
Large Scale Malicious Code: A Research Agenda∗†

Nicholas Weaver Vern Paxson Stuart Staniford Robert Cunningham
Silicon Defense & ICSI Center for Silicon Defense MIT Lincoln

UC Berkeley Internet Research Laboratory

1 Executive Summary

The reliable operation of our networked computing infras-
tructure is essential to many governmental and corporate
activities. Unfortunately, this infrastructure is highly vul-
nerable to automated attacks by computer worms: pro-
grams that propagate themselves to all vulnerable ma-
chines on the Internet. Such wide-scale malicious code
is a major threat.

Previous worms, such as Code Red[25] and Nimda[12],
were relatively minor: they contained no overtly mali-
cious payload designed to affect the infected machine and
attacked comparatively well-known vulnerabilities. Even
so, they were moderately disruptive and highlighted the
systemic vulnerabilities as the worms infected hundreds
of thousands of machines in a few hours. Numerous com-
panies and institutions lost a day of work while the com-
puters were restored.

Future attacks can be considerably faster through some
simple optimizations and alternate strategies, allowing all
vulnerable machines to be infected in far less than an
hour: faster than humans can react. Alternatively, some
strategies don’t accelerate the spread but make the attack
much harder to detect[86].

An attacker using an otherwise unknown vulnerability
could potentially corrupt millions of computers, if the vul-
nerable population is widespread. A malicious attacker
could search or disrupt any information present on the in-
fected machines, and/or use them to conduct wide-scale

∗Distribution Statement “A”: Approved for Public Release, Distri-
bution Unlimited.

†The views, opinions, and/or findings contained in this article are
those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

attacks on the Internet infrastructure. What makes the
threat particularly serious is that the resources required
to launch such an attack are comparatively small: a few
skilled programmers and a small group of test machines.

There are several strategies possible, includingactive
scanning, topologically-aware, contagion, metaserver,
and flash attacks, which can’t be detected or responded
to by current systems. There are numerous possible pay-
loads, such as data erasers, hardware-damaging routines,
Internet-scale denial-of-service attacks, or widespread es-
pionage, which could significantly affect the U.S. econ-
omy if contained in a widespread worm.

If our nation wishes to rely upon commodity networked
computers for our day to day business, governmental, and
military operations, we need to invest in several avenues
of research to address the threat posed by the different
families of malicious code. Much of this research must
be government-sponsored because of the forward looking
nature, the lack of a clear money-making proposition, and
the requirement for widespread and proactive defenses.

This report aims to survey the different types of re-
search necessary for addressing the threat, and, in particu-
lar, to then assess the priority of providing funding for the
different areas. Some areas, while promising, are already
being pursued by existing efforts or commercial entities;
others are high risk, but with only modest promise; while
still others have high promise and are currently under-
supported. These latter form the highest funding priority,
while the others should have less priority. (See Section 5
and subsequent sections for our specific funding priority
recommendations.)

Much remains to be done to defend against worms. Al-
though there is already considerable research in the area
of creating more secure and robust computer systems, few

1

of these features are easy to use or widely deployed.
Since there appear to be a limited number of strategies

that enable a worm to find and infect new targets, it should
be possible to create automated sensors which detect and
respond to these various strategies. Once a worm is de-
tected, it is then possible to institute reactions which throt-
tle the worm based on its method(s) of propagation. Some
type of automated response will be essential to slow the
worm to the point where human reasoning again becomes
relevant.

To succeed, improvements will be needed in tools that
automatically perform an initial analysis of a worm based
on its behavior: what it can infect, how it spreads, and
particular features of its code. Such information can guide
more precise responses and alert Internet sites if the worm
poses a particularly significant threat.

Manual analysis is currently based on disassemblers,
debuggers and similar tools, with current worms requir-
ing extensive periods of time[79, 75]. Since even to-
day’s worms spread world-wide in less than half that time
[25, 62, 86], the current manual analysis tools are too slow
to aid in creating meaningful responses. By developing
improved tools and other techniques, it should be possi-
ble to reduce analysis time considerably.

Significant effort is also needed in improving the re-
sponse and recovery procedure. The current response re-
lies on only loose coordination among individuals, with
the few channels for updates being limited and suscepti-
ble to secondary attack. Considerable research is needed
to develop recovery techniques which can automate this
process and mechanisms which can resist a determined
attack.

Cooperative defenses are essential for many facets of
worm defense. Some may need to be mandated, while
others may simply be subsidized. Cooperation offers nu-
merous benefits. Many sensing and analysis schemes ben-
efit from wide, cooperative deployments to increase sensi-
tivity and robustness. Another benefit is derived from the
global effects: some deployments can tolerate more sig-
nificant, short term responses. Reactions that temporarily
deny access to systems with a specific vulnerability will
slow the overall spread of an infection.

We envision the possibility of a Cyber CDC to lead
the development and deployment of these defenses (Sec-
tion 4). There needs to be a considerable government role
due to the common problems which worms present and

the need for cooperative responses. Although any indi-
vidual might only see a small risk to their own data, the
overall risk is unacceptably high.

2

Contents

1 Executive Summary 1

2 Worms: Types, Attackers, and Enabling Fac-
tors 5
2.1 Families of Widespread Malicious Code . 5

2.1.1 Activation techniques 5
2.1.2 Propagation strategies 6
2.1.3 Propagation carriers 8

2.2 Toolkit Potential 8
2.3 Motivations and Attackers 8
2.4 Payloads 9
2.5 The Ecology of Worms 10
2.6 Potential Economic Damage11

3 Existing Practices and Models 11
3.1 Cooperative Information Technology Or-

ganizations 11
3.1.1 U.S.-Funded Organizations11
3.1.2 International Organizations12
3.1.3 Commercial Entities 12

3.2 The Centers for Disease Control13

4 A Cyber CDC 14
4.1 Identifying outbreaks 15
4.2 Rapidly analyzing pathogens15
4.3 Fighting infections 15
4.4 Anticipating new vectors 16
4.5 Proactively devising detectors16
4.6 Resisting future threats16
4.7 How open? 16

5 Vulnerability Prevention Defenses 17
5.1 Programming Languages and Compilers .17
5.2 Privilege Issues19
5.3 Protocol Design19
5.4 Network Provider Practices20
5.5 Implementation Diversity 21
5.6 Synthetic Polycultures21
5.7 Economic and Social21

6 Automatic Detection of Malicious Code 21
6.1 Host-based Detectors22
6.2 Network-level Detectors23
6.3 Correlation of Results23

7 Automated Responses to Malicious Code 24

8 Aids to Manual Analysis of Malicious Code 26

9 Aids to Recovery 27

10 Coordination and Scaling 28

11 Policy Considerations 29

12 Validation and Challenge Problems 30
12.1 Establishing a Common Evaluation

Framework 30
12.2 Milestones for Detection31
12.3 Milestones for Analysis34
12.4 Detecting Targeted Worms35
12.5 Tools for Validating Defenses35

13 Conclusion 36

A Hardware devices 36

B Example Worm Potential Evaluation: Half
Life 39

3

List of Tables

1 Possible milestones for detecting classes
of worms 32

2 A summary of the research areas in pre-
vention, ordered by grade and section . .37

3 A summary of the research areas in au-
tomatic detection, ordered by grade and
section 37

4 A summary of the research areas in auto-
matic response, ordered by grade and sec-
tion . 38

5 A summary of the research areas in man-
ual analysis and recovery, ordered by
grade and section38

6 A summary of the research areas in vali-
dation, ordered by grade and section . . .38

4

2 Worms: Types, Attackers, and
Enabling Factors

In order to understand the worm threat, it is necessary to
understand the possible types of malicious code, the at-
tackers who may employ them, and the potential payloads
they could contain. Beyond that, it is necessary to under-
stand why vulnerabilities arise and how they enable the
spread of worms and other attacks.

2.1 Families of Widespread Malicious Code

A worm is a program that self-propagates across a net-
work exploiting security flaws in widely-used services.
They are not a new phenomenon, first gaining widespread
notice in 1988[27].

We distinguish between worms andvirusesin that the
latter require some sort of user action to abet their prop-
agation. As such, viruses tend to propagate more slowly.
They also have more mature defenses due to the presence
of a large anti-virus industry that actively seeks to identify
and control their spread.

We note, however, that the line between worms and
viruses is not all that sharp. In particular, thecontagion
worms discussed in [86] might be considered viruses by
the definition we use here, though not of the traditional
form, in that they do notneedthe user to activate them,
but instead they exploit the user’s activity in order to hide
their spread. Thus, for ease of exposition, and for scoping
our analysis, we will loosen our definition somewhat and
term malicious code such as contagion, for which user ac-
tion is not central to their activation, as a type of worm.

Related to these terminology distinctions, we begin
our discussion of the different types of worms by first
considering a worm’s activation mechanism—the process
by which a worm starts executing on a system—and a
worm’s propagation mechanism—the process by which
a worm travels from one host to another.

2.1.1 Activation techniques

The means by which a worm is activated on a host can
drastically affect how rapidly a worm can spread, because
some worms can arrange to be activated nearly immedi-
ately, whereas others may wait weeks or months to be ac-
tivated.

Human Activation The slowest activation approach
requires a worm to convince a local user to execute the
local copy of the worm. Since most people do not want
to have a worm executing on their system, these worms
rely on a variety of social engineering techniques. Some
worms such as the Melissa virus[9] indicate urgency on
the part of someone you know (“Attached is an impor-
tant message for you”); others, such as the Iloveyou[10]
attack, appeal to individuals’ vanity (“Open this mes-
sage to see who loves you”); and others, such as the
Benjamin[88] worm appeal to greed (“Download this file
to get copyrighted material for free”). Although Melissa
was a word macro virus—a piece of code written in Mi-
crosoft Word’s built-in scripting language embedded in a
Word document—later human-initiated worms have usu-
ally been executable files which, when run, infect the tar-
get machine. Furthermore, while some worms required
that a user start running a program, other worms exploited
bugs in the software that brought data onto the local sys-
tem, so that simply viewing the data would start the pro-
gram running (e.g., Klez[29]). The continued spread of
these worms is disturbing can be effectively used as sec-
ondary vectors1[12] and or to install additional malicious
software such as programs which allow an attacker to con-
trol a machine[28].

These attacks can be resisted by designing transport
program user interfaces to disallow direct execution of
programs. Virus spread can also be slowed by implement-
ing virus filters in transport servers. If there is a strong
need to allow software to perform tasks, then those tasks
should be limited by a sandbox to a few enumerated pos-
sibilities. Ideally, unknown executables would be quaran-
tined, even if there is no signature match, so that previ-
ously unknown worms are halted.

Scheduled Process ActivationThe next fastest worms
activate using scheduled system processes. Such pro-
grams can propagate through mirror sites (e.g., OpenSSH
Trojan[48]), or directly to desktop machines. Many
desktop operating systems and applications include auto-
updater programs that periodically download, install and
run software updates. Early versions of these systems did
not employ authentication, so an attacker needed only to
serve a file to the desktop system[32]. Other systems pe-

1A secondary spreading mechanism can often benefit a worm by en-
abling more targets to be attacked or as a device to cross defenses such
as firewalls.

5

riodically run backup and other network software that in-
cludes vulnerabilities. The skills an attacker requires to
exploit these depends on the scheduled process’s design
and implementation: if the attacked tool does not include
authentication, a DNS redirection attack will suffice, but
if it does, then the attacker might need to acquire the pri-
vate keys for both the update server and code signing.

Self Activation The worms that are fastest activated
are able to initiate their own execution by exploiting vul-
nerabilities in services that are always on and available
(e.g., Code Red[25] exploiting IIS Web servers) or in
the libraries that the services use (e.g., XDR[13]). Such
worms either attach themselves to running services or ex-
ecute other commands using the permissions associated
with the attacked service. Execution occurs as soon as
the worm can locate a copy of the vulnerable service and
transmit the exploit code. Currently, preventing these at-
tacks relies on running software that is not vulnerable, al-
though the effect of an attack can be reduced by limiting
the access of services that are always on.

2.1.2 Propagation strategies

As mentioned above, in order for a malicious program to
run on a victim machine, it must somehow have its code
introduced onto the victim. This code can be machine
code, or it can be high level commands to an existing pro-
gram. In order to propagate, malicious programs need to
discover new victims and to distribute their code to the
victims.

The distribution of code can either be one-to-many, as
when single site provides a worm to other sites, many-to-
many, as when multiple copies propagate the malicious
code, or a hybrid approach. In general, many-to-many
distribution can be considerably faster, if a limiting factor
is the time it takes to perform the distribution. Many-to-
many distribution also removes the ability for others to
block further distribution by removing the source of the
malicious code from the Internet.

There are a number of techniques by which a worm can
discover new machines to exploit: scanning, external tar-
get lists, pre-generated target lists, internal target lists, and
passive monitoring. Worms can also use a combination of
these strategies.

Scanning: Scanning entails probing a set of addresses
to identify vulnerable hosts. Two simple forms of scan-

ning aresequential(working through an address block
from beginning to end) andrandom(trying addresses out
of a block in a pseudo-random fashion). Due to its sim-
plicity, it is a very common propagation strategy, and has
been used both in fully autonomous worms[25, 12] and
worms which require timer or user based activation[54].
Scanning worms spread comparatively slowly compared
with a number of other spreading techniques, but when
coupled with automatic activation, they can still spread
very quickly in absolute terms.

There are currently few defenses in place to respond to
scanning worms. The previous worms in this class have
only exploited known and largely patched security holes
or very small populations of machines[60], and therefore
infected relatively few machines. Code Red I compro-
mised about 360,000 machines[62], a small fraction of the
estimated 10,000,000 machines running IIS[65], though
the evidence indicates this may have been essentially the
entire publicly-accessible population of IIS machines[86].

More sophisticated scanning techniques that incorpo-
rate bandwidth-limited routines2, a preference for local
addresses, and/or permutation of the search order[86]
offer substantial improvements in performance. Other
application-specific optimizations relying on different
target-selection techniques offer even greater speedups
(see below).

Except for the exploit, scanning worms are not
application-specific. Thus an attacker can add a new ex-
ploit to an existing worm. The Slapper[81] worm was one
such case, where the attacker inserted a new exploit into
the Scalper[60] source code. This suggests that the win-
dow between when a vulnerability is released and when
a worm appears will shrink to nearly zero, as the general
scanning worm framework can be expressed as a toolkit.

In general, the speed of scanning worms is limited by a
combination of factors, including the density of vulnera-
ble machines, the design of the scanner, and the ability of
edge routers to handle a potentially significant increase in
new, diverse communication.

For these worms, the worm’s spread rate is propor-
tional to the size of the vulnerable population. Code Red
I required roughly 12 hours to reach endemic levels, but

2Many worms, such as Code Red, used scanning routines which are
limited by the latency of connection requests rather than the throughput
by which requests can be sent

6

could have easily taken only 2 hours if it contained sophis-
ticated scanning routines or targeted a more widespread
vulnerability[86].

On the other hand, scanning is highly anomalous be-
havior, so it should be possible to effectively detect scan-
ning worms as being very different from normal traffic.
Similarly, if most hosts are limited in the amount of scan-
ning they can perform, this greatly slows the speed of a
worm.

Pre-generated Target Lists: An attacker could obtain
a target list in advance, creating a “hit-list” of probable
victims[86]. A small hit-list could be used to accelerate a
scanning worm, while a complete hit-list creates a “flash”
worm, capable of infecting all targetsextremelyrapidly.

The biggest obstacle is the effort to create the hit-list
itself. For a small target list, public sources are readily
available. Comprehensive lists require more effort: ei-
ther a distributed scan or the compromise of a complete
database. Like scanning worms, most of the code is appli-
cation independent, suggesting that flash worms can also
use toolkits in their implementation.

Externally Generated Target Lists: An external
target list is one which is maintained by a separate
server, such as a matchmaking service’smetaserver. (A
metaserver keeps a list of all the servers which are cur-
rently active. For example, in Gamespy[39] maintains a
list of servers for several different games.) A metaserver
worm first queries the metaserver in order to determine
new targets. Such a worm could quickly spread through
a game like HalfLife[85] or others. This technique could
also be used to speed a worm attacking web servers, for
example by using Google as a metaserver in order to find
other web servers to attacks.

We have not seen a metaserver worm in the wild, but
the potential is significant due to the great speed such a
worm could achieve. On the other hand, the process of
querying the metaserver is application specific, reducing
the ability of toolkits to reduce the worm author’s work-
load.

Internal Target Lists : Many applications contain in-
formation about other vulnerable machines on every host
running the service. Such target lists can be used to cre-
atetopologicalworms, where the worm searches for local
information to find new victims by trying to discover the
local communication topology.

The original Morris worm[27] used topological tech-

niques including the Network Yellow Pages, /etc/hosts,
and other sources to find new victims. (Since the Internet
at the time was very sparse, scanning techniques would
have been ineffective.)

Topological worms can potentially be very fast. If the
vulnerable machines are represented as vertices in a di-
rected graphG = {V,E}, with edges representing infor-
mation about other machines, the time it takes for a worm
to infect the entire graph is a function of the shortest paths
from the initial point of infection. For applications that are
fairly highly connected, such worms are incredibly fast.

Although topological worms may present a global
anomaly, the local traffic may appear normal. Each in-
fected machine only needs to contact a few other ma-
chines. Since these are known machines, these may even
represent normal destinations. This suggests that highly
distributed sensors may be needed to detect topological
worms.

Fortunately, extracting the topological information is
often highly application-specific, which reduces the ease
of constructing toolkits. An exception is for email worms,
where there have already been toolkits [80] providing
common mechanisms.

Passive: A passive worm does not seek out victim ma-
chines. Instead, they either wait for potential victims to
contact the worm or rely on user behavior to discover
new targets. Although potentially slow, passive worms
produce no anomalous traffic patterns which potentially
makes them highly stealthy.Contagion[86] worms are
passive worms which rely on normal communication to
discover new victims..

There have been many passive worms, such as the
Gnuman[46] bait worm and the CRClean[50] “anti-
worm” (see Section 9 for more discussion of anti-worms).
Gnuman operates by acting as a Gnutella node which
replies to all queries with copies of itself. If this copy
is run, the Gnuman worm starts on the victim and repeats
this process. Since it requires user activation and is com-
paratively simple, it spreads very slowly.

CRClean took did not require human activation. This
worm waits for a Code Red related probe. When it detects
an infection attempt, it responds by launching a counterat-
tack. If this counterattack is successful, it removes Code
Red and installs itself on the machine. Thus CRClean
spreads without any scanning.

7

2.1.3 Propagation carriers

The means by which propagation occurs can also affect
the speed and stealth of a worm. A worm can either ac-
tively spread itself from machine to machine, or it can be
carried along as part of normal communication.

Self-Carried: A self-carried worm actively transmits
itself as part of the infection process. This mechanism is
commonly employed in self-activating scanning or topo-
logical worms, as the act of transmitting the worm is part
of the infection process. Some passive worms, such as
CRClean[50], also use self-carried propagation.

Embedded: An embedded worm sends itself along as
part of a normal communication channel, either append-
ing to or replacing normal messages. As a result, the prop-
agation does not appear as anomalous when viewed as a
pattern of communication. The contagion strategy[86] is
an example of a passive worm that uses embedded propa-
gation.

An embedded strategy, although stealthy, only makes
sense when the target selection strategy is also stealthy.
(Otherwise, the worm will give itself away by its target
selection traffic, and reaps little benefit from the stealth
that embedded propagation provides.) Thus a scanning
worm is unlikely to use an embedded distribution strategy,
while passive worms can benefit considerably by ensuring
that distribution is as stealthy as target selection.

The speed at which embedded worms spread is highly
dependent on how the application is used, and represents
a significant, application-dependent unknown. A related
question is how far from the natural patterns of commu-
nication such a worm could deviate in order to hasten its
propagation without compromising its stealthiness.

2.2 Toolkit Potential

As noted in the previous section, some target selec-
tion strategies lend themselves well to the creation of
toolkits: large reusable structures where a small amount
of additional code can be added to create a worm.
Early versions of both application-independent[80] and
application-dependent [80, 91] toolkits have been seen in
the wild, and it is likely that such toolkits will become
more widespread and sophisticated. There is nothing in-
herent in worm development that would limit the potential
for developing such a toolkit.

The application independent portions of a toolkit will
contain code for scanning (both naive and sophisticated
approaches) and transporting payloads. Other code will
help with obfuscation or encryption to resist signature
analysis. Finally, code that damages a system can also be
independently developed and tested on a single, locally
controlled host. Since these subsystems can be designed,
developed and tested independent of exploits, attackers
can complete these components in advance of assembling
a worm. Indeed, it is possible that one of the already re-
leased but impotent worms was a test of the distribution
portions of such a system.

Since the only work needed to release toolkit-based
worms is integrating the exploit, the time between vulner-
ability information and worm release will quickly shrink
to nearly zero, and the skill required to create such worms
will also shrink.3

2.3 Motivations and Attackers

Although it is important to understand the technology of
worms, in order to understand the nature of the threat, it is
also important to understand the motivations of those that
launch the attacks, and to identify (where possible) who
the attackers are. This is a representative list organized by
motivation; it is not an exhaustive enumeration.

Pride and Power: Some attackers are motivated by a
desire to acquire (limited) power, and to show off their
knowledge and ability to inflict harm on others[74]. The
people who do this are typically unorganized individuals
who target randomly; if they discover a system that is vul-
nerable to an attack they possess, then they are likely to
execute the attack.

Commercial Advantage: Since the U.S. economy has
grown heavily dependent on computers for day to day op-
eration, a major electronic attack targeted against a single
domain could seriously disrupt many companies that rely
on Internet-based transactions. Such disruption could be
used by an attacker wishing to profit by manipulating fi-
nancial markets via a synthetic economic disaster, or by
competitors that wish to limit buyers’ access to a seller’s

3The recent Scalper[60] worm was released only 10 days after the ex-
ploit was published and the source code is freely available. Slapper[81]
reused the Scalper code base, effectively using the scalper source as a
toolkit.

8

wares. International companies or organized crime mem-
bers may participate in this type of attack, and the targets
range from specific companies to economic infrastructure.

Extortion : Another potential profit motive is extortion.
Since a well-constructed worm could launch an unstop-
pable DOS attack, major e-commerce or portal companies
could be threatened unless payment is arranged. Such
a worm could be launched by individuals or organized
groups.

Random Protest: A disturbed person (such as the “Un-
abomber,” Theodore Kaczynski) who wishes to disrupt
networks and infrastructure and who has studied Internet
systems and security could readily create a worm. The
release of a truly destructive, optimized worm requires a
level of patience and meticulousness not commonly seen,
but definitely present in individuals like Kaczynski. Such
individuals may search for a “zero-day exploit” (one un-
known to the public community) in a common applica-
tion, and would probably be more likely to construct a
topological worm or similar attack which already requires
application-specific programming.

Political Protest: Some groups wish to use the Internet
to publicize a specific message and to prevent others from
publicizing theirs. Individuals or organizations with local,
national, and international presence can be involved. Tar-
gets include organizations with competing goals, or media
outlets that are perceived as critical of an organization’s
goals. As one example, the Yaha Mail worm[58] was
written as a tool of political protest by unknown parties
claiming affiliation with Indian causes, to launch a DOS
attack on Pakistani governmental web sites.

Terrorism : Terrorist groups could employ worms to
meet some of their objectives. Since Internet-connected
computers are a First World development, and major
multinational concerns rely heavily on desktop machines
for day to day operation, payloads could be selective to
only execute in large, networked environments, making
worms highly attractive weapons for those who believe
that large corporations are an evil, as well as those with
animosity directed against particular nations or govern-
ments. Attackers could include Al-Quaeda[17] or splinter
groups derived from the antiglobalization movement, or
groups such as ELF[37] or ALF[36], which claim to en-
gage only in economic terrorism.

Cyber Warfare : As the U.S. is heavily dependent on
computing infrastructure for both economic and govern-

mental needs, other nations with a significant interest in
U.S. economic disruption could plausibly launch an elec-
tronic attack, either as a preemptive strike, or in response
to U.S. action, or in conjunction with a physical strike.
Along with large e-commerce sites, critical infrastructure,
networked military, and governmental computers would
be primary targets for such worms. Such attacks would be
particularly appealing to nations without well-developed
Internet infrastructure, as they would stand little to lose
in terms of the worm attacking their hosts, too, or from a
possible cyber counter-attack. The potential anonymity of
cyber attacks also makes its use attractive for “cold war”
situations, and for possibly framing others as the apparent
perpetrators.

2.4 Payloads

Different sorts of attackers will desire different payloads
to directly further their ends. Most of the following types
of payloads have been seen in the wild.

None/nonfunctional: By far the most common is sim-
ply a nonexistent or nonfunctional payload. A worm with
a bug in the propagation code usually fails to spread,
while bugs in the payload still leave the worm able to
spread. Such a worm can still have a significant effect,
both through traffic[27] and by actively advertising vul-
nerable machines.

Opening Backdoors: Code Red II opened a trivial-
to-use privileged backdoor on victim machines, giving
anyone with a web browser the ability to execute arbi-
trary code. This even gave rise to anti-Code-Red sites[69]
which exploited the backdoor with the commands to dis-
able IIS and reset the machine.

Remote DOS: Another common payload is a Denial of
Service (DOS) attack. Code Red, Goner, and Yaha have
all contained DOS tools, either targeted at specific sites or
retargetable under user control. Distributed DOS (DDOS)
tools such as Stacheldraht[21] have included stealthy and
encrypted communication channels.

We have yet to see an attacker take advantage of
Internet-scale DOS opportunities. With 100,000 or
1,000,000 controllable “zombies”, the attacker could tar-
get the DNS system, update sites, response channels, pos-
sibly all at the same time.

Receive Updates: Past worms such as W32/sonic[89]
have included a crude update mechanism: querying web

9

sites for new code. W32/hybris[28] also checked Usenet
newsgroups and cryptographically verified the modules
before execution. Similarly, DDOS tools have also en-
abled updates to the zombie program[22]. A controllable
and updateable worm could take advantage of new exploit
modules to increase its spread, enable sophisticated ad-
ditions to the worm’s functionality after release, and fix
bugs after release.

Espionage: SirCam[11] performed inadvertent espi-
onage, by attaching random files to its mailings, but a
worm could just as easily preferentially search for doc-
ument with various keywords, credit card numbers, or
similar information. A worm could also “wardial” any
modem4 to conduct further reconnaissance for later, non-
Internet based attacks.

Data Harvesting: Criminals are sometimes interested
in identify theft, and significant subsets of the blackhat
community are involved in harvesting credit cards[7] and
could use worms to search for this information. After
discovery, the results could be encrypted and transmitted
through various channels.

Data Damage: There have been many viruses and
email worms, such as Chernobyl[53] or Klez[29], which
contained time-delayed data erasers. Since worms can
propagate much faster, they could start erasing or manip-
ulating data beginning at the moment of infection.

Hardware Damage: Although the diversity of BIOSs
prevents a general reflashing, it would be possible for a
worm to include reflashing routines for one or two of the
most common BIOSs, using the same mechanisms em-
ployed by the Chernobyl virus[53]. Since the FLASH
ROMs are often soldered to the motherboard, such an at-
tack could effectively destroy particular motherboards.

Coercion: A coercive payload does no damage unless
the worm is disturbed. Such a worm attempts to remain
entrenched by giving the user a choice: allow the worm
and suffer no local damage, or attempt to eliminate the
worm and risk catastrophic results.

2.5 The Ecology of Worms

For all the sophisticated strategies and potential payloads,
worms can only exist if there are security or policy flaws

4Wardialing is the process of scanning for telephone numbers which
are attached to answering modems or similar devices.

they can exploit. Thus it is important to understand why
such vulnerabilities exist and how they enable worms to
operate. We refer to this surrounding context as the “ecol-
ogy” of worms.

It may be tempting to say that we could build secure
systems which will not have exploitable vulnerabilities.
However, even highly secure software systems with rep-
utations for robustness and which have received consid-
erable security scrutiny including multiple code reviews,
such as OpenSSH, OpenSSL and Apache, have contained
major security holes. Products from other vendors, in-
cluding Microsoft, are notorious for the volume of patches
and security issues. It is critical to understand why vulner-
abilities continue to exist.

Application Design: A significant factor in prevalence
of vulnerabilities is the structure of the application and
protocols. Some design features can make a system ei-
ther considerably more or considerably less vulnerable to
worm activity, including the pattern of communication,
pattern of reachability, the maturity and quality of the
code, the breadth of the distribution, and the selection of
programming language.

It is desirable for a third party, such as a Cyber CDC,
to perform audits of widespread applications to determine
vulnerabilities and resistance to worm based attacks. A
sample of what such an examination may look like is in-
cluded in Appendix B.

Buffer Overflows: One of the largest sources of vul-
nerabilities is the continued use of the C and C++ lan-
guages, which allows buffer overflow attacks. These at-
tacks represent roughly 50% of the major security flaws
over the past 20 years.Most other programming languages
are immune to such problems, and several technologies
have been developed which can mitigate or prevent some
or all of these attacks, such as StackGuard[19], Software
Fault Isolation[96],5 unexecutable stacks and heaps, and
“Safe C” dialects like CCured[64] and Cyclone[49]. Yet
none of these have been widely adopted. See Section 5.1
for detailed discussion.

Privileges: Mail worms and potentially other types of
worms often rely on the observation that programs are
granted the full privileges of the user who operates them.
This lack of containment is commonly exploited by mali-

5Which was being commercialized by Colusa software[84] before its
purchase by Microsoft.

10

cious code authors.

Application Deployment: Widespread applications
are more tempting targets for worm authors, especially
those who would search for unknown exploits. Although
even rare applications may have worms[60], widespread
applications are of particular interest because of the in-
creased speed of infection and the greater number of po-
tential targets.

Economic Factors: Making programs robust and de-
bugged represents a significant fraction of their develop-
ment cost. Thus, unless the number of bugs and vulnera-
bilities is beyond customer tolerance, there are significant
economic incentives to release buggy code.

Monocultures: Finally, there is the tendency for com-
puting systems to form monocultures, which are inher-
ently vulnerable to fast moving pathogens. Monocultures
arise from various sources, including ease of administra-
tion, commonly taught and understood skills, and monop-
olistic behaviors.

2.6 Potential Economic Damage

It is difficult to estimate the potential damage to the In-
ternet as a function of a worm outbreak. Previous dam-
age figures, such as the widely reported $2 billion cost
for Code Red[24] and its variants, are often controversial,
since many of the costs are either transitory disruptions
(which cause little real damage) or represent questionable
cases (does one consider the cost of post-outbreak patch-
ing as a a worm-associated cost, but pre-outbreak patch-
ing an unrelated cost?).

Another concern is simply that previous worms have
not represented significantly malevolent attacks: Code
Red infected approximately 3% of the IIS installations
on the Internet and did not carry an overtly damaging
payload. A worm which attacks a more widespread vul-
nerability in a common service could plausible repre-
sent over a hundred billion dollars in direct damage—
and with difficult-to-estimate but large additional indirect
damages—would cause serious harm to the U.S. econ-
omy.6

6For obvious reasons, details of the worst-case analysis where these
damage figures are derived is currently not part of the public report.

3 Existing Practices and Models

This report does not attempt to cover all institutions in-
volved in computer security or malicious code response,
but instead provide a general overview of the various en-
tities. Although there are many institutions in place, none
are prepared or developing significant responses to the
threat of computer worms. Since worms can propagate
much faster than other threats, the existing infrastructure
and institutions are generally not directly applicable, be-
cause existing institutions are centered around human—
rather than automated—detection, analysis and response,
They are also generally limited in scope, and are centered
around reactive models.

Although previous worms have been comparatively
slow, they still spread faster than responses could be gen-
erated. This implies that institutions which seek to ad-
dress this threat need to invest in automated detectors and
response mechanisms. Yet there is no indication that the
existing institutions are engaged in active development of
strategic responses. Furthermore, there is a lack of direct
economic incentive: worms are a global threat to the In-
ternet, best resisted when everyone capable of mounting
a defense does so. For many forms of global anti-worm
defense, individuals reap little marginal benefit from de-
ploying themselves, and hence lack economic incentives
to do so.

3.1 Cooperative Information Technology
Organizations

3.1.1 U.S.-Funded Organizations

CERT/CC: The Computer Emergency Response Team
Coordination Center (CERT/CC) (www.cert.org) is a cen-
ter located at the Software Engineering Institute, a feder-
ally funded research and development center operated by
Carnegie Mellon University. The institution was founded
in 1988, two weeks after the Morris worm[27] was re-
leased, to aggregate and present information about se-
curity vulnerabilities to system and network administra-
tors, technology managers, and policy makers. Although
CERT/CC acquires information from anyone connected
to the Internet, the organization describes its field of vi-
sion as being centered on the needs of the U.S. Depart-
ment of Defense. CERT/CC teams are divided into vul-

11

nerability handling (analyzing flaws in Internet systems),
incident handling (measuring exploitation of flaws) and
artifact analysis (studying intruder-developed code). All
of these teams rely on reports and data provided by exter-
nal sites and mailing lists. CERT/CC’s notes, reports and
databases rely on human analysis and aggregation, and
provide a model for human-readable descriptions of vul-
nerabilities and incidents. To address automated attacks,
CERT/CC would require new tools and procedures.

IAIP : The Information Analysis and Infrastructure
Protection Directorate was founded as a portion of the De-
partment of Homeland Security (www.dhs.gov) in 2003
by unifying the protection activities of the Critical In-
frastructure Assurance Office in the Department of Com-
merce and the National Infrastructure Protection Center of
the FBI with the response functions of the Federal Com-
puter Incident Response Center of the General Services
Administration. A key task performed by the new or-
ganization is to provide Indications and Warning Advi-
sories for physical and cyber events. The agency will also
coordinate emergency preparedness for the telecommuni-
cations sector. The IAIP (as currently envisioned) will
probably not develop tools for rapid worm analysis and
detection, as it is focused on slower, human-time analysis
and criminal prosecution. Nevertheless, tools built for a
Cyber-CDC should also support forensic analysis so that
they could be used by those at IAIP.

ISACs: Information Sharing and Analy-
sis Centers, established by organizations now
part of the Department of Homeland Security
(http://www.dhs.gov/dhspublic/display?theme=73),
are intended to share information and work together to
better protect the economy. The ISACs are responsible
for defining “best security practices” and for collecting
relevant security background data. This data is used to
define normal and elevated levels of threats. Perhaps the
most closely related ISAC is the shared Information Tech-
nology ISAC (https://www.it-isac.org/), which identifies
an alert condition level or AlertCon that indicates the
current relative IT-related threat level. The organization
shares information provided by commercial security
firms and members, but does not appear to have plans to
develop its own tool set.

3.1.2 International Organizations

FIRST: The Forum of Incident Response and Security
Teams (FIRST) (www.first.org) was formed in 1995, to
enable international teams to work together. Each team
identifies contact addresses and phone numbers and a con-
stituency that they represent, so other teams can quickly
communicate with response teams. FIRST has an annual
conference that includes tutorials and technical sessions
on security related topics. The organization could be used
as an information distribution mechanism, but lacks a cen-
tralized site or tools to perform automated analysis.

Public Mailing Lists : Many mailing lists, such as
Bugtraq[33], serve as general discussion forums for se-
curity issues, including warnings about new vulnerabili-
ties and exploits, analysis of incidents and attacks, and no-
tification of newly discovered worms. These mailing lists
represent a significant portion of our defenses against at-
tacks. They are excellent resources for recovery, but offer
little warning in the case of virulent attack, when compar-
ing the potential speed of a worm with the response of the
mailing lists.

3.1.3 Commercial Entities

Anti-virus Companies: The large computer anti-virus
industry has a primary mission of protecting customers
from malicious code attacks. The first computer virus on
a PC was discovered in 1986,and by 1990 several U.S.
and European companies were offering anti-virus soft-
ware to address the problem (e.g., McAfee[3], Norton[87]
and Norman[66]). The industry has several formal and
informal ways to share information that are relevant to a
Cyber-CDC, but lacks the tools and the profit motive to
develop rapid-analysis tools.

Information sharing is done via several organiza-
tions. Industry members and researchers share informa-
tion, primarily in the form of collected viruses, via the
Computer Anti-Virus Researchers Organization (CARO).
When members receive a virus (e-mailed to them by their
customers or by virus writers themselves) the virus is sent
to other organizations via encrypted mail. Each organiza-
tion then independently analyzes the virus, develops de-
tection mechanisms specific to their systems, and usually
develops a description of the virus for their web site.

The European Institute for Computer Anti-Virus

12

Research[26] has a broader membership that includes uni-
versities, and has established a code of ethics that all
members must agree to prior to joining. Some system ad-
ministrators (with help from vendors) share information
with each other about emerging threats via AVIEN’s early
warning system[4]. Finally, most companies have a web
site that identifies and explains specific viruses.

The industry toolset has a few limitations. The greatest
is that most anti-virus tools are aimed at protecting attacks
against files; only a few systems protect against worms
that remain in memory, and this protection is only in its
infancy. Information sharing is limited to sharing viruses
themselves due to the competitive nature of the industry.
Tools used are the more common set of de-compilers and
disassemblers, and complex worms can require weeks to
understand.

Network based Intrusion Detection System Ven-
dors: There are many companies now selling network in-
trusion detection systems designed to alert and respond
to network threats. These systems are not designed to
respond to worm-like attacks, but are mostly focused
around responding to known attacks. What is of greater
concern is that worms probably require coordinated re-
sponses not present in the current deployed infrastructure.

Centralized Security Monitoring : Security Focus’s
DeepSight Threat Management Service[31] aggregates
alerts from participating organizations who agree to share
automated intrusion detection and other information. This
information is then aggregated to provide incident anal-
ysis and other information for subscribers. The biggest
limitations result from the subscriber model: only those
who are willing to contribute receive any benefits.

A similar service—Managed Security Monitoring—
is offered by companies like Counterpane Internet
Security[18]. Counterpane deploys sensors at customer
locations, where they are centrally monitored by auto-
matic and manual tools. Again, the largest limitation is
the threat model and the subscriber model: worms are cur-
rently not perceived as a significant threat, thus there is lit-
tle economic incentives to deploy defenses. Similarly, as
a relatively expensive commercial service, such services
are not widely employed.

Training Organizations: Numerous companies of-
fer security training for practitioners. Among these
are courses offered by vendor-neutral companies (e.g.,
the System Administration, Networking and Security

or SANS institute, www.sans.org, and Foundstone,
www.foundstone.com); by operating system companies
(e.g., Red Hat Linux[78] and Microsoft[45]); and those
by application system companies (e.g., IBM’s Tivoli[44]).
None of these organizations develop tools for analyzing
fast-moving worms, although all of the courses apply to
improving local security.

Limited Scope of Commercial Response: We finish
with the observation that industry is unlikely to develop
sophisticated detection, analysis and response tools, be-
cause (1) complex worms have historically only appeared
a few times per year, and the worms have not inflicted sig-
nificant damage (to the host site), and (2) there is no clear
way to generate additional revenue with such tools. The
situation is analogous to a “tragedy of the commons,” with
the Internet ecology as the commons. Thus, to get out in
front of the worm threat will require a government-level
response; the private sector by itself is not suited to the
scale of the problem. We return to this point in Section 4.

3.2 The Centers for Disease Control

What is now known as the Centers for Disease Control
and Prevention (www.cdc.gov) was formed as a single en-
tity in 1946 to combat Malaria, which was then endemic
in the southern U.S.[8]. However, its cultural roots are in-
tertwined with the evolution of the Public Health Service
and go back to the earliest days of the Republic. To ad-
dress the challenges of new diseases brought to the U.S.
by immigrant populations, Congress had by 1921 passed
a sequence of laws and reorganizations placing all state
quarantine stations under federal control.

Today the CDC provides specific disease-oriented re-
search resources, surveillance of the health status of the
U.S. and direct assistance to local health authorities in
combating outbreaks that strain local resources, including
bio-terrorism.

Surveillance depends on both data collection and ex-
tensive databases of normal background. In general, in-
dividual caregivers do not communicate directly with the
CDC but rather with their local public health authorities.
Public health law requires the hospital, clinical laboratory
or physician to inform the local public health department
of cases of notifiable diseases. In practice, this is an im-
perfect system with reporting completeness ranging from
30% for diseases such as whooping cough (pertussis) to

13

79% for HIV/AIDS[23]. There are no sanctions for fail-
ure to report. While there is a national list, each state has
its own variant. In a large metropolitan area, reporting is
done at the local level; in more rural areas, contact will be
with the state department of public health. Reporting to
the public health departments occurs via a diversity of me-
dia, including telephone, FAX, and computer-based elec-
tronic transfers. Naturally occurring disease outbreaks are
generally slow to develop, and the system evolved to op-
erate at a correspondingly long time scale.

The advent of the recognized risk of biowarfare at-
tacks, with the fear of more rapid progression, has
driven efforts to automate the process of surveillance.
It has been estimated that currently nearly half of pub-
lic health professionals do not have a computer on their
desk.The National Electronic Disease Surveillance Sys-
tem (www.cdc.gov/nedss), including the Laboratory Re-
sponse Network[67] (LRN), is an evolving system of stan-
dards and specifications intended to expedite secure in-
formation transfer. Currently, prototype systems are be-
ing evaluated in a limited number of states. The LRN is
presently automated in most states.

International surveillance efforts are coordinated by the
World Health Organization[97], of which the CDC is
a key component. Nation-to-nation information is ex-
changed via a network (partially automated).

Information flow from CDC back to caregiver usually is
hierarchical from the CDC to state and from state to local
institution. In the case of an acutely evolving crisis such
as the anthrax attacks of Fall, 2001, the communication
may be in parallel to both state and local levels.

The CDC maintains active response teams ready to re-
spond to acute situations. They also maintain biologi-
cal “stockpiles,” each of which contains therapeutic sup-
port for 100,000 people. These packs can be deployed
in less than 12 hours to assist in the response to an
emergency[42].

4 A Cyber CDC

Given the magnitude of Internet-scale threats due to
worms, we argue that it is imperative for the Internet in
general, and for nations concerned with cyberwarfare in
particular, to attempt to counter the immense risk. We
envision that a nation might address the threat with the

cyber equivalent of the Centers for Disease Control (dis-
cussed in Section 3.2), which we will term here the Cyber
Centers for Disease Control, or CCDC.7

While current defenses against computer worms are
quite inadequate, there is a considerable amount of re-
search and development which could lead to significantly
strengthened defenses (as discussed in later sections). As
the research progresses, the CCDC can begin deploying
sensors and analysis tools in order to monitor for poten-
tial outbreaks. Although in Section 10 we discuss the
need for automated detection and response systems be
constructed of broadly distributed components, there still
ultimately needs to be high-level centralized monitoring
to provide a general “situational awareness,” to facilitate
strategic decision-making and response, and to coordinate
the many human-mediated analysis and recovery tasks.

It is likely critical that the CCDC be a publicly funded
institution, rather than relying on the commercial sector to
fill this roll. First, it is not clear that any commercial entity
will find the CCDC role as fitting with a viable business
model. Second, many CCDC tasks, such as auditing third
party applications and directing research, are outside the
purview of commercial institutions. Such activities are
not profitable, but still must be performed to secure the
network infrastructure. Finally, many anti-worm defenses
benefit from as broad as possible deployment—such par-
ticipation needs to be encouraged even when there is no
immediate commercial benefit from the deployment.

We see the CCDC as having six roles:

• Identifying outbreaks.

• Rapidly analyzing pathogens.

• Fighting infections.

• Anticipating new vectors.

• Proactively devising detectors for new vectors.

• Resisting future threats.

In the remainder of this section, we discuss each of these
in turn. Our aim is not to comprehensively examine each

7This name has the benefit of being memorable due to its echo of
the well-known CDC; but also the risk of being perceived as glib, since
along with the similarities there are also of course major differences
between the problems faced by the CDC and by the CCDC.

14

role, but to sketch them broadly in order to provide a ba-
sis for future discussion and development. In subsequent
sections we discuss in greater detail a number of possible
avenues of research to support some of these roles.

4.1 Identifying outbreaks

To date Internet-scale worms have been identified primar-
ily via informal email discussion on a few key mailing
lists. This process takes hours at a minimum, too slow for
even the “slower” of the rapidly-propagating worms. The
use of mailing lists for identification also raises the possi-
bility of an attacker targeting the mailing lists for denial-
of-service in conjunction with their main attack, which
could greatly delay identification and a coordinated re-
sponse.

CDC Task: develop robust communication mecha-
nisms for gathering and coordinating “field information.”
Such mechanisms would likely be(i) decentralized, and
(ii) span multiple communication mechanisms (e.g., In-
ternet, cellular, pager, private line).

For flash worms, arguablyno human-driven communi-
cation will suffice for adequate identification of an out-
break.CDC Task: sponsor research in automated mech-
anisms for detecting worms based on their traffic patterns;
foster the deployment of a widespread set of sensors. The
set of sensors must be sufficiently diverse or secret such
that an attacker cannot design their worm to avoid them.
This requirement may then call for the development of
sensors that operate within the Internet backbone, as op-
posed to at individual sites.

4.2 Rapidly analyzing pathogens

Once a worm pathogen is identified, the next step is to un-
derstand(i) how it spreads and(ii) what it does in addition
to spreading.

The first of these is likely easier than the second, be-
cause the spreading functionality—or at least a subset of
it—will have manifested itself during the identification
process. While understanding the pathogen’s additional
functionality is in principle impossible—since it requires
solving the Halting Problem—it is important to keep in
mind that the Halting Problem applies to analyzingarbi-
trary programs: on the other hand, there are classes of

programs that are fully analyzable, as revealed by exten-
sive past research in proving programmatic correctness.

CDC Task: procure and develop state-of-the-art pro-
gram analysis tools, to assist an on-call group of experts.
These tools would need to go beyond simple disassem-
bly, with facilities for recognizing variants from a library
of different algorithms and components from a variety of
development toolkits, and also components fromprevious
worms, which would be archived in detail by a CDC staff
librarian.

The tools would also need to support rapid, distributed
program annotation and simulation. Furthermore, the
team would need access to a laboratory stocked with vir-
tual machines capable of running or emulating widely-
used operating systems with support for detailed execu-
tion monitoring. (Less widely-used systems do not pose
much of a threat in regards to Internet-scale worms.) In
addition, code coverage analysis tools coupled with sam-
ple execution of the pathogen could help identify unex-
ecuted portions of the code, which in turn might reflect
the pathogen’s additional functionality, and thus merit de-
tailed analysis. (Or such unused regions could simply re-
flect “chaff” added by the worm author to slow down the
analysis; an “arms race” seems inevitable here.)

4.3 Fighting infections

Naturally, we would want the CDC to help as much as
possible in retarding the progress or subsequent applica-
tion of the worm.

CDC Task: establish mechanisms with which to prop-
agate signatures describing how worms and their traffic
can be detected and terminated or isolated, and deploy
an accompanying body ofagentsthat can then apply the
mechanisms.

It is difficult to see how such a set of agents can be
effective without either extremely broad deployment, or
pervasive backbone deployment. Both approaches carry
with them major research challenges in terms of coordi-
nation, authentication, and resilience in the presence of
targeted attack. The policy issues regarding the actual
deployment of such agents are likewise daunting—who
controls the agents, who is required to host them, who is
liable for collateral damage the agents induce, who main-
tains the agents and ensures their security and integrity?

15

4.4 Anticipating new vectors

We would want the CDC to not only be reactive, but also
proactive: to identify incipient threats.

CDC Task: track the use of different applications in
the Internet, to detect when previously unknown ones be-
gin to appear in widespread use. Unfortunately, Inter-
net applications sometimes can “explode” onto the scene,
very rapidly growing from no use to comprising major
traffic contributors [68]. Accordingly, tracking their onset
is not a simple matter, but will require diligent analysis of
network traffic statistics from a variety of sources, as well
as monitoring fora in which various new applications are
discussed (since some of them may have traffic patterns
that are difficult to discern using conventional traffic mon-
itoring variables such as TCP/UDP port numbers).

CDC Task: analyze the threat potential of new ap-
plications. How widely spread might their use become?
How homogeneous are the clients and servers? What are
likely exploit strategies for subverting the implementa-
tions? What are the application’s native communication
patterns?

We give a cursory example of such an analysis in Sec-
tion B.

4.5 Proactively devising detectors

Once a new potential disease vector has been identified,
we would then want to deploy analyzers that understand
how the protocol functions, to have some hope of detect-
ing contagion worms as they propagate.

For example, to our knowledge there is noKaZaAmod-
ule (one specific to howKaZaA functions) available for
network intrusion detection systems in use today. Without
such a module, it would be exceedingly difficult to detect
whenKaZaAis being exploited to propagate a contagion
worm.

CDC Task: foster the development of application
analysis modules suitable for integration with the intru-
sion detection systems in use by the CDC’s outbreak-
identification elements.

4.6 Resisting future threats

Devising the means to live with an Internet periodically
ravaged by flash or contagion worms is at best an uneasy

equilibrium. The longer-term requirement is to shift the
makeup of Internet applications such that they become
much less amenable to abuse. For example, this may en-
tail broader notions of sandboxing, type safety, and inher-
ent limitations on the rate of creating connections and the
volume of traffic transmitted over them.

CDC Task: foster research into resilient application
design paradigms that (somehow) remain viable for adap-
tation by the commercial software industry, perhaps as-
sisted by legislation or government policy.

4.7 How open?

A final basic issue regarding the CDC is to what degree
should it operate in an open fashion. For example, dur-
ing an outbreak the CDC could maintain a web site for
use by the research community. Such an approach would
allow many different people to contribute to the analy-
sis of the outbreak and of the pathogen, perhaps adding
invaluable insight and empirical data. This sort of coordi-
nation happens informally today, in part; but it is also the
case that currently a variety of anti-viral and security com-
panies analyze outbreaks independently, essentially com-
peting to come out with a complete analysis first. This
makes for potentially very inefficient use of a scarce re-
source, namely the highly specialized skill of analyzing
pathogens.

A key question then is the cost of operating in an open
fashion. First, doing so brings with it its own set of se-
curity issues, regarding authenticating purported informa-
tion uploaded into the analysis database, and preventing
an attacker from crippling the analysis effort by launch-
ing a side-attack targeting the system. Second, the at-
tacker could monitor the progress made in understand-
ing the worm, and perhaps gain insight into how it has
spread beyond what they could directly gather for them-
selves, allowing them to better hone their attack. Third,
some sources of potentially highly valuable empirical data
might be reluctant to make their data available if doing so
is to release it to the public at large.

Given these concerns, it seems likely that the CDC
would pursue a “partially open” approach, in which sub-
sets of information are made publicly available, and
publicly-attained information is integrated into the CDC’s
internal analysis, but the information flow is scrutinized
in both directions. Unfortunately, such scrutiny would

16

surely involve manual assessment, and could greatly slow
the collection of vital information.

A related question is how international in scope such
a facility should be. A national facility is likely to have a
simpler mission and clearer management and accountabil-
ity. However, there are real benefits to an international ap-
proach to this problem; one’s allies are awake and work-
ing while one sleeps. A worm released in the middle of
the night in the US would be far more likely to receive in-
tense early research and attention in Europe or Asia than
in the US itself. Thus, at a minimum, national level CDCs
are likely to need to maintain strong linkages with one
another.

5 Vulnerability Prevention Defenses

We now turn to a assessment of the different research
areas relating to countering the large-scale worm threat.
The first fundamental research area we look at is harden-
ing systems to make them more difficult to exploit. Here,
“systems” refers to software, configuration, and network
policies.

In this section, we give an overview of the different sub-
areas related to such hardening. In this an subsequent sec-
tions, for each area we assign a letter grade reflecting the
area’s “potential”:A’s reflect areas for which we recom-
mend funding priority, usually due to either high potential
(even if perhaps also high risk), or low cost and medium
potential;B’s for areas that have either medium potential
and significant cost or high risk, or low potential but not
high cost; andC’s for areas that either have low potential,
extremely high risk, or (the most common) already have
significant government or commercial funding support.8

5.1 Programming Languages and Compil-
ers

One of the most important factors in implementing rea-
sonably secure systems is the choice of programming lan-
guage. Over two decades after their discovery, stack and

8The grades were arrived at by extensive debate among the authors,
generally converging on a consensus among the four of us. While we
inevitably brought our individual interests and biases to the discussion,
we also endeavored to remain cognizant of these and identify them as
such during our discussions.

heap buffer overflow attacks still account for a significant
plurality of reported exploits.Even highly robust applica-
tions such as Apache have contained exploitable buffer
overflow bugs[82].

Such attacks are effectively only possible in languages
such as C, C++, or assembly, which don’t perform array
bounds checks, ensure type safety, or provide strong mod-
ule isolation. Most other major languages include facili-
ties for memory safety. However, the installed base for
C/C++ software is enormous, and the languages remain
popular for their high performance, so migrating such ap-
plications to other languages is an immense undertaking.
On the other hand, the sophistication of automated anal-
ysis and transformation of code continues to grow, with
some promising applications to increasing the robustness
of programs, and the ever-increasing raw power of CPUs
makes the need to squeeze the utmost performance out of
a programming language less pressing with time.

Safe C Dialects: grade,C, keywords,Active Area .
Safe C dialects provide familiar programming environ-
ments while enforcing type- and memory-safety. For ex-
ample, CCured[64] uses compile-time global type infer-
ence, combined with run-time checks and garbage collec-
tion, to enforce type- and memory-safety. Unlike many
other safe-C dialects, the language changes are very mi-
nor, and the run-time overhead ranges from 0–150%. Fur-
thermore, since CCured uses source-to-source translation,
it is broadly applicable. However, unlike traditional C
compiler flow analysis, it requires a completeO(N2)
global analysis. It also breaks library compatibility by
changing the data format and calling conventions to in-
clude type information. Cyclone[49] is another “safe” di-
alect which requires more runtime overhead in return for
faster compilation times.

Future work should include extending these techniques
to C++; creating automatic library interfaces for existing
systems; porting such systems to further environments;
and efforts to increase its adoption.

Software Fault Isolation: grade,C, keywords,Ac-
tive Area . Software Fault Isolation (SFI)[96] creates
memory-safe sandboxes for executing arbitrary code by
modifying the assembly/object code. SFI works by mod-
ifying potentially unsafe assembly operations, such as
memory access and control flow, to ensure that they are
correct with regard to some specified invariants. Thus,
a module in an SFI based system can only execute its

17

own code and specific functions, and can only modify
its own memory. This enables Java-like[16] sandboxing
techniques for arbitrary code, including systems such as
Active-X[59], at a claimed cost of less than 10% in ex-
ecution time. Depending on the granularity employed,
the resulting code may be susceptible to some overflow
attacks which force jumps toexistingcode, but it is im-
mune to all attacks which must inject code or violate the
sandbox. Since it operates on the assembly level, it is ef-
fectively language neutral.

The biggest impediment is simply lack of availability of
SFI-based systems. Colusa Software was developing such
a system[84], combined with a portable virtual machine,
when it was purchased by Microsoft in 1996. The SFI
portions are currently unavailable, even for use in code
produced by Microsoft.

StackGuard: grade, C, keywords, Active Area .
StackGuard is a simple compiler calling-convention mod-
ification which prevents some classes of overflow attacks
in C code[19]. StackGuard modifies the calling conven-
tion by first creating a random number (a “canary”) and
storing it in a randomly pre-selected section of memory.
Then, on function entry, the return address is XORed with
the canary before being stored on the stack. During the
return process, the canary is again XORed to restore the
return value. Unless the attacker can discover the ca-
nary, he cannot force a specific return value on the stack.
This does not offer protection against overflows targeting
function pointers orlongjmp records, but works well
against conventional stack attacks with almost no over-
head. The approach has been adapted to include protec-
tion for other important resources, with canaries placed in
front of function pointers or similar structures. Although
incomplete protection, the extremely low overhead sug-
gests that widespread adoption would improve the current
situation substantially.

Nonexecutable Stacks and Heaps with Randomized
Layout: grade,B, keywords,Mostly Engineering . Most
programs written in unsafe languages do not need to gen-
erate code at run-time and can thus be run with nonexe-
cutable stacks and heaps. Although nonexecutable stacks
and heaps are a major improvement, an attacker may still
overcome these by injecting calls to allowed library func-
tions to accomplish their goals. Such attacks could be
thwarted by randomizing data, library, and object layout
during program loading and dynamic linking[34]. This

approach results in no run-time overhead, with only mi-
nor overhead during the dynamic linking and loading pro-
cess. To attack such a system, the attacker must be able
to extract a considerable amount of data from the running
program, without causing a crash, in order to generate a
jump to the desired function. This could be made even
more difficult by inserting guard pages, which will always
generate an exception when accessed, during the random-
ization and relinking process.

To our knowledge, there has been no attempt to build
such a complete system. Doing so would require signifi-
cant modifications to the OS and compiler linking strategy
and other components. Yet due to the very low overhead
required, especially for persistent servers, it bears further
investigation. Similarly, given a nonexecutable stack and
heap, a static sandbox could be created to further restrict
the library calls to those present in the original program.

Monitoring for Policy- and Semantics-Enforcement:
grade,B, keywords,Opportunities for Worm Specific
Monitoring . One form of host-based intrusion detec-
tion is to monitor a program’s system call accesses and
other features to ensure that the execution conforms with a
model of expected execution. Previous systems have only
considered system call patterns, which are vulnerable to
a “mimicry” attack [95]. Future systems need to consider
system call arguments and the program’s execution trace
when making an analysis.

A particularly powerful form of program monitoring
is based on using static analysis of a program’s source
code to construct a model of its correct execution that
can then be enforced at run-time[93]. Static analysis is
very promising because of the ease with which it can be
applied, coupled with the power of the resulting models.
In particular, the technique developed in [93] results in a
provably zero false positive rate—it detects many forms
of attacks that alter a program’s execution, none of which
can arise from correct execution of the program.

This work should be extended to increase performance
and precision. In addition, the ability to analyze assem-
bly or object code to create “black box” models would be
highly valuable, allowing this technique to be extended to
programs without source code. The provably zero false
positive rate is perhaps the most valuable feature, as it en-
ables effective and instantaneous response.

Automatic Vulnerability Analysis : grade, B, key-
words,Highly Difficult, Active Area . Program analysis

18

techniques attempt to prove various properties about ap-
plications, which can include safety and security proper-
ties. Thus, improved program analysis tools could be ap-
plied to source code or assembly code to produce white-
or black-box security analyzers and verifiers. Some work
has already been conducted, including attempts to dis-
cover buffer overflows in C[94]. A related approach ver-
ifies that a program conforms with specified constraints,
such as “integers from untrusted sources must be sani-
tized before use” or “the kernel should not dereference
user-supplied pointers without first ensuring their valid-
ity” (taken from[2]).

Further work could extend these techniques to detect
such errors at the assembly level, and to infer other prop-
erties about the code, such as whether the code requires
executable stacks or heaps, or makes specific patterns of
system calls.

5.2 Privilege Issues

Fine-grained Access Controls: grade,C, keywords,Ac-
tive Area . Fine-grained mandatory access controls[1]
offer another useful tool for building secure systems. By
being able to specify the allowed capabilities of programs
and users, one can prevent a compromised program from
being able to damage the rest of the system. As an ex-
ample, if a web server is not allowed to initiate outgo-
ing connections, a worm running in the web server’s ad-
dress space cannot spread. Unfortunately, such systems
are currently difficult to set up and not widely available.
Considerable effort should be spent on integrating these
techniques into commodity operating systems, and con-
siderable research still needs to be done on making them
generally usable and easy to configure.

Code Signing: grade, C, keywords,Active Area .
Code signing uses public-key authentication to verify that
the module in question was produced by the stated party.
Although highly useful for auto-updaters, it provides no
protection with regards to attacks and flaws targeting the
authenticated code.

Privilege Isolation: grade,C, keywords,Some Active
Research, Difficult Problem . Privilege isolation is a
technique long known (for example, the Mach kernel[77]
and Plan 9[70] kernels), but seldom employed. It works
by separating a program into different parts which are iso-
lated from one another except by interprocess communi-

cation. In its simple form, a program might be divided
into a small, separate part which requires superuser privi-
leges, and a larger part for the remaining functions. Thus,
a compromise of the main program won’t result in an es-
calation of privileges. (E.g., the recent OpenSSH flaw[72]
was not exploitable when privilege isolation is employed.)

Unfortunately this technique is seldom employed,
mostly due to usability concerns, as it requires restruc-
turing software. It also does not help with attacks that
do not require privilege escalation, which some worms do
not. Thus, work should focus on what is required to make
this technique more widely applicable.

5.3 Protocol Design

Protocol design can dramatically affect the ease with
which which a worm can propagate, but guidelines and
principles for worm-resistant protocols have not been de-
veloped. These should be developed and applied to new
and existing protocols. Existing protocols should be
changed where possible, and new protocols should be ex-
amined with the guidelines in mind.

Redesigning existing protocols may not be practical
due to the size of the installed base. However, it might
be possible to mandate some protocol redesigns before
potentially dangerous protocols are used on selected cor-
porate or governmental networks.

Design Principles for Worm-resistant Protocols:
grade,A, keywords,Difficult, low cost, high reward . It
is an open problem as to whether protocol security prop-
erties can be efficiently described, but it is critical that we
attempt to do so. Although some properties such as auto-
mated forwarding of connections can be easily identified
as poor choices, other, more subtle properties are elusive.
The effect of layering protocols is also difficult to antici-
pate, but should be considered.

Proving Protocol and Application Properties: grade,
A, keywords,Difficult, high reward . Related to describ-
ing worm-resistant properties is verifying those proper-
ties. It would be useful to verify properties for new and
emerging protocols, and to automatically generate code
that implements a protocol and is guaranteed to be resis-
tant to attackers who manipulate the communication in
undefined ways. It would further be useful to build an in-
terpreter that detects programs which violate the protocol.

19

This appears to be a particularly difficult area of re-
search, but the rewards are substantial. Network security
can be significantly enhanced by both verifying a protocol
and ensuring that implementations automatically conform
and validate input.

Distributed Minable Topology: grade,A, keywords,
Hard but Critical . Worms can identify potential new tar-
gets using existing protocols and services available across
the Internet. Not all of these need to provide information
that could be used by worms.

One particularly dangerous source of information is
available from metaservers. Metaservers act as match-
makers, returning a list of servers running a particular
service. Since this list is effectively a hit-list, a worm
could take considerable advantage of a metaserver to ac-
celerate its spread. Services such as Google[40] are also
metaservers, directing users to specific services of in-
terest. In some cases, if the metaserver is able to effi-
ciently map a subset of the network in order to estimate
performance between the querier and potential servers,
it no longer needs to return an entire list of servers,
only the single server chosen to support the application.
The metaserver can also track which requests come from
which machines, using this information to detect anoma-
lous query patterns.

Network Layout : grade,C, keywords,Costly . Topo-
logical networks are potentially highly vulnerable to
worms, as the information contained on an infected ma-
chine can be immediately used to find new targets (Sec-
tion 2.1.2). Furthermore, most such networks are com-
posed of homogeneous components. If, however, the net-
work is made up of multiple component types, which can
never co-occur, then a single-exploit worm can’t traverse
the network. Components can refer to hardware or soft-
ware elements, from which split networks can be devel-
oped.

An example would have networks composed of Web
servers and clients. If servers never directly talk to other
servers, and clients never directly talk to other clients,
then a topological worm (say one that inspects client his-
tories and server logs to find other elements in the net-
work) can’t propagate through the network unless it has
both a server exploit and a client exploit. In practice,
however, the Web does not have this structure. Servers
can talk to servers (because proxies and caches are both
servers and clients), and potentially the same machine

running a server can also run a client (for example, any
desktop machine that runs a server will generally have this
property).

The constraint of having two different types of compo-
nents, neither of which directly talks to its own kind, can
be expressed abstractly as requiring that the graph of the
network be two-colorable, where the two colors will re-
flect the two types of components (client and server, in
our example above).

Two major concerns with this approach are cost and
flexibility. First, it requires two distinct software imple-
mentations. Thus, it will be very expensive to apply to
mass-market programs like KaZaA. Second, the bipartite
requirement can impede efficient operation of the appli-
cation. For example, proxies and caches would require an
indirection step in order to maintain the 2-color property.

5.4 Network Provider Practices

There are several important practices which are not in
place today but could, if widely deployed, mitigate the
damage an attacker can inflict upon the general Internet.
It may be appropriate to consider mandates to deploy and
further develop these techniques.

Machine Removal: grade,C, keywords,Already Un-
der Development. Currently there is no standard proto-
col to notify ISPs that machines are compromised and that
they should be removed from the Internet. This enables
attackers to continue to launch attacks even after initial
detection. Given the possibility of attackers using worms
to compromise large numbers of machines, it is critical
that these machines be removed in an efficient and secure
manner.

However, providing such a standard mechanism must
also include addressing the problem of ensuring that the
mechanism not itself be used to impair victims. Related to
this, significant liability issues must also be resolved be-
fore an ISP would be willing to deploy it. Finally, the effi-
cacy of the approach depends on the speed and thorough-
ness with which compromised machines are detected. If
only a small proportion can be removed, that will provide
little practical benefit.

20

5.5 Implementation Diversity

While systems with a diverse set of software implemen-
tations don’t prevent attackers from developing exploits,
they do gain significant protection against large-scale
worms and similar threats. The speed of active-scanning
worms is a function of the size of the vulnerable popu-
lation, so if fewer machines are vulnerable, not only can
fewer machines be compromised, but it takes longer to
compromise the vulnerable population. A good example
of this phenomenon is the Scalper worm[60], which has
spread slowly. While its slow spread may in part be due
to its scanning routines, a great deal of the slowness is be-
cause it only targets FreeBSD systems running Apache,
and this is not a large population.

Unfortunately, computing environments tend to form
monoculturesfor reasons of compatibility, inertia, ease of
administration, and deliberate corporate efforts to develop
and maintain software monopolies (per Section 2.5).
Monocultures represent a dangerous phenomena, as bugs
in homogeneous systems are much easier for an attacker
to exploit.

5.6 Synthetic Polycultures

Synthetic polycultures. grade,C, keywords,Difficult,
may add unpredictability . One area of potential re-
search would be techniques to develop synthetic polycul-
tures: can binaries be transformed to create synthetic di-
versity, preventing exploits from working on a large sub-
set of the population[34]?

Simple manipulation of library linking is insufficient to
do so if the attacker can insert code into the running ap-
plication, as the code could simply search the space for
the proper location. One possibility might be developing
techniques to would make the code injection more diffi-
cult by randomizing the stack positions, call frame size,
and memory layout. This has the potential to increase
the difficulty of constructing buffer overflow and similar
attacks, but doesn’t help once the attacker manages to in-
ject the code or higher level attacks which rely on appli-
cation functionality. Such techniques could examined us-
ing programs with known holes to see what gains can be
achieved.

A more comprehensive solution is a code obfuscation:
the program, with associated library interfaces, is placed

through “one way” code transformations. An interesting
question is how difficult the resulting code is to analyze,
and whether performance would degrade. Another ques-
tion is how to apply such obfuscations not just to indi-
vidual programs but to the entire operating environment.
Finally, maintaining such code might prove much more
difficult than for non-obfuscated code, due to the varying
effects of bugs and much more complex information re-
quired for high-level debuggers.

5.7 Economic and Social

Why Is Security Hard : grade,B, keywords,Active Area
of Research. Even with the considerable tools still avail-
able, security and robustness are not common properties.
There needs to be a solid understanding of why practices
remain so poor. There are many economic and social rea-
sons why good software practices are not commonly em-
ployed, ranging from cost to programmer inertia. In order
to change these factors it is important to understand them
in detail. Significant user and economic studies need to
be conducted as a first step in a campaign to improve the
general quality of applications and protocols.

6 Automatic Detection of Malicious
Code

We can imagine extending current firewalls to accept a
message from an Internet-level detector, warning that a
worm is operating on the net and targeting a specific port.
The firewall can then make local decisions to restrict ac-
cess until human analysts can begin a recovery plan. Al-
though any restriction can be short lived, it must be auto-
matically imposed because of the expected speed of future
worms. Similarly, host-based modules can act to restrict
the actions on the host before damage is done. Any more
sophisticated response system will also require detection
techniques.

Thus a critical problem in creating automatic responses
is accurately and automatically detecting and analyzing
a worm’s operation and correlating the information from
numerous detectors to form automatic defenses. This sec-
tion discusses new and existing detection strategies, while
Section 10 discusses the problem of correlating the results

21

in a distributed manner. Distributing the results can be ac-
complished with a broadcast or multicast network, though
there are difficult issues concerning implosion, reliability,
and congestion to work out; and some form of highly-
scalable cryptographic techniques would be needed for
authentication.

Detectors can either operate on the hosts, near the
leaves of the network,9 or in the backbone, with deci-
sions made either locally, at a centralized location, or in a
hierarchical fashion. Whatever detectors employed need
to be both highly sensitive and robust to inadvertent and
deliberate false positives and negatives. Successful de-
tectors will likely look for anomalies that different types
of worms exhibit in their Internet traffic patterns (or on
their victim machines) as a consequence of their replica-
tion techniques.

It is also highly beneficial for detectors to distribute in-
formation to all those who wish to receive notification,
so subscription to the notification service will need to be
available on attractive terms of some sort. One model
would be for the sensors to operate as a government-
sponsored service intended to protect governmental com-
puters from the direct and indirect effects of a worm, but
the notifications available in an “Emergency Broadcasting
System” style: as information freely available to whoever
wants to use it, perhaps with some degree of dissemina-
tion mandated among Internet service providers.

6.1 Host-based Detectors

Host-based Worm Detection: grade, A, key-
words,Critical . Some protocols such as peer-to-peer
systems can support very fast topological worms which,
at the micro level, appear as normal network traffic due
to the query mechanisms and other features. Similarly,
contagion worms can completely resist traffic-based
analysis. As these applications continue to evolve to
evade suppression, worms may become even harder to
detect.10 Thus, to detect sophisticated contagion worms

9Leaf node detectors can either rely on symmetric routing, be fed
traffic from all network links, or involve cooperating detectors which
can examine all traffic to and from the machines on the network leaf

10Current peer-to-peer networks have been under attack by legal chal-
lenges because of the prevalence of copyright violations. Since the latest
tactics involve legal threats against the users who distribute larger quan-
tities of content and traffic shapers to reduce the available bandwidth,

we likely will increasingly have to rely on host-based
intrusion detection techniques.

In such a scenario, the IDS needs to halt the program
and distribute a warning to the peer-to-peer network. We
could envision that when the number of warnings reach a
critical mass, the peer-to-peer network would shut itself
down, though clearly this would depend on the require a
highly robust detector, and might be completely imprac-
tical depending on the trust model, criticality, and con-
stituency of the users of the network.

Building a highly robust detector does not necessar-
ily require building highly robust detectors for individual
hosts. It might work for the host-based detector to forward
a “measure of confidence” metric to an external system,
which correlates the results from many such sources as a
way of reducing false positives and increasing sensitivity.
On the other hand, the worm might itself include mecha-
nisms for flooding this external system with bogus reports
in an attempt to confuse it, resulting in a “race” whose
dynamics might be difficult to predict. Similarly, a highly
robust detector may benefit from only being installed on
a subset of hosts, although this may prove difficult due to
sampling problems and coverage issues.

Existing Anti-virus Behavior Blocking : grade, A,
keywords,Critical . Behavior blockingis an anti-virus
technique which halts programs from performing certain
actions deemed necessary for a virus to spread. Although
potentially powerful, it has not been widely deployed
due to usability concerns and false positives. The same
techniques could be used to construct host-based sensors
which rely on detecting necessary behaviors and report
them to a correlator for further analysis. Again, such
an approach might be able to leverage correlation across
multiple sensors to diminish false positives.

Wormholes and Honeyfarms: grade, A, key-
words,Low Hanging Fruit . A honeypot[73, 15, 76] is
a machine whose only purpose is to be compromised by
an attacker in order to detect and analyze the attacker’s
behavior. A distributed network of honeypots would form
an excellent detector network except for the machine cost,
administration cost, and distributed trust needed to cre-
ate such a system. Thehoneyfarmapproach eliminates
these costs while improving the precision. It is built us-

future peer-to-peer networks will likely include significant anonymizing
techniques which will make network detection of worms which attack
these networks much more difficult.

22

ing wormholes: traffic redirectors that tunnel traffic from
disparate locations around the network to the honeyfarm.
The honeyfarm uses “virtual machine” technology[92] to
create the illusion of thousands of vulnerable machines
using only a few actual systems. Once a honeypot im-
age is compromised, either by an attacker or an automated
program, the communication is redirected to other honey-
pot images to quickly classify the threat. Wormholes can
also be affixed to “network telescopes”[61], to monitor
even larger address ranges.

In order for an attacker to trigger false alerts from this
detector, the honeyfarm itself must be compromised. A
worm which avoids this detector must either be able to
remotely determine that the wormholes don’t represent
actual machines, or that the compromised machine rep-
resents a honeypot and not an actual target. One signifi-
cant disadvantage, though, is application-specificity: the
system can only detect worms which target the cultured
honeypots.

6.2 Network-level Detectors

Edge Network Detection: grade,A, keywords,Critical,
Powerful. An infected machine that generates a large
number of scans is detectable on its associated network
links, as is a large amount of aggregate scanning. Since
most normal traffic receives positive responses, while
scans are met primarily with negative responses or non-
responses, this anomalous pattern of behavior can be eas-
ily detected when there exists symmetric routing. The
counterpart, detecting incoming scanning, is far less reli-
able due to IP spoofing. Other propagation strategies may
also show clearly anomalous behavior.

A suitably large network of cooperating detectors can
thus use the presence of compromised machines to broad-
cast a warning to the rest of the net. Although there
are significant trust issues when building such a network,
these form potentially effective detectors with a reason-
ably limited deployment.

Backbone Level Detection: grade,B, keywords,Hard,
Difficult to Deploy . By definition, active-scanning
worms must scan the network in order to discover new
targets. Although scanning occurs all the time in the pub-
lic Internet, the increase in scanning from an active worm
is sizeable, and can possibly be detected in the backbones.
Other anomalies may also be detectable.

One difficulty is that backbone routing is highly asym-
metric, so simple traffic monitoring is insufficient to de-
tect a worm’s scanning behavior. An open question is
whether a group of communicating backbone sensors, by
using coordination and statistical inference, can detect the
presence of a worm early enough to provide for a re-
sponse.

This approach may be difficult due to the volume of
communication involved. Such a sensor would also be
highly robust, due to the high volume traffic monitored.
One possibility is for each sensor to keep a record of all
responses which occur within a few second time window.
(See [83] for a discussion of techniques for remember-
ing fingerprints of individual packets seen by a high-speed
router.) Some subset of the requests are broadcast to all
other sensors, who respond as to whether the responses
were noticed. This can be used to gain a statistical esti-
mation of the current level of scanning occurring on the
network.

6.3 Correlation of Results

Single point detection is often insufficient to determine
that a worm is operating. Instead, the results of many
sensors may be required before a particular entity is con-
fident to act on the conclusion that a worm is operating.
Similarly, different sensors are required to detect different
worm types. Thus it is important to correlate and com-
bine information from multiple sensors of various levels
of trust.

Conventional Centralized Results Correlation:
grade,B, keywords,Some commercial work. A central
coordination service accepts information from sensors
distributed around the net, summarizes the results, makes
conclusions, and reports the results using automatic and
manual systems. Such systems are already forming for
general alerts, such as Security Focus’s ARIS threat
management system[31], but are not being designed with
automated mitigation and response. Such correlation
strategies naturally apply to the merging of information
from Internet-wide sensors to detect a worm. The
coordination service needs to trust the sensors as a whole,
while assuming that some sensors may be corrupted.
Those systems which initiate responses need to trust the
coordination service.

23

The significant concerns are the single point of fail-
ure and attack induced by centralization and the economic
costs of building a central correlation service. Since the
best defense occurs when all relevant parties respond to
worm threats, such services need to be available to all to
maximize their ability to protect the net, not just those
who are willing to pay subscription fees.

Distributed Correlation : grade, A, key-
words,Powerful, Flexible. In a distributed correlation
system, the sensors broadcast their results to all sub-
scribers or to a local verifier which possibly aggregates
and then relays the alerts. This provides each subscriber
with access to the low-level data, enabling local policy
decisions, which could factor in different trust levels for
various sensors.

The distributed coordination approach adds communi-
cation overhead, which may be a significant concern, par-
ticularly if the attacker can create “chaff” that stresses the
communication channels. Distributed coordination also
requires more processing power, as some results may be
redundant, and may require additional public key infras-
tructure, if the low-level alerts are transmitted across trust
boundaries.

Indeed, the greatest concerns are the issues of trust:
each individual entity in the decision network is poten-
tially untrustworthy, so the protocol must resist entities
that try to disrupt the network, create false positives, or
create false negatives. This could become quite challeng-
ing if a worm manages to grow to a large size and attacks
the coordination network by flooding it with bogus mes-
sages. More details of the requirements for such sensors
are in Section 10.

Worm Traceback: grade, A, keywords,High Risk,
High Payoff. Related to the problem of worm detection
is that of wormtraceback: given that we have detected
a worm, can we ascertain from where it was originally
launched? Worm traceback has received essentially no at-
tention to date in the research community. With certain
kinds of worms, such as random scanning worms, it may
be fairly feasible to detect the first instance through the
use of network telescopes[61], due to the fact that the first
copy of the worm is likely to scan for quite some time
before finding the second infectable host, and the scans
will likely impinge on the address space of a sufficiently
large network telescope before finding a victim. If the
random number generator of a worm is reversible, this

may also help (though a well-designed worm could easily
avoid this mistake). For more sophisticated spread de-
signs, it is quite unclear what the best approach would be.
However, given a widespread and effective detection in-
frastructure, there are likely to be some clues left in the
earliest signs of whatever the worm footprint turns out to
be. This problem is likely to be challenging, but is obvi-
ously of the highest importance in deterring future worm
attacks and, in some contexts, for gauging appropriate re-
sponses.

7 Automated Responses to Mali-
cious Code

Since novel malware can spread much faster than humans
can analyze or respond to it, a successful defense against
such worms must be automated. The defense needn’t nec-
essarily be perfect; a successful automated response could
slow down a worm enough to make human response rele-
vant. In this section, we discuss possible research efforts
along these lines.

Due to the speed of such malware, such response can
be extremely challenging: a natural tendency is to err on
the side of being “trigger happy,” but the consequences
of such response could themselves prove very damaging,
and indeed an attacker might attempt to trigger the re-
sponse mechanism as a way of impairing the victim rather
than using a worm against the victim directly. Thus, the
decision to respond must be highly robust against false
positives and manipulation. One possibility is the use of
cascading defenses, where prohibitions become more re-
strictive as more systems are compromised, reaching an
equilibrium between the aggressiveness of the worm and
the strength of the response; we discuss a “cell-based”
model that permits graduated response below.

Host-Based Response: grade,B, keywords,Overlaps
with Personal Firewall. It is an open question whether
one could develop programs which could respond to
“worm on the loose” alerts in an intelligent manner in or-
der to protect the local host, beyond what could already
be achieved using network-based responses. One advan-
tage of host-based techniques is that the responses can be
considerably more selective, especially if any warning in-
cludes information on susceptible versions. Thus a web

24

server would only defensively respond if the warning sug-
gested it was vulnerable. A disadvantage is that it would
require considerably wider deployment to achieve a no-
ticeable effect on the overall speed and spread of a worm.

Edge Network Responses: grade,A, keywords,Pow-
erful, Flexible. It should be possible to construct filters
which, when alerted, automatically filter classes of traf-
fic. The problem is constructing responses which don’t
adversely affect normal traffic, or at least limit the dam-
age during the filtering process. Once a worm is detected
to be operating in the network, one can envision network
devices which filter out traffic that reflects behavior corre-
sponding to the worm’s propagation mechanism. An ex-
ample would be the response to a port 80 (HTTP) worm
which would temporarily filter incoming web traffic until
human analysis can determine sufficient defensive mea-
sures to render one’s systems immune. Simply blocking
particular IPs is not sufficient due to a worm’s behavior,
where new machines are infected at a rapid rate.

One facet of the research is attempting to devise prohi-
bitions which either have no effect on normal traffic or a
minimal impact on critical traffic. Clearly, different pro-
hibitions will work best for different classes of worms.

More sophisticated response could begin by proactively
mapping the local network using nmap-like[38] tech-
niques to understand its components and topology. If an
alert contains concrete information about potential vulner-
abilities, the response could be tailored to only interrupt
traffic which could be a vector for infection, based on the
local site information.

Such responses could also be spread throughout an in-
ternal network, to create a containment system.

Backbone/ISP Level Response: grade,B, keywords,
Difficult, Deployment Issues. Some responses can easily
be envisioned by the ISP, such as limitations on outbound
scanning by infected machines (which slows the spread of
scanning worms). An important question is whether more
sophisticated responses could prevent or mitigate other at-
tacks and other strategies. ISP responses have a signifi-
cant advantage in protecting more machines with a single
response. Additionally, ISPs are at a good location to con-
struct defenses which eliminate the outbound spread of an
attack, as part of a general ISP program of responsibility.
However, there is a very significant potential legal disad-
vantage, as now the ISPs may be responsible for worms
which evade their defenses, as well as for any overreac-

tions that impair legitimate traffic. The cost might also
limit deployment.

The biggest concern is that ISP responses need to be at
a “least common denominator” level, as responses which
may inadvertently affect customers may never be em-
ployed, even if they could stop a worm’s behavior.

National Boundaries: grade, C, keywords, Too
Coarse Grained. Although it might seem attractive, a na-
tional boundary is likely not an effective location to con-
duct a meaningful response. The main problem is that it
will be too easy for the attacker to either evade the bound-
ary (for example, by first infecting an ally of the nation’s,
for which the boundary is not in effect), or simply to have
already seeded the infection within the nation before the
worm is detected.

However, it is possible that such national boundaries
will be constructed to meet other forms of cyber threats, in
which case adding a worm suppression mechanism may
be relatively cheap and would add a layer (albeit brit-
tle) of defense-in-depth. Also, while not preventing the
spread of the worm, the boundary might serve to slow it
somewhat (depending on its spreading mechanisms), and
could also somewhat impede control of the worm after it
has spread within the nation.

Graceful Degradation and Containment: grade,B,
keywords,Mostly Engineering. An important property
of many successful worm defenses would be that they fail
gracefully: the ability to contain an infection and keep
it from spreading after some set of machines have been
compromised. Good defenses should have the ability to
quarantine sections of users or networks to prevent the
attack from spreading. This is critical if one wishes to
contain worms operating in a corporate environment. A
related question is then whether the defenses can recog-
nize that a minimal mitigation strategy is ineffective and
respond by imposing more severe prohibitions.

A promising possibility is a “many-unit containment”
model. In this approach, a local network is divided up into
many cells, with each cell able to determine that a worm
may be operating within it, and with secure communica-
tion to all other cells. A single infected cell would simply
attempt to quarantine the infected machine on the particu-
lar port. If two cells are infected, then perhaps all infected
cells quarantine that port. If three cells are infected, all
cells begin restricting incoming traffic except for a prede-
termined white-list. Other thresholds or strategies could

25

of course be defined.
Such a system offers many benefits: it quarantines in-

fections into small groups, hopefully containing the in-
fection. More importantly, it offers graceful degradation
of protection and network performance. As the infection
continues to spread, the system can increase the sever-
ity of response. By eventually halting all traffic, it is
able to completely contain an infection, but hopefully can
respond before that. The major disadvantage is that it
requires numerous devices across the corporate intranet,
anywhere from 10 to 100 or more, to perform the cell by
cell isolation, which creates significant engineering prob-
lems.

Data formats for Worm Description : grade,B, key-
words,Important, but requires more experience before
proceeding. There is a need for research on ways to de-
scribe worms, important parts of worms, and actions that
have or might be taken in response to worms. For in-
stance, correlator logs will need to describe the structure
of the worm event. Data formats to describe how to rec-
ognize an infection vector connection in progress over the
network would be valuable. Ways to describe signs of an
infection on a host would be useful. Canonical descrip-
tions for the set of network addresses potentially vulnera-
ble to a worm could be valuable. Finally, response actions
could be described, including sets of addresses to block,
conditional conditions for when to block certain kinds of
connection, and actions to take on hosts, etc. If an ad-
equate understanding is gained of which of these things
are feasible to describe well and generally, then it may be
useful to promote standardization of them as a technical
transfer solution for this research.

8 Aids to Manual Analysis of Mali-
cious Code

Presently, most malicious code is analyzed by humans
employing conventional debugging and disassembling
tools. For example, Code Red I was disassembled and an-
alyzed by Ryan Permeh and Mark Maiffret of Eeye digital
security in about 24 hours, and Nimda was disassembled
and analyzed by Ryan Russell of Security Focus in about
40 hours. Virus detection companies routinely require two
weeks to develop detection algorithms for complicated

viruses. For complicated, fast-moving worms, propaga-
tion to all available victims can be completed prior to hu-
man analysis.

Collaborative Code Analysis Tools: gradeA, key-
words, Scaling is important, some ongoing research.
The current disassembly and analysis tools generally do
not scale beyond a couple of individuals. Considerable
research has been employed in improving collaborative
programming process;a similar focus on the analysis pro-
cess should improve the ability to analyze and understand
how malicious code operates. Since understanding the op-
eration of malicious code can be crucial in developing a
response, it is critical that this step be shortened. It is an
open question as to what new tools could enable greater
cooperation in order to shorten this analysis problem.

Higher Level Analysis: grade,B, keywords,Impor-
tant. Halting problem imposes limitations. Currently
there are no tools which can describe potential behavior
for an arbitrary code sample. Complete, general analysis
of an arbitrary program is impossible (as it reduces to the
halting problem), but certain behaviors such as file erase-
ment or DDOS payloads should be recognizable because
they need to perform system calls to implement these pay-
loads. Similarly, deliberate obfuscation to prevent static
analysis is important.

Having such tools could improve human analysis by in-
dicating particular regions or potential behaviors of inter-
est in a large program. With some worms (such as Nimda)
being of substantial size, it is critical that human analysts
are not bogged down by volume when searching for spe-
cific side effects.

Hybrid Static-Dynamic Analysis: grade, A, key-
words,Hard but Valuable . While it is easy to build soft-
ware that cannot be interpreted using static or dynamic
technique in isolation, it is more difficult to develop soft-
ware that is opaque to both static and dynamic techniques.
Static and dynamic analysis can be used to simultaneously
examine, interpret and trigger software, to aid in under-
standing code that is obfuscated or encrypted.

Visualization: grade,B, keywords,Mostly Educa-
tional Value. As a worm spreads, it may be useful to
offer real-time analysis based on sensors to determine its
behavior. Visualization tools, which could create results
such as those seen in CAIDA’s Code Red movie[6], may
provide important insights. It is an open question as to
what information can be gathered and how it could be

26

presented in a useful manner. In many cases, visualiza-
tion tools provide good sources for educational material
without contributing significant research content.

9 Aids to Recovery

Another important concern is how to construct recovery
systems which can operate after an attack, to speed the
recovery rate and reduce the impact a worm would present
on day to day operations.

Anti-worms : grade,C, keywords,Impractical, Ille-
gal. Anti-worms, or “white” worms, are worms which act
to remove security holes and other worms. They seem
like attractive recovery mechanisms but there are signif-
icant limitations which make them impractical. The first
is potential legal liability for any damage the anti-worm
causes. Even a nondamaging worm, released to the wild,
is a criminal act in many jurisdictions.

A second problem is timeliness: an anti-worm and any
patch it installs must both be tested before release, while
an attacker only needs an exploit and doesn’t necessar-
ily require complete testing.11 An anti-worm that does
not patch but instead restricts host behavior (for example,
disabling a vulnerable service) does not have this prob-
lem, but in this case the potential for collateral damage or
the attacker using the anti-worm response to further their
own goals is immense.

A third limitation is the observation that many exploit
toolkits remove the vulnerability used to compromise a
system, and a sophisticated worm would undoubtedly
perform a similar action. Thus, an anti-worm’s author
would need to discover a new vulnerability in order to
correct compromised machines. However, we note that an
anti-worm that spreads via a preconstructed hit-list might
be able to beat the already-launched hostile worm, and
thus avoid this difficulty only if the anti-worm author can
quickly assemble a suitable anti-worm.

There have been at least three “white” worms: the
Cheese[14] worm, which spreads by using the rootshell
service created by some instances of the 1i0n worm[90];
Code Green[43], which scanned for Code Red II holes;
and CRClean[50], which responded to Code Red II at-
tacks. The latter two were released as source code, and it

11Code Red I was tested at least in part in the field, with one and
perhaps two buggy initial releases which failed to spread effectively.

is not clear if instances of the worms were released into
the wild. All three anti-worms could only spread because
the worms they targeted opened general security holes
(backdoors) instead of closing them.

With worms such as Hybris[28] installing crypto-
graphic backdoors instead of open backdoors, it is un-
likely that a white worm could be written to displace a
major attack unless it leveraged a separate vulnerability
or usedflashspreading via its own hit-list in an attempt to
counter a particularly slow worm.

Patch Distribution in a Hostile Environment : grade,
C, keywords,Already Evolving Commercially. An at-
tacker who uses a worm to compromise a large number of
hosts could program the worm to DOS major communi-
cation channels used by those who would respond to the
worm. This could include automated channels used by
preprogrammed responses, communication channels such
as email lists, and patch distribution channels such as ven-
dor web sites. An attacker could further be monitoring
public channels as a guide to the best places to disrupt. Of
critical importance is the development of a general patch
and update distribution system which is highly resistant to
wide-scale DOS attacks.

One possibility is a carefully constructed peer-to-peer
system, where each vendor has a cryptographic key used
to sign their patches. Patches which are properly signed
and presented to a node in this system are spread to all
nodes in the system, while each node responds to data re-
quests only from local machines. A side effect is that such
a network would automatically create a distributed sys-
tem which could handle high loads, while reducing back-
bone bandwidth expenses. The addresses of these servers
would need to be prefetched into DNS caches to allow
them to be accessed if the root DNS has failed due to an
attack. A Content Delivery Network, such as Akamai, al-
ready has many of these properties, and can potentially
be modified to distribute patches in the event of a major
attack.

Updating in a Hostile Environment: grade,C, key-
words,Hard engineering, already evolving. Currently,
an aggressive worm which infects the default install12

could be particularly difficult for individuals to recover
from as reinstalled machines could be reinfected before
appropriate patches are applied. This is especially true

12The default initial configuration when a system is installed

27

if the worm make significant efforts to resist removal by
prohibiting new code from operating on the machine and
disabling anti-virus programs, thus requiring a reinstalla-
tion or booting from separate media to purge the infesta-
tion. For a large institution, such individual, per machine
attention is a significant cost.

It may be possible to employ virus-derived techniques
such as metamorphic code to insert a small bootstrap
program[51] early in the operating system’s install pro-
cess. This program would resist removal by employing
the same techniques which viruses use to avoid detection,
while resisting behavior blocks by being installed at a very
low level in the operating system. This program would be
used to contact a central server to download any needed
update and recovery code, without the need to use boot-
strap media.

10 Coordination and Scaling

Many technologies for dealing with worms benefit greatly
from cooperation and information sharing, due to sev-
eral factors: the global slowdown achieved from a par-
tial response; the fact that many sensors only produce re-
sults after infection; and that other sensors may have a
high uncorrelated false positive rate which can be reduced
through aggregation. Similarly, it may be much more dif-
ficult for an attacker to generate a malicious false positive
in the face of coordinated data analysis.

Instead of describing a series of possible solutions, as
common in the other sections, we outline the engineering
and technical challenges needed to create a robust deci-
sion making system. There are two natural approaches: a
central coordination system where all actors communicate
through a single or small number of trusted analyzers, and
a distributed system where every node has a more equal
responsibility.

The centralized administration model, although attrac-
tive, needs to be trusted by everyone involved in the net-
work. Additionally, any centralized system may be vul-
nerable to attack. The engineering challenges in creating
a centralized system are also reasonably well understood.

A distributed system has compelling advantages, such
as the lack of a single point of failure. Instead, large num-
bers of failures can be gracefully tolerated. Such failure
modes potentially enable the system to be built with con-

siderably lower-cost, lower-reliability components. This
is especially true for devices which are not inline on the
packet-forwarding path, since their failure will therefore
not cause a disruption in network service.

A distributed system also benefits from heterogeneity.
Supporting multiple sensors, analysis implementations,
and responders within a common distributed framework
increases the difficulty involved in creating worms which
attack the response and analysis framework. Any attacker
would need to corrupt multiple types of systems in order
to render the framework inoperable.

Finally, a distributed system can potentially scale ef-
fectively from enterprise-level deployments to the entire
Internet. If constructed correctly, the distributed system
allows an internal deployment to both benefit, and share
information with, the general Internet, and the Internet
system can be derived from the same components and de-
sign.

One possible system consists of four primary agents:
sensors, analyzers, responders, and aggregators. Sensors
are concerned with detecting particular anomalies which
suggest that a worm or compromise has occurred. Ana-
lyzers manage some of the communication between other
components, aggregating messages for efficiency reasons,
and also make local decisions as to the presence and vir-
ulence of a worm. Responders perform the interdiction
needed to stop the worm, such as blocking ports, disrupt-
ing traffic, or changing network configurations. Aggre-
gators act to cross trust domains, such as between institu-
tions and the general Internet, and to reduce traffic by coa-
lescing local analysis into higher-level abstractions. Natu-
rally, multiple functionality could be combined into a sin-
gle system.

One engineering and research obstacle is devising a
protocol which these agents can use for communication.
Such a protocol needs to be both simple to implement
and easily extended. The first decision is communication:
within a single domain of trust, any sensor messages are
sent to trusted analyzers, while each responder must re-
ceive the results of analysis. Aggregators take all local
data and perform some analysis, before presenting it to
the general Internet, with corresponding data going the
other way. Every message needs to be verified.

Although the communication itself is already chal-
lenging (as it involves multiple communication, reliable
broadcasts, and considerable public key infrastructure),

28

the more severe difficulties occur in developing the mes-
sage structure, as discussed earlier in Section 7. The mes-
sage from the sensors to the evaluators needs to both con-
vey a general portion defining the application, degree of
suspicion, and any potential information about the oper-
ating system. Additionally, a sensor-specific payload may
be required to convey additional information. Similar in-
formation is needed for the messages between analyzers
and responders, and for aggregating information.

The criteria is to create a protocol where the informa-
tion is accessible and understandable to all programs par-
ticipating, whether or not they understand the specifics of
the source. Yet if the program understands the source’s
additions, this can provide valuable further information to
foster better analysis.

Another engineering challenge lies in constructing
analysis programs which can accept data from unknown
sensors (i.e., relying simply on the sensor’s judgment),
known sensors (thus with more information about what
the sensor actually detected, and with a higher degree of
trust), and Internet-level aggregate information to deter-
mine whether a worm is active and how virulent its activ-
ity is. This analysis must also include an understanding
of what responses have already been employed in order to
gauge whether initial responses are adequate at stopping
the worm.

A third challenge is how to deal with bad informa-
tion. Although information within an institution may be
assumed trustworthy (or at least reasonably trustworthy),
information from the Internet is generally untrustworthy.
One strategy involves isolating systems which are deter-
mined to have “cried wolf”, and ignoring them in the fu-
ture. Combined with only trusting Internet results when
many individual players issue a warning (though bearing
in mind that a worm can arrange to mimic this, once it
grows large enough), this should allow results from the
general Internet to be trusted, without trusting any indi-
vidual or small group of systems.

A fourth challenge involves integration with existing
systems. There are already numerous intrusion detection,
anti-virus, email filters, and other defenses which all may
record anomalies while a worm is spreading. It is im-
portant to understand how to integrate these devices as
sensors, analyzers, and responders with minimal effort.

A fifth challenge is to make this system robust to attack.
A small collection of agents should be removable without

creating an adverse effect, and the agents should not need
to depend on DNS or similar services in an emergency.
Similarly, the system must benefit from heterogeneity in
order to resist topological or other worms which might be
designed to infect the response system.

A final challenge is the construction of visualization
tools which can use this distributed information and
present meaningful information for human analysis. Con-
siderable research is needed both in how to present the in-
formation and to extract such information from the state
of the distributed system, as discussed in Section 8.

11 Policy Considerations

Although this document is primarily intended to define
the technical research agenda rather than considering pol-
icy issues, some policy issues unavoidably interact with
the technical issues. In this section, we will outline those
issues and the way they affect technical considerations.

Privacy and Data Analysis: Many sensors will re-
quire monitoring and potentially recording large amounts
of information. Some of this information (including de-
tected software configurations, traffic data, and potential
payload) is potentially sensitive but may need to be moni-
tored to create a relevant response. Of significant concern
would be any sensors whose deployment is mandated.

In order for such sensors to be deployed, they need to
be carefully constructed and disclosed so that individuals
are confident about the limits of what data is collected and
how it is managed. Issues such as exposure via subpoena
or law enforcement search will require careful considera-
tion during the development and construction of any such
system; the degree of such potential exposure may signifi-
cantly limit the ability to deploy sensors in some environ-
ments.

Obscurity: In many theoretical formulations of com-
puter security, security should notrely on hiding the basic
structure of the system. However there are benefits from
obscuring some important information by increasing the
risk and difficulty an attacker incurs in discovering the de-
ployment of the sensors, thresholds of response, and other
parameters.

During the construction and deployment of such sys-
tems, it is important to understand which portions need to
be kept confidential and what can be safely disclosed. Ide-

29

ally, items which must be kept confidential must not intro-
duce privacy concerns among those who need to trust its
deployment. This may not always be possible, however;
when it isn’t, a major policy struggle will likely emerge.
Similarly, secrecy has limitations because it can be com-
promised by an insider, so it should not be a key feature
of any defense, but a secondary factor to further confound
an attacker.

Internet Sanitation: Some defenses, such as scan lim-
iters, are best deployed by ISPs. However, these defenses
do not directly benefit the ISPs or their customers, but
only the rest of the Internet.

In order to deploy such defenses, there will need to be
legal mandates or similar restrictions. Yet such deploy-
ments will need to be considered carefully: the devices
need to be low cost, highly reliable, and generally trust-
worthy.

The “Closed” Alternative : An alternative way to pre-
vent worms attacks are significant topological changes
and restrictions: limit which machines may talk to oth-
ers, define a fixed set of protocols which are allowed, and
eliminate a considerable degree of flexibility.

As an example, suppose we could eliminate SSH
clients from all machines but the users’ desktops, and
these would not run SSH servers. Such a restriction would
prevent an SSH server worm from spreading; but it would
also removes a large amount of functionality from SSH,
namely the ability to forward authentication.

12 Validation and Challenge Prob-
lems

One difficulty in constructing defenses is that of testing
and evaluating the results of systems: how can one ensure
that the resulting system works, and is robust to attack?
Beyond the conventional approaches of Red Teaming and
the detailed testing of components, it may be necessary to
directly model and evaluate the effects of an Internet-scale
attack.

Similarly, a corresponding research program should
have concrete milestones for detection, response, and
analysis, as these represent the major problems in con-
structing a worm defense. Without the ability to detect a
worm early in its spread, it is impossible to build mean-

ingful defenses. Without the ability to construct meaning-
ful automatic responses, a worm can perform its damage
before human-based systems can respond. And without
meaningful automatic and manual analysis, it may be im-
possible to determine what a worm author’s objectives are
and whether there are remaining surprises lurking in the
worm’s functionality.

12.1 Establishing a Common Evaluation
Framework

The scope of possible worm attacks is very broad: dif-
ferent spreading mechanisms, topologies, target popula-
tion demographics, ease of firewall penetration, polymor-
phism to thwart signature specifications, degree of devi-
ation from “normal” traffic patterns, and combinations
of multiple modes and/or hybrid mechanisms. Conse-
quently, defining concrete milestones also requires defin-
ing the evaluation contextagainst which the milestones
are assessed.

Given the number of variables, it is not at all obvious
how to define meaningful evaluation contexts for which
the corresponding milestones will indeed serve to ad-
vance the core research, as opposed to optimize-for-the-
benchmark efforts. Thus we argue that, in parallel with
the general research efforts, work should also proceed
on establishing a common evaluation framework (realis-
tic scenarios, and the precise meaning of the evaluation
metrics) as soon as possible; and this work should be rec-
ognized as valid research in its own right, rather than an
adjunct considered only in the evaluation phase of indi-
vidual research efforts. An example of a similar effort is
the DARPA intrusion detection evaluations [55, 56, 57]
that focused on system accuracy, or the more recent eval-
uations that focused on system capacity[41]. These and
other efforts attempted to evaluate systems after the sys-
tems were developed; a significant improvement would
require that all program participants agree to being evalu-
ated prior to starting work, and each help to define appro-
priate metrics. We provide some initial suggestions here
to initiate the process.

Research on developing a common evaluation frame-
work should include identifying the right abstractions to
be used to parameterize an evaluation context. For exam-
ple, what are the most important elements when character-

30

izing target population demographics? Are they captured
by N , the number of total hosts in the network, andN ,
the number of vulnerable hosts? Is an additional param-
eter needed to describe the clustering of the vulnerable
hosts or their connectivity and trust patterns? To what
degree can we abstract topology away from population
demographics?

For analysis, the manner in which malicious software is
written and distributed can greatly affect the complexity
of the analysis task. There are techniques that are known
to make both static and dynamic analysis difficult to per-
form.The basic principle is that sequences of actions that
can occur in different orders are difficult to analyze, be-
cause of the explosion of possible system states. For static
analysis, the use of function pointers makes it difficult to
determine which call graph will really be created at run
time, so any technique that relies on identifying specific
function call sequences (or exploring all possible graphs)
will be either evadable or computationally intractable. A
related technique is encode the control flow within a rou-
tine using dynamically-computed boolean expressions or
state variables, again in order to explode the number of
possibilities that static analysis must consider. Similarly,
dynamic analysis cannot explore all of the possible sys-
tem actions that could lead to a malicious act, so any ap-
proach that relies on such exploration will be intractable.
The analysis evaluation framework needs to find a way to
focus on analyzing security-relevant events at the proper
level of abstraction, rather than on the more general prob-
lem of understanding arbitrary code.

Another important aspect of the evaluation framework
is including a notion ofresources available to the at-
tacker. It would be highly helpful to understand which
worm scenarios require a resource-rich attacker (say, for
extensive testing, or advanced knowledge of population
demographics or topology, or numerous zero-day ex-
ploits) versus which reflect attacks available to attackers
with only modest resources.

A final comment: since the problem area is so young,
it will be difficult to develop such abstractions (and then
choose a range from them for the simulation contexts)
without also tracking the evolution of the parallel research
on worm propagation and detection mechanisms. Thus,
the research program needs to ensure frequent communi-
cation between these parties.

Similarly, a cryptographic-like ethos should be fos-

tered, where it is considered highly acceptable to break
the systems of others, yet there is no dishonor in having
one’s systems broken by others in the community. This
cooperatively-competitive nature of the cryptographic
community produces strong results by insuring that the
resulting systems are highly resistant to attack as systems
are often throughly reviewed.

12.2 Milestones for Detection

In order to construct automated responses, it is first nec-
essary to detect that a worm is operating in the network.
Thus developing and validating detection mechanisms
must be a priority for any program designed to address
this problem. Since there are only a limited number of
strategies which a worm can use to find new targets, it is
probably best to focus on detecting anomalies produced
by these strategies, in either a host-independent or host-
dependent manner. We present several milestones which
can be used to evaluate detectors optimized for various
classes of worms.

The sensitivity to a worm’s presence is a key metric
for evaluating detectors, as this directly affects how early
a sensor can be used to stop the spread of a worm. It is
measured as the percentage of vulnerable machines which
need to be infected before the detector can, withhigh
probability, discover that a worm is operating on the net-
work. This sensitivity can be tested by the validation tools
discussed in Section 12.5 or verified using simulation and
analysis.

Yet it is critical that such detectors not generate inad-
vertent false positives, despite their high sensitivity. Any
sensor which generates significant false positives in the
absence of deliberate manipulation will probably be unus-
able, unless enough sensors can be combined to eliminate
these effects. False positives may also be engineered by
an attacker. In some cases, it may be possible to eliminate
these entirely, but it is critical that an attacker must pos-
sess significant resources (such as already compromised
machines within an institution) to generate a false posi-
tive.

Additionally, since detectors must necessarily feed in-
formation into response mechanisms, it is critical that
these detectors be hard to distort: it should be difficult
for an attacker to create a false positive to trigger a false
alarm or a false negative to avoid triggering an alarm dur-

31

Target Selection Today 1 year 2 years 3 years 5 years
Strategy

Detect at Detect at Detect at
10%, easy to 1%, difficult �1%, difficult Widely

Scanning create false to create false to create false deployable
positives and positives positives and

negatives negatives
Early deployment

External Detect at Detect at
Target Detect at 5%, difficult 1%, difficult Widely
Lists None 10% to create false to create false deployable
(Metaserver) positives positives and

negatives
Early deployment

Detect at Detect at
Local Detect at <10%, difficult 1%, difficult Widely
Target None 25% to create false to create false deployable
Lists positives positives and
(Topological) negatives

Early deployment
Detect at Detect at

Passive None Detect at 10%, difficult �10%, difficult Widely
(contagion) any level to create false to create false deployable

negatives positives or
negatives.

Early deployment

Table 1: Possible milestones for detecting classes of worms

32

ing a real attack. This can be evaluated by Red Teaming
or similar techniques.

Scanning: Scanning worms, such as Code Red[25],
Nimda[12], and Scalper[60], must by definition scan for
new targets by generating addresses and determining if
they are vulnerable. Since most individual scans fail, this
creates a significant anomaly which detectors can notice.
Of the strategies for autonomously propagating worms,
scanning appears the easiest to detect.

Currently, scanning worms can be detected by network
telescopes[61], i.e., large unused address ranges. (Al-
ternative approaches include email-lures and SMB-lures
[35].) Since these ranges are unused, any traffic is, by def-
inition, anomalous. Thus any global increase in scanning
can be easily noticed, at a reasonably high sensitivity. Yet
these sensors can easily be avoided by worms if the at-
tacker knows their location, and can also be triggered by
an attacker capable of creating spoofed packets.

At the end of the first year, prototype detectors for scan-
ning worms should be significantly improved. It should
be possible to construct sensors which will accurately de-
tect a scanning worm when roughly 1% of the vulnerable
population has been infected. Such defenses should also
be difficult for an attacker to trigger a false positive.

At the end of the second year, refined detectors should
be made more robust, able to resist more false positives
and negatives, while endeavoring to increase sensitivity
to detect infections when�1% of the vulnerable popu-
lation is infected. This should also involve reducing the
cost of the detection systems, enabling low cost deploy-
ment, with initial deployment of some systems available
for early adopters who wish to protect critical networks
(or simply to contribute to the research effort).

The end of the third year should see cost-effective de-
ployment of actual systems based on the developed tech-
nologies, by those who wish to protect themselves from
scanning worms.

Externally Queried Target Lists: Metaserver worms,
worms which primarily acquire their target by querying a
separate server, have the potential to be very fast. They
potentially present anomalies both in network traffic and
in the query stream. There are currently no mechanisms
to detect such worms.

At the end of the first year, prototype detectors which
can crudely detect such worms should be testable, al-
though possibly avoidable by an adversary. Again, these

can be verified by constructing simulated worms in the
testing frameworks outlined elsewhere.

At the end of the second year, sensitivity should be
significantly improved, with the resulting detectors cor-
respondingly harder to fool by intelligent attackers. The
third year should represent continued refinement, with
early deployment for critical systems. By the fifth
year, systems should be commonly available for arbi-
trary metaservers to neutralize this threat. A signifi-
cant advantage is that some sensors would operate on the
metaservers, allowing single point deployments for some
host populations.

Local Target Lists: Topological worms, which acquire
their target information using information contained on
the local machine, can spread extremely quickly. The
anomalies presented by worms using this strategy may be
quite subtle, however.

At the end of the first year, prototypes detectors which
can crudely detect such worms should be testable. Ideally,
these detectors will also detect worms which use static tar-
get lists (Flash worms) and externally queried target lists
(Metaserver worms). Due to the difficulty of detecting
these worms, even noticing when 25% of the target popu-
lation is infected represents a reasonable first year goal.

Given the detectors developed in the first year, second
year milestones should focus on creating improved re-
sults: increasing the sensitivity, making the sensors dif-
ficult to attack, and other improvements. The third year
should see even more refinements and initial deployment,
with systems commonly deployable by the 5th year.

Passive Worms: Contagion worms do not generate
new traffic; instead they rely on user behavior to deter-
mine new targets. These worms are highly stealthy from
a network point of view. Fortunately, they will often be
slower, in which case detection can drive human analysis
with time to respond.

At the end of the first year, the goal should be sim-
ply to determine that detection is possible, regardless of
constraints. Due to the potential subtlety of such worms,
it may require numerous correlations of very low level
anomalies to determine that such a worm is active.

At the end of the second year, the techniques should be
refined to where they can detect worms when<10% of
the target population is corrupted. For passive worms that
are slow enough that human timescales enable responses,
it is better to minimize the ability for an attacker to create

33

false negatives, as long as the generation of false positives
is detectable and traceable.

The end of the third year should see these techniques
refined to improve sensitivity and robustness to manipu-
lation, with early deployment possible.

12.3 Milestones for Analysis

Goals: Analysis to protect against rapidly spreading
worms will need to operate in at least two modes. In the
first mode, a worm will have been captured and some be-
havior will have been observed. The worm and the be-
havior will be available to the analysis process. In this
mode, the worm is assumed to be actively spreading, so
we require the results of the analysis as rapidly as possi-
ble (seconds to minutes), and the analysis needs to suggest
mitigation strategies. To determine these latter, the analy-
sis process needs to examine the code, isolate the security-
related portions, and then identify prerequisites for execu-
tion (to determine if a prerequisite could be quickly and
safely removed from vulnerable systems), and both the
spreading modalities and the propagation characteristics
(to determine if firewalls or routers could be configured to
prevent additional propagation).

In a second mode, a deep understanding of the mali-
cious code is desired, with the intended result being a
long-term approach to predicting and preventing unseen,
similar worms, and/or to assess the full implications of a
worm attack that we were unable to prevent. To attain this
understanding, the analysis process would more deeply
address the above listed items, and also identify: trigger
conditions for latent malicious behavior; new, previously-
unseen techniques; and attribution or forensic character-
istics. Furthermore, if the code is seen to target a specific
host, application, or operating system, the analysis might
suggest alternative ways that the attacker may be attempt-
ing to target that element, so that humans could investigate
that possibility.

State of the Practice: Analysis is currently done by
experienced personnel. There are several existing models
that we can call upon. In the first model, virus detection
company employees are interested in analyzing viruses to
determine a signature or write specialized code that can
be used to identify the virus (usually from a file on disk).
The time to do this varies with the complexity of the virus.
Signatures for simple, unobfuscated viruses can be deter-

mined in a few hours of time[63], with subsequent testing
to compare a proposed signature against many gigabytes
of the most common existing non-virus software requir-
ing six or seven hours. More complicated viruses that
are obfuscated or encrypted can require several weeks to
analyze and determine a signature, and complete testing
of the resulting signature against all known software and
patch levels can require a full day, due to the increased
complexity of the signature. Software to recover from
these viruses requires additional time to develop and test.

In the second model, software is reverse engineered
to determine how it works. Some software is extremely
complex (e.g., Microsoft’s software to implement the
SMB protocol) and requires large numbers of resources
to reverse engineer. Luckily, malicious code is a more
restricted domain, and we have at least one example that
measured how long it takes to analyze malicious code: in
[71], analysts were tasked with examining an executable
and fully explaining the purpose of the software and the
implication of having it installed on a system—a blend of
the rapid analysis and the slower, more complete analy-
sis. For a relatively small binary (total size 200KB) that
employed limited obfuscation techniques, it required on
average 70 hours for the evaluated entrants to examine,
understand, describe and propose mitigation strategies for
the code. This time did not include the time required to
detect, locate and identify the binary as malicious. For
mitigating the effects of such an executable, 70 hours is
acceptable for a manually activated attack—but is much
too slow for an attack that spreads automatically.

Metrics: There are many metrics appropriate for evalu-
ating the performance of tools to analyze malicious code.
Among them are: (1) the accuracy of the analysis in terms
of the probability of detecting a prerequisite, trigger, and
propagation methodology vs. the probability of a false
alarm; (2) the completeness of the analysis, in terms of the
percentage of detected prerequisites, triggers, and prop-
agation methodologies; (3) the speed of the analysis in
achieving its results, including an indication of the degree
to which the process can be parallelized or distributed;
(4) the usability of a tool, if human interaction can help
the system focus its results; and (5) the impact of analysis
and a selected mitigation strategy on the computing en-
vironment (in cases where the analysis will be performed
on a live system). Covering all of this space will require
more time than a five-year program will allow; so some

34

sampling of the space will be required.
Milestones: A research program could measure

progress against a set of progressively more complex
worm types. An initial program might begin with a test
set consisting of several worms of varying types cap-
tured “in the wild.” Tools would be built to analyze these
and develop mitigation strategies for each. The worms
would require different prerequisites, use different trig-
gers, and propagate in different ways. They would serve
as a baseline, selected at the start of the program and
used throughout its lifetime. To ensure that researchers
develop solutions more general than just targeting the
benchmark worms, new worms (with new prerequisites,
triggers, and spreading modalities) could be added each
year. each would be measured in future years. These new
worms would incorporate attributes from more sophisti-
cated worms than have since been seen in the wild.

12.4 Detecting Targeted Worms

Although most attackers will probably use general worms
which indiscriminately target machines, an attacker could
instead construct a worm which only propagates for a few
generations within a limited address space. Such atar-
getedworm could be used to limit collateral damage and
information leakage in a targeted strike. A scenario for
a targeted worm would include scenarios such as corpo-
rate espionage, where the attacker wishes to only affect a
small area in order to avoid detection.

Since targeted worms are attacking smaller address
spaces, their spread may take just a matter of seconds be-
fore the entire range has been examined. Thus sensors
intending to stop them may need to be considerably faster
responding. Worse, they present fewer anomalies when
compared with general worms; also, since the population
is much smaller, the worms may be able to afford to in-
stead spread moreslowly, to gain stealth.

Previous worms such as Nimda have preferentially tar-
geted the intranet[12], so some types of defenses devel-
oped to stop Internet-wide worms should also apply to tar-
geted worms. In particular, defenses which rely on sepa-
rating an intranet into many isolatable pieces should apply
equally well to halting targeted worms if these defenses
don’t require external information in order to make their
response decisions.

During the evaluation process, it is important to un-
derstand which defenses may also stop such targeted
worms, and which are only suitable to halting Internet-
wide worms.

12.5 Tools for Validating Defenses

Worm Simulation Environments: grade,A, keywords,
Essential Currently, there have been only ad-hoc simu-
lators developed to evaluate the behavior of worms and
defenses. In order to comprehensively evaluate defensive
strategies and techniques, it is critical that larger, more
realistic simulations be developed.

If one can construct a meaningfully detailed simulation
of a worm on the Internet, then such a system could be
used to estimate the secondary effects of worms and pro-
vide an environment in which to test defense strategies in
face of attack. If suitably sophisticated, defenses could
be either simulated or actually integrated into the simu-
lator as separate devices, enabling comprehensive evalu-
ation of their effectiveness. We note, however, that gen-
eral Internet simulation remains an extremely challenging
problem[30].

Internet Wide Worm Testbed: grade,A, keywords,
EssentialThere have been several projects[52, 20] which
rely on volunteers running programs on their own com-
puters. This same technique could be used to test the be-
havior of a spreading worm on the Internet, either within
a contained address range or across the entire net. It may
be possible to recruit volunteers to deploy a simple dae-
mon across the Internet. This daemon could simulate the
behavior of a spreading worm.

Most strategies which an autonomous worm could use
to spread across the Internet could be evaluated on the
Internet with a simple daemon programmed to respond
to a message and then replicate the spreading strategy,
attempting to contact other daemons. If enough copies
of the program are distributed, this can completely sim-
ulate the actual behavior of scanning worms. In order
to increase leverage, some large “dark” address ranges
could also be employed by using them to implement many
worm models. Not only could this demonstrate a worm’s
behavior under real situations, but it may reveal particu-
lar infrastructure weaknesses which may be inadvertently
affected by a widespread scanning worm.

35

One serious difficulty with this approach is the moni-
toring alarms its traffic patterns might trigger at the vari-
ous hosting sites, and the possible side-effects which the
simulated traffic may create.

Testing in the Wild: grade,A, keywords,Essential
There have been many minor worms seen in the wild,
such as Slapper and Scalper, which can only infect a small
number of machines. Other worms, such as Code Red and
Nimda, still remain endemic on the Internet. The ability
for worm detectors and responders to stop such worms
can be tested by deploying the devices on the Internet,
protecting otherwise vulnerable machines. The most sig-
nificant limitation is due to the relatively unsophisticated
nature of current wild worms.

13 Conclusion

Computer worms represent a significant threat to the
United States computing infrastructure. A widespread at-
tack could cause massive economic damage or be used in
concert with a real world attack. Due to the significance
of this treat, it is critical that defenses be developed in
advance of a major attack.

There appear to be a limited number of strategies a
worm could employ, which suggests that defenses which
target strategies could provide meaningful protection.
These strategies represent worms across the spectrum,
from highly stealthy to extremely fast. Yet there are nu-
merous attackers who could potentially employ such a
worm.

Although our current defensive infrastructure is clearly
inadequate, there are many areas in prevention, detection,
response, analysis, and recovery which, if properly de-
veloped, offer substantial protection. We summarize the
possibilities in Tables 2-6. Of particular interest are worm
detectors, responders, and analysis tools.

We also advocate the development of a Cyber Centers
for Disease Control, or CCDC, to coordinate both the re-
search areas and the response to worms. A CCDC also has
a significant prevention role, in analyzing applications.

Without sufficient investment, these technologies will
not be developed before a major attack. With potential
damages reaching over $100 billion, it is critical that pro-
tective measures be developed in advance.

A Hardware devices

Many worm defenses will require widespread deployment
within an institution, either at the computers themselves
or embedded in the network, to form an effective defense.
Although software has excellent economies-of-scale, the
need to deploy defenses on most or all machines may
prove prohibitive in some institutions, due to end-system
heterogeneity and administrative burden. Thus it is attrac-
tive to consider network-level devices to detect and fight
worms.

If the devices also generate anti-worm responses, many
devices may be required in an institution. Each device can
only prevent a worm from crossing through it, hopefully
containing an infection on one side or the other. Thus,
in order to provide a fine grain of containment, many de-
vices are needed, unless the institution can keep the worm
completely out.

Additionally, such devices benefit greatly from com-
munication: a single device can detect a worm, triggering
a general response. This response is best scaled by mon-
itoring the magnitude of the threat, as more distinct ma-
chines are compromised and as more detectors report the
presence of a worm, the response is magnified. This pre-
vents both initial overreaction from crippling the network
and an underreaction from allowing a worm to spread
unimpeded.

A side effect of this strategy is that some groups of ma-
chines will be compromised. Increasing the number of de-
vices deployed reduces the size of each group which may
be compromised in an attack, providing the anti-worm re-
sponse can cascade faster than the worm spreads. Thus it
is critical that these devices be economically deployable
throughout the site.

There are other requirements for such devices: they
must effectively monitor and respond on gigabit networks,
they need to be generally programmable, and they must be
easy to install and administer.

Here is an example of one possible building block
which meets these criteria. In 2004, this hardware plat-
form should cost< $500 to build, allowing deployment
of devices costing $1,000-5,000. There are other solutions
using network processors which could also be employed,
but the devise we discuss below is based on our experi-
ence with FPGA architectures. With these hardware sys-
tems costing considerably less than high-end PCs, this de-

36

Research Area Grade Keywords Section

Protocols for Worm A Difficult, Low Cost, 5.3
Resistance High Reward
Proving Protocol Properties A Difficult, High Reward 5.3
Distributed Mine-able Topologies A Hard but Critical 5.3
Nonexecutable Stacks & Randomization B Mostly Engineering 5.1
Monitoring for Policy and B Opportunities for Worm 5.1
Semantics-Enforcement Specific Monitoring
Automatic Vulnerability Analysis B Highly Difficult, Active Area 5.1
Why Is Security Hard B Active Area 5.7
Safe C Dialects C Active Area 5.1
Software Fault Isolation C Active Area 5.1
StackGuard C Active Area 5.1
Fine Grained Access Control C Active Area 5.2
Code Signing C Active Area 5.2
Privilege Isolation C Active Area 5.2
Network Layout C Costly 5.3
Machine Removal C Already Under Development 5.4
Synthetic Polycultures C Difficult, may add unpredictability 5.6

Table 2: A summary of the research areas in prevention, ordered by grade and section

Research Area Grade Keywords Section

Host Based Detectors A Critical 6.1
Existing Behavior Blocking A Critical 6.1
Wormholes and a Honeyfarm A Low Hanging Fruit 6.1
Edge Network Detectors A Critical, Powerful 6.2
Distributed Results Correlation A Powerful, Flexible 6.3
Worm Traceback A High Risk, High Payoff 6.3
Backbone Detectors B Hard, Difficult to Deploy 6.2
Central Results Correlation B Some Commercial Work 6.3

Table 3: A summary of the research areas in automatic detection, ordered by grade and section

37

Research Area Grade Keywords Section

Edge Network Response A Powerful, Flexible 7
Host Based Response B Overlap with Personal Firewall 7
Backbone Level Response B Difficult, Deployment Issues 7
Graceful Degradation and Containment B Mostly Engineering 7
Data Formats for Worm Description B Important, More Experience 7

Needed before proceeding
National Level Response C Too Coarse Grained 7

Table 4: A summary of the research areas in automatic response, ordered by grade and section

Research Area Grade Keywords Section

Collaborative Analysis Tools A Scaling Critical, Some Ongoing Research 8
Hybrid Static/Dynamic Analysis A Hard but Valuable 8
Higher Level Analysis B Important. Halting Problem Limited 8
Visualization B Mostly Educational Value 8
Anti-worms C Impractical, Illegal 9
Patch Distribution in a C Already Evolving Commercially 9
Hostile Environment
Upgrading in a C Hard engineering 9
Hostile Environment Already Evolving Commercially

Table 5: A summary of the research areas in manual analysis and recovery, ordered by grade and section

Research Area Grade Keywords Section

Worm Simulation Environments A Essential 12.5
Internet Wide Worm Testbed A Essential 12.5
Testing in the Wild A Essential 12.5

Table 6: A summary of the research areas in validation, ordered by grade and section

38

sign enables lower cost and wide deployment.
The proposed device centers around the latest FPGA

families. The Xilinx Virtex 2 Pro series of FPGAs[47]
combines an FPGA integrated with high speed network
interfaces and 300 MHz PowerPC CPUs. These network
interfaces support multiple protocols, including Gigabit
Ethernet, Infiniband, and Fiber Channel.

One representative device is the Xilinx XC2VP7,
which contains 1 CPU, 8 Gb/s links, 10,000 logic cells
(4-LUTs with associated flip flops), and 792 Kb of mem-
ory. It is currently available in engineering samples, with
pricing of approximately $360 in Q1 2003 and $180 in
2004 for large quantities.

The basic platform consists of one of these FPGAs, a
slot for a single DDR SO-DIMM, 2 or 4 Gigabit Ethernet
interfaces, and a small configuration store. Such devices
should be constructible under the price target of $1000
by the end of 2004. They are also highly programmable,
containing both a significant microprocessor and a large
amount of programmable logic. If the designer can ensure
that most packets are processed in logic without processor
interference, this device can easily maintain gigabit rates.

Just as conventional IDSs benefit from moving signifi-
cant amounts of logic into the OS kernel to reduce ker-
nel crossings and data being transferred, this approach
requires placing the common logic in the hardware. As
an example, if all but the SYNs and SYN/ACKs for TCP
traffic, and all but the headers for UDP traffic are han-
dled without touching the processor, this enables large
data rates without tying up the processor. If the filtering
suffices to avoid sending traffic up to the processor, this
improves the data rate further, making Gb rates readily
possible in such a low cost device.

This platform is also highly programmable. If 8 ports
are available, this device could act as a low cost Gb router,
a Gb IDS, or a Gb anomaly detector. More importantly,
the programmable nature allows new algorithms and de-
tectors to be implemented using the existing box.

B Example Worm Potential Evalua-
tion: Half Life

One important feature of a Cyber CDC is to examine ap-
plications for their susceptibility to worm attacks. Al-

though any network-aware software may contain flaws,
some make more attractive hosts than others.

As an example evaluation, we consider the multiplayer
game HalfLife[85]. Although released several years ago,
HalfLife still remains popular on the Internet today, with
over 20,000 servers and 85,000 players at a time[39].
Other video games in the first person shooter genre use
a similar structure, so this analysis would apply to those
applications as well.

This Windows game is split into two sections, a client
which runs on the player’s machine, providing the user
interface, and a server which coordinates information and
operates the game. To allow players to find a server, this
game uses a metaserver to act as a matchmaker. Whenever
a server starts, it connects to the metaserver and communi-
cates appropriate information. When players wish to find
a type of game, they contact the metaserver to find an ap-
propriate server. In order that anyone can start a server,
and to simplify coding, the server is included with the
client software, with single player games using a server
running on the local machine.

There are also stand-alone server programs, running on
both Linux and Microsoft Windows.

Since there are usually only 20,000 servers operating
at any particular time, a scanning worm would be gener-
ally ineffective, requiring many days to spread across the
Internet. Similarly, each local server doesn’t contain suffi-
cient topological information to build a topological worm.

This application is susceptible to metaserver and con-
tagion strategies, which could exploit various flaws in the
client or server. A server side exploit could query the
Gamespy[39] metaserver to obtain a list of servers run-
ning with various parameters. It then infects those servers,
using the metaserver to find new targets. Such a worm
would require roughly a minute to infect all servers.

A client side exploit could infect the client and then
modify the local copy of the server. If the client ever initi-
ates a public server, this modified server could infect other
clients. Optionally, the server could be started and broad-
cast false information to attract new players: sacrificing
some level of stealth in return for a significantly faster
spread.

HalfLife is written largely in C/C++, and there have
been buffer overflow vulnerabilities[5] reported in earlier
versions of the software. Most players and servers use
home machines equipped with broadband connections.

39

Thus the machines themselves don’t represent valuable
targets, but they could be successfully used to conduct
widespread DOS attacks.

Fast moving worms, either exploiting client or server
side flaws, will produce a low grade anomaly to the
metaserver for each compromised machine. For the
metaserver spread, the anomaly is servers starting to per-
form queries to find other servers. For an accelerated con-
tagion worm, the anomaly is an increased frequency in
clients which start their own server. If the metaserver is
actively looking for this behavior, it could correctly de-
duce that a worm is operating if enough anomalous activ-
ity is seen and temporarily halt the metaserver to stop the
spread of the worm.

References

[1] The National Security Agency. Security-Enhanced
Linux, http://www.nsa.gov/selinux/.

[2] Ken Ashcraft and Dawson Engler. Using
Programmer-Written Compiler Extensions to Catch
Security Holes. InIEEE Symposium on Security and
Privacy, pages 143–159, May 2002.

[3] Network Associates. Network Associates Corpo-
rate History, http://www.irconnect.com/net/pages/
history.html.

[4] Avien. European Institute for Computer Anti-Virus
Research, http://www.avien.org/.

[5] Stan Bubrowski. Half life server overflows and for-
mat vulnerabilities, http://archives.neohapsis.com/
archives/bugtraq/2001-03/0111.html.

[6] CAIDA. CAIDA Analysis of Code-Red, http://
www.caida.org/analysis/security/code-red/.

[7] Cardcops. http://www.cardcops.com.

[8] CDC. History of Quarantine, http://www.cdc.gov/
ncidod/dq/history.htm, May 2000.

[9] CERT. CERT Advisory CA-1999-04 Melissa
Macro Virus, http://www.cert.org/advisories/
ca-1999-04.html.

[10] CERT. CERT Advisory CA-2000-04 Love Let-
ter Worm, http://www.cert.org/advisories/ca-2000-
04.html.

[11] CERT. CERT Advisory CA-2001-22 w32/Sircam
Malicious Code, http://www.cert.org/advisories/ca-
2001-22.html.

[12] CERT. CERT Advisory CA-2001-26 Nimda Worm,
http://www.cert.org/advisories/ca-2001-26.html.

[13] CERT. CERT Advisory CA-2002-25 Integer
Overflow in XDR Library, http://www.cert.org/
advisories/ca-2002-25.html.

[14] CERT. CERT Incident Note IN-2001-05, http://
www.cert.org/incidentnotes/IN-2001-05.html.

[15] Fred Cohen and Associates. Deception ToolKit,
http://www.all.net/dtk/.

[16] Sun Computers. The Java Programming Language,
http://java.sun.com.

[17] ComputerWorld. Al-qaeda poses threat to
net, http://www.computerworld.com/securitytopics/
security/story/0,10801,76150,00.html.

[18] Counterpane. http://www.counterpane.com.

[19] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton.
StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. InProc.
7th USENIX Security Conference, pages 63–78, San
Antonio, Texas, jan 1998.

[20] distributed.net. http://www.distributed.net.

[21] David Dittrich. The Stacheldraht Distributed Denial
of Service Attack Tool, http://staff.washington.edu/
dittrich/misc/stacheldraht.analysis.

[22] David Dittrich. The Tribe Flood Network Dis-
tributed Denial of Service Attack Tool, http://
staff.washington.edu/dittrich/misc/tfn.analysis.

40

[23] TJ Doyle, MK Glynn, and SL Groseclose. Com-
pleteness of notifiable infectious disease reporting
in the United States: An analytical literature review.
AM J Epidemiology, 155(9):866–874, May 2002.

[24] Computer Economics. http://www.
computereconomics.com/.

[25] eEye Digital Security. .ida “Code Red” Worm,
http://www.eeye.com/html/research/advisories/
al20010717.html.

[26] EICAR. European Institute for Computer Anti-
Virus Research, http://www.eicar.org.

[27] Mark Eichin and Jon Rochlis. With Microscope
and Tweezers: An Analysis of the Internet Virus of
November 1988. InIEEE Computer Society Sympo-
sium on Security and Privacy, 1989.

[28] F-Secure. F-Secure Computer Virus Information
Pages: Hybris, http://www.f-secure.com/v-descs/
hybris.shtml.

[29] Peter Ferrie. W32//Klez, http://toronto.virusbtn.
com/magazine/archives/200207/klez.xml.

[30] Sally Floyd and Vern Paxson. Difficulties in Simu-
lating the Internet.IEEE/ACM Transactions on Net-
working, 9(4):392–403, August 2001.

[31] Security Focus. Deepsight Threat Management
Service, http://www.securityfocus.com/corporate/
products/tms.

[32] Security Focus. MacOS X SoftwareUpdate Ar-
bitrary Package Installation Vulnerability, http://
online.securityfocus.com/bid/5176.

[33] Security Focus. www.securityfocus.com/bugtraq/.

[34] Stephanie Forrest, Anil Somayaji, and David Ack-
ley. Building Diverse Computer Systems. InIEEE
6th Workshop on Hot Topics in Operating Systems,
1997.

[35] Reg Foulkes and John Morris. Fighting worms in a
large corporate environment: A design for a network
anti-worm solution. InVirus Bulletin International
Conference, pages 56–66, New Orleans, 2002. Virus
Bulletin Ltd.

[36] The Animal Liberation Front. http://www.
animalliberationfront.com.

[37] The Earth Liberation Front. In defense of all life,
http://www.earthliberationfront.com.

[38] Fyodor. The Art of Port Scanning, http://
www.insecure.org/nmap/nmapdoc.html.

[39] Gamespy. Gamespy arcade, http://www.
gamespyarcade.com.

[40] Google. http://www.google.com/.

[41] Mike Hall and Kevin Wiley. Capacity verification
for high speed network intrusion detection systems.
In Andreas Wespi, Giovanni Vigna, and Luca Deri,
editors,RAID, pages 239–251, Zurich, Switzerland,
2002. Springer-Verlag.

[42] Shane Harris. Disease experts, medical supplies sent
to New York. http://www.c-i-a.com/pr0302.htm,
2001.

[43] Herbert HexXer. Codegreen beta release, http://
online.securityfocus.com/archive/82/211428.

[44] Metacom Inc. Tivolicertified.com, http://
www.metacom.net/v2/tivoli/events/tam.asp.

[45] Microsoft Inc. Security products and technologies
center, http://www.microsoft.com/traincert/centers/
security.asp.

[46] Symantec Inc. W32.gnuman.worm, http://
securityresponse.symantec.com/avcenter/venc/
data/w32.gnuman.worm.html.

[47] Xilinx Inc. Virtex ii pro platform fpga complete data
sheet, http://direct.xilinx.com/bvdocs/publications/
ds083.pdf.

[48] itsecure. OpenSSH Trojan Horse, http://www.
itsecure.com.au/alerts/alert.htm?alertid=95.

[49] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Ch-
eney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, Monterey,
CA, June 2002.

41

[50] Markus Kern. Re: Codegreen beta release, http://
online.securityfocus.com/archive/82/211462.

[51] Darrell Kienzle. Private communication.

[52] Eric Korpela, Dan Werthimer, David Anderson,
Jeff Cobb, and Matt Lebofsky. Seti@home:
Massive distributed computation for seti, http://
www.computer.org/cise/articles/seti.htm.

[53] Kaspersky Labs. W95/CIH (a.k.a Chernobyl), http://
www.viruslist.com/eng/viruslist.html?id=3204.

[54] Message Labs. W32/bugbear-ww, http://www.
messagelabs.com/viruseye/report.asp?id=110.

[55] Richard Lippmann, Robert K. Cunningham,
David J. Fried, Isaac Graf, Kris R. Kendall, Seth E.
Webster, and Marc A. Zissman. Results of the 1998
DARPA Offline Intrusion Detection Evaluation.
In Proceedings of Recent Advances in Intrusion
Detection (RAID), 1999.

[56] Richard Lippmann, Joshua W. Haines, David J.
Fried, Jonathan Korba, and Kumar Das. The
1999 DARPA off-line intrusion detection evaluation.
Computer Networks, 34(4):579–595, October 2000.

[57] John McHugh. Testing Intrusion detection systems:
A critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by Lin-
coln Laboratory. ACM Transactions on Informa-
tion and System Security, 3(4):262–294, November
2000.

[58] Brian McWilliams. Yaha Worm Takes out Pakistan
Government’s Site, http://online.securityfocus.com/
news/501.

[59] Microsoft. ActiveX Controls, http://www.microsoft.
com/com/tech/activex.asp.

[60] Domas Mituzas. FreeBSD Scalper Worm, http://
www.dammit.lt/apache-worm/.

[61] David Moore. Observing small or distant se-
curity events, http://www.caida.org/outreach/
presentations/2002/usenixsec/.

[62] David Moore, Colleen Shannon, and k claffy. Code-
red: a case study on the spread and victims of an
Internet worm. InThe Second Internet Measurement
Workshop, pages 273–284, November 2002.

[63] Carey Nachenberg. Personal communication,
November 2002.

[64] George Necula, Scott McPeak, and Westley Weimer.
CCured: Type-Safe Retrofitting of Legacy Code. In
Proceedings of the Principles of Programming Lan-
guages. ACM, 2002.

[65] Netcraft. The Netcraft Survey, http://www.netcraft.
com.

[66] NORMAN. Norman Corporate History, http://
www.norman.no/aboutnorman.shtml.

[67] Lab Tests Online. The Laboratory Response Net-
work: Helping Laboratories to Prepare for Potential
Terrorist Attacks, http://www.labtestsonline.org/lab/
labnetwork-4.html, May 2002.

[68] Vern Paxson. Growth Trends in Wide-Area TCP
Connections.IEEE Network, 8(4):8–17, July 1994.

[69] Sam Phillips. dasbistro.com default.ida responder.
http://sunsite.bilkent.edu.tr/pub/infosystems/% lph-
pweb/default.txt.

[70] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey, and
Phil Winterbottom. Plan 9 from bell labs, http://
www.cs.bell-labs.com/sys/doc/9.pdf.

[71] Honeynet Project. The Reverse Challenge, http://
project.honeynet.org/reverse.

[72] OpenBSD project. Revised openssh security advi-
sory, http://www.openssh.com/txt/preauth.adv.

[73] The Honeynet Project. http://www.honeynet.org/.

[74] The Honeynet Project. Know Your Enemy: Mo-
tives, http://project.honeynet.org/papers/motives/.

[75] The Honeynet Project. The reverse challenge: http://
www.honeynet.org/reverse/.

42

[76] Niels Provos. Honeyd: Network rhapsody for you,
http://www.citi.umich.edu/u/provos/honeyd/.

[77] Richard Rashid, Robert Baron, Alessandro Forin,
David Golub, Michael Jones, Daniel Julin, Douglas
Orr, and Richard Sanzi. Mach: A foundation for
open systems. InProceedings of the Second Work-
shop on Workstation Operating Systems(WWOS2),
September 1999.

[78] RedHat. Redhat secrity courses, http://
www.redhat.com/training/security/courses/.

[79] Ryan Russell. Private communication.

[80] Markus Schmall. Bulding Anna Kournikova:
An Analysis of the VBSWG Worm Kit, http://
online.securityfocus.com/infocus/1287.

[81] F secure Inc. Global slapper worm information cen-
ter, http://www.f-secure.com/slapper/.

[82] Gobbles Security. Remote Apache 1.3.x Exploit,
http://online.securityfocus.com/archive/1/277830.

[83] Alex Snoeren, Craig Partridge, Luis Sanchez, Chris-
tine Jones, Fabrice Tchakountio, Beverly Schwartz,
Stephen Kent, , and W.T̃imothy Strayer. Single-
Packet IP Traceback.IEEE/ACM Transactions on
Networking, 10(6), December 2002.

[84] Colusa Software. Omniware: A Universal Sub-
strate for Mobile Code, http://citeseer.nj.nec.com/
software95omniware.html, 1995.

[85] Valve Software. Half life, http://www.half-life.com.

[86] Stuart Staniford, Vern Paxson, and Nicholas Weaver.
How to 0wn the Internet in Your Spare Time. InPro-
ceedings of the 11th USENIX Security Symposium.
USENIX, August 2002.

[87] Symantec. Symantecs Corporate History, http://
www.symantec.com/corporate/index.html.

[88] Symantec. W32.Benjamin.Worm, http://
securityresponse.symantec.com/avcenter/venc/
data/w32.benjamin.worm.html.

[89] Symantec. W32.Sonic.worm, http://
securityresponse.symantec.com/avcenter/venc/
data/w32.sonic.worm.html.

[90] Max Vision. Whitehats: Lion Internet Worm Analy-
sis, http://www.whitehats.com/library/worms/lion/.

[91] Max Vision. Whitehats: Ramen Internet Worm
Analysis, http://www.whitehats.com/library/worms/
ramen/.

[92] Inc VMware. VMware, http://www.vmware.com/.

[93] David Wagner and Drew Dean. Intrusion detection
via static analysis. InIEEE Symposium on Security
and Privacy. IEEE, 2001.

[94] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and
Alexander Aiken. A First Step towards Automated
Detection of Buffer Overrun Vulnerabilities. InNet-
work and Distributed System Security Symposium,
pages 3–17, San Diego, CA, February 2000.

[95] David Wagner and Paolo Soto. Mimicry Attacks
on Host-Based Intrusion Detection. InACM CCS,
2002.

[96] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-Based
Fault Isolation. ACM SIGOPS Operating Systems
Review, 27(5):203–216, December 1993.

[97] World Health Organization. Communicable Disease
Surveillance and Response, http://www.who.int/
emc/.

43

