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Abstract—
While network measurement techniques are continually improv-

ing, representative network measurements are increasingly scarce.
The issue is fundamentally one of access: either the points of interest
are hidden, are unwilling, or are sufficiently many that representa-
tive analysis is daunting if not unattainable. In particular, much of
the Internet’s modern growth, in both size and complexity, is “pro-
tected” by NAT and firewall technologies that preclude the use of
traditional measurement techniques. Thus, while we can see the
shrinking visible portion of the Internet with ever-greater fidelity,
the majority of the Internet remains invisible. We argue for a new
approach to illuminate these hidden regions of the Internet: oppor-
tunistic measurement that leverages sources of “spurious” network
traffic such as worms, misconfigurations, spam floods, and malicious
automated scans. We identify a number of such sources and demon-
strate their potential to provide measurement data at a far greater
scale and scope than modern research sources. Most importantly,
these sources provide insight into portions of the network unseen
using traditional measurement approaches. Finally, we discuss the
challenges of bias and noise that accompany any use of spurious net-
work traffic.

I. INTRODUCTION

Much of our insight into the current state of the Internet de-
rives from empirical measurement studies. Unfortunately, while
the measurement techniques used in these studies are increasingly
refined, the scope at which researchers can conduct such mea-
surements is conversely shrinking.

For example, the growth of network address translation (NAT)
has hamstrung traditional active measurement efforts - which
typically presuppose addressibility. Thus even simple questions
about edge network demographics are difficult to answer because
researchers lack adequate access to the types of machines (i.e.,
home users, small businesses) that heavily determine the answer.
Moreover, researchers are also limited to using well-behaved net-
work traffic in their active measurement studies. It would be un-
thinkable to conduct a large-scale measurement study of bisection
bandwidth capacities by flooding the network from thousands of
sources. Indeed, the increase in network-borne threats has fueled
a backlash against even the most innocuous network probes—a
ping packet to many hosts produces a nasty e-mail in addition to
a round-trip time measurement.

Consequently, much active measurement research relies upon
dedicated infrastructures (PlanetLab, NIMI) to provide data.
However, such infrastructures are inherently limited as the num-
ber of available sources are relatively small and homogeneous
(e.g., 10s or hundreds of nodes associated with educational or
research networks, often close to the core) and not representa-
tive of the larger Internet (millions of end-hosts in homes, small
businesses, Internet cafes, often deep on the edge). Cooperative

efforts to gain greater access to these sources [10], [2] have yet to
see much adoption.

Similarly, passive measurement efforts are gated by the rich-
ness of the observer’s vantage point. Most researchers are con-
sequently limited to research and educational networks and typi-
cally a limited set of the links in those settings. Obtaining traces
for a large and diverse demographic requires greater cooperation
from network carriers, which, for business reasons and privacy
concerns, has generally been infeasible. Exceptions to this rule
have been performed by the carriers themselves [9], [7] and even
these still only cover a tiny fraction of Internet hosts and paths.

Consequently, while current measurement techniques can tell
us more than ever before about the visible portions of the Internet,
those portions of the Internet with little or no visibility remain far
larger, with the gap between visible and dark likely widening.

Addressing these problems would seemingly require wide-
spread deployment of measurement agents inside edge networks,
generating regular test traffic of sufficient scale and diversity to
drive general experimentation. While a straightforward imple-
mentation of this vision is both economically and socially infea-
sible, in this paper we argue that such traffic is already being gen-
erated and can be opportunistically measured. In particular, we
propose exploiting the prodigious, yet underutilized, traffic gen-
erated by compromised or misconfigured hosts—worm probes,
botnet scans, DDoS backscatter, spam floods and so forth. In pre-
liminary experiments we show that such data provides a broad,
diverse and viable substrate for a variety of network measurement
activities and serendipitously side-steps many of the limitations
of traditional methods.

In the remainder of this paper we present our case in more
depth. In the next section we discuss how spurious traffic can pro-
vide improvements in scale and diversity over traditional meth-
ods, followed by examples of large scale vents that generate such
traffic in § III. In § IV we explore techniques for utilizing these
sources and § V sketches some preliminary results from oppor-
tunistic measurement. We sketch the new challenges and limita-
tions presented by this approach in § VI and finally we conclude
in § VII.

II. WHY SPURIOUS TRAFFIC?
Spurious traffic provides us with a number of unique charac-

teristics that are attractive for network measurement.
1) Many Sources: Harnessing spurious events for measure-

ment purposes can yield several orders of magnitude more traffic
sources than are currently available from other active measure-
ment sources such as PlanetLab [4] or neti@home [10]. Orga-
nized activity such as automated scanning and spam can use large



bot networks of tens of thousands of hosts. For example, we have
recorded traffic from over 16,000 unique IP addresses from a sin-
gle concerted scan. In another study of a domain that receives
large amounts of spam we recorded 38,000 addresses.

Internet-scale events such as worm outbreaks can infect hun-
dreds of thousands of hosts, creating an incredibly large and topo-
logically diverse pool of traffic sources. For example, CAIDA
recorded traffic from 359,000 sources for the first Code Red
(CRv2) outbreak [17] and 160,000 sources for NIMDA [1].
While the peak number of traffic sources from initial infections
is relatively short lived, often large numbers of infected machines
continue to generate useful traffic, sometimes years after the ini-
tial infection.

Moreover, most of the sources we have examined are dis-
tinct between spurious traffic episodes. For example, compar-
ing sets of addresses from three major traffic sources—a large,
automated scan (∼ 16,000 machines), long-lived Code Red II in-
fections (∼ 1,500 machines) and hosts sending email to a heav-
ily spammed domain (∼ 38,000 machines), we find only 24 ad-
dresses that appeared in more than one set. Thus, we can po-
tentially combine multiple types of sources to obtain even larger
pools of sources, if the measurement we wish to perform is com-
patible with the different source types.

2) Great Diversity: Today’s organized measurement in-
frastructures are highly homogeneous, consisting primarily of
sources from academic institutions in the US and Western Eu-
rope interconnected with high-bandwidth low-congestion links.
For example, PlanetLab currently has 584 nodes representing
275 sites in a handful of countries.

In contrast, sources of spurious traffic are often Internet-wide
and biased towards machines that have been difficult for re-
searchers to access (e.g., those of private institutions and indi-
viduals). For example, the 38,000 machines originating spam
to one of our domains have whoisrecords with addresses from
159 countries, and bottleneck bandwidth (measured using the
M&M tool suite [11]) ranging from 56 Kbps to 622 Mbps. In
addition, a large fraction of the machines we have measured re-
side behind NAT boxes (see § V). These hosts and their networks
would be invisible to traditional measurement techniques.

3) Social Acceptability: Historically, it has been taboo to
consider measurement activities that would consume very large
amounts of aggregate bandwidth: generating wide-scale high-
volume network probes is at best considered anti-social and ir-
responsible, and at worse as no different than a hostile network
attack. However, measuring preexisting sources that exhibit such
behavior (such as the Slammer worm’s saturation of network ac-
cess links [16]) raises no such concerns—the event has already
happened due to someone else’s misbehavior and there is no di-
rect harm caused by exploiting this behavior.

Similarly, large-scale passive analysis of legitimate traffic
raises very significant privacy concerns, and thus has been largely
infeasible to date. However, spurious traffic is generally devoid
of normal application content, rendering these issues moot. Fur-
thermore, the unsolicited broadcast nature of this traffic provides
some safe harbor even should the contents be sensitive or propri-
etary. In the vernacular, “the cat is already out of the bag”.

III. EXAMPLES OF TRAFFIC SOURCES FOR OPPORTUNISTIC
MEASUREMENT

Opportunistic measurement requires discovering events (traf-
fic sources) that satisfy several constraints. First, the traffic must
meet the requirements of the analysis that we wish to perform:
e.g., high-volume TCP flows for bottleneck bandwidth estima-
tion, or long-term predictable traffic for path characterization.
The event must also generate enough traffic to produce statisti-
cally meaningful results. Finally, the traffic must include des-
tination addresses visible to the researcher. Regarding this last
point, often spurious traffic events generate traffic viewable from
any vantage point on the Internet. But in addition such traffic fre-
quently has a non-uniform distribution, creating hot-spots or even
attractors where the traffic concentrates.

We have observed several different classes of events exhibiting
these properties:

A. Event Classes
1) Worms: Worms turn large numbers of hosts into traffic

sources, and their code is directly available. These features make
them ideal candidates for opportunistic measurement. Worms
also provide two different modes useful for measurement. The
initial flurry of traffic from a worm outbreak typically lasts for
only a few hours, but results in traffic from a massive number
of sources — sometimes numbering in the tens of thousands of
machines. We refer to these singular events as supernovas. Tak-
ing best advantage of these spectacular measurement events re-
quires careful prior planning to ensure that we have the necessary
passive measurement infrastructure in place to capture the occur-
rence.

However, infected machines can continue to scan for longer
periods, sometimes even years, after the initial attack. This on-
going activity can provide predictable long-term traffic sources
that we term pulsars. Indeed, worms released in 2001 [17], [1]
continue to scan the Internet from thousands of infected hosts.1

2) Automated Scans: Another significant source of traffic on
the Internet is the ever-present “background radiation” of auto-
mated scans by attackers looking for vulnerable machines [20].
Malicious scans are often performed collaboratively by large col-
lections of bots, sometimes numbering in the 10,000s of ma-
chines. Their scanning patterns vary widely from unpredictable
sharp bursts to slow linear probes lasting weeks.

Automated scans differ from worms in that generally they seek
to derive more information about a host. Where a worm is typi-
cally interested only in finding the next target, a tool-driven scan
may look for specifics of a given protocol stack, multiple vulnera-
bilities, or other remotely discernible information. Consequently,
network scans can generate relatively large amounts of traffic to
individual IP addresses (or subnets) within a short time period.

3) Spam: When present in large quantities, spam provides an
interesting class of spurious traffic because it gives us access to
relatively long-lived TCP flows. Passive measurement tools of-
ten require ample flow sizes (e.g., 50 packets) for accurate anal-
ysis [11]. In addition, hosts used to source or relay spam often
reside on types of computers not easily accessible to researchers.

1Strictly speaking, Code Red II itself has not been endemic since 2001. Rather,
our data shows that the original has died off as programmed on October 1st of
each year, but new variants are released including CodeRed.F[6] with the die-off
date altered to give the worm extended life.



In fact, a significant percentage of open proxies used to send
spam correlate with computers that have also transmitted viruses
as email attachments [14]. This is likely due to the fact that recent
malware such as SoBig or MyDoom create email proxies on the
infected host.

4) Network (Mis)Configurations: Misconfigurations, default
network settings, static software configurations and other oddities
in network configuration settings have the potential of creating
large, consistent attractors that, while a tremendous nuisance for
the affected network administrators, can incidentally prove quite
valuable for network measurement. In addition, because these are
not a form of malware, they will often reflect a different class of
host demographics.

One recently documented example comes from the configura-
tion of several types of NetGear routers, which had hardcoded
into them the address for an NTP server at the University of Wis-
consin. This resulted in predictable, periodic traffic from in ex-
cess of a half million addresses [21]. Another example concerns
a singular IP address in the UCSD Network Telescope, which
receives a huge amount of spurious traffic due to its use as a pre-
configured source address in a popular DDoS attack tool.

B. Example Events

We now sketch four specific network events that have provided
opportunities for opportunistic measurement, with an empha-
sis on providing concrete examples of spurious network events
and highlighting characteristics useful for measurement purposes.
Later we discuss preliminary results drawn from some of these
events.

1) Code Red II : The Code Red II worm [17] was released Au-
gust 4th, 2001, and remains an endemic source of Internet “back-
ground radiation”. One facet of the worm that provides for oppor-
tunistic measurement is its logic for selecting addresses to probe.
Instead of selecting 32-bit addresses uniformly, Code Red II pref-
erentially scans local subnets. Each infectee scans within the
same /16 block as its own address with probability 3

8
; within the

same /8 block with probability 1

2
; and within the entire Internet

address space with probability 1

8
.

Another distinctive behavior of Code Red II is that it varies the
number of threads it uses for scanning based on the language set-
ting of the infectee’s operating system, using 600 threads for sys-
tems with a setting of Chinese and 300 threads otherwise. Thus,
the observed scan rate of a source could in principle be used to
infer the language setting of the source, including use of non-
Chinese systems inside of China, and vice versa.

2) Witty Worm: The Witty worm [18] was released in March,
2004. It spread worldwide, infecting 12,000 hosts, in 75 minutes.
Witty was noteworthy in a number of ways: the entire worm fit
within a single UDP packet; it was released the day after the an-
nouncement of the vulnerability it exploited; it was the first (and
so far only) large-scale Internet worm that carried a destructive
payload; and it targeted a flaw in the passive analysis of a network
security product. Witty’s basic structure was to seed the random
number generator using the current uptime; generate and trans-
mit 20,000 infection packets targeting randomly selected destina-
tion addresses; pick a random disk to corrupt; if the disk existed,
corrupt a random block and start over with reseeding; otherwise,
continue for another 20,000 infection packets without reseeding.

3) The Daily Eurasian Scan: A large-scale scan from sources
in China (primarily), Korea, Japan, and Germany probes much
of the IPv4 address space on a daily basis. Over time we have
identified 16,000 sources participating in the scan, visible each
day at CAIDA, Stanford, and LBNL. The scan sends SYN pack-
ets in bulk to ports 9898/tcp (Dabber Worm backdoor), 1023/tcp
(Sasser Worm backdoor) and 5554/tcp (Sasser worm FTP server).
Two characteristics of the scan make it exploitable for mea-
surement: it predictably appears daily always within the same
5 minute time frame, and it generates large volumes of traffic.
Because it consistently sends data at the same time each day, we
can use it for studies sensitive to cross-traffic (such as queue oc-
cupancy and bandwidth estimations) without consideration of di-
urnal traffic variations. At the time of this writing it has been
observed in traces for over a year [22].

4) A Heavily Spammed Domain: We acquired access to a
long-standing Internet domain name that appears in widely dis-
tributed documentation. As a result, the domain receives up to
1 million spam emails daily, from over 40,000 source addresses.
These spam emails can be large enough to produce TCP flows of
sufficient size for complex flow analysis [11]. Furthermore, by
changing the DNS records associated with the domain, we can
move the focus of this traffic to different locations.

IV. ADAPTING EXISTING MEASUREMENT METHODS

Current measurement practices typically either analyze traffic
injected into the network in a controlled manner, or characterize
network properties by investigating their direct effect on traffic.
Opportunistic measurement, on the other hand, is “parasitic”: the
goal is to leverage existing traffic to infer unrelated properties
of the network or the sending hosts. Even more than existing
measurement techniques, however, opportunistic measurement is
complicated by vagaries of the collection environment and lim-
ited knowledge of the sending hosts. In addition, it requires gain-
ing access to useful vantage points for collecting traffic. In this
section we discuss ways in which opportunistic measurement can
allow us to more broadly apply existing analysis techniques.

A. Calibration

Unless we perform experiments in a highly controlled test-
network, measurement studies must compensate for common dis-
turbances, including drop rates, network outages, filtering rules,
routing flaps, and queuing delays in the network. This is often
done by having detailed knowledge and/or control of the sending
source, and comparing sent traffic to received traffic.

With spurious traffic this is not practical, as the researcher has
no control over the sources and likely little knowledge of network
properties (such as filtering rules) between the traffic sources and
the collection network. However, spurious traffic sometimes pro-
vides ways to calibrate measurements. Pulsars can exhibit quite
reliable traffic patterns, with many topologically diverse sources
and well-understood traffic coverage distributions. These may
allow determination of whether biases exist in the collection net-
work. For example, worms or botnets that scan uniformly across
the address space can over time reveal the presence of filtering
of certain sources, protocols or ports by the consistent absence of
the corresponding traffic at the point of measurement.



B. Locality Biases and Attractors

Sources of spurious traffic often select their destinations in a
non-uniform fashion. Such biases can considerably complicate
some forms of direct analysis because the non-uniformity must
be taken into account when extrapolating from the measurement’s
viewpoint to the broader Internet. However, such locality biases
can also provide opportunities to infer otherwise hidden informa-
tion (see § V-B).

When a locality bias is extreme, we can think of it as a form of
traffic “attractor.” If we can gain access to the attractor, we can
leverage it for extensive measurement. For example, consider a
public-address block that resides just above one of the private-
address blocks. Any malware that (i) performs sequential scan-
ning using its local address as a starting point (e.g., Blaster [8]),
and (ii) runs on a host assigned to the private-address block will
very rapidly probe the adjacent public-address block. Thus, the
particular public-address block provides magnified visiblity into
the malware’s activity.

The magnification can be quite great: measurements we have
conducted at such a block show a “background radiation” rate
1,000 times higher than seen on other address blocks. In the ex-
treme, the attractor receives all of the spurious traffic, such as the
previously mentioned NetGear bug that flooded the Wisconsin
NTP server [21].

Attractors needn’t be IP addresses. For example, a domain
name can serve as a focal point for spurious traffic, such as the
spam target discussed previously. An advantage of these types
of attractors is that we can move them to different points in the
topology by modifying the mapping between the attractor’s name
(e.g., DNS record) and the corresponding IP address.

Finally, if we can compare observations from both within a
preferred destination region and outside, then we can sometimes
use the difference measured between the two to infer properties
of the spurious traffic sources. Again, see § V-B for an example.

C. Inferring Network Properties

Traditional passive measurement techniques can be used with
spurious traffic to infer network properties such as queuing de-
lay via packet-pair variance, bandwidth and capacity measure-
ments [13], [11], Internet distance studies via TTL analysis and
packet loss estimation. For example, we used the MultiQ tool
from the M&M tool suite [11] to estimate the bottleneck link
bandwidth of 24,698 “significant” flows from 2,269 spam sources
collected over a 24 hour period, finding clear spikes at popular
bandwidths (modem speed, 10 Mbps Ethernet, 100 Mbps Eth-
ernet). Particularly interesting was a clear, large spike at OC-
12 speeds, which is consistent with the claim we have heard ex-
pressed that some spammers lease access to high-speed links to
source their traffic.

D. Inferring End-Host and Edge Properties

Spurious traffic can provide detailed information about the
end-hosts that source it. One particularly fruitful method for gath-
ering end-host information is by exploiting the logic of the event
source itself by reverse-engineering the code used to generate the
traffic. See in particular the discussion of analyzing the Witty
worm outbreak in § V-A below.

We can also use traditional passive techniques for inferring
end-host characteristics. For example, we can infer the operat-
ing system and link speeds of the thousands of hosts present in
a spurious traffic event using passive fingerprinting tools [3], [5]
and packet-pair analysis [13], [11]. We can also sometimes ex-
ploit knowledge of the types of platforms associated with specific
events for additional inference. For example, we might detect
middleboxes by comparing the passive fingerprint of a source’s
traffic with the types of platform known to emanate the event
type; in our study of Code Red II—a Windows-only worm—
our analysis of traces using p0f [3] suggests that 14% of the
1,528 sources in fact originated from non-Windows sources, pre-
sumably reflecting Web proxies. We might also be able to detect
and quantify middleboxes by the presence of their side effects,
such as “VIA” headers in Web requests.

E. Amplifying Sources
While opportunistic measurement can be constrained by our

level of access to spurious sources, it may be possible to coerce
sources into sending traffic at higher rates (agitating) or attract
new sources to a collection site (chumming).

Agitating a source of spurious traffic can cause it to send ad-
ditional traffic, with a common example being responding to
probes received at unused address spaces to increase the proba-
bility of enticing an incoming connection. For example, in one of
our measurement environments we use high-interaction Windows
honeypots that engage in full application conversations on TCP
ports 135, 139 and 445, as well as UDP ports 137 and 138. Turn-
ing on the response mechanism increases the incoming packet
count by over an order of magnitude for both TCP and UDP.

Chumming attempts to attract new spurious sources to a col-
lection site. A simple example is intentionally disseminating an
email address to mailing lists or placing it on the Web to increase
its visibility to spammers. In addition, some network services are
natural traffic attractors, such as the tendency of large IRC servers
to become DDoS attack targets [19] due to their high visibility
and popularity with script kiddies.

V. PRELIMINARY RESULTS
We consider two studies we performed recently using oppor-

tunistic measurement that demonstrate its utility and provide a
taste of its use in practice.

A. Witty Worm Analysis
We begin with a recap of a recent analysis of the outbreak of

the Witty worm. As reported in [12], with colleagues we ana-
lyzed traces from a /8 network telescope [15] that recorded ap-
proximately 1 in every 256 packets sent by each Witty infectee.
Inspection of the worm’s code (readily available since the worm
sent a copy of itself in each packet!) revealed that it generated
four 32-bit random numbers for each packet it sent: two from
which it constructed a random destination address (using the top
16-bits of each random number), one for a random destination
port address (Witty was unusual in that it triggered its exploit
based on source port rather than destination port), and one for
padding each packet to a varying degree.

However, the “random” numbers were of course not truly ran-
dom, but rather pseudo-randomly generated using a linear con-
gruential random number generator. The presence of bits from



multiple random numbers in each packet then meant that it is
possible to recover the state of the random number generator by
inspecting a single packet sent by a Witty infectee; thus, the oper-
ation of the infectee ceases to be “random” and instead becomes
completely deterministic and predictable.

Such determinism has great power. Because we can tell exactly
how many packets an infectee sent between any two that appeared
at the telescope, and because the system call used by infectees to
send packets would block if the local link was busy, we can com-
pute the bandwidth of the local link with high accuracy (as the
volume of data sent between the two observed packets divided by
the time elapsed between their observations), even in the presence
of major packet loss between the source and the telescope.

Because Witty would reseed every 20,000 packets only if a ran-
domly picked disk drive number corresponded to an actual disk,
by observing the presence or absence of reseeding we can com-
pute how many disks were attached to each infectee.

Finally, because Witty used the system uptime to see its ran-
dom number generator, and because we could determine the seed
by looking for linear (in time) increases in candidates present at
reseeding events, we can also determine to high precision each
infectee’s uptime.

All three of these properties—access link bandwidth, number
of attached disks, and uptime—are seemingly unmeasurable us-
ing any traditional techniques, yet we can measure them, and for
a large population, using opportunistic measurement that exploits
the exact structure of the source sending the spurious traffic.

B. NAT Usage Estimation using Code Red II Infectees
We have performed another study using opportunistic measure-

ment to quantify the extent of NAT deployment for more than
a thousand hosts infected by Code Red II. To do so we exploit
the worm’s preferential scanning of nearby prefixes. We tracked
Code Red II scans over several monitored subnets and then com-
puted the average number of probes received per /24. If a partic-
ular subnet receives, on average, approximately 2

10 times more
packets per /24 than others from a given source, then with high
probability the source and the preferred subnet share the same /8.

The reasoning behind the factor of 2
10 is as follows. As de-

scribed earlier, 3

8
’s of the time Code Red II would generate a ran-

dom address within its own /16; 1

2
of the time, it would generate

one within its own /8; and the remaining 1

8
, uniformly from the

Internet’s entire address space. Thus, 3

8
’s of the time, we have no

opportunity to see the infectee’s probe (unless the infectee was
within the same /16 as one of our measured networks). The re-
maining 5

8
’s of the time, it would either target the same /8 result-

ing in 1

2
packets going to 2

16 /24s or the Internet at large with 1

8

of the packets going to 2
24 /24s. Therefore a /24 on a preferred

subnet receives approximately 2
27

217 times as many packets2.
If the infectee had a public address, then we immediately know

its address (because it’s given as the source of the probes it sent),
and can verify whether it’s in the same block as one of our mea-
sured networks. If on the other hand the infectee had a private
address, then we could infer this fact by its preference for /8 ad-
dresses near its private address.

For our study we concurrently collected a set of 48-hour HTTP
traces. We monitored four /24 subnets and four /16 subnets that

2to be exact, a preferred /24 will receive slightly more than 2
10 times as many

packets due to packets it receives that are part of the 1
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Fig. 1. CDF of the ratio of packets sent to /24s in the 192 /8 to /24s on other /8s.
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Fig. 2. CDF of the ratio of packets sent to /24s in the 169 /8 to /24s on other /8s.

do not share a /8 with a private address block, six /24 subnets
within the 192/8 space, and one /16 within the 169/8 space. To
determine that a source was a Code Red II infectee, we searched
the trace files for the specific HTTP GET request that Code Red II
issues once it finds a host with port 80 open. From this we con-
structed a list of unique Code Red II source addresses and used
it to reduce our trace file to only include traffic from each of the
infected sources. The resulting data set consists of 487,291 scans
from 1,528 sources.

Figure 1 shows a CDF of the ratio of probes from each source
sent to the /24 blocks within the 192 /8 address space to /24s
in other /8s. Based on our knowledge of Code Red II’s scanning
pattern, we expect an infectee within a 192.168/16 private address
space to send approximately three orders of magnitude more of
its probes to addresses within 192/8. Indeed, Figure 1 shows a
clear mode of sources sending approximate 1000 times more of
their scanning probes in this fashion. From the figure we see that
around 50% of the infectees appear to use private IP addresses in
the 192.168/16 range.3

We repeat the study with the sources that prefer the 192 subnet
removed, looking for those that preferentially send traces to the
/16 within the 169 subnet as shown in Figure 2. Roughly 70% of
the remaining sources show no preference, however again there
is a clear mode (approx. 30%) that prefer the 169 /8.

These results only provide a partial insight into private address
usage by Code Red II infectees. Other reserved blocks such as
the 10/8 and 172.16/12 are not represented. But, clearly, the in-
fectees exhibit a great deal of private address use. We also need
to remain cautious in generalizing these results as more broadly
representative: Code Red II only infects hosts that have not been
updated in several years. On the flip side, it is difficult for a host
behind a NAT to become infected with Code Red II in the first
place, since the NAT will not usually forward the incoming con-
nection request.

3The irregularities in the figure concerning sources never sending or always
sending to a 192/8 address arise due to granularity effects caused by the limited
number of probes seen from many of the sources.



VI. LIMITATIONS

Many of the challenges of opportunistic measurement stem
from lack of control over the traffic sources—a researcher only
has passive access to pre-existing events. The researcher is thus
constrained by the nature of traffic generated by existing events,
the number of active sources, the periodicity during which the
traffic is accessible, and the number of sources contributing. Fur-
thermore, some events may only produce useful hotspots in areas
of the Internet difficult to access (e.g., a commercially owned IP
prefix).

We are further constrained by limited knowledge of the sending
host. Unless inferable from the traffic, it is unlikely we can de-
termine useful information regarding the sending host’s operating
system, hardware capabilities, connectivity bandwidth, upstream
filtering policies, or intervening middleboxes.

Spurious traffic sources rarely provide an unbiased sampling
of hosts on the Internet. One-time flash events, such as the out-
break of an Internet worm, typically emanate from a particular
system type and configuration. Longer-lived worms, such as
Code Red II, are more likely to remain on the machines of un-
sophisticated home users or small businesses. Machines that host
bots, open mail proxies or other traffic source resulting from mal-
ware are more likely to remain active on machines with less ad-
ministrative attention. A similar argument applies to end-host
misconfigurations.

Dealing with these challenges remains a major hurdle for re-
searchers to make effective use of opportunistic measurement.

VII. CONCLUSIONS

Advancement in empirical science is often tied to serendipi-
tous reinterpretations of existing data—an accidental insight that
transforms noise into meaning. Indeed, disciplines ranging from
astronomy to medicine are rarely able to directly observe phe-
nomena of interest. Instead, they must exploit secondary data
sources to infer the hidden underlying activity—whether it be in-
flation via red shift or human infection via white cell count. In
many ways these endeavors are apt metaphors for the challenges
in Internet measurement as well. Few properties of the Internet
can be directly measured themselves and thus the key innova-
tions in the field are all inference-driven. Unfortunately, the In-
ternet is changing in ways that make broad measurement increas-
ingly untenable. Large swathes of the network cannot be probed
directly and a variety of valuable measurement techniques have
side-effects that are not socially permissible.

In this paper, we discuss a widely neglected data source with
great potential to address these problems. Worms, scans, spam
and DDoS are all scourges that routinely shower the Internet with
spurious and unwanted traffic. While our ultimate hope is that
such activity can eventually be eliminated, in the meantime we
believe this traffic presents a viable and unique source of Internet
measurement data. When one has lemons, one makes lemon-
ade. Moreover, in our preliminary analyses we have found that
exploiting such data allows a broader view (tens of thousands of
hosts at a time), with greater diversity (in geography, topology,
bandwidth and addressibility) and more useful traffic patterns
(e.g., large TCP streams) than would be feasible with conven-
tional network measurement approaches. While we acknowledge
that these sources present their own difficulties and limitations,

we believe it is exactly these challenges that our community is
best at solving.
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