.1.2 Serialization of policy script state

Scripts: The main components of scripts are type
definitions, global variables, functions, and event
handlers. All of them are fully serializable and de-
serializable.

In addition, we added support forchanging the
definition of a function and adding new event han-
dlers during run-time. Thus, this type of state is no
longer static but dynamic.5

Data: The most obvious state to serialize is the
global data amassed by the scripts. We added serial-
ization to all of Bro’s different kinds of values, with
full type-checking during reinstantiation. While not
articulated as such in Bro’s design, there are two ba-
sic types of values, static and mutable. Static val-
ues (of which all are atomic values that do not con-
tain other values) are not themselves changeable at
the script-level, since they are deep-copied upon as-
signment, similar to anint or double in C++.
Mutable values are container values (e.g., tables and
records) into which other elements can be inserted,
thereby changing their values. Mutable values are
shallow-copied, similar to C++ objects manipulated
via pointers. Serialization of static values is straight-
forward, as there is noaliasing involved. For muta-
ble values, we recreate the reference structure when
deserializing (see§4.1).

We do not serialize data local to functions, as
this volatile state is of no use outside of a particu-
lar function execution. (Bro does not presently sup-
port permanent, local function variables analogous

4We devised a FreeBSD kernel patch that avoids flushing the
buffers.

5We explicitly do not allow changing type definitions during
run-time as this would circumvent Bro’s static type checking.

to static variables in C++.)
A final performance issue arises with serializing

tables: they can get huge (many thousands of en-
tries), and thus serializing them all at once can take
too long and incur packet drops. The natural solu-
tion here is to make the current incremental serial-
ization mechanism more fine-grained, with the in-
cremental unit being not an entire value, but an ele-
ment of a value. In this fashion, we could serialize
a large table a few elements at a time. Of course,
this again raises the issue of consistency already dis-
cussed above, again requiring transaction logging.

Data operations: As mentioned earlier, we in-
clude data operations as part of a broader notion of
“state,” in particular as a form of volatile state. Our
goal in doing so is to expose them as amenable to
a form of “independence” similar to that which we
strive to provide for data objects. In particular, if
we have fully independent data, then we can prop-
agate changes to the data in terms ofdescriptions
of the operations to perform on the datarather than
the full (and probably mostly unmodified) data itself.
For example, when we insert an element into a large
set, we can simply propagate “insert element ‘foo’
into set ‘bar’ ”. (Propagating operations may intro-
duce synchronization problems, though, as discussed
in §4.2.2.)

Implementing this independence for operators
turned out to be quite difficult. We first identified
all the atomic operations that can be performed upon
Bro script values, for example: binding a value to a
global identifier, changing the value of an element in
a container, or adding/deleting elements to/from con-
tainers. We then implemented a serialization for an
abstraction of the operator. The main problem here
rests in the need tonamea value: when we want
to change a value, we need to say which value we
mean. Obviously, this is not a problem for static
values—they cannot be modified, but only be cre-
ated and bound to some global identifier (which, by

8

definition, has a name). For mutable values, how-
ever, we had to introduce a naming mechanism, so
one Bro instance can communicate to another which
value (e.g., which element of a table) it has modified.

We solved this problem by introducing a new, non-
user-visible global namespace. Each mutable value,
on which operations are to be tracked, is bound to
a hidden identifier unique among multiple instances
of Bro (by incorporating hostname and process ID
into its name). If multiple instances share indepen-
dent state, they agree on these names first. Subse-
quent operations are then expressed in terms of these
names. For container values, each included mutable
element gets its own unique identifier. This ensures
that shallow-copied values are treated correctly.

Event generation: Given serialization of Bro
types, it now becomes easy to also serialize Bro
events, since an event is simply a name plus a set of
typed values. In addition, we keep the time when
the event was generated. The ability to serialize
events—transforming event generation from a form
of volatile state to non-volatile state—is very pow-
erful. It means we can now send events between
multiple concurrent Bro instances (leveraging spatial
independence) and record events to disk and later re-
play them (temporal independence).

Function calls: Unlike event handlers, function
calls return values, and hence are inherently syn-
chronous rather than asynchronous. In Bro, func-
tion calls are very similar to event handler invoca-
tions. The only difference is that function calls re-
turn a value, while event handler invocations do not,
the latter being asynchronous while function calls are
inherently synchronous.

This difference has major implications for state
independence. Because of the synchronous seman-
tics of function calls, we cannot change them from
volatile state to non-volatile state without violating
either those semantics, or incurring potentially lethal
blocking delays waiting for calls to complete and re-

turn. We chose the former; see§4.3 for further dis-
cussion.

Signatures: A final type of state in Bro, currently
static in nature, is the set of byte-stream signatures
used by its signature engine [SP03b]. Because we
have not yet tackled making this type of state inde-
pendent, we do not discuss it further (the optimized
data structures used for signatures are not amenable
to incremental updates).

We would like to convert these to dynamic state,
enabling us to change signatures on-the-fly and send
them from one Bro instance to another. Imple-
menting this change, however, is quite challenging
because the optimized data structures Bro uses in-
ternally to match signatures with high performance
are not amenable to incremental updates. Chang-
ing a single signature currently requires recomput-
ing the entire decision tree used to determine (prior
to regular-expression matching) which rules are can-
didates for matching a given byte stream. Because
we have not yet tackled making this type of state in-
dependent, we do not discuss it further.

4.2 Interface

We now turn to how the user interacts with the se-
rialization framework presented in the previous sec-
tion. The framework itself is internal to Bro’s event
engine and hidden from the user, while the interface
is defined via new semantics expressed at the pol-
icy script level. The development of the elements of
the interface has been mainly driven by the needs of
particular applications, and thus will continue to be
extended as we gain more experience with using it.
We note that having the general serialization frame-
work in place, the semantic interface was quite easy
to add, and we expect this to hold for future exten-
sions, too.

First, we illustrate how the user can cre-
ate temporally-independent state, which essentially

9

means writing different elements of Bro’s state into
files and reading them back again later, possibly
after having first modified them using other in-
stances of Bro. We then discuss controlling spatially-
independent state, which is done in the context of
communication between multiple instances of Bro.
All the language constructs and functions are acces-
sible at the script-level. To ease their use, we have
also developed standard scripts to accomplish a num-
ber of common tasks.

4.2.1 Temporally Independent State

To make state temporally independent, we store it in
files. These files can then be read by another instance
at a later point of time.

The most obvious use of temporally independent
state is to make datapersistent. The data is stored
into a set of files just before a Bro process terminates,
and re-read when a new instance starts up. Instead
of storing all global data per default, we let the user
selectively define which script-level data to save by
adding an attribute&persistent to its type dec-
laration. For example,

global saw_Blaster: set[addr]
&persistent;

declares a set of addresses for which any changes
to the set will be propagated to future invocations
of Bro. Such a set is useful, for example, in track-
ing which addresses have already generated alerts
in the past in order to reduce the volume of future
alerts. Since our policy may be that once we’ve
detected a Blaster infection, we don’t need to hear
about it again. Furthermore, because temporally-
independent state includes its associated timestamps
and timers, we could also use:

global saw_Blaster: set[addr]
&persistent &create_expire=30days;

and Bro will delete each set element 30 days after it
was added, so we will be reminded of all still-active
Blasters once a month.

The reason we structure the interface so that the
user explicitly marks which state to keep persis-
tent, with all other state by default remaining non-
persistent, is both that the volume of the entire set of
state can be very large, and also that we find that pol-
icy scripts are often written in a style that presumes
that state exists only during the execution of a single
instance of Bro. We will return to this point when we
discuss checkpointing in§5.1.

Along with &persistent , we also provide
a function make connection persistent ,
which tells Bro to store the associated state of a
particular connection. There is also an associated
standard policy script that uses this function to
automatically save state for all connections belong-
ing to a user-definable set of services (like FTP
and SSH). In addition to automatically writing all
persistent state at termination, the script function
checkpoint can be called anytime during opera-
tion. It uses incremental serialization to avoid packet
drops and can be called by another standard policy
script to save Bro’s state at regular time intervals.

Similarly, the function rescan state reads
state back from disk. While by itself this is not of
much use during operation, we can also thencopy
state files from one Bro instance to another and
incorporate them directly into the second instance
while it runs. One application here is to transfer data
between two Bro instances. Another is more pow-
erful: we have added a new command-line option
that tells Bro to write all state contained in one of
its scripts into files. That means we get access to
all global identifiers, types, functions, and event han-
dlers. By copying one of these files into another run-
ning instance, we canchangeits configuration on-
the-fly—both the values of its global variables but
also the values of its functions and event handlers,
i.e., we can change the code it executes.

Here we see some of the broader potential of the
move from static state to dynamic state. Of course,

10

such flexibility also requires discipline: otherwise it
can lead to confusion and disarray if we lose track
of just what code and data a given instance of Bro is
executing. But we were motivated to add this func-
tionality by the observation of a corresponding oper-
ational need for rapid reconfiguration. Often when
running Bro operationally, we will encounter a new
traffic pattern for which the current Bro configura-
tion is deficient (e.g., it fails to generate alerts for
a newly discovered attack, or it generates a flood
of alerts for a new type of traffic that is in fact be-
nign). To date, accommodating such changes in
the configuration has required terminating the ex-
isting instance of Bro—losing all of its state in the
process—and starting up a new instance. But by us-
ing rescan state , we can make the changes to
the configuration, test it using a separate instance
of Bro, and, once satisfied that the changes are cor-
rect, incorporate them into the running, operational
instance without the need to restart it.

Along with script variables and function defini-
tions, we also developed a way to make event genera-
tion temporally-independent. By calling the function
capture events , our policy script can tell Bro
to write all events raised during run-time into a file.
One use is to later replay these events in another in-
stance of Bro for debugging and exploring alternate
analyses.

This can be very helpful for debugging, as we do
not need real network packets to reproduce a situ-
ation. Although this is not suitable for all cases—
if we need access to event engine state, replaying
events is not sufficient—it suffices in many situa-
tions. There is one other means for manipulating per-
sistent state, which is to print it. We can do so either
in a “pretty-printed” human-readable form, or en-
coded as XML, although this latter is not fully imple-
mented at this point. Once we have finished imple-
menting the XML output, we expect this to be highly
useful for traffic analysis independent of the task of

intrusion detection. For example, when combined
with event capturing, it gives us a more abstract view
of network activity than raw packets, but remains
machine parsable. In addition, when coupled with
an XML reader, this facility will enable us to di-
rectly manipulate Bro’s state using whatever tools we
have available for editing XML. While such “outside
the system” editing has the potential for introducing
nasty, hard-to-find bugs, they can also prove to be
life-savers during emergencies that sometimes arise
operationally.

4.2.2 Spatially Independent State

For spatially-independent state, we need to transfer
state from one Bro instance to another running con-
currently. While one way to do this would be via the
already-mentionedcheckpoint /rescan state
functions (coupled with manually copying the files),
doing so would be crude and quite limited in power
because it would hide the presence of multiple Bro’s
from one another.

A more direct way is to establish network connec-
tions between the instances. To do so, one of the in-
stances calls the new functionlisten , which opens
a port on the local host waiting for connections from
other instances:

Listen on interface 10.0.0.1:47756
for SSL-authenticated connections.
listen_ssl(10.0.0.1, 47756/tcp);

These in turn initiate connections by means of the
newconnect function:

Connect to 10.0.0.1:47756, using SSL.
connect_ssl(10.0.0.1, 47756/tcp);

Once a connection is established, there are
several ways to exchange state. Using
request remote events one side can request
a set of events, meaning that whenever the other
side generates one of the events, it automatically
forwards the event to the other side:

11

Request all HTTP events from peer.
request_remote_events(10.0.0.1,

47756/tcp, /http_.*/);

At the receiving end the event looks the same as one
generated locally (although by calling the function
is remote event the script can distinguish be-
tween local and remote events, and then, addition-
ally, callingevent source to retrieve more infor-
mation about the originator).

In addition to sharing events, multiple Bro in-
stances may share data, too. When a global script-
level identifier is declared as&synchronized ,
modifications to its value will be propagated to
all peers for which the identifier is also declared
&synchronized :

global saw_Blaster: set[addr]
&synchronized;

In addition, we can explicitly request the full
set of persistent state (i.e., all data declared
&persistent , and all connections marked by
make connection persistent) from another
host, reinstantiating it locally.

Finally, for the event engine’s control state, the
new function send capture filter sends a
tcpdump filter to the other side, which then decides
(as discussed in the next section) whether to install it.
Because the filter fundamentally determines the type
of traffic available for analysis, it effectively controls
which analyzers are activated, and thus the remote
Bro’s processing load vs. degree of detailed moni-
toring.

We implement synchronized tables by propagat-
ing data operations as discussed in§4.1.2. We have
to be aware, though, that this may lead to synchro-
nization problems. For example, consider a synchro-
nized table that counts alerts generated by a particu-
lar source address. If we have parallelized our NIDS
processing by having multiple processes performing
different types of analysis, then each of them might

determine that the same source address has gener-
ated an alert. If the processes share a common, inde-
pendent table, then one of them modifying the table
might experience a race condition with another pro-
cess modifying the table at the same time; the winner
of the race will overwrite the new value provided by
the loser, and the net effect is that the source address
may be charged with only one new alert against it
rather than two.

To avoid these race conditions, we would have
to ensure mutually-exclusive data operations, for
example by using a token-based reservation sys-
tem [TS02]. But this would violate Bro’s real-time
processing constraints: before performing an opera-
tion, an instance would have towait until access is
granted. Since this in untenable, we explicitly use
loose synchronization, which incurs the race condi-
tions described above.

On the other hand, if in the above example the
action being performed is incrementing an alert
counter, the operation is in fact not “set it to the value
n+1” but rather “increment it”. If we propagate this
operation rather than the resulting value (n+1), then
the increment will be performed twice and we obtain
the correct value in the table ofn + 2. Indeed, “in-
crement” and “decrement” are two of the types of
operations which our implementation propagates.

Thus, there are not any synchronization problems
when using Bro’s++/-- operators on independent
data (with the exception of a potential lag until all
instances received the operation). For operations we
cannot treat in this fashion, we include the old value
when propagating an event. (For example, the opera-
tion “assign 7 to the globalalert level ” is prop-
agated as “assign 7 to the globalalert level ,
its previous value was 12”.) By doing this, we are
able to at least detect and report desynchronizations
(in this case, if when changingalert level to 7,
we notice that its value before the change is not in
fact 12).

12

4.3 Robust and Secure Communication

The design of our new inter-Bro communication sys-
tem emphasizes robust and secure operation. Re-
garding robustness, a key point is that, from the per-
spective of a Bro process’s main functionality, inter-
Bro communication should be unobtrusive. In partic-
ular, inevitable networking difficulties such as time-
outs or unexpected termination should not perturb
the main operation. Therefore, rather than adding
a network communication component directly into
the current event engine / script interpreter structure,
we chose to leave Bro’s current single-process design
intact, and to instead spawn a second process exclu-
sively dedicated to handling the communication with
peers. The two processes communicate by means of
a Unix pipe. (We did not use threads in order to keep
their address spaces separate.) On multi-processor
systems, using two processes has the additional ad-
vantage of making use of more than one CPU. In this
case, the network communication does not add load
to Bro’s main component.

The next element of our design was to base it
on semantically unidirectional communication. This
means that while two peers may both send state over
the same network connection, Bro’s processing never
expects one side to reply to something the other
side sent. In particular, we do not use any form of
application-layer acknowledgments. While doing so
restricts error detection and handling somewhat, it
also significantly eases implementation by avoiding
having to deal with unreceived replies (which would
require timeouts and a failure-recovery scheme). We
believe that the decrease in complexity wins more in
terms of robustness than we lose in terms of error
processing.

The only major drawback of this design decision
is that we cannot remotely call functions that return a
value (§4.1.2). There are two types of Bro functions:
internal functions accessible from the script level

but defined within Bro’s event engine core, and
script functions. We examined all internal functions
as of Bro version 0.8a39 (about 100 total), and
found only a few that actually have semantics that
require both being called remotely and returning
a value. It turns out that all of these can either be
replaced by some additional script-layer logic, or
they are not in fact used by any of Bro’s default
scripts. (The functionsactive connection ,
connection exists , lookup connection ,
and connection record , could be
replaced by using active.bro ; for
get login state we could add a new
event; get orig seq and get resp seq
are only used in terminate connection
which (usually) has to be called locally
anyway; and get matcher stats and
get contents type are unused. Consider-
ing script functions, we see that instead of calling
them remotely, we can as well call them locally,
leveraging&synchronize ’d state if necessary for
their operation.) We conclude that the inability to
remotely call functions is not a severe limitation.
Finally, we note that the unidirectionality of commu-
nication only affects the core-level communication
between two instances. For example, it is still
quite possible to build ascript-level handshake
mechanism by passing a sequence of events between
two peers. In fact, thehandovermechanism shown
in §5.1 does exactly this.

For reasons similar to those that lead us to rely on
loose synchronization (see§4.2.2), we do not make
any timing guarantees for the communication. For
example, transfering large amounts of data may de-
lay the reception of an event. Also, while all state
from one endpoint will always arrive in the order in
which it was sent, state from multiple endpoints may
be received intermixed.

Along with designing for robust communication,
we also need to consider securing the communica-

13

tion, i.e., providing for confidentiality and authen-
tication. To do so, we provide a simple script-
level means to specify the use of SSL for securing
the communication, which we implemented using
OpenSSL [Ope].6 Enabling encryption for confi-
dentiality is straightforward. For authentication we
make use of signed certificates. Peers are configured
with the public keys of trusted certification author-
ities. They only approve a connection if the other
endpoint presents a certificate signed by one of CAs.
We note that we always have both peers authenticate
themselves (in contrast to server-only SSL authenti-
cation as is often used).

A NIDS necessarily gathers a great deal of infor-
mation, the access to which is often restricted and
not to be shared with other parties. Therefore, trust
is a vital issue when accepting connections from
peers. Given the capabilities presented above, with-
out further restrictions any peer could easily access
our state as well as send us arbitrary, perhaps mis-
leading, state. In general, we can identify four levels
of increasing trust:

1. Peer may not talk to us at all.

2. Peer may get state from us, but we do not accept
any state.

3. Peer may get state from us, and we accept non-
control state.

4. Peer may get state from us, and we accept all
state.

The levels are ordered in the way that more trust al-
lows more activity on the other side. If already con-
nected, just passively receiving state needs the lowest

6We preferred SSL over other means, such as IPSec, because
of its ease of use: while we have to (slightly) adapt the NIDS,
the user does not need to install additional infrastructure. This is
particularly important for fostering distributed, independently-
administered confederations.

trust. Feeding us state requires more trust, and con-
trolling our operation (e.g., by sending us a filter that
turns on more analyzers) demands full trust.

The need for these sorts of different levels imme-
diately arises operationally. For peers with which
we have not developed any monitoring agreement,
the first level of trust (no access) is appropriate. For
sites that we wish to help but we do not know if they
themselves are run competently, the second level is
best. For sites with which we have a close working
relationship, the third may be. Finally, when using
multiple NIDS instances internally, for example for
load-balancing, the fourth level likely makes sense.

Accepting state from a peer (i.e., trust level 2 and
above) illustrates another implication: due to the
complex semantics of the state, we cannot reason-
ably validate that the input is well-formed. Consider
for example shallow-copied objects: when a serial-
ization references another object, it only includes a
unique ID. Upon deserialization, there is no appar-
ent way to validate that the referenced object isse-
manticallycorrect (we do ensure type safety though).
Thus, accepting state entails trusting the peer to send
valid data, and this consideration must be kept in
mind when assigning trust levels.

All four levels rely on a correct identification of
the remote side, which we can achieve via SSL-based
authentication (and firewalling to enforce the first
level). While we have not currently implemented an
explicit framework to directly state “peerx is on trust
levely”, we have implemented hooks to enforce such
trust-levels at the script-level by the user. For exam-
ple, when a remote peer has successfully connected,
the event engine generates an event to tell us so. Our
policy script can then decide whether we want to ac-
cept state from the peer by calling a corresponding
function. If we receive control-state (which currently
can only be a packet filter), the decision to use it is
again left to an event handler that needs to be pro-
vided by the user.

14

5 Applications

We now describe several powerful applications of in-
dependent state in network intrusion detection. We
first show how we can use independent state to
greatly enhance Bro’s traditional model of regular
checkpointing, including support for robust crash re-
covery. Then we discuss distributed intrusion detec-
tion, concentrating on the utility of the spatially in-
dependent state. Finally, we show how independent
state can be used for dynamic reconfiguration, pro-
filing, and debugging.

We implemented each of these applications.
Given independent state, combined with the NIDS’s
flexibility, we found all rather easy to achieve. Al-
though at first sight each may seem to be yet-another-
extension of Bro’s generally-extensible functional-
ity, the easeof implementation proves the power of
the approach. That the single concept of independent
state enables such a diversity of new applications il-
lustrates itsarchitecturalnature.

Our experiences with these applications come
from monitoring the access links in several
large environments: the Münchner Wissenschaft-
snetz (MWN; research network including two
universities—Technische Universität München,
Ludwig-Maximilians-Universität München—and
other institutions, Gbps, heavily loaded), the Uni-
versity of California, Berkeley (UCB; Gbps, heavily
loaded), and the Lawrence Berkeley National
Laboratory (LBNL, Gbps, medium load).

5.1 Checkpointing

IDS’s face fundamental state management problems.
Either the system uses a static allocation of state for
its analysis, in which case it becomes vulnerable to
easy forms of attacker evasion; or it allocates differ-
ent types of state dynamically, in which case man-
aging and reclaiming that state becomes a major bur-

den. While Bro provides a variety of timers for use in
state management, from operational experience we
have found that state still inexorably accrues, in part
due to our reluctance to assign timers to every data
item because it’s hard to determine gooda priori set-
tings for these, or even identify all of them (there are
hundreds of script-level variables).

To date, Bro’s only support for large-scale state
reclamation has been the brute force approach of
simply starting over from scratch. That is, to run Bro
24x7 we (and other Bro users) resort tocheckpoint-
ing, which in this context means periodically starting
up a new instance of Bro and killing off the old one.
(We go in that order to avoid a monitoring outage
during the changeover.) The frequency with which
this is done ranges from daily (LBNL) to every few
hours (MWN, UCB).

The main advantages of this sort of checkpointing
are its simplicity and the robustness it provides, a sort
of “memory management in depth” when coupled
with Bro’s fine-grained state management mecha-
nisms. But, clearly, simply throwing away all of a
NIDS’s state at certain times is not the best approach.
Ideally, we would like to retain a selected subset of
important state, while reclaiming all of the rest.

For Bro, the two main types of state lost
when checkpointing are internal connection state
(including analyzer-specific state and attached
timers) and script-level data. The concept of
persistence described in§4.2.1 now enables us
to individually choose connections (by calling
make connection persistence) and script-
level data (via&persistent declarations) to be
made independent, thus enabling the new Bro in-
stance to use them as part of its initial state. Do-
ing so allows us to continue longer-running forms of
analysis uninterrupted, such as tracking scans, long-
lived interactive connections, usernames, inferred
software versions (see below), alerts already gener-
ated, and addresses that Bro has blocked in the past

15

using its dynamic blocking facility.

While temporally-independent state thus enables
us to keep key state across restarts, implementing it
soundly also requires a dynamichandovermecha-
nism. The problem here is that the current instance
of Bro has to save its persistent state at some specific
point in time,after which the new instance can begin
executing. If we have to wait for it to start up, we will
incur a monitoring outage.7 We solve this problem
by recognizing that instead of using temporal inde-
pendent state, we can use spatial independence. We
implement dynamic handover by starting up the new
instance and having it connect via a (local) network
connection to the old instance, requesting its current
set of persistent state. After this has been success-
fully transmitted, the old instance terminates itself,
and the new one starts processing.

As already discussed, we intentionally did not
simply makeall state persistent. Doing so would de-
feat the purpose of checkpointing. But having the
tools now to selectively make state persistent, the
next step is to identify the state for which this makes
sense. For our operational environments, we have
decided to keep internal connection state for inter-
active services that tend to have long-lived connec-
tions. We do this using new default policy scripts that
trigger persistence for FTP, SSH,telnet, andrlogin
connections. (This list is easily customizable. In
addition, one could choose to add connections for
which some malicious activity was already seen.)
For script-level data, we took Bro’s default policy
scripts (as of version 0.8a57) as representative for
the usage of state in Bro scripts. Our first observa-
tion is that nearly all of the scripts store their rele-
vant data in tables or sets. We found five basic us-
ages: (1) remembering messages already logged to

7If we start the new instance first, and have it read in the
persistent state while already processing packets, we incur sig-
nificant analysis inconsistencies.

avoid duplication, (2) remembering hosts which have
done “something” (e.g., propagating a worm), (3)
associating additional state with connections (e.g.,
which FTP data connections have been negotiated
by a control channel), (4) holding configuration data,
such as particular hosts allowed to do “something”,
(e.g., connect to a certain host; this data is more or
less fixed), (5) remembering additional data derived
from the script’s analysis (e.g., software installed on
a host).

Taking the MWN environment as a test case, we
made all tables belonging to the first group persis-
tent. Most of these tables are rather low in volume.8

and suppressing unnecessary log messages is a vi-
tal NIDS capability [Axe99, Jul03]. For the second
group, we differentiated between short-term (min-
utes or less) and longer-term data. The former is
often quite large in volume and often not worth keep-
ing. For example, the script recognizing the Blaster
worm [Bla] by its scanning activity keeps two tables:
one tracking pairs of hosts which have communi-
cated over TCP port 135 within the last five minutes,
and the second remembering all already-identified
worm sources. We decided to make only the latter
persistent.

The third group is more problematic. Ideally, we
would like to keep information for allpersistentcon-
nections, but discard all the rest. But to do so the
scripts would need significant restructuring, as their
semantics vary too much to automatically deduce
which information is associated with persistent con-
nections. There are some tables, though, for which
we know they always correspond to state for persis-
tent connections. (For example, the FTP analyzer
script remembers FTP connections.) We made these
kinds of tables persistent, but left all other tables un-

8With the notable exception of the tableweird ignore
recording all the “crud” [Pax99] In large networks, we see tons
of crud.

16

modified (i.e., ephemeral).
We also left the fourth group untouched, as config-

urations are mostly static and better changed man-
ually if the need arises. Finally, for the last group
we found we needed to make case-by-case decisions.
For example, to keep vulnerability profiles [SP03b]
one of the scripts detects the software versions used
by different hosts, an excellent example of informa-
tion we do not want to lose. Consequently, we de-
clared it&persistent .

We observed that adding persistence to a table al-
most always implies adding an expiration timeout,
too, as it generally does not make sense to store state
forever. We implementedread and write timeouts,
which expire for each table element a given amount
of time after the last access or modification to the
element. Similar to&create expire discussed
above, these work for persistent tables as well as
ephemeral. One exception we made to always expir-
ing persistent state, however, was for vulnerability
profiles, where we prefer to keep the information as
long as possible. If required, we can always delete it
manually by deleting the corresponding state file on
disk.

5.2 Crash Recovery

A related application of persistent state is better re-
covery from crashes. Three main reasons for the
crash of a NIDS are resource exhaustion, attacks,
and programming errors [Pax99]. In most systems,
including Bro, in each case we lose all the state
so far collected by the system. But by using the
checkpoint function (see§4.2.1) regularly, we
can significantly mitigate the effects of crashes, so
that we only lose data accumulated since the last
checkpoint.

Our experience is that crash recovery is invalu-
able. This is not only the case when actively devel-
oping the IDS —where we often experience crashes

due to programming errors, and, hitherto, always lost
the complete state of system as a consequence— but
also in a production environment, where crashes still
are a fact of life, particularly due to resource exhaus-
tion. Not only does crash recovery allow us to con-
tinue operating with only a minor loss of state (in
terms of the importance of the state), but the check-
point also allows us to analyze the particularly sig-
nificant state post-mortum (cf.§5.4).

In addition, we are planning to extend the han-
dover mechanism described in§5.1 by running a
“shadow” instance of Bro. It would connect to the
main Bro process but otherwise stands idle, regularly
checking responses to are-you-alive events. If so, it
requests a copy of the main Bro’s current state; if not,
then it can use the last transferred state as the starting
point for its own analysis.

5.3 Distributed Analysis

One we’ve provided a means for a NIDS to com-
municate its state, we can then use that mechanism
to distribute its analysis. To date, distributed NIDS
have generally imposed a specific model on the form
of distribution. For example, DIDS [SBD+91] was
the first to employ a sensor model, gathering low-
level data remotely while performing the higher level
semantic analysis centrally. On the other hand,
Emerald [PN97] builds up a hierarchical structure
used to propagate information up to the root level.

Independent, fine-grained state opens up new de-
grees of flexibility for distributed analysis. In this
section we look at three different models for doing
so, all of which we have been able to implement
and experiment with by means of Bro’s independent
state. The first model supports load-balancing for
monitoring high-volume links. The second supports
the well-known “distributed sensor” model, and the
third looks at propagating information between oth-
erwise decoupled systems.

17

5.3.1 Load-balancing

On today’s high-volume links,9 it is exceedingly
difficult to analyze the full packet stream with
a single NIDS (unless one utilizes custom hard-
ware [KVVK02]). One strategy for coping with such
a load is to distribute the analysis across several ma-
chines, each doing only a part of the work. A key
question then is how to coordinate their operation.
Currently, using Bro operationally we do this by run-
ning several independent instances on different slices
of the network traffic. But without any state sharing,
this loses important information. Thus, our goal is
to retain the depth of analysis a single Bro could in
principle achieve if it could cope with the load.

To this end, we first need to decide how to di-
vide the traffic between the multiple systems. We
can either do statically (each system gets all packets
matching some fixed criteria) or dynamically (e.g.,
for each connection we decide individually which
system will analyze it). Our efforts so far have fo-
cused on static approaches due to their simplicity,
with the two obvious ones being distribute based on:
(i) the local IP space, or(ii) the application.

Dividing by IP space: To fruitfully split up the lo-
cal IP space, we need knowledge about the network
to find a division so that the individual NIDS systems
receive comparable loads. From our operational ex-
perience, measuring the volume and leveraging the
expertise of the network’s administrators to do so is
not hard. The main advantage of distribution based
on dividing the IP space is the ease of further dis-
tributing the load by introducing additional systems.
The main disadvantage is that, without any commu-
nication, we cannot correlate traffic between differ-
ent subnets anymore, such as detecting scans.

To assess this approach, we examined the Bro
0.8a53 policy scripts to determine the degree of com-

9E.g., the traffic level in the MWN (UCB) environment sus-
tains more than 250 (300) Mbps averaged over an entire day.

munication they would require. We found that there
is one dominant case where without communication
we would lose information: several scripts store in-
formation about individual hosts, usually of the form
“host a.b.c.d did something [n times]”. For exam-
ple, the worm detection script keeps a table storing
all already-known worm infectees. Not propagat-
ing this state among the concurrent Bro’s would have
two effects:(i) each of the instances would alert in-
dividually if it recognizes the worm, and(ii) more
importantly, if an instance cannot identify the worm
by itself, it obviously cannot use this information
in other contexts (e.g., treat signatures matching a
known worm infectee different from other matches).

With spatially independent state, however, we can
easily solve these problems by declaring the tables
&synchronized (per§4.2.2). Now each instance
propagates its state to the peers. In fact, this is an
ideal situation for loose synchronization: the propa-
gated updates are “add this element to the table” and
“increase this element’s counter”. Both are indepen-
dent of the order in which they are applied (as long
as elements are not removed, but in most cases this
happens, if at all, due to automatic expiration, which
each instance already does by itself). Also, for this
task, a short interval of desynchronization is not of
much importance.

We are currently working on exploring division by
IP space operationally at MWN.

Dividing by application : To divide the load by
application, we delegate applications that make up
a significant share of the load to dedicated systems.
If, for example, there is a large fraction of HTTP
traffic, we could exclude HTTP processing from the
main system and move its analysis to another ma-
chine. This is in fact what we do operationally at
LBNL. But this approach lacks general scalability:
the load is only significantly reduced if Bro does in-
deed spend quite some time processing the particular
application. This is true for HTTP (due to Bro’s de-

18

tailed analysis of the HTTP sessions), and also for a
few other applications, but these total only a handful.

Again we examined the scripts to assess where di-
vision by application would require inter-Bro com-
munication. While usually for application-specific
analysis no communication is needed, one exception
is the FTP analyzer. It parses the negotiation of FTP
data connections (PORT, PASV). A more general
problem concerns analyzers that need to see traffic
from all applications, such as the scan detector. For
detection of vertical port scans, it counts connection
attempts to different ports (applications) per host.
Other examples include the ICMP analyzer, which
correlates ICMP “unreachable” messages with the
corresponding connections, and the analyzer that de-
rives vulnerability profiles [SP03b].

It appears clear that the communication for these
analyses can be addressed using spatially indepen-
dent state, and we expect to gain operational expe-
rience in doing so at LBNL, where it has long been
desired to coordinate the separate HTTP Bro. Fi-
nally, we note that the two techniques of dividing by
IP space and dividing by application can in principle
be combined (dividing by both) in environments with
a large number of analysis hosts available. Spatially
independent state should be able to support this gen-
eralization, too, although we do not have concrete
plans to try this out operationally.

5.3.2 Sensor model

A well-established architecture for distributed
network intrusion detection is the sensor
model [Amo99], in which we placesensorsat
different points in the network, usually performing
low-level analysis like protocol-decoding or byte-
signature matching. The sensors then send their
results to ananalyzerwhich correlates the data from
all of its input sources.

Bro is conceptually well-suited for this kind of de-

ployment. Its architecture already clearly separates
between low-level and high-level analysis by means
of its division into event engine and policy script in-
terpreter. The main interface between these two lay-
ers are the events. So, the most obvious way to ap-
ply the distributed sensor model to Bro is to spatially
separate the event engine from the script layer. This
becomes easy to achieve using spatially independent
state.

To test this approach, we ran two instances of Bro
as sensors on a dual-processor monitor machine at
MWN’s uplink, load-balancing the network traffic
by dividing the IP space. We ran a third Bro on a
second system which acted as the analyzer, receiv-
ing and processing all the events generated by the
sensors’ event engines. This worked without a hitch.

Then, to compare the processing loads, we set
up a single sensor instance on the dual-processor
monitor, and an analyzer on the second machine.
The total load across both CPUs of the monitor was
only slightly less than what it would have been if it
was doing the full work by itself, because for the
MWN setup the main processing burden is on the
sensors—offloading the analysis from them is in ab-
solute terms a relatively minor gain, and the bigger
win in that environment comes from dividing up the
IP space. However, due to our use of a separate pro-
cess to manage inter-Bro communication (§4.3), the
CPU running the main analysis benefited from con-
siderably reduced load.

While we have not experimented with it yet, an-
other approach made possible by spatially indepen-
dent state would be to partition the processing a layer
up. That is, the sensors would perform the usual
script-level analysis in addition to their event engine
processing, with those scripts synchronized as dis-
cussed in§5.3.1, and then we would dedicate an ad-
ditional CPU to correlating their combined output at
a meta-level, for example by using established cor-
relation methods [DW01, KTK01, VS01]. (Indeed,

19

from our experience, even just combining the log
messages coherently and in a single place would be
of operational benefit.)

5.3.3 Propagating information

Another potentially valuable application of spatially
independent state is using it to tell other systems
some facts about our analysis. Although less ambi-
tious than fully distributed correlation, it can be quite
powerful. We discuss two examples here, the first
(intensifying analysis for suspicious hosts) of which
we have already experimented with, and the second
(propagate IPs that we have chosen to dynamically
block) of which we plan to set in place in the near
future.

Suspicious hosts: As mentioned above, due to
the large load on a high-volume link, a single sys-
tem cannot run detailed analysis on the full traffic.
One solution is to run only coarse-grained analysis
on all of the traffic, but to intensify the inspection
for hosts found to be conspicuous. For example,
often administrators observe that attackers first per-
form scans of the network before actually targeting
some hosts. Large scans are easily detectable using
coarse-grained analysis. After identifying a scanner,
we can then look at the packets coming from the
same source in more detail.

We implemented this by running two instances of
Bro. The first instance watches a large fraction of
the traffic but only runs a modest set of policy scripts
(most notably the scan detector). When it generates
an alert for some host, it also sends an event contain-
ing the host’s IP address to the second Bro instance.
By default, the second instance does not see any traf-
fic at all. But if it receives such a suspicious address,
it modifies its analysis to include all packets coming
from that source. In addition to using more scripts
and a large set of signatures, it saves the complete
set of packets to disk.

Along these lines, a more ambitious scheme we
are working on implementing is atime machine.
Here, the second analyzer maintains a (very) large,
rolling buffer consisting of all recent network traf-
fic to the extent that available storage permits. Upon
receiving an event with a suspect IP address, it can
then extract not only any new traffic that a host sends,
but also itsprevioustraffic to the extent available in
the buffer. If, for example, the buffer is a 500 GB
disk partition, then this could track many minutes or
hours of traffic, providing we can structure the sys-
tem to stream the traffic to the disk (and delete it as
it expires) sufficiently quickly.

Propagating blocked hosts: Our LBNL environ-
ment currently runs several Bro’s at different entry
points into the network. As discussed in [JPBB04],
LBNL’s security policy includes dynamically block-
ing scanners detected by Bro by modifying the entry
router’s access control list. Because not infrequently
a scanner first probes a set of addresses correspond-
ing to one entry point and then later another set cor-
responding to a different entry point, there is consid-
erable operational interest in enabling the different
Bro’s to communicate their blocking decisions to one
another. This way, a malicious host can beproac-
tivelyblocked from probing the addresses behind the
second entry point, rather thanreactively blocked
(which could come too late in terms of preventing
damage). We plan to support this information shar-
ing by modifying the operational Bro’s to generate
events when blocking new hosts and broadcasting
them to their peers. We also plan to experiment with
broader sharing of such information across the dif-
ferent institutions (MWN, LBNL, UCB) where we
operate security monitoring.

20

5.4 Dynamic Reconfiguration, Profiling and
Debugging

The final set of applications for independent state
that we look at leverage that our framework not only
enables data values to become independent state, but
also broader notions of “values” such as the func-
tions and event handlers in policy scripts. Here
we realize the benefits made possible by converting
Bro’s static state into dynamic state. Such indepen-
dent state allows us, first, to both tune and retarget
the system without having to restart it; and, second,
to inspect the system’s state during run-time in sev-
eral different ways.

Dynamic Reconfiguration: We can use the inde-
pendence of broader forms of state such as functions
and event handlers to dynamically reconfigure a run-
ning Bro. Doing so supports both operational flexi-
bility and tuning.

In terms of operational flexibility, frequently dur-
ing daily operations the need arises to change the
configuration of the NIDS in response to a newly
perceived threat or problem. For example, we have
detected a break-in and now want to alert on any re-
turn by the attacker to their backdoor; or, we have
learned a new attack signature and want to immedi-
ately start using it; or, a new source of benign traffic
has appeared which is overwhelming the NIDS and
we want to skip processing it for now. These all can
occur in afire-fightingmode, i.e., we really need to
deploy the change immediately. With independent
state, we can introduce such changes—including
modified function and event handler definitions—
directly, without incurring the loss of fine-grained
state that we would using our enhanced checkpoint-
ing.

Another use of dynamic reconfiguration is to sup-
port tuning, i.e., optimizing the NIDS’s configuration
for the local environment. From our experience, one
of the most common problems with making config-

uration changes for tuning is that the effects of the
changes often do not show up immediately. Until
now, making such changes has required restarting
the NIDS, with the consequent loss of the system’s
state. In addition, the effects of many changes are
only visible when the system has built up a signifi-
cant amount of state, which can take a long time after
a conventional restart. This is particularly true for
configuration parameters like timeouts and thresh-
olds. We can ameliorate this problem somewhat by
collecting traffic traces and testing against them off-
line, but such traces can be huge and unwieldy to
work with.

While our enhanced checkpointing can help, it
does not fully solve the problem. Often when mak-
ing many small changes in a short time, we do not ac-
tually want the controlled loss of state which check-
pointing achieves, but prefer to keepall state. We
want ideally to have the system just pick up the
changes and keep running, similar to the fire-fighting
changes discussed above.

The way we do this in practice is as follows.
Consider an already-running Bro whose configura-
tion we would like to change in some respect. We
first make the modification to the static state, i.e.,
the scripts. We then convert the full configuration
into persistent state, stored in individual files, as de-
scribed in§4.2.1. Finally, we copy the files contain-
ing state affected by our change into a directory reg-
ularly checked by the running instance, which no-
tices the update, loads it, and switches to using it.
No other state is lost.

Profiling and Debugging: Another significant
problem when operating a NIDS is understanding its
behavior during operation. When developing policy
scripts, we find they can work in unexpected ways,
due to either programming errors, or to encountering
network traffic with different characteristics than we
expected. These kinds of problems are very hard to
track down, as often they only manifest themselves

21

Figure 1: Port scans at two times (addresses altered).

ID reported_port_scans = {
[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01
[138.112.68.194, 108.45.144.114, 50] @01/21-10:59
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

}

(a)

ID reported_port_scans = {
[138.112.68.194, 108.45.144.114, 50] @01/21-10:59
[138.112.68.194, 108.45.144.114, 10000] @01/21-11:01
[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[163.184.146.140, 146.74.170.189, 50] @01/21-13:16
[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[163.184.146.140, 146.74.170.189, 100] @01/21-13:16

}

(b)

[138.112.68.194, 108.45.144.114, 1000] @01/21-11:00
[138.112.68.194, 108.45.144.114, 100] @01/21-10:59
[138.112.68.194, 108.45.144.114, 50] @01/21-10:59

+ [163.184.146.140, 146.74.170.189, 100] @01/21-13:16
+ [163.184.146.140, 146.74.170.189, 50] @01/21-13:16

[165.11.184.36, 148.126.197.84, 100] @01/21-12:11
[165.11.184.36, 148.126.197.84, 50] @01/21-12:11

(c)

22

Figure 2: Function fromscan.bro with times-
tamps.

ID check_hot = check_hot
(@01/21-12:23 #4715580)
{
local id = c$id;
local service = id$resp_p;
if (service in allow_services ||

c$service == "ftp-data")
(@01/21-12:23 #2932175)
return (F);

if (state == CONN_ATTEMPTED)
(@01/21-12:23 #1138955)
check_spoof(c);

else
(@01/21-12:23 #644450)
[...]

}

after a considerable amount of run-time. This means
that they cannot be reasonably targeted with Bro’s
existing tracing and interactive debugging mecha-
nisms.

We find it is a great help if we can take a look
at Bro’s current state. With independent state, this
is easy to achieve, since the files generated by
checkpoint contain all the necessary informa-
tion. Included in our output are timestamps when the
entries were last accessed. Additionally, the ASCII
output formats are also suitable for processing with
Unix utilities such assort anddiff. In Figure 1, for
example, we see how the table containing all cur-
rently known port scanners has changed between two
points of time. Here, we can actuallyseethe scan de-
tector working. In Figure 1(a), for example, we see
the table containing all currently known port scan-

ners at a given point of time. Included in the output
are timestamps when the entries were last accessed.
In Figure 1(b), we see the same table from about
1.5 hours later. For larger tables, the differences may
be hard to see, though. However, the ASCII output
formats are also suitable for processing with Unix
utilities such assort and diff, as illustrated in Fig-
ure 1(c). Now the differences become obvious; we
can actuallyseethe scan detector working.

Along with data values, independent state pro-
vides timestamping for script functions, too. Fig-
ure 2 shows a checkpoint of thecheck hot func-
tion from the default scan detection script. The dif-
ferent basic blocks in the code are annotated with
timestamps indicating the last time they were exe-
cuted, and with counts of how many times they have
been executed. We can again use tools likediff to dy-
namically track which portions of the code are being
executed, and how frequently. The counts are partic-
ularly useful: if they differ significantly from what
we expect, there is either a coding error, or a misun-
derstanding of the network traffic. Finally, we aim
to eventually also use this information for long-term
policy script maintenance, for example by locating
policy script elements that have become stale and are
no longer needed.

6 Summary

In this work we developed an architecture forinde-
pendent statein network intrusion detection. While
often much of a NIDS’s state resides solely in
volatile memory, we set out to make all of a NIDS’s
state exist “outside” of any particular process. To
this end, we developed the notions ofspatially inde-
pendent state(state that can be propagated from one
instance of the NIDS to another concurrently run-
ning process) andtemporally independent state(state
that continues to exists after the termination of all in-

23

stances, and which can later be incorporated by new
processes). Our architecture isunified in that it en-
compasses all of the internal, fine-grained state of the
NIDS. Thereby, we can continue to process indepen-
dent state using the full set of mechanisms provided
by the system.

Our architecture facilitates independent state for
the Bro intrusion detection system [Pax99]. In the
process of making all of its semantically rich, de-
tailed state independent of any particular instance,
we convert (i)static state (e.g., configuration and
user-written scripts) todynamic state, becoming
changeable during run-time; and (ii)volatile state
(state that exists during only a single quantum of
time, e.g., events and operations on data) tonon-
volatile state.

The main internal mechanism of our architecture
is aserialization framework. While its implementa-
tion was straight-forward in general, the system’s in-
ternal complexity gave us a number of subtle issues
to solve. Having the serialization in place, we added
a user-level interface driven by our operational ap-
plications. It enables the user to selectively declare
state to be independent. To achieve temporal inde-
pendence, we serialize state into files, either when
an instance exits, or incrementally as it executes. A
subsequent process can then read it back. To achieve
spatial independence, we added secure network com-
munication to the NIDS, allowing instances to share
state across different locations.

The architecture provides us with a wealth of pos-
sible applications. We enhanced Bro’s traditional
model of regular checkpointing by allowing acon-
trolled loss of state, added crash-recovery, examined
different approaches for distributing the monitoring
and analysis, enabled run-time policy management,
and greatly extended the system’s profiling and de-
bugging facilities. These applications were driven by
our operational experiences, and we experimented
with all of them in several large-scale environments.

Our architecture has been included into the latest Bro
development version, and we are in the process of
setting up our monitoring environments to use inde-
pendent state operationally. We expect that in regular
operational use, the power of independent state will
soon become invaluable.

7 Acknowledgments

We would like to thank the Lawrence Berkeley
National Laboratory (LBNL), Berkeley, USA; the
Leibniz-Rechenzentrum, München, Germany; and
the University of California, Berkeley, USA. We
would also like to thank Anja Feldmann for support-
ing our work, and Mark Allman and Scott Campbell
for their helpful comments.

This work was made possible by the U.S. National
Science Foundation grant STI-0334088, for which
we are grateful.

References

[Amo99] Edward G. Amoroso. Intrusion De-
tection: An Introduction to Internet
Surveillance, Correlation, Trace Back
and Response. Intrusion.Net Books,
New Jersey, 1999.

[Axe99] Stefan Axelsson. The base-rate fallacy
and its implications for the difficulty
of intrusion detection. InACM Con-
ference on Computer and Communica-
tions Security, pages 1–7, 1999.

[Bla] CERT Advisory CA-2003-20
W32/Blaster worm. http://
www.cert.org/advisories/
CA-2003-20.html .

24

[DFPS04] Holger Dreger, Anja Feldmann, Vern
Paxson, and Robin Sommer. Oper-
ational experiences with high-volume
network intrusion detection. InProc.
11th ACM Conference on Computer
and Communications Security, 2004.

[DW01] Hervé Debar and Andreas Wespi. Ag-
gregation and Correlation of Intrusion-
Detection Alerts. InProc. of Recent
Advances in Intrusion Detection, num-
ber 2212 in Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[IDM] Intrusion Detection Message Ex-
change Format. http://www.
ietf.org/html.charters/
idwg-charter.html .

[JPBB04] Jaeyeon Jung, Vern Paxson, Arthur W
Berger, and Hari Balakrishnan. Fast
portscan detection using sequential hy-
pothesis testing. In2004 IEEE Sympo-
sium on Security and Privacy, 2004.

[Jul03] Klaus Julisch. Clustering intrusion de-
tection alarms to support root cause
analysis. ACM Transactions on Infor-
mation and System Security, 6(4):443–
471, 2003.

[KTK01] Christopher Krügel, Thomas Toth, and
Clemens Kerer. Decentralized Event
Correlation for Intrusion Detection .
In Proc. of Information Security and
Cryptology, volume 2288 ofLecture
Notes in Computer Science, 2001.

[KVVK02] Christopher Krügel, Fredrik Valeur,
Giovanni Vigna, and Richard A. Kem-
merer. Stateful intrusion detection for
high-speed networks. InProc. IEEE

Symposium on Security and Privacy,
2002.

[Ope] OpenSSL. http://www.
openssl.org .

[Pax99] Vern Paxson. Bro: A system for de-
tecting network intruders in real-time.
Computer Networks, 31(23–24):2435–
2463, 1999.

[PN97] Phillip A. Porras and Peter G. Neu-
mann. EMERALD: Event monitor-
ing enabling responses to anomalous
live disturbances. InNational Informa-
tion Systems Security Conference, Bal-
timore, MD, October 1997.

[Roe99] Martin Roesch. Snort: Lightweight in-
trusion detection for networks. InProc.
13th Systems Administration Confer-
ence (LISA), pages 229–238. USENIX
Association, 1999.

[SBD+91] Steven R. Snapp, James Brentano, Gi-
han V. Dias, Terrance L. Goan, L. Todd
Heberlein, Che-Lin Ho, Karl N. Levitt,
Biswanath Mukherjee, Stephen E.
Smaha, Tim Grance, Daniel M. Teal,
and Doug Mansur. DIDS (distributed
intrusion detection system) – motiva-
tion, architecture, and an early proto-
type. In Proc. 14th NIST-NCSC Na-
tional Computer Security Conference,
1991.

[SCCC+96] S. Staniford-Chen, S. Cheung,
R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS – A graph-based
intrusion detection system for large
networks. InProc. 19th NIST-NCSC

25

National Information Systems Security
Conference, 1996.

[Sou94] Jiri Soukup. Taming C++ – Pat-
tern Classes and Persistence for Large
Projects. Addison-Wesley, 1994.

[SP03a] Umesh Shankar and Vern Paxson. Ac-
tive Mapping: Resisting NIDS Eva-
sion Without Altering Traffic. InProc.
IEEE Symposium on Security and Pri-
vacy, 2003.

[SP03b] Robin Sommer and Vern Paxson. En-
hancing byte-level network intrusion
detection signatures with context. In
Proc. 10th ACM Conference on Com-
puter and Communications Security,
2003.

[SZ00] Eugene H. Spafford and Diego Zam-
boni. Intrusion detection using au-
tonomous agents.Computer Networks,
34(4):547–570, 2000.

[TCP] tcpdump . http://www.
tcpdump.org .

[TS02] Andrew S. Tanenbaum and
Maarten Van Steen. Distributed
Systems – Principles and Paradigms.
Prentice Hall, 2002.

[VK99] Giovanni Vigna and Richard A. Kem-
merer. Netstat: A network-based intru-
sion detection system.Journal of Com-
puter Security, 7(1):37–71, 1999.

[VKB01] Giovanni Vigna, Richard A. Kem-
merer, and Per Blix. Designing a Web
of Highly-Configurable Intrusion De-
tection Sensors. InProc. of Recent

Advances in Intrusion Detection, num-
ber 2212 in Lecture Notes in Computer
Science, 2001.

[VS01] Alfonso Valdes and Keith Skinner. Pro-
bilistic Alert Correlations. InProc.
of Recent Advances in Intrusion De-
tection, number 2212 in Lecture Notes
in Computer Science. Springer-Verlag,
2001.

[ZP00] Yin Zhang and Vern Paxson. Detecting
stepping stones. InProc. 9th USENIX
Security Symposium, pages 171–184.
The USENIX Association, 2000.

26

