
A Large-Scale Empirical Study of Security Patches
Frank Li Vern Paxson
{frankli, vern}@cs.berkeley.edu

University of California, Berkeley and International Computer Science Institute

ABSTRACT
Given how the “patching treadmill” plays a central role for enabling
sites to counter emergent security concerns, it behooves the secu-
rity community to understand the patch development process and
characteristics of the resulting fixes. Illumination of the nature of se-
curity patch development can inform us of shortcomings in existing
remediation processes and provide insights for improving current
practices. In this work we conduct a large-scale empirical study of
security patches, investigating more than 4,000 bug fixes for over
3,000 vulnerabilities that affected a diverse set of 682 open-source
software projects. For our analysis we draw upon the National
Vulnerability Database, information scraped from relevant external
references, affected software repositories, and their associated se-
curity fixes. Leveraging this diverse set of information, we conduct
an analysis of various aspects of the patch development life cycle,
including investigation into the duration of impact a vulnerability
has on a code base, the timeliness of patch development, and the
degree to which developers produce safe and reliable fixes. We then
characterize the nature of security fixes in comparison to other
non-security bug fixes, exploring the complexity of different types
of patches and their impact on code bases.

Among our findings we identify that: security patches have a
lower footprint in code bases than non-security bug patches; a third
of all security issues were introduced more than 3 years prior to
remediation; attackers who monitor open-source repositories can
often get a jump of weeks to months on targeting not-yet-patched
systems prior to any public disclosure and patch distribution; nearly
5% of security fixes negatively impacted the associated software;
and 7% failed to completely remedy the security hole they targeted.

1 INTRODUCTION
Miscreants seeking to exploit computer systems incessantly dis-
cover and weaponize new security vulnerabilities. As malicious
attacks become increasingly advanced, system administrators con-
tinue to rely on many of the same processes as practiced for decades
to update their software against the latest threats. Given the central
role that the “patching treadmill” plays in countering emergent se-
curity concerns, it behooves the security community to understand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134072

the patch development process and the characteristics of the result-
ing fixes. Illuminating the nature of security patch development
can inform us of shortcomings in existing remediation processes
and provide insights for improving current practices.

Seeking such understanding has motivated several studies ex-
ploring various aspects of vulnerability and patching life cycles.
Some have analyzed public documentation about vulnerabilities,
such as security advisories, to shed light on the vulnerability dis-
closure process [14, 32]. These studies, however, did not include
analyses of the corresponding code bases and the patch develop-
ment process itself. Others have tracked the development of specific
projects to better understand patching dynamics [18, 28, 41]. While
providing insights on the responsiveness of particular projects to
security issues, these investigations have been limited to a smaller
scale across a few (often one) projects.

Beyond the patch development life cycle, the characteristics
of security fixes themselves are of particular interest, given their
importance in securing software and the time sensitivity of their
development. The software engineering community has studied
bug fixes in general [29, 33, 34, 42]. However, there has been little
investigation into how fixes vary across different classes of issues.
For example, one might expect that patches for performance issues
qualitatively differ from those remediating vulnerabilities. Indeed,
Zama et al.’s case study on Mozilla Firefox bugs revealed that de-
velopers address different classes of bugs differently [41].

In this work, we conduct a large-scale empirical study of security
patches, investigating 4,000+ bug fixes for 3,000+ vulnerabilities
that affected a diverse set of 682 open-source software projects. We
build our analysis on a dataset that merges vulnerability entries
from the National Vulnerability Database [37], information scraped
from relevant external references, affected software repositories,
and their associated security fixes. Tying together these disparate
data sources allows us to perform a deep analysis of the patch
development life cycle, including investigation of the code base
life span of vulnerabilities, the timeliness of security fixes, and the
degree to which developers can produce safe and reliable security
patches. We also extensively characterize the security fixes them-
selves in comparison to other non-security bug patches, exploring
the complexity of different types of patches and their impact on
code bases.

Among our findings we identify that: security patches have less
impact on code bases and result in more localized changes than non-
security bug patches; security issues reside in code bases for years,
with a third introduced more than 3 years prior to remediation;
security fixes are poorly timed with public disclosures, allowing
attackers who monitor open-source repositories to get a jump of
weeks to months on targeting not-yet-patched systems prior to
any public disclosure and patch distribution; nearly 5% of security

https://doi.org/10.1145/3133956.3134072


fixes negatively impacted the associated software; and 7% failed to
completely remedy the security hole they targeted. The findings of
our analysis provide us with insights that suggest paths forward
for the security community to improve vulnerability management.

Our work provides several contributions. First, we specifically
focus on security vulnerabilities and their patches. While aspects of
our work have similarities to prior efforts from the software engi-
neering community that examined general bug fixes [29, 33, 34, 42],
we tease apart the differences between security fixes vs. other bug
fixes. Second, we develop a large-scale reproducible data collection
methodology and associated analysis that ties extensive meta-data
on vulnerabilities and their patches with the software source codes
and change histories. As best we know, such a diverse set of data
has not been previously collected and used to explore security patch
development at scale. Conducting such an analysis at scale provides
a third contribution: some prior works have considered analyses
somewhat similar, but restricted to a small handful of software
projects (often only one). We develop robust metrics that one can
compute across a diverse group of projects, supporting a range of
generalizable results.

2 RELATEDWORK
There has been a body of work that investigated aspects of the vul-
nerability life cycle. Frei et al. [14] and Shahzad et al. [32] conducted
similar analyses based on public documentation from vulnerability
databases and security advisories. For example, they compared a
vulnerability’s public disclosure date with announcement dates for
fixed releases available for distribution, finding them concurrent in
60% of cases. Ozment et al. [28] investigated the evolution of vul-
nerabilities in the OpenBSD operating system over time, observing
that it took on average 2.6 years for a release version to remedy
half of the known vulnerabilities. Huang et. al. [18] manually an-
alyzed 131 cherry-picked security patches from five open-source
projects, demonstrating that there exist cases where patch devel-
opment was lengthy and error-prone. Nappa et al. [27] shed light
on the patch deployment process from an end-user perspective,
analyzing when security updates were available to clients and how
quickly clients patched. In our work, we extensively explore new
aspects of patch development dynamics that require merging infor-
mation collected from vulnerability databases with that gleamed
from software source code, such as vulnerability life spans in the
code base and the timeliness of patching the code base relative
to public disclosure. In addition, we aim to generate generalizable
insights by studying a diverse set of over 650 open-source projects.

Explorations of bug fixes in general (beyond just security bugs)
have been performed in the software engineering community.
Zhong and Su [42] conducted an empirical study of over 9,000 bug
fixes across six Java projects. They framed their investigation
around patch properties that would make them suitable for genera-
tion by automatic program repair, finding that the majority are too
complex or too delocalized to likely be automatically created. Simi-
larly, Park et al. [29] studied supplementary bug fixes, additional
fixes produced when the initial fix was incomplete. Their analysis
covered three open-source projects and showed that over a quarter
of remedies required multiple patches. Sliwerski et. al. [33] investi-
gated two projects and correlated updates that required fixes with

the update sizes, finding larger updates were more likely to require
subsequent fixes. Soto et. al. [34] applied common bug fix patterns
to Java patches, finding that less than 15% could be matched.

While these works are similar in their focus on patch charac-
teristics, they mostly were conducted at a smaller scale, and do
not differentiate between different kinds of bugs. Security patches
are of special interest, given their importance in protecting users
and the time sensitivity of their development. We seek to tease
apart the differences between security and non-security bug fixes,
a distinction that has not been previously scrutinized extensively.
Most relevant is a case study performed by Zama et al. [41] on
security and performance fixes in Mozilla Firefox. They noted dif-
fering remediation rates and complexities between security and
performance patches. Perl et. al. [30] also analyzed Git commits
that fixed vulnerabilities to produce a code analysis tool that assists
in finding dangerous code commits. They found that indicative
features of problematic commits include code which handles errors
or manages memory, or is contributed by a new project developer.
Most recently, Xu et. al. [39] developed a method for identifying
security patches at the binary level based on execution traces, pro-
viding a method for obtaining and studying security patches on
binaries and closed-source software. These early findings highlight
the importance of considering different types of software bugs;
a deep understanding of security patches and their development
process can inform the security community in matters related to
vulnerability management.

3 DATA COLLECTION METHODOLOGY
To explore vulnerabilities and their fixes, we must collect secu-
rity patches and information pertaining to them and the remedied
security issues. Given this goal, we restricted our investigation
to open-source software for which we could access source code
repositories and associated meta-data. Our data collection centered
around the National Vulnerability Database (NVD) [37], a database
provided by the U.S. National Institute of Standards and Technology
(NIST) with information pertaining to publicly disclosed software
vulnerabilities. These vulnerabilities are identified by CVE (Com-
mon Vulnerabilities and Exposures) IDs [23]. We mined the NVD
and crawled external references to extract relevant information,
including the affected software repositories, associated security
patches, public disclosure dates, and vulnerability classifications.
Figure 1 depicts an overview of this process. In the remainder of this
section, we describe these various data sources and our collection
methodology.

Note that throughout our methodology, we frequently manually
inspected random samples of populations to confirm that the popu-
lation distributions accorded with our assumptions or expectations.
We chose sample sizes (typically of 100) such that they proved
manageable for manual analysis while large enough to reflect fine-
grained aspects of population distributions.

3.1 Finding Public Vulnerabilities
We relied on the NVD to find publicly disclosed vulnerabilities.
The NVD contains entries for each publicly released vulnerability
assigned a CVE identifier. When security researchers or vendors



Figure 1: An overview of our data collection methodology.
1. We extracted vulnerability characteristics from CVE en-
tries in the NVD with external references to Git commit
links. 2. We crawled other references and extracted page
publication dates to estimate public disclosure dates. 3. We
crawled the Git commit links to identify and clone the corre-
spondingGit source code repositories, and collected security
fixes using the commit hashes in the links. 4. We also used
the Git repositories to select non-security bug fixes.

identify a vulnerability, they can request a CVE Numbering Author-
ity (such as the MITRE Corporation) to assign a CVE ID to it. At this
point, information about the vulnerability may not yet be disclosed.
Upon public release of the vulnerability information, the CVE ID
along with its associated vulnerability information gets added to
the CVE list, which feeds the NVD. NVD analysts investigate the
vulnerability further, populating an entry for the CVE ID with addi-
tional information. In particular, they summarize the vulnerability,
link to relevant external references (such as security advisories
and reports), enumerate the affected software, identify the class
of security weakness under the Common Weakness Enumeration
(CWE) classifications [24], and evaluate the vulnerability severity
using the Common Vulnerability Scoring System (CVSS) [12, 35].

While there exist other vulnerability databases (e.g., securityfo-
cus.com, IBM’s X-Force Threat Intelligence, and securitytracker.com),
we focused on the NVD as it is: (1) public, free, and easily accessible
in XML format, allowing for reproducibility and follow-on studies,
(2) expansive, as the NVD aims to catalog all publicly disclosed
vulnerabilities across numerous software packages, (3) manually
vetted and curated, which in theory provides more accurate data,
and (4) detailed, containing extensive documentation of vulnerabil-
ities (notably external references).

We utilized the NVD XML dataset [38] as snapshotted on Decem-
ber 25th, 2016. Its 80,741 CVE vulnerabilities served as our starting
point for further data collection.

3.2 Identifying Software Repositories and
Security Patches

Many open-source version-controlled software repositories pro-
vide web interfaces to navigate project development (such as
git.kernel.org). We frequently observed URLs to these web interfaces
among the external references for CVE entries, linking to particular
repository commits that fixed the security vulnerability. These links
afforded us the ability to collect security patches and access the
source code repositories.

As Git is arguably the most popular version control system for
open-source software [31], we focused on references to Git web
interfaces. This popularity was consistent with the CVE external
references as well, where links to Git web interfaces were by far
the most common. We observed more than 5,700 unique URLs with
“git” as a substring, excluding those with another common substring
“digit”. To determine if these URLs were indeed related to Git, we
randomly sampled 100 URLs. The vast majority of these were asso-
ciated with Git web interfaces; only two out of the 100 URLs were
non-Git URLs. In comparison, 1,144 external references contained
“svn” (for SVN), 613 contained “cvs” (for CVS), and 347 contained
“hg” or “mercurial” (for Mercurial), significantly fewer for these
other popular version control systems compared to Git.

To find Git repositories and their security patches, we first
reverse-engineered the URL paths and parameters used by popular
Git web interfaces. These included cgit [2], GitWeb [6], github.com,
and GitLab [5], and accounted for 95% of references with “git” as a
substring. (Thus, to consider more Git web interfaces would have
required additional URL reverse-engineering while producing di-
minished returns.) We also identified only an additional 128 URLs
without “git” that were consistent with a common Git web interface,
suggesting that we identified the majority of Git URLs. For the 80%
of these Git URLs that linked to a particular commit (specified in Git
by a commit hash), we crawled the web interfaces’ summary/home
pages and extracted the Git clone URLs, if listed.

In total, we retrieved 4,080 commits across 682 unique Git repos-
itories, tied to 3,094 CVEs. Note that these repositories are distinct,
as we de-duplicated mirrored versions. It is possible that some com-
mits are not security fixes, as they may instead reference the change
that introduced the vulnerability, or may contain a proof-of-concept
exploit instead. However, we found that this is rarely the case. By
manually investigating 100 randomly sampled commits, we found
that all commits reflect fixes for the corresponding vulnerabilities.

3.3 Identifying Non-Security Bug Fixes
We can gain insight into any particularly distinct characteristics of
security patches by comparing them to non-security bug fixes. How-
ever, to do so at scale we must automatically identify non-security
bug fixes. We tackled this problem using a logistic regression that
models the character n-grams in Git commit messages to identify
likely bug fix commits.1

To train our commit classifier, we manually labeled 400 randomly
selected commits drawn from all Git repositories as bug fixes or

1We also explored other commit features for classification, such as the number of
files and lines affected by a commit, the type of commit changes (addition, deletion,
modification), the day of week the commit was made, and the time since the previous
commit. However, these did not provide adequate discriminating power.



non-bug fix commits (136 were bug fixes). We then featurized a
commit message into a binary vector indicating the presence of
common character n-grams in the commit message. To determine
the size of n-grams, the threshold on the number of n-grams to
include, and model parameters, we ran a grid search using 10-fold
cross-validation on the training data. Our feature vector search
space considered n-grams of lengths 2 to 10 and feature vectors
that included the top 10,000 to the top 250,000 most frequently
occurring n-grams for each class. Our model parameter search
space considered both L1 and L2 regularization, with regularization
strengths ranging from 0.1 to 10, and the inclusion of a bias term.

Our final classifier utilized n-grams of lengths 3 to 9, with fea-
ture vectors corresponding to the top 50,000 most common n-grams
for each class. The model used L2 regularization with a regular-
ization strength of 1, and included a bias term. During 10-fold
cross-validation, the classifier had an average recall of 82% and
precision of 91%. While the classifier is not extremely accurate,
it results in only a small fraction of false positives and negatives,
which should have limited effect on the overall distributions of
patch characteristics. In Section 5.2, we compare characteristics of
security patches versus generic bug fixes. We manually validated
that for these characteristics, the distribution of values is similar
between our manually labeled bug fixes and our classifier-collected
bug patches, indicating that our results for classifier-labeled bug
fixes should be representative of randomly selected true bug fixes.

With our classifier, we collected a dataset of bug fixes by ran-
domly selecting per repository up to 10 commits classified as bug
fixes. (Fewer for repositories with less than 10 total commits.) We
chose to select 10 commits per repository as that provided us with
a large set of over 6,000 bug fixes (similar to our number of secu-
rity fixes) balanced across repositories. Note that in our classifier
training, security fixes were labeled as bug fixes. However, only 6%
of bug fixes in our training data (a random sample) were security-
related, thus our dataset consists almost entirely of non-security
bug fixes.2

3.4 Processing Commits
For each commit we collected (both security and non-security
patches), we extracted the historical versions of affected files both
before and after the commit. The diff between these file versions
is the patch itself. In addition, it is often useful to consider only
changes to functional source code, rather than documentation files
or source code comments. We processed the commit data using a
best-effort approach (as follows) to filter non-source code files and
remove comments, providing an alternative “cleaned” commit to
analyze.

To do so, we mapped the top 30 most frequently occurring file
extensions to the programming or templating languages associated
with them, if any (e.g., an extension of .java corresponds to Java,
whereas we assume .txt reflects non-source code). These included

2 We also investigated developing a commit message classifier to automatically distin-
guish between security and non-security fixes, using as ground truth the manually-
labeled commits as well as randomly selected CVE-related security fixes. Given the
base rate challenge arising due to the relative rarity of security fixes, we found that the
classifiers we tried did not provide nearly enough accuracy. We did not consider using
patch characteristics (such as those explored in Section 5.2) as features as we aimed to
understand how security and non-security bug fixes differed along these properties,
thus using such features would provide skewed populations.

0 100 101 102 103

(CVE Publication Date - Estimated Disclosure Date)
in Days (Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 2: CDFof the number of days the estimated disclosure
date precedes the CVE publication date.

C/C++, PHP, Ruby, Python, SQL, HTML, Javascript, Java, and Perl.
We stripped comments and trailing whitespaces under the assumed
programming language’s syntax for source code files, and filtered
out all other files. This provided a cleaned snapshot of files involved
in a commit, from which we computed a cleaned diff.

This method is ultimately best-effort,3 as we handled only the
top 30 extensions and relied on extensions as file type indicators.
However, we note that these top 30 extensions accounted for 95% of
commit files, and incorporating additional extensions would have
resulted in diminishing returns given that each extension poten-
tially required a new cleaning process. Also, in a random sample
of 100 files with a top 30 extension, all extensions corresponded
correctly to the expected file type. This is unsurprising given these
projects are open-source and often involve a number of develop-
ers, which likely discourages a practice of using non-intuitive and
non-standard file extensions.

3.5 Estimating Vulnerability Public Disclosure
Dates

Determining the public disclosure date of a vulnerability is vital to
understanding the timeline of a vulnerability’s life cycle. NVD en-
tries contain a CVE publication date that corresponds to when the
vulnerability was published in the database, not necessarily when
it was actually publicly disclosed [36]. To obtain a more accurate
estimate of the public disclosure date, we analyzed the external
references associated with CVEs. These web pages frequently con-
tain publication dates for information pertaining to vulnerabilities,
which can serve as closer estimates of the public disclosure dates.

For the CVEs corresponding to our collected security commits,
we identified the top 20 most commonly referenced sites that may
contain publication dates, listed in Table 5 in Appendix A. Of these,
two sites were no longer active (mandriva.com and vupen.com), one
did not provide fine-grained dates (oracle.com), and IBM’s Threat
Intelligence X-Force site employed aggressive anti-crawling mea-
sures. For the remaining 16 sites, we constructed per-site parsers
that extracted the date of the relevant publication for a given page.
These pages include security advisories (such as from Debian and
3 We also evaluated using the Linux “file” utility, but found it suffered from frequent
errors.



Redhat), mailing list archives (e.g., marc.info, openwall.com/lists),
other vulnerability database entries (e.g., securityfocus.com, securi-
tytracker.com), and bug reports (such as Bugzilla bug tracking sites).
We restricted our crawling to the top 20 sites, as each site required
developing a new site parser, and we observed diminishing returns
as we added more sites.

We crawled about 13,600 active external references in total, ex-
tracting a publication date from 94% of pages. This provided at least
one date extracted from an external reference for 93% of CVEs, with
multiple dates extracted for 73% of CVEs. To confirm the soundness
of this strategy, we randomly sampled 100 crawled pages, finding
all relevant dates were correctly extracted.

We estimate the earliest disclosure date as the earliest amongst
the extracted reference dates and the CVE publication date. While
this is a best-effort approach, we observe that it yields significantly
improved disclosure estimation. Figure 2 plots the CDF of the num-
ber of days the estimated disclosure date precedes the CVE pub-
lication date. For approximately 8% of CVEs, we did not extract
an earlier external reference date, resulting in no improvement for
disclosure estimation. However, the median difference is nearly
a month (27 days). At the extreme, we witness differences on the
order of years. These correspond to vulnerabilities that are assigned
CVE IDs and publicly disclosed, but are not published to the NVD
until much later. For example, CVE-2013-4119 is a vulnerability in
FreeRDP that was first discussed on an OpenWall mailing list in
July, 2013 and assigned a CVE ID. However, its NVD entry was not
published until October, 2016, resulting in a large discrepancy be-
tween the CVE publication date and the true disclosure date. Thus,
our method provides us with significantly improved disclosure date
estimates.

3.6 Limitations
Vulnerability databases (VDBs) can provide rich sources of data
for analysis of security issues and fixes. However, we must bear in
mind a number of considerations when using them:

Vulnerability Granularity: By relying on the NVD, we can only
assess vulnerabilities at CVE ID granularity. While CVE IDs are
widely used, alternative metrics exist for determining what qualifies
as a distinct vulnerability [10].

Completeness: No VDB is complete, as they all draw from a lim-
ited set of sources. However, by using a VDB as expansive as the
NVD, we aim for our analysis to provide meaningful and generaliz-
able insights into vulnerabilities and security fixes.

Quality: The NVD data is manually curated and verified when
a vulnerability is assigned a CVE ID, which ideally improves the
data quality. However, given the sheer number of vulnerabilities
reported, the NVD may contain errors. Throughout our analysis,
we aim to identify and investigate anomalous data as part of our
methodology for reducing the impact of faulty information.

Source Bias: AVDBmay be biased towards certain vulnerabilities
or types of software, depending on their vulnerability data sources.
Given the extensive range of software considered by the NVD,
we anticipate that our findings will remain largely applicable to
open-source software.

Reporting Bias: Security researchers may exhibit bias in what
security issues they investigate and report, potentially affecting a
VDB’s set of vulnerabilities. For example, researchers may focus
more on publishing high-severity issues, rather than low impact,
hard-to-exploit vulnerabilities. Additionally, researchers may favor
investigating certain vulnerability types, such as SQL injections or
buffer overflows. As a result, we can find raw vulnerability counts
ineffective for comparing trends in the security status of software,
and we avoid drawing conclusions from such analysis.

In addition to the above considerations, our data collec-
tion methodology introduces bias towards open-source software
projects, particularly those using Git for versioning. Thus, our find-
ings might not directly apply to other software systems, such as
closed-source ones. However, our dataset does provide a diverse
sample of 682 software projects.

Finally, our methodology and analyses do rely on some approxi-
mations. With a diverse dataset of different types of vulnerabilities
across numerous projects, we argue that approximations will often
prove necessary, as more accurate metrics would require perhaps
intractable levels of manual effort. For example, evaluating a vul-
nerability’s life span requires understanding the context about the
vulnerability type and the code logic. An automated approach, if
feasible, likely still requires developing a different method for each
vulnerability class, and perhaps each type of project. Prior case
studies [19, 20, 28] that considered vulnerability life spans relied on
manual identification of vulnerability introduction, limiting their
scope of investigation. When we do use approximations, we use
conservative methods that provide upper/lower bounds in order
to still obtain meaningful insights. However, we acknowledge that
these bounds may not fully reflect observed effects or properties.

4 DATA CHARACTERIZATION
In this section, we explore the characteristics of the selected CVEs
and the collected Git software repositories.

4.1 Vulnerability Publication Timeline
In total, we collected 4,080 security fixes for 3,094 CVEs (implying
multiple security fixes for some CVEs, an aspect we explore further
in Section 5.1.3). The earliest CVE with a collected security patch
was published on August 4, 2005, and the most recent on December
20, 2016. In Figure 3, we plot the timeline of these CVEs, bucketed
by the publication month. We observe that our CVE dataset spans
this 11 year period, although it exhibits skew towards more recent
vulnerabilities. Note that, as discussed in Section 3.6, these raw
counts do not imply that our studied software projects have become
more vulnerable over time. Rather the increase may reflect other
factors such as additional reporting by security researchers.

4.2 Affected Software Products
The NVD also enumerates software products affected by a particular
vulnerability for all CVEs in our dataset. We observe a long tail of
856 distinct products, with the top 10 listed in Table 1. The number
of products affected exceeds the number of software projects we
collected because a CVE vulnerability in one project can affect
multiple products that depend on it. Similarly we note that many of



2005 2007 2009 2011 2013 2015 2017
Time

0

100

101

102

103

Nu
m

be
r o

f C
VE

s p
er

 M
on

th
(L

og
-S

ca
le

d)

Figure 3: Timeline of CVEs with collected security fixes,
grouped by publication month.

Top Products Num. CVEs

1. Linux Kernel 917
2. Ubuntu 211
3. FFmpeg 187
4. Debian 170
5. Wireshark 146
6. openSUSE 134
7. PHP 125
8. Android 121
9. Fedora 105
10. QEMU 77

Table 1: The top 10 software products by the number of as-
sociated CVE IDs.

the top affected products are Linux distributions, as a vulnerability
that affects one distribution frequently occurs in others. This bias in
our CVE dataset towards Linux-related vulnerabilities informs us of
the importance of per-repository analysis, in addition to aggregate
analysis over all CVEs. Such analysis equally weighs the influence
of each software project on any computed metrics.

4.3 Vulnerability Severity
The NVD quantifies the severity of vulnerabilities using a stan-
dardized method called CVSS (version 2) [12, 35]. While the CVSS
standard is imperfect [25], it provides one of the few principled
ways to characterize vulnerability risk and potential impact. We
use this score as is, however acknowledging the difficulties in ob-
jectively assessing vulnerability severity.

All CVEs in our dataset are assigned CVSS severity scores, rang-
ing from 0 to 10. In Figure 4, we depict the distribution of CVSS
severity scores for these vulnerabilities, rounded to the nearest
integer. These scores reflect the severity of the vulnerability, with
0 to 3.9 deemed low severity, 4.0 to 7.9 labeled medium, and 8.0 to
10.0 regarded as highly severe. We observe that the NVD data con-
sists of vulnerabilities ranging across all severity scores. However,
there is a substantial skew towards medium and high scores, which
may be the visible effect of security researchers favoring reports of
higher-value vulnerabilities (related to the limitations outlined in
Section 3.6).

0 2 4 6 8 10
CVSS Severity Score

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f C
VE

s

Figure 4: Distribution of CVSS severity scores, which are on
a scale of 0 to 10, rounded to the nearest integer.

CWE ID Weakness Summary Num. CVEs

1. 119 Buffer Overflow 539
2. 20 Improper Input Validation 390
3. 264 Access Control Error 318
4. 79 Cross-Site Scripting 273
5. 200 Information Disclosure 228
6. 189 Numeric Error 221
7. 399 Resource Management Error 219
8. 362 Race Condition 72
9. 89 SQL Injection 61
10. 310 Cryptographic Issues 42

Table 2: Top 10 CWE software weaknesses by the number of
CVEs.

4.4 Vulnerability Categories
The Common Weakness Enumeration (CWE) is a standard for iden-
tifying the class of software weaknesses that resulted in a particular
security issue [24]. The final NVD annotation we consider is the vul-
nerability’s CWE identifiers, indicating the vulnerability categories.
A CWE ID is assigned for 87% of CVEs in our dataset. In total, there
are 45 unique CWE IDs associated with our vulnerabilities. Table 2
enumerates the most common software weaknesses, including fre-
quent security problems such as buffer overflows and cross-site
scripting errors. However, again we observe that our vulnerabilities
span a wide variety of security issues.

4.5 Vulnerability Distribution over
Repositories

Our selected CVE vulnerabilities were unevenly distributed over
682 Git projects, as visible in Figure 5. Our dataset contains one
vulnerability for the majority of projects, and a heavy skew towards
a smaller set of projects (e.g., the Linux kernel has over 900 CVE-
related commits). Due to this skew, our analysis must consider
per-repository averages, in addition to aggregates.

Figure 5 also illustrates the total number of commits in repository
logs. We see that our repositories have varying levels of develop-
ment, ranging from 3 commits for the “Authoring HTML” Drupal
module to over 100,000 commits for projects such as the Linux
kernel, LibreOffice, MySQL server, and the PHP interpreter.



100 101 102 103 104 105 106

Number of Commits per Git Repository
(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CVE Commits
All Commits

Figure 5: CDFs of the number of CVE commits and all com-
mits for our collected Git repositories.

100 101 102 103 104 105 106 107

Number per Git Repository (Log-Scaled)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Cleaned
Files
Files
Cleaned
File Lines
File Lines

Figure 6: CDFs of the number of files and file lines in our
collected repositories and their cleaned versions.

4.6 Repository Size
We can characterize a repository’s size by the number of files it
has, or the number of lines in those files. In Figure 6, we plot the
CDFs of these metrics, for both the original repositories and their
cleaned versions (as described in Section 3.4). Our selected projects
vary widely in their sizes along both metrics. We find small projects
affected by vulnerabilities, such as the SQL injection bug (CVE-
2013-3524) in phpVMS’s “PopUpNews” module, consisting of 4 PHP
files with 103 lines of code. On the other extreme, the Linux kernel
contains 20 million lines of code across 44,000 files.

5 ANALYSIS RESULTS
Our collected dataset consists of a diverse set of security vulner-
abilities across numerous software projects, for which we have
downloaded the source code repositories and amassed a set of both
security and non-security bug fixes. The combination of the meta-
data about patched vulnerabilities and the direct visibility into the
corresponding source codes (as well as their history of changes)
affords us with a unique perspective on the development life cycle
of security fixes, as well as on the characteristics of the security

patches themselves (in comparison to non-security bug fixes). In
this section, we discuss our corresponding analysis and findings.

When exploring differences between two groups, we determine
the statistical significance of our observations using permutation
tests with 1,000 rounds. For each group we use a summary statistic
of the area under the CDF curve for the investigated metric. In
each round of a permutation test, we randomly reassign group
labels to all data points (such that group sizes remain constant),
recompute the summary statistic for each group, and determine if
the summary statistic difference between the newly formed groups
exceeds that of the original groups. If the null hypothesis holds
true and no significant difference exists between the groups, then
the random permutation will only reflect stochastic fluctuations
in the summary statistic difference. We assess the empirical prob-
ability distribution of this measure after the permutation rounds,
allowing us to determine the probability (and significance) of our
observed differences. We compute all of the reported p-values via
this approach, and using a significance threshold of α = 0.05.

5.1 Patch Development Life Cycle
From a software project’s perspective, a vulnerability advances
through several events throughout its life, such as its introduc-
tion into the code base, its discovery and the subsequent patch
development, the public disclosure of the security issue, and the
distribution of the fix. Prior studies have analyzed the vulnerability
life cycle from a public perspective [14, 27, 32], observing when
a vulnerability became disclosed to the public and when the cor-
responding patch was publicly distributed. However, these works
have not delved into the project developer side of the remediation
process and the life cycle of the patch development itself. Such an
exploration can help illuminate the responsiveness of developers
to patching vulnerabilities, how long fixes are available before they
are actually distributed publicly, and how successfully developers
resolve security issues. Here, we investigate the patch development
process by connecting the vulnerability information available in
the NVD with the historical logs available in Git repositories.

5.1.1 Vulnerability Life Spans in Code Bases. Upon a vulnera-
bility’s first discovery, we might naturally ask how long it plagued
a code base before a developer rectified the issue. We call this
duration the vulnerability’s code base life span—a notion distinct
from the vulnerability’s window of exposure as investigated in prior
work [14, 32], which measures the time from the first release of a
vulnerable software version to the public distribution of its patch.
As the development and distribution of a patch often occur at dif-
ferent times (a factor we explore in Section 5.1.2), the code base
life span reflects the window of opportunity for attackers who
silently discover a vulnerability to leverage it offensively, before
any defensive measures are taken.

Reliably determining when a vulnerability was born in an au-
tomated fashion is difficult, as it requires semantic understanding
of the source code and the nature of the vulnerability. However,
we can approximate a lower bound on age by determining when
the source code affected by a security fix was previously last mod-
ified. We note that this heuristic does assume that security fixes
modify the same lines that contained insecure code, which may
not always be the case. However, we assessed whether this is a



100 101 102 103 104

Number of Days Vulnerable to a Particular CVE
(Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Per Repo Minimum
Per Repo Median
Per Repo Maximum
All CVEs

Figure 7: CDFs of CVE vulnerability life spans, for all CVEs
and when grouped by software repositories.

robust approximation by randomly sampling 25 security patches.
We observed that only 1 did not touch an originally insecure code
region, enabling us to conclude that the vast majority of security
fixes do modify the culprit code regions.

We analyzed the cleaned versions of security commit data to
focus on source code changes. For all lines of code deleted or modi-
fied by a security commit, we used Git’s “blame” functionality to
retrieve the last time each line was previously updated (the blame
date).4 We conservatively designate the most recent blame date
across all lines as the estimated date of vulnerability introduction.
Then, the duration between this date and the commit date provides
a lower bound on the vulnerability’s code base life span.

How long do vulnerabilities live in code bases? Figure 7 illus-
trates the distribution of the lower bound estimates for vulnerability
life spans. We plot the distribution for the aggregate of all CVEs,
conservatively using the shortest life span for CVEs with multiple
commits. To consider potential bias introduced by the uneven dis-
tribution of CVEs across repositories (discussed in Section 4.5), we
also group commits by their repositories and plot the distributions
of the minimum, median, and maximum life span per repository.
The aggregate CVE distribution largely follows that of the per-
repository median, although it exhibits skew towards longer life
spans.

We observe that vulnerabilities exist in code bases for extensive
durations. Looking at per-repository medians, we see that 50% had
life spans exceeding 438 days (14.4 months). Furthermore, a quarter
of repository medians and a third of all CVEs had life spans beyond
three years. The longest surviving vulnerability was CVE-2015-8629
in the Kerberos 5 project, patched in January, 2016. The information
disclosure vulnerability was first introduced over 21 years ago.

We observe that 6.5% of our CVEs had a life span lower bound of
less than 10 days. Manual inspection identified these as cases where
our lower bound was overly conservative, as the vulnerability was
introduced at an earlier date. Recent commits happened to touch
the same area of code involved in the security fix, resulting in our
under-approximation.

4 Note that we cannot similarly process newly added lines, as they did not exist prior
to the commit. We ignore the 22.8% of commits with only additions.

Weakness Summary Median Life Span

1. SQL Injection 230.0
2. Cross-Site Scripting 290.0
3. Improper Input Validation 350.0
4. Access Control Error 373.0
5. Cryptographic Issues 456.0
6. Resource Management Error 480.0
7. Information Disclosure 516.5
8. Race Condition 573.0
9. Numeric Error 659.5
10. Buffer Overflow 781.0

Table 3: Median vulnerability life span in days for the top 10
software weakness categories, as classified by CWE.

Our results concur with prior findings that vulnerabilities live
for years, generalized across numerous types of software. Man-
ual evaluation of Ubuntu kernel vulnerabilities [19, 20] found that
the average vulnerability’s code base life span was approximately
5 years. Similarly, Ozment and Schechter [28] manually analyzed
vulnerabilities in OpenBSD, finding the median vulnerability life-
time exceeded 2.6 years, although they noted that OpenBSD empha-
sizes secure coding practices. We observe that our typical life span
estimates are lower than these previous ones, which may be due to
our consideration of software projects beyond Linux variants, or
our conservative approximation method.

Do more severe vulnerabilities have shorter lives? One
might hypothesize that more severe vulnerabilities reside in code
bases for shorter periods, as their more visible impact may correlate
with more likely discovery and quicker remediation. To explore this
aspect, we correlate CVSS severity scores with life spans, computing
a Spearman’s correlation coefficient of ρ = −0.062. This indicates
that there is no substantial (monotonic) correlation between a vul-
nerability’s severity and its life span. Even if developers are more
motivated to remedy severe vulnerabilities, their expediency pales
in comparison to the time scale of the initial vulnerability discovery,
which our analysis shows is uncorrelated with severity. We note
this generalizes an observation that Ubuntu vulnerability life spans
likewise did not correlate with severity [20].

Do different types of vulnerabilities have varying life spans?
Different classes of vulnerabilities may exhibit varying life spans,
as some vulnerabilities might prove more challenging to uncover.
In Table 3, we summarize the vulnerability life spans for CVEs
exhibiting the top 10 software weaknesses as classified by CWE
(as discussed in Section 4.4). We observe that vulnerability life
spans vary widely based on the software weakness class. Web-
oriented vulnerabilities like SQL injection and cross-site scripting
have significantly shorter life spans compared to errors in software
logic and memory management. In comparison, race conditions,
numeric errors, and buffer overflows remain undiscovered for two
to three times as long. (Balancing across software repositories did
not change the findings.) We conjecture that the life span variation
across different vulnerability types results from both the type of
software affected and the nature of the vulnerability. For example,
web-oriented issues may appear on websites visited by thousands
of users, increasing the likelihood that some problematic scenario
arises that uncovers the vulnerability. Also, certain vulnerabilities



−104−103−102−101−100 0 100 101 102 103 104

(Patch Commit Date - Estimated Public Disclosure Date)
 in Days (Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Per Repo Minimum
Per Repo Median
Per Repo Maximum
All CVEs

Figure 8: CDFs of the number of days between a vulnerabil-
ity’s public disclosure and its fix, plotted for all CVEs and
grouped by software repositories.

such as cross-site scripting and SQL injection may be isolated to a
small portion of code where reasoning about and identifying issues
is more straightforward (compared to other problems such as race
conditions).

5.1.2 Security Fix Timeliness. The timeliness of a security fix
relative to the vulnerability’s public disclosure affects the remedia-
tion process and the potential impact of the security issue. On the
one hand, developers who learn of insecurities in their code base
through unanticipated public announcements have to quickly react
before the attackers leverage the information for exploitation. On
the other hand, developers who learn of a security bug through
private channels can address the issue before public disclosure, but
the available patch may not be released for some time due to a
project’s release cycle, expanding the vulnerability’s window of
exposure.

We explore this facet of remediation by comparing the patch
commit date for CVEs in our dataset with public disclosure dates
(estimated as described in Section 3.5). We note that disclosures are
not necessarily intertwined with patch releases, although this is
the case for the majority of disclosures [14]. In Figure 8, we depict
the CDFs of the number of days between disclosure and patching.
We plot this for all CVEs, using the earliest patch commit date if
a CVE has multiple commits associated with it. We additionally
group CVEs by their software repositories, and plot the distribution
across repositories. Here, we observe that the aggregate distribution
over all CVEs largely matches the distribution over per-repository
medians, although the per-repository medians exhibit a slight skew
towards smaller absolute values.

How frequently are vulnerabilities unpatched when dis-
closed? In Figure 8, vulnerabilities publicly disclosed but not yet
fixed manifest as positive time difference values. This occurred for
21.2% of all CVEs. We cannot determine whether these vulnera-
bilities were privately reported to project developers but with no
prior action taken, or disclosed without any prior notice. However,
over a quarter (26.4%) of these unpatched security issues remained
unaddressed 30 days after disclosure, leaving a window wide open
for attacker exploitation. This generalizes the observation made by

100 101 102 103

(Patch Commit Date - Estimated Public Disclosure Date)
 in Days (Log-Scaled)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

High Severity
Medium Severity
Low Severity

Figure 9: CDFs of the number of days after public disclo-
sure until a CVE has a patch committed, grouped by the CVE
severity class.

Frei [13], who found that approximately 30% of Windows vulner-
abilities were unpatched at disclosure and some remained so for
over 180 days.

How frequently are vulnerabilities fixed by disclosure time?
The predominant behavior in Figure 8, occurring for 78.8% of all
CVEs, is that the security fixes were committed by public disclosure
time, manifesting as negative or zero time differences. This suggests
that the majority of vulnerabilities were either internally discov-
ered or disclosed to project developers using private channels, the
expected best practice.

Are vulnerability patches publicly visible long before disclo-
sure? From Figure 8, we see that nearly 70% of patches were com-
mitted before disclosure (having negative time difference values).
The degree to which security commits precede disclosures varies
widely, which upon manual inspection appears to arise due to the
different release cycles followed by various projects (and varia-
tions within each project’s development timeline). This behavior
highlights the security impact of an interesting aspect of the open-
source ecosystem. Open-source projects are not frequently in a
position to actively distribute security updates. Rather, we observe
that projects roll security fixes into periodic version releases that
users must directly download and install, or updates are pulled
downstream for incorporation by software distribution platforms
(such as package repositories maintained by Linux OS variants).
Announcements about the releases or updates, and the security
fixes they contain, follow shortly after.

Unfortunately, this development and deployment process also
provides a window of opportunity for exploitation. Given the public
nature of open-source projects and their development, an attacker
targeting a specific software project can feasibly track security
patches and the vulnerabilities they address. While the vulnerability
is addressed in the project repository, it is unlikely to be widely
fixed in the wild before public disclosures and upgrade distribution.
From Figure 8, we note that over 50% of CVEs were patched more
than a week before public disclosure, giving attackers ample time
to develop and deploy exploits.



Are higher severity vulnerabilities patched quicker? All vul-
nerabilities are not equal, as they vary in exploitation complexity
and requirements, as well as security impact. One might expect
these factors to affect the patch development process, as developers
may prioritize fixing certain vulnerabilities over others. To explore
whether a vulnerability’s severity (scored using CVSS) affects patch
timeliness behavior, we cluster CVEs by their severity categories
(low, medium, and high). We find that severity significantly af-
fects whether a fix is developed before or after public disclosure.
88.1% of high severity CVEs were patched prior to public announce-
ments, compared to 78.2% of medium severity bugs and 58.8% of low
severity issues. These differences indicate that project developers
prioritize higher impact vulnerabilities when determining if and
when to address them.

While one might also expect earlier disclosures for more severe
vulnerabilities, we observe no significant differences (p > 0.12)
across severity categories when investigating the time by which
a patch precedes disclosure (for vulnerabilities fixed by disclosure
time). This fits with the common model used by many open-source
projects of rolling security patches (of all severity levels) into re-
current releases and announcements. When exploring the time
after disclosure until patching (for vulnerabilities unpatched at
disclosure), we find that highly severe vulnerabilities get patched
more quickly, as shown in Figure 9. This difference is significant
(p < 0.013), indicating project developers respond quicker to more
serious disclosed-yet-unpatched vulnerabilities.

5.1.3 Patch Reliability. The patch a developer creates to address
a vulnerability may unfortunately disrupt existing code functional-
ity or introduce new errors. Beyond the direct problems that arise
from such patches, end user trust in generally applying patches (or
in the software itself) can erode. To assess how successful develop-
ers are at producing reliable and safe security fixes, we attempted
to identify instances of multiple commits for the same CVE, and
classify the causes.

How frequently are security patches broken (e.g., incom-
plete or regressive)? In total, 11.5% of CVEs had multiple as-
sociated commits for a single repository in the NVD data. However,
if an initial patch introduced an error or was incomplete, the NVD
entry might not have been updated with the follow-on fix. After
the NVD entry is published, NVD analysts are unlikely to continue
tracking a CVE unless new updates are reported to them. Thus, we
attempted to identify further commits that may be associated with
a CVE using repository Git logs.

For each security patch commit and its commit hash H , we
searched the repository’s Git log for any other commits that had
a commit message including the CVE ID or the 7-character prefix
of the commit hash. We considered this prefix as it is used as the
Git short version of the commit hash, and matches any longer hash
prefixes. This method finds related commits which were not distinct
patches, such as merge, rebase, and cherry-pick commits. To filter
these, we ignored commits with diffs identical to an earlier one, and
commits with multiple parents (e.g., merges). Note that we could
only identify multiple patches when commit messages contained
this explicit linkage, so our analysis provides a lower bound.

Using this approach, we identified a total of 682 CVEs with
multiple commits, 22.0% of all CVEs. Not all multi-commit fixes are

CVE
Commits
Label

Num.
CVEs

Median
Num.

Follow-On
Commits

Median Fix
Inter-Arrival

Time

Incomplete 26 (52%) 1.0 181.5 Days
Regressive 17 (34%) 1.0 33.0 Days
Benign 14 (28%) 1.5 118.5 Days

Table 4: Summary of our manual investigation into 50 ran-
domly sampled CVEs with multiple commits. Note that a
CVE may have commits in multiple categories. Follow-on
commits include all commits associated with the original
patch.

necessarily problematic though, as project developers may split a
fix into multiple commits that they push to the repository in close
succession. We observed that 242 CVEs had all fixes committed
within 24 hours. Given the limited time window for potential newly
introduced problems, we designate these as piecewise fixes and
non-problematic.

We randomly sampled 50 of the remaining 440 CVEs and manu-
ally investigated if the fixes were problematic. Table 4 summarizes
our results. We identified 26 (52%) as incomplete, where the initial
fix did not fully patch the vulnerability, requiring a later patch
to complete the job. We labeled 17 (34%) as regressive, as they in-
troduced new errors that required a later commit to address. The
overlap included 4 CVEs (8%) with both incomplete and regressive
patches. Other follow-on fixes were benign, such as commits for
added documentation, testing, or code cleanup/refactoring. 11 CVEs
(22%) had only these benign additional commits (although 3 other
CVEs had both benign and problematic commits). Note that our
random sample was not biased towards any particular project, as it
spanned 42 repositories.

Extrapolating from the random sample to the remaining
440 CVEs with non-piecewise multiple commits (accounting for
14.2% of all CVEs), we estimate that about 7% of all security fixes
may be incomplete, and about 5% regressive. These findings indicate
that broken patches occur unfortunately frequently, and applying
security patches comes with non-negligible risks. In addition, these
numbers have a skew towards underestimation: we may not have
identified all existing problematic patches, and recent patches in
our dataset might not have had enough time yet to manifest as
ultimately requiring multiple commits.

We note that our observed frequency of failed security fixes is
similar to or lower than that observed by prior studies on general
bug fixes. Gu et al. [17] observed that 9% of bug fixes were bad
across three Java projects while Yin et al. [40] found that between
15%–25% of general bug patches for several Linux variants were
problematic. As our detection of problematic security fixes skews
towards underestimation, it is undetermined whether security fixes
are more or less risky than other bug fixes. However, it is clear that
security patches do suffer failures similarly to non-security bug
fixes.

How long do problematic patches remain unresolved? As
shown in Table 4, for both incomplete and regressive patches in our
sample, we find the median number of additional patches required
to rectify the original broken patches to be only one commit. The



100 101 102 103

Total Number of Line Changes (Log-Scaled)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

Figure 10: CDFs of the total number of line changes, for all
security and non-security bug fixes, and the median of secu-
rity commits grouped by repository.

typical incomplete fix takes half a year to remedy, and patches
problematic enough to require reverting typically take a month to
repair. Thus, problematic security patches can remain unresolved
for extensive durations of time.

5.2 Patch Characteristics
While numerous works have investigated general software
patches [29, 33, 34, 42], few have considered what distinguishes
security patches from other non-security bug fixes. Intuitively, the
software conditions resulting, for example, in buffer overflow and
SQL injection vulnerabilities can differ greatly from those that
produce performance and concurrency bugs. Thus, the character-
istics of their fixes may likewise prove different. Indeed, Zama et
al. [41] conducted a case study on security and performance fixes
for Mozilla Firefox, observing differences in the remediation for the
two bug types. These characteristics are important to understand
as they may reflect our ability to expeditiously generate patches,
verify their safety, or assess their impact on applications. Here, we
compare our collection of security and non-security bug fixes to
help illuminate their differences, considering facets such as the
complexity of fixes and the locality of changes.

5.2.1 Non-Source Code Changes. Do security and non-
security bug fixes always modify source code? Given the na-
ture of bug fixes, one might expect them to universally involve
source code changes. We explore this hypothesis by contrasting our
commit data with their cleaned versions (source code comments
and non-source code files removed). We find that the hypothe-
sis does not hold: a non-trivial fraction of commits involved no
code changes. For non-security bug fixes, 6.1% involved erroneous
configurations, build scripts with broken dependencies or settings,
incorrect documentation, and other non-source code changes.

More surprising, we find that 1.3% of security fixes also did not
touch source code. In some cases, the commit added a patch file to
the repository without applying the patch to the code base. How-
ever, numerous CVE vulnerabilities do not reside in the source code.
For example, CVE-2016-7420 was assigned to the Crypto++ Library
for not documenting the security-related compile-time require-
ments, such that default production builds may suffer information

disclosure vulnerabilities. Similarly, the fix for CVE-2016-3693 in-
volved changing a project library dependency to a new version,
as the inclusion of the older versions allowed attackers to access
sensitive system information.

Thus, bug fixes are not exclusively associated with source code
modifications, although this is significantly more likely with non-
security bug fixes thanwith security patches. For further analysis on
commit characteristics, we focus on the cleaned versions, excluding
the commits that did not modify code.

5.2.2 Patch Complexity. How complex are security patches com-
pared to other non-security bug fixes? We can assess software com-
plexity using various metrics, although some, such as cyclomatic
complexity [22], require deep analysis of a code base. Given the
number and diversity of software projects we consider, we chose
lines of code (LOC) as a simple-albeit-rudimentary metric, as done
in prior studies [18, 26, 33, 41].

Are security patches smaller than non-security bug fixes?
In Figure 10, we plot the CDFs of the total LOC changed in cleaned
commit diffs, for all security and non-security patches, as well as the
median security fix per repository. This conservative metric sums
the LOC deleted or modified in the pre-commit code with those
modified or added post commit, providing an upper bound on the
degree of change. We see that compared to per-repository medians,
the aggregate of security commits skews towards fewer total LOC
changed. Under this metric, security commits overall are statisti-
cally significantly less complex and smaller than non-security bug
patches (p ≈ 0). The median security commit diff involved 7 LOC
compared to 16 LOC for non-security bug fixes. Approximately 20%
of non-security patches had diffs with over 100 lines changed, while
this occurred in only 6% of security commits. When considering
per-repository medians, our conclusions differ only slightly, in that
non-security bug fixes have a slightly larger portion of very small
commits with diffs less than 9 LOC, but are typically larger.

Do security patches make fewer “logical” changes than non-
security bug fixes? As an alternative to our raw LOC metric,
we can group consecutive lines changed by a commit as a single
“logical” change. Under this definition, several lines updated are
considered a single logical update, and a chunk of deleted code
counts as a single logical delete. We depict the CDFs of the number
of logical actions per commit in Figure 11, although we omit a plot
for logical updates as it closely resembles that of all logical changes.
In all cases, we observe that per-repository medians skew less
towards very small numbers of logical actions compared to security
commits in aggregate. Across all logical actions, we observe that
security commits involve significantly fewer changes (all p < 0.01).
Nearly 78% of security commits did not delete any code, compared
to 66% of non-security bug-fix commits. Between 30% to 40% of
all commits also did not add any code, indicating the majority of
logical changes were updates.

Do security patches change code base sizes less than non-
security bug fixes? Another metric for a patch’s complexity is
its impact on the code base size. The net number of lines changed
by a commit reflects the growth or decline in the associated code
base’s size. In Figure 12, we plot the CDFs of these size changes.
We observe that significantly more non-security bug patches result



100 101 102 103

Number of Logical Code Changes
(Log-Scaled)

0.2

0.4

0.6

0.8

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

(a) All Logical Changes

0 100 101 102

Number of Logical Code Deletions
(Log-Scaled)

0.6

0.7

0.8

0.9

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

(b) Logical Deletes

0 100 101 102

Number of Logical Code Additions
(Log-Scaled)

0.2

0.4

0.6

0.8

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

(c) Logical Additions

Figure 11: CDFs of the number of logical changes introduced by a commit, for all security and non-security bug fixes, and for
the median amongst security commits grouped by repository. We omit a plot for logical updates, which looks very similar to
that for all logical changes because logical updates predominate. Note the varying minimum y-axis values.

−103 −102 −101 −100 0 100 101 102 103

Net Number of Line Changes (Log-Scaled)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

Figure 12: CDFs of the net number of line changes, for all se-
curity and non-security patches, and the median of security
commits grouped by repository.

in a net reduction in project LOC, compared to security fixes: 18%
of non-security bug fixes reduced code base sizes compared to
9% of security patches. For all commits, approximately a quarter
resulted in no net change in project LOC, which commonly occurs
when lines are only updated. Overall, projects are more likely to
grow in size with commits, as the majority of all commits added to
the code base. However, security commits tend to contribute less
growth compared to non-security bug fixes, an observation that
accords with our earlier results.

These findings support the notion that security fixes are gener-
ally less complex than other bug fixes. We note that this generalizes
the same conclusion drawn for Mozilla Firefox by Zama et al. [41].

5.2.3 Commit Locality. Finally, we can quantify the impact of a
patch by its locality. We consider two metrics: the number of files
affected and the number of functions affected.

Do security patches affect fewer source code files than non-
security bug fixes? Figure 13 illustrates the CDFs of the number
of files touched by fixes. From this, we see that security patches
modify fewer files compared to non-security bug fixes, a statisti-
cally significant observation (p ≈ 0). In aggregate, 70% of security

100 101 102

Total Number of Files Affected (Log-Scaled)
0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

Figure 13: CDFs of the number of files affected, for all secu-
rity and non-security bug fixes, and the median of security
fixes grouped by repository.

patches affected one file, while 55% of non-security bug patches
were equivalently localized. Fixes typically updated, rather than
created or deleted, files. Only 4% of security fixes created new files
(vs. 13% of non-security bug fixes), and only 0.5% of security patches
deleted a file (vs. 4% of non-security bug fixes).

Do security patches affect fewer functions than non-
security bug fixes? To pinpoint the functions altered by patches,
we used the ctags utility [4] to identify the start of functions in
our source code. We determined the end of each function under
the scoping rules of the corresponding programming language,
and mapped line changes in our commit diffs to the functions they
transformed. Figure 14 shows the CDFs of the number of functions
affected by patches. We find that 5% of non-security bug fixes
affected only global code outside of function boundaries, compared
to 1% of security patches. Overall, we observe a similar trend as
with the number of affected files. Security patches are significantly
(p ≈ 0) more localized across functions: 59% of security changes
resided in a single function, compared to 42% of other bug fixes.

In summary, our metrics indicate that security fixes are more
localized in their changes than other bug fixes.



0 100 101 102

Number of Affected Functions (Log-Scaled)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Security Fixes
Median Per Repo
Security Fixes
Bug Fixes

Figure 14: CDFs of the number of functions modified, for all
security and non-security bug patches, and the median of
security fixes grouped by repository.

6 DISCUSSION
In this study, we have conducted a large-scale empirical analysis
of security patches across over 650 projects. Here we discuss the
main takeaways, highlighting the primary results developed and
their implications for the security community moving forward.

Need for more extensive or effective code testing and audit-
ing processes for open-source projects: Our results show that
vulnerabilities live for years and their patches are sometimes prob-
lematic. Using a lower bound estimation method, our exploration
of vulnerability life spans revealed that over a third of all security
issues were first introduced more than 3 years prior to remediation.
The issues do not cease once a vulnerability is first addressed; al-
most 5% of security patches negatively impacted the software, and
over 7% were incomplete and left the security hole present.

These findings indicate that the software development and test-
ing process, at least for open-source projects, is not adequate at
quickly detecting and properly addressing security issues. There
are several important implications due to these shortcomings. An
attacker who discovers a zero-day vulnerability can retain its via-
bility with reasonable confidence for on the order of years. While
large-scale exploitation of a zero-day may result in its detection and
subsequent remediation, targeted attacks may persist unnoticed.
Similarly, a subtle backdoor inserted into a code base will also likely
survive for a prolonged period, with only commit code reviews (if
performed) as the final barrier. The not infrequent occurrences of
broken security patches also have negative implications on user
patching behavior. Applying a patch has often been viewed as risky,
and negative experiences with problematic updates (particularly
regressive ones) can drive users away from remedying security
bugs in a timely fashion.

A natural avenue for future work is to develop more effective
testing processes, particularly considering usability, as develop-
ers are unlikely to leverage methods that prove difficult to de-
ploy or challenging to interpret. One example of such research
is VCCFinder [30], a code analysis tool that assists with finding
vulnerability-introducing commits in open-source projects. In addi-
tion, software developers can already make strides in improving

their testing processes by using existing tools more extensively. For
example, sanitizers such as ASan [15], TSan [15] and UBSan [9] help
detect various errors that may result in security bugs. Fuzzers (such
as AFL [1]) also assist in identifying inputs that trigger potentially
exploitable issues.

The transparency of open-source projects makes them ripe for
such testing not only by the developers, but by external researchers
and auditors as well. Community-driven initiatives, such as those
supported by the Core Infrastructure Initiative [3], have already
demonstrated that they can significantly improve the security
of open-source software. For example, the Open Crypto Audit
Project [8] audited the popular encryption software TrueCrypt,
while Google’s OSS-Fuzz program [16] offers continuous fuzzing of
critical open-source infrastructure for free, already discovering and
reporting hundreds of bugs. Further support of such efforts, and
more engagement between various project contributors and exter-
nal researchers, can help better secure the open-source ecosystem.

Need for refined bug reporting and public disclosure pro-
cesses for open-source projects: Our analysis of the timeliness
of security fixes revealed that they are poorly timed with vulnera-
bility public disclosures. Over 20% of CVEs were unpatched when
they were first announced, perhaps sometimes to the surprise of
project developers. While we observed that these were more likely
to be low-severity vulnerabilities, many were still medium- and
high-severity bugs, unfixed for days to weeks post-disclosure. This
gap provides attackers with the knowledge and time to strike.

In the opposite direction, we discovered that when security is-
sues are reported (or discovered) privately and fixed, the remedy is
not immediately distributed and divulged, likely due to software
release cycles. Over a third of fixed vulnerabilities were not publicly
disclosed for more than a month. While operating in silence may
help limit to a small degree the dissemination of information about
the vulnerability, it also forestalls informing affected parties and
spurring them to remediate. Given the transparency of open-source
projects, attackers may be able to leverage this behavior by track-
ing the security commits of target software projects (perhaps by
training a classifier or keying in on common security-related terms
in commit messages). From the public visibility into these commits,
attackers can identify and weaponize the underlying vulnerabilities.

However, the open-source nature of projects need not be a lia-
bility when patching vulnerabilities. Transparent bug reporting in-
structions, containing the proper point of contact, the required diag-
nostic information, the expected remediation timeline, and potential
incentives (such as bug bounties or “hall of fame” status), can expe-
dite the vulnerability reporting process. Fixes for vulnerabilities can
also be disclosed in better coordination with public disclosures. For
example, the Internet Systems Consortium (ISC), maintainer of the
open-source DNS software BIND and DHCP implementations, has
established explicit disclosure policies that embargo publicly reveal-
ing security patches until near public disclosure time [7]. Instead,
ISC customers, OEMs, operating system maintainers, and other
vendors who re-package ISC open-source software are privately
notified about vulnerabilities and their patches prior to public dis-
closure. A controlled disclosure process informs some of the most
heavily affected parties before public disclosure, providing adequate



time to prepare properly, while reducing the leakage of vulnera-
bility information pre-disclosure. Additionally, outreach efforts to
notify end-systems affected by a vulnerability have shown some
promise [21]. While we advocate that open-source projects should
adopt such a disclosure process, they should be transparent about
the process itself and execute it consistently, avoiding hasty and
uncoordinated disclosures such as with the Heartbleed bug [11].

Opportunities for leveraging characteristics of security
patches: Our comparison of security patches with non-security
bug fixes revealed that security fixes have a smaller impact on code
bases, along various metrics. They involve fewer lines of code, fewer
logical changes, and are more localized in their changes. This has
implications along various patch analysis dimensions.

Tying back to broken patches, the lower complexity of security
patches can perhaps be leveraged for safety analysis customized
for evaluating just security fixes. Also, as these remedies involve
fewer changes, automatic patching systems may operate more suc-
cessfully if targeting security bugs. Zhong and Su [42] observed
that general patches are frequently too complex or too delocalized
to be amenable to automatic generation. However, security patches
may be small and localized enough. From a usability angle, we
may additionally be able to better inform end users of the potential
impact of a security update, given its smaller and more localized
changes. The need for more exploration into the verification and au-
tomated generation of security patches is quite salient as our ability
to respond to security concerns has remained relatively unchanged,
while the attack landscape has grown ever more dangerous.

7 CONCLUSION
In this paper, we conducted a large-scale empirical study of security
patches, evaluating over 4,000 security fixes across a diverse set of
682 software projects. The investigation centered around a dataset
we collected that merges vulnerability entries from the NVD, infor-
mation scraped from relevant external references, affected source
code repositories, and their associated security fixes. Using these
disparate data sources, we analyzed facets of the patch development
life cycle. In addition, we extensively characterized the security
patches themselves, contrasting them with non-security bug fixes.

Our findings have revealed shortcomings in our ability to quickly
identify vulnerabilities and reliably address them. Additionally,
we have observed that the timing of public disclosure does not
closely align with the date a patch is applied to the code base,
providing windows of opportunity for attacker exploitation. Our
characterization of security fixes shows they are less complex and
more localized than other non-security bug fixes, perhaps making
them more amenable to software analysis and automatic repair
techniques. By leveraging these insights, we hope the security
community can progress in improving the remediation process for
security vulnerabilities.

ACKNOWLEDGMENTS
We thank Christopher Thompson and Sascha Fahl for helpful feed-
back on our study. This work was supported in part by the National
Science Foundation awards CNS-1237265 and CNS-1518921, for
which we are grateful. The opinions expressed in this paper do not
necessarily reflect those of the research sponsors.

REFERENCES
[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[2] cgit. https://git.zx2c4.com/cgit/about/.
[3] Core Infrastructure Initiative. https://www.coreinfrastructure.org.
[4] Exuberant Ctags. http://ctags.sourceforge.net/.
[5] GitLab. https://about.gitlab.com/.
[6] GitWeb. https://git-scm.com/book/en/v2/Git-on-the-Server-GitWeb.
[7] ISC Software Defect and Security Vulnerability Disclosure Policy.

https://kb.isc.org/article/AA-00861/164/ISC-Software-Defect-and-Security-
Vulnerability-Disclosure-Policy.html.

[8] Open Crypto Audit Project. https://opencryptoaudit.org.
[9] Undefined Behavior Sanitizer. https://clang.llvm.org/docs/UndefinedBehavior

Sanitizer.html.
[10] Steve Christey and Brian Martin. Buying Into the Bias: Why Vulnerability

Statistics Suck. In BlackHat, 2013.
[11] Zakir Durumeric, Frank Li, James Kasten, Nicholas Weaver, Johanna Amann,

Jethro Beekman, Mathias Payer, David Adrian, Vern Paxson, Michael Bailey, and
J. Alex Halderman. The Matter of Heartbleed. In ACM Internet Measurement
Conference (IMC), 2014.

[12] Forum of Incident Response and Security Teams. Common Vulnerability
Scoring System v3.0: Specification Document. https://www.first.org/cvss/
specification-document.

[13] Stefan Frei. End-Point Security Failures: Insights gained from Secunia PSI Scans.
In USENIX Predict Workshop, 2011.

[14] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-Scale
Vulnerability Analysis. In SIGCOMM Workshops, 2006.

[15] Google. Sanitizers. https://github.com/google/sanitizers.
[16] Google Open Source Blog. Announcing OSS-Fuzz: Continuous Fuzzing

for Open Source Software. https://opensource.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html.

[17] Zhongxian Gu, Earl Barr, David Hamilton, and Zhendong Su. Has the Bug Really
Been Fixed? In International Conference on Software Engineering (ICSE), 2010.

[18] Zhen Huang, Mariana D’Angelo, Dhaval Miyani, and David Lie. Talos: Neutral-
izing Vulnerabilities with Security Workarounds for Rapid Response. In IEEE
Security and Privacy (S&P), 2016.

[19] Jonathan Corbet. Kernel Vulnerabilities: Old or New?, October 2010.
https://lwn.net/Articles/410606/.

[20] Kees Cook. Security Bug Lifetime, October 2016. https://outflux.net/blog/
archives/2016/10/18/security-bug-lifetime.

[21] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. You’ve Got Vulnerability:
Exploring Effective Vulnerability Notifications. In USENIX Security Symposium,
2016.

[22] T. J. McCabe. A ComplexityMeasure. In IEEE Transaction on Software Engineering,
1976.

[23] MITRE Corporation. Common Vulnerabilities and Exposures.
https://cve.mitre.org/.

[24] MITRE Corporation. CWE: Common Weakness Enumeration.
https://cwe.mitre.org/.

[25] Nuthan Munaiah and Andrew Meneely. Vulnerability Severity Scoring and
Bounties: Why the Disconnect? In International Workshop on Software Analytics
(SWAN), 2016.

[26] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan
Nagappan. The Design of Bug Fixes. In International Conference on Software
Engineering (ICSE), 2013.

[27] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Du-
mitras. The Attack of the Clones: A Study of the Impact of Shared Code on
Vulnerability Patching. In IEEE Security and Privacy (S&P), 2015.

[28] Andy Ozment and Stuart E. Schechter. Milk or Wine: Does Software Security
Improve with Age? In USENIX Security Symposium, 2006.

[29] Jihun Park, Miryung Kim, Baishkhi Ray, and Doo-Hwan Bae. An Empirical Study
on Supplementary Bug Fixes. In Mining Software Repositories (MSR), 2012.

[30] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. VCCFinder: Finding Potential
Vulnerabilities in Open-Source Projects to Assist Code Audits. InACMConference
on Computer and Communications Security (CCS), 2015.

[31] RhodeCode. Version Control Systems Popularity in 2016. https://rhodecode.
com/insights/version-control-systems-2016.

[32] Muhammad Shahzad, M. Zubair Shafiq, and Alex X. Liu. A Large Scale Ex-
ploratory Analysis of Software Vulnerability Life Cycles. In International Con-
ference on Software Engineering (ICSE), 2012.

[33] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When Do Changes
Induce Fixes. In Mining Software Repositories (MSR), 2005.

[34] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David Lo.
A Deeper Look into Bug Fixes: Patterns, Replacements, Deletions, and Additions.
In Mining Software Repositories (MSR), 2016.

http://lcamtuf.coredump.cx/afl/
https://git.zx2c4.com/cgit/about/
https://www.coreinfrastructure.org
http://ctags.sourceforge.net/
https://about.gitlab.com/
https://git-scm.com/book/en/v2/Git-on-the-Server-GitWeb
https://kb.isc.org/article/AA-00861/164/ISC-Software-Defect-and-Security-
Vulnerability-Disclosure-Policy.html
https://opencryptoaudit.org
https://clang.llvm.org/docs/UndefinedBehavior
Sanitizer.html
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://github.com/google/sanitizers
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://lwn.net/Articles/410606/
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime
https://cve.mitre.org/
https://cwe.mitre.org/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016


[35] U.S. National Institute of Standards and Technology. CVSS Information.
https://nvd.nist.gov/cvss.cfm.

[36] U.S. National Institute of Standards and Technology. National Checklist Program
Glossary. https://web.nvd.nist.gov/view/ncp/repository/glossary.

[37] U.S. National Institute of Standards and Technology. National Vulnerability
Database. https://nvd.nist.gov/home.cfm.

[38] U.S. National Institute of Standards and Technology. NVD Data Feed.
https://nvd.nist.gov/download.cfm.

[39] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song.
SPAIN: Security Patch Analysis for Binaries Towards Understanding the Pain
and Pills. In International Conference on Software Engineering (ICSE), 2017.

[40] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. How do Fixes become Bugs? In ACM European Conference on
Foundations of Software Engineering (ESEC/FSE), 2011.

[41] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. Security Versus Perfor-
mance Bugs: A Case Study on Firefox. In Mining Software Repositories (MSR),
2011.

[42] Hao Zhong and Zhendong Su. An Empirical Study on Real Bug Fixes. In
International Conference on Software Engineering (ICSE), 2015.

A OBTAINING VULNERABILITY PUBLIC
DISCLOSURE DATES

Domain
Num.

References

1. openwall.com 2413
2. ubuntu.com 2055
3. lists.opensuse.org 1784
4. securityfocus.com 1505
5. rhn.redhat.com 1328
6. bugzilla.redhat.com 1158
7. debian.org 830
8. lists.fedoraproject.org 673
9. oracle.com* 573
10. mandriva.com* 540
11. vupen.com* 482
12. xforce.iss.net* 422
13. marc.info 305
14. support.apple.com 259
15. securitytracker.com 235
16. lists.apple.com 235
17. seclists.org 204
18. bugs.wireshark.org 143
19. bugs.php.net 127
20. security.gentoo.org 102

Table 5: List of the 20 most common externally referenced
sites for CVEs corresponding to our collected security Git
commits. We crawled references to these sites for publica-
tion dates to better estimate vulnerability public disclosure
dates, although not all web pages were still active. Note that
4 sites (markedwith asterisks) were no longer active, did not
provide publication dates, or employed anti-crawling mea-
sures.

https://nvd.nist.gov/cvss.cfm
https://web.nvd.nist.gov/view/ncp/repository/glossary
https://nvd.nist.gov/home.cfm
https://nvd.nist.gov/download.cfm

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection Methodology
	3.1 Finding Public Vulnerabilities
	3.2 Identifying Software Repositories and Security Patches
	3.3 Identifying Non-Security Bug Fixes
	3.4 Processing Commits
	3.5 Estimating Vulnerability Public Disclosure Dates
	3.6 Limitations

	4 Data Characterization
	4.1 Vulnerability Publication Timeline
	4.2 Affected Software Products
	4.3 Vulnerability Severity
	4.4 Vulnerability Categories
	4.5 Vulnerability Distribution over Repositories
	4.6 Repository Size

	5 Analysis Results
	5.1 Patch Development Life Cycle
	5.2 Patch Characteristics

	6 Discussion
	7 Conclusion
	References
	A Obtaining Vulnerability Public Disclosure Dates

