
pktd: A Packet Capture and Injection Daemon
José Marı́a González

chema@cs.berkeley.edu
Vern Paxson

vern@icir.org

Abstract—
Administrators can be highly reluctant to run foreign

measurement tools on their hosts because (a) such tools
frequently require privileged execution in order to trans-
mit customized measurement packets and/or to passively
capture network traffic, and (b) the administrators lack
mechanisms to control the rate, duration, type, destination,
and contents of traffic generated by the measurements. We
present preliminary work on pktd, a packet capture and
injection multiplexer daemon that provides controlled, fine-
grained access to the network device. On systems running
pktd, client measurement tools are not given direct access to
the network device. Instead, they are obliged to request ac-
cess via pktd. By providing administrators control over the
pktd mechanism, they can easily and securely enforce their
desired policies concerning which clients should be granted
which sorts of network access capabilities. Thus, pktd can
serve as the sole trusted, privileged entity for conducting
measurements, eliminating the need for administrators to
vet the individual measurement tools.

I. INTRODUCTION

Recent years have seen the developement of a number
of “measurement infrastructures” [1], [2], [3], [4] in
which a collection of Internet hosts support access to
one or more measurement tools used for conducting
measurements either between the hosts or along any
Internet path stemming from one of the hosts. Some of
these infrastructures, such as NIMI (National Internet
Measurement Infrastructure [4]), aim to provide broad
public access to the infrastructure, and also to support as
many different measurement tools as possible. However,
as related in [5], such open access raises some difficult
problems, including how the administrator of a measure-
ment host can control the activities of the measurement
tools that others run on the host (what traffic they gen-
erate and capture), and how the administrator can safely
install new measurement tools when to date such tools
have frequently required privileged execution in order
to transmit customized measurement packets and/or to
passively capture network traffic.

The solution we envision for addressing these admin-
istrator concerns is to isolate packet capture and injection
functionality into a single daemon. The administrator
then requires that any measurement tools they install,
or allow to execute on behalf of others, have their
measurement activities funneled through the daemon,

which can then provide a single point of fine-grained
control.

Administrators benefit from the use of the daemon as
(a) they have a single trusted, privileged entity in their
hosts, i.e., the daemon; (b) the daemon is more static
than the client tools, permiting deeper analysis; (c) the
daemon provides fine-granularity access, so the admin-
istrator need grant only the minimum capabilities clients
need to carry out their tasks; and (d) the administrator
can make more efficient use of scarce resources (such as
packet filter access), as the daemon can multiplex them
among several clients.

Users of the measurement infrastructure, on the other
hand, can hope to leverage administrator confidence in
the daemon to be granted access to more hosts. At the
same time, the finer granularity of the daemon may mean
access to more capabilities, as administrators are more
willing to provide access when it can be controlled.

In this paper we describe the design and features of
such a daemon. We also present an implementation, pktd;
its architecture; and preliminary experience obtained by
its deployment in an operational environment character-
ized by high network load conditions.

The remainder of this paper is structured as fol-
lows. Section II presents the client-control mechanisms
provided by the daemon to administrators. Section III
describes the design, architecture, and preliminary im-
plementation of the daemon. Section IV discusses the
experience obtained while writing the daemon, and per-
formance issues related to its presence between clients
and the network device. Finally, Section V summarizes.

II. pktd CONTROL MECHANISMS

pktd is the sole trusted, privileged entity that a host
providing external measurement services needs to sup-
port. It is granted full access to the network device,
and hence for both security and privacy concerns must
be fully trusted. pktd multiplexes this access among
clients, providing them with different rights. Clients can
access the network only by requesting measurements
to pktd, which in turn decides whether to grant access
depending on the administrator policy. A measurement
might consist of capturing traffic using the packet filter,
or injecting “raw” packets into the network (for example,



those with altered IP headers such as to control the TTL
hop-count field).

pktd can support both passive and active measure-
ments. Passive measurements consist of capturing pack-
ets at the host network device, without affecting the
network traffic. It is therefore a non-intrusive activity,
and as such the main concern for administrators is
privacy (as well as some forms of security, such as
protecting clear-text passwords). Active measurements,
on the other hand, consist of injecting packets into the
network device; this poses the security problem of ensur-
ing that the traffic does not facilitate any form of attack,
whether an exploit in which the injected traffic illicitly
manipulates a remote service, or a denial of service, in
which the traffic impedes access to a remote service (for
example, because the volume of the measurement traffic
is so large that it fully clogs the network path to a given
remote server).

In addition to security and privacy, another pktd goal is
to control network access with a granularity fine enough
to match administrator concerns and user requirements
at the same time. While hosts often provide mechanisms
to control access to the network device, the semantics
of these mechanisms are too coarse, and often entangled
with other access control mechanisms. For example, any
passive access to the network device in Linux platforms
must be privileged; once granted, there is no further way
to restrict what traffic is passively recorded.

Solaris and BPF-based [6] architectures (which in-
clude most BSD Operating Systems), on the other hand,
implement network device access rights by associating
the network device with a virtual file (device), where
the traditional file owner/group/other read/write access
holds. A client can have either full read access to the
packet filter (including setting it to promiscuous mode),
or none at all. There is no way to implement finer-
grained policies, however, such as only allowing client
access to specific types of packets and/or parts of a
packet.

A related objective of the packet daemon is to provide
a mechanism to enforce resource control, such as limit-
ing the amount of traffic a client can capture or inject.

Finally, the packet daemon is intended to multiplex
resources among clients. Network device multiplexing
is complicated by configuration issues and operating
system limitations. As an example, BPF-based platforms
limit the number of processes listening to the network
device to one per virtual BPF file. By multiplexing, the
daemon can provide multiple clients with access to a
single device.

As discussed above, administrators typically have
three different concerns: privacy, security, and resource
control. Two of the key design decision are: what is

the right granularity to offer, and how to express it. We
address these questions for each of the concerns in the
remaining subsections.

A. Privacy and Security

Privacy (security) concerns are addressed by control-
ling the type and contents of the traffic that can captured
(injected). Control is in terms of restricting (1) what
types of packets can be captured or injected, and (2)
how much access is provided to the contents inside the
packets.

1) Traffic Type: The first mechanism provided con-
sists of selecting which traffic can be accessed. For
example, it may make sense to provide a client with
access to packets arriving to or being sent from the SSH
port, where all sensitive data is encrypted; but not from
the Telnet port, where passwords go in the clear.

Traffic selection is based on the most common mech-
anism, namely tcpdump filter expressions [7]. The idea
is that administrators can associate with every measure-
ment client two different “framework filter expressions”:
one for the capture side, and the other for the injection
side. Each framework filter defines the least restrictive
expression a client can request. That is, all captured
traffic must match the capture filter in order to be
delivered to the client, and all inject traffic must match
the injection filter before being put in the wire.

This approach presents several advantages. First, it
is convenient, as both administrators and clients are
likely familiar with expressing tcpdump filters. Second,
it is easy to implement. pktd clients submit their own
requested expressions, which are automatically appended
using a logical AND operation with the corresponding
framework filter expression. Third, this approach pro-
vides quite fine granularity: current tcpdump expres-
sions support source and destination addresses (either
at datalink or network layers), network prefixes, port
numbers, packet length, and arbitrary header and payload
fields.

2) Traffic Contents: In parallel with restricting pktd
clients with regards to the type of traffic they can
capture/inject, a second restriction is on the extent of
the packet contents that they can access. One way to
restrict content access is via the amount of payload data
a client can capture or set. As with tcpdump and the
popular packet capture library pcap (which is used by
tcpdump), this value is controlled by the snaplen (“snap-
shot length”) setting. For example, administrators can
ensure that a client monitoring HTTP performance never
accesses sensitive HTML text in the HTTP payloads by
limiting snaplen to the sum of IP and TCP headers.

The definition of snaplen in pktd is currently in-
dependent to any other restriction, though it may be



useful in the future to combine it with the filter ex-
pressions. While this capability is not provided by
the pcap library,1 it is not that difficult to include in
the daemon. For example, assuming all IP and TCP
headers are contained in 60 bytes, an administrator
could provide a client with full access to SSH traf-
fic but not to the HTTP payloads by using the filter
expression “(port http and snaplen 60) or
(port ssh and snaplen 65535)”. The com-
bined check can be carried out during the second filtering
at the daemon (see Section III-B).

However, we note that as described here, this solution
is imperfect, because a snaplen of 60 bytes might fail to
include the entire TCP/IP headers (if extensive options
are used) or might instead include some of the payload
(if no options are used). A potential enhancement is to
permit defining snaplens as a function of the network
and transport layers’ header lengths.

In addition, we envision cases where snaplen-like
granularity is not enough. Different fields in the IP,
TCP, and UDP headers present different privacy or
security concerns. In the capturing case, addresses and
ports are usually more sensitive data than, say, TTLs or
fragmentation offsets. The same applies to the injection
case. An administrator may be willing to permit a client
to set IP fragmentation fields in order to study how
they are handled by in-the-middle routers; but, on the
other hand, allowing clients to set the source IP address
facilitates IP spoofing, so it is less likely to be permitted.
These types of concerns are not addressable just using
snaplens.

We envision a mechanism to support this granularity,
based on processing at the daemon. Each client gets
assigned two permission masks, one for the capturing
case and one for the injection case. In each mask,
each bit represents whether access to a specific field is
allowed. By “access” we mean whether the specific field
can be read, for the capturing case, or set by the client,
in the injection case.

A further refinement is anonymization. In the cap-
turing case, there are some fields the administrator
may not be willing to provide for privacy concerns (IP
addresses). But, at the same time it is possible to distill
some information from them that, while diluting the
privacy-concerning information, is still useful enough
for clustering purposes. pktd can provide IP address
anonymization, where IP addresses are scrambled while
retaining the relationships between their high-order non-
zero bits [8].

1It is, in fact, already provided by the BPF kernel module; but pcap
does not provide an API for defining packet filters that compute it
dynamically.

B. Resource Control

While restrictions discussed in the previous sections
focused on privacy and security, another concern for ad-
ministrators is limiting the resources a client consumes.
By resources we mean principally the amount of traffic
that clients are allowed to receive or send; it could
also refer to processor or disk usage, which we do not
consider here. For the injection case, the implementation
we are considering consists of defining token bucket
parameters for each client [9].

1) Sampling: Another option we are considering is to
permit statistical capturing of packets. Some clients may
not require access to all packets matching their filter, but
only a representative fraction of them. This makes sense
when the expression returns an amount of traffic large
enough to overwhelm the host or the client.

One issue with providing sampling is the granularity
at which it should operate. For example, keeping each
captured packet with a fixed probability p implements
per-packet sampling, which can be used to estiamte ag-
gregate traffic effects, but does not allow much analysis
of intra-connection dynamics. A different (or additional)
approach would be to keep each captured packet if its
connection tuple matches a given random hash; this pro-
vides per-connection sampling, where for any particular
connection, either all of its packets are sampled, or none.
More generally, the PSAMP working group of the IETF
is exploring methods for expressing packet sampling
[10], [11].

III. DESIGN, ARCHITECTURE, AND

IMPLEMENTATION

Figure 1 depicts the system architecture. pktd is com-
posed of two different systems, the daemon (which is
made up of three processes, smgr, fmgr, and imgr)
and the stub library that clients use to interact with the
daemon.

The following sections describe the main daemon
functioning and parts.

A. Daemon Functioning

The pktd daemon accepts requests from clients on
a well-known socket port on the loopback interface,
and also monitors the network capture device interface.
When a client process located on the same host wants to
carry out a measurement, it contacts the daemon with a
measurement request and some identifying information.

The daemon valides this information and then com-
pares it with a client-specific access control list (ACL)
to decide whether to service the request. If the request
is accepted, the daemon carries out the corresponding
measurement, forwarding the resulting data to the client.

Apart from listening to clients requesting measure-
ments, the daemon has to monitor the capture device



PSfrag replacements

client

client stub (libwire)

loopback interface

da
em

on
(p

kt
d)

disk file

disk file

main socket

control socket data socket

smgr fmgr

imgrsync&comm

access
control

list
filter table

libpcap libnet

network

process

structure

Fig. 1. pktd System Architecture

interface where the packets correpsonding to the mea-
surements arrive. When it receives a packet from the
network device, the daemon determines which client(s)
are interested and may receive it, and accordingly for-
wards the packet over the corresponding local socket(s).

The daemon’s third task is the careful management of
packet injection.

The daemon therefore needs to monitor three event
sources concurrently: First, it has to serve clients re-
quests for capture and injection measurements at the
loopback interface. Second, it has to collect packets
received at the capture device interface, and forward
them to the corresponding clients. Third, it has to carry
out high-precision timing for the packets it has decided
to accept for injection.

In order to prevent one event source from hindering
service to another, the daemon is composed of three
processes running concurrently: filter manager (fmgr),
socket manager (smgr), and injection manager (imgr),
respectively.

B. Filter Manager

The filter manager (fmgr) is in charge of operating
the packet capture device. This means setting the correct
device filter and the number of bytes the device has to
capture per packet (the device snaplen). It also forwards
packets matching their filters to corresponding clients.

Client requests are composed of a client filter and
the number of bytes per packet they are interested on
(the client snaplen). When the filter manager receives
requests from more than one client, it sets the device
filter to an OR’ed juxtaposition of all client filters, and
the device snaplen to the largest client snaplen.

When a new packet is captured by the device filter,
fmgr determines which client filters match the packet.
For each matching client, the packet is trimmed accord-
ing to the client snaplen, and then forwarded.

There is a performance problem with using the same
capture device for all clients. The pcap library does not
provide a way to reconfigure the snaplen of an already-
open device, so it has to be set when the device is
first opened. Using a large, fixed snaplen that covers all
possible client snaplens (i.e., the maximum transmission
unit of the underlying network) means the capture device
will capture more data than needed from the network
device, therefore degrading the capture performance.

A first approach is to emulate a device snaplen change
call by closing and immediately reopening the device.
But in order to ensure no packets are lost during the
transition, the daemon must open a new capture device
with the new snaplen, synchronize both devices, and then
switch from the old device to the new one. Synchronizing
packets, though, is cumbersome, as pcap does not ensure
that timestamps for the same packet as seen by two



different capture devices are the same.2

But even if the daemon could seamlessly change
the device snaplen, we would still have a performance
problem. One client requesting a large snaplen affects
the performance of all of the remaining clients, even if
its filter rarely matches. Our solution is for pktd to keep
two open devices, each with a fixed snaplen. One device
has its snaplen set to the maximum snaplen possible
(slow device), while the other has it set to a quantity
just sufficient to capture IP and transport headers (fast
device). Clients are served by the slow or the fast device
depending on their requested snaplen. The latter is used
to attend clients requiring high-speed packet capture,
while the former ensures all clients can be served.

A two-device solution matches the two types of clients
we expect for pktd: a bimodal use pattern consisting of
clients interested in measurements focused on datalink,
network, and transport layers, and clients interested in
upper layers. Therefore, the fast device snaplen is set to
the sum of the link, network (IP), and largest transport
protocol header size. Using the common assumption that
IP options are virtually never used, we can set this value
to 80 bytes (20 for the IP header and 60 for the maximum
TCP header with options) plus the link layer length. 3

A two-device solution with fixed snaplens avoids the
hassle of synchronizing the capture devices, adapts better
to fast-changing environments that we expect common
during some types of pktd use (such as SCNM [12]),
and is easier to implement. The main drawback is that
it requires keeping two capture devices open. For hosts
where the daemon is not able to open two devices at
the same time, pktd provides a fallback of just using the
slow filter.

C. Socket Manager

The second pktd process is the socket manager
(smgr). smgr follows a typical client-server model,
listening for service requests from clients. The interac-
tion is controlled by an access control list (ACL), which
enforces the policy to be applied to each client.
smgr is bound to the loopback interface, so only

requests from client processes executing on the local
host can be received. While it is easy to extend smgr to
accept requests from processes located in other hosts,
we refrain from doing so in order to limit security

2Experiments we conducted on a FreeBSD 4.7 host found that
reported timestamps could, under some circumstances, differ between
4 and 7 microseconds for the same packet in two concurrently open
devices.

3Ideally, pcap would support richer semantics in the snaplen choice.
Instead of 80 bytes, we would like to select the snaplen to be exactly
the datalink, IP, and TCP layers. There is actually enough flexibility
in the BPF language to support doing so, but no way to access it from
pcap and the tcpdump filtering language it uses.

concerns. Accepting only local host clients also permits
inexpensively implementing the client access control list
based on user IDs, which wouldn’t work for remote
clients.

D. Synchronization and Communication

The three processes need a means to communicate
information about the state of the filter and ACL tables.
(See below for a description of the filter table.) Process
communication can be performed using either shared
memory or loopback-interface sockets. In the first case,
the filter table is memory mapped using mmap, and
access is synchronized using semaphores. Changes in
the filter table are reflected automatically in the other
process.

Unfortunately, some systems where we are interested
in running pktd do not support semaphores. In this case
the daemon can be compiled to use sockets as the means
to perform IPC. In this case, one of the processes is set as
the responsible for the table, and it has to attend petitions
from the others to perform changes. In the case of the
filter table, the original copy resides in the fmgr, as this
is the most thorough user.

The filter table stores information regarding the state
of all active measurements. The filter table is updated
every time clients request or finish measurements.

Both fmgr and smgr need access to the table filter.
fmgr needs it to manage the capture device, and smgr
to attend client requests. They need to have a consistent
view of the measurement list, so any modification in
one’s copy must trigger changes in the other.

E. Off-line Mode and Checkpointing

pktd may also be used to record traffic for off-line
analysis, using the daemon dump functionality. This
consists of pktd clients instructing the daemon to dump
the client’s packets to a file instead of sending them over
the connection between the client and pktd. This way, a
client can request a long-term measurement, and get the
file name from the daemon. Once the measurement has
finished, the client can fetch the tcpdump file.

File naming poses a security issue. In order to avoid
client attacks based on clobbering system files, clients
are not permitted to select the file name; it is instead
selected by the daemon.

Another problem with daemon dump is that disk
consumption may grow without limit. pktd supports
checkpointing, meaning that as trace files reach particular
thresholds, pktd closes the current file and opens a new
one. In addition, pktd has a notion of how much disk it
has the right to use, and deletes the oldest files as that
space becomes exhausted.

Checkpointing can be requested using three different
metrics: time, packet count, or disk space. Measurement



limits can be expressed as “trace for the next T seconds,”
“capture at most N packets,” or “generate a file no larger
than B bytes,” respectively.

F. libwire Library Stub

Clients access the daemon using a library stub called
libwire. libwire provides clients with a simplified version
of the pcap programming API. Clients also describe
measurement filters by using tcpdump-like filter expres-
sions.

Client tools are linked with libwire, which provides
access to the daemon.

Table I describes the library stub application program-
ming interface.

G. Injection Manager

For some types of measurements, it is essential to
inject customized packets into the network. While some
software packages standardize raw access to the network
device, we again want to provide fine-grained policy de-
cisions to the box owner. For example, it may be OK for
a client to inject a well-formed ICMP packet addressed
to a computer whose distance to the measurement box
is being calculated. On the other hand, full raw access
to the network device is a capability few system owners
are willing to permit to most clients; it can be used for
all sorts of attacks.

Packet injection is carried out by the injection manager
(imgr). imgr is actually implemented in two different
ways: using raw sockets, and writing directly to the link-
layer interface. Differences are related to the function-
ality provided and the simplicity of the implementation.
The current implementation can be configured at compile
time to use any of them.

The first case obliges the daemon to be run as root
in Linux, FreeBSD, or Solaris. Direct writing to the
link-layer interface can be implemented in FreeBSD just
by providing the daemon with write access to the BPF
device.

We envision injection to work as follows: when a
client wants to inject a packet, it provides the packet
to the daemon along with the exact time when it wants
it to be injected. Precise timing of the transmission can
be implemented by combining gross time scheduling (via
usleep) and then, for the final milliseconds, busy-waiting
(the approach used by the “zing” utility distributed with
NIMI).

The daemon would return a unique tag to the client
for each injection request. Once imgr eventually sends
the message, it will then forward to the client the exact
timestamp when it was sent.

We are very interesting in supporting high-precision
measurement. As such, we would like to give as much

precision as possible, if not for measurements across dif-
ferent hosts (the correctness of the any time information
distilled from measurement taken in two hosts is only
valid if they are synchronized tightly enough), at least
for measurements in the same host.

On the capture side, the best timestamps we can get
for a captured packet are those provided by BPF. On the
injection side, we can (a) listen to our own packet and
accept the timestamp returned from BPF, and (b) take a
timestamp when we do send the packet. In the second
case, the idea is to take a timestamp before sending the
packet, and after transmission returns, and distill some
value in the middle (or perhaps simply report both).

We will also need to do some work to assess schedul-
ing precision across several platforms.

Clients are also allowed to define the initial bytes
of the packet: for example, the network and transport
headers, and perhaps some additional initial payload,
plus a pattern to compose the rest of the packet. The
imgr would check which fields the client can select,
and overwrite the rest.

Given the potential power of packet injection, not
all host administrators will want to make it available.
Thus, the packet injection capability can be removed
from pktd at compile time. Clients know whether the
daemon supports injection by checking the results of the
wire_init API call.

H. Compression

When capturing very high volume traces, the over-
head of copying the packets—even if only headers—can
become significant. Thus, as part of the communication
between fmgr and the client, we implemented header
compression to reduce the data volume we need to
transmit.

In general, our compression implementation follows
the approach used by CSLIP guidelines [13], but with
some differences. First, CSLIP relies on the underlying
link layer for conveying packet size information, whereas
our compression must be fully self-contained. Second,
we need to include timestamps as well as the packet
headers.

Third, CSLIP was designed to operate primarily in
environments where space was at a greater premium
than computation cycles, so squeezing every last bit of
compression, at the cost of some non-aligned operations,
makes sense for it. For pktd, on the other hand, we’re
more concerned with saving cycles than with squeezing
every bit. Accordingly, for our compression we rely on
byte operations instead of bit-wise ones.

Finally, unlike with CSLIP we can consider forms
of “lossy” compression, since for some forms of mea-
surement (those with snaplen shorter than the packet
payload, or for which the administrator prohibits access



API call Parameter Explanation

wire init connect to the daemon
filter string, filter to be installed
snaplen integer, amount of each packet to capture
mode flag, connection mode (includes disk dump, buffering, and compression)
cp struct, checkpointing request
co struct, compression request
write file string, file where trace should be written

wire done close and cleanup associated state
pdd pktd connection descriptor
ps pktd capture statistics

wire stats get pktd statistics
pdd pktd connection descriptor
ps pktd capture statistics

wire setfilter request a new filter
pdd pktd connection descriptor
filter string, new tcpdump filter to be installed
cp struct, new checkpointing request

wire checkpoint request the daemon to checkpoint
pdd pktd connection descriptor

wire flush flush data in daemon-buffered connections
pdd pktd connection descriptor

wire activity receive a packet from the daemon
pdd pktd connection descriptor
cb callback for each captured packet
user data user-defined data to pass to the callback

wire inject request a packet to be transmitted by the daemon
pdd pktd connection descriptor
ip binary, pointer to the IP header of the packet to be injected

TABLE I

MAIN API CALLS FOR libwire

to particular header fields) we do not have to represent
the full semantics of the packet. For example, if the
client is not allowed to see the IP identification field, why
waste time and bandwidth in compressing and sending
it? Thus, we have opted for a cleaner separation of IP,
TCP, and UDP headers, in order to accommodate “lossy”
trace compression.

pktd’s compression exhibits quite good performance.
See See Section IV for a discussion.

IV. EXPERIENCE AND PERFORMANCE RESULTS

pktd is implemented in 12,000 lines of C code, on
top of pcap and libnet [14]. It has been ported to Linux,
Solaris, and FreeBSD. pktd is distributed under a BSD-
style license, and is provided by the authors on-request.

Much of our initial evaluation of pktd is in the context
of a project (SCNM; see below) requiring very high-

speed (Gigabit Ethernet) capture. Therefore, a main
focus for the daemon has been to tune it to avoid packet
loss in the presence of very high volume streams as much
as possible. Tuning led us to thinning the daemon as
much as possible, especially the code executed per every
packet. This part of the code is critical in performance
terms; as we will see below, it influenced several further
design decisions.

Our performance analysis was mainly done using a
high bitrate “test stream” consisting of an 832 Mbps
(159 MB in 1.53 seconds) UDP flow, which was com-
prised of 113,120 large, heavily fragmented packets.

One of the problems of tuning the daemon was
determining what constituted a good target—i.e., a good
tool against which to compare. On our evaluation plat-
form (FreeBSD 4.4), plain tcpdump loses packets when
capturing the test stream. The problem is not simply the



volume of the stream: if we capture just the headers, we
still typically lose 0.2 % of the packets. Even a relatively
small drop rate such as this can be a significant difficulty
when trying to diagnose problems like which node along
the full path is losing packets. If we try to capture more
data per packet, the drop rate goes up. For example,
tcpdump loses 10 % of the packets when snaplen is 150
bytes.

The first tuning consideration is the influence of
pcap’s setting of the BPF kernel buffer size. Plain pcap
sets the kernel buffer size to 32 KB, which for a
high volume stream leads to a great number of context
switches as captured packets are transferred into the user-
space, especially if we capture more than just headers
(and hence the buffer fills up faster). Increasing the
buffer size can help a great deal when capturing full
packets. However, surprisingly a larger kernel buffer
can actually decrease performance when capturing small
packets (why remains a puzzle—perhaps due to L1 cache
effects), as illustrated below.

A second consideration is the use of interrupt co-
alescence in the NIC [15], [16]. In order to achieve
high-performance capture, it is crucial to avoid the
network card generating a new interrupt for each arriving
packet. Our test stream, for example, would generate one
interrupt every 14 µs—definitely an extreme processing
burden on the kernel.

Some network cards provide an interrupt moderation
feature, also known as interrupt coalescence, which
bundles several packets into a single interrupt. The idea
is that the NIC, after receiving a packet, does not
automatically generate an interrupt to request the CPU
transferring the data to memory. Instead, the interrupt is
delayed for up to a given amount of time (the interrupt
moderation period) in hopes of other packets arriving in
the meantime and being served by the same interrupt.

Too large an interrupt moderation period can lead to
large delays in packet processing. This is a problem
when the captured traffic is interactive, i.e., when there
is the need of answering it in real-time (for example, by
a reactive intrusion detection system). However, this is
not the case for pktd. Thus, all of our experiments were
run using a 3 ms interrupt coalescence (compared to the
200 µs default value in FreeBSD 4.7).

Another important tuning element is careful buffer
management. In order to deliver high volumes of packet
headers to its clients, pktd naturally needs to buffer the
headers before sending them in large units. Initially,
we used the standard C stdio library. We then found,
however, that (at least under FreeBSD) the performance
of the standard C stdio library in the specific case
of doing small writes is slightly worse than what we
could get using our own user-level buffering. Small

writes (packet headers) are the main scenario where we
have tested pktd, so we built our own user-level buffer
management library, lstdio.

Figure 2 shows the performance obtained as a function
of the write size for unbuffered writing (write), the
C standard library using the default 8 KB buffer size
(fwrite), and the user-level library we wrote for pktd
with the same 8 KB buffer size (lfwrite). We see that the
performance difference between the standard C library
and the user-level buffering is very small, only 10% for
the case of 64-byte writes. But this small difference can
be important in the high-load conditions; as we will see,
it accounts for pktd slightly outperforming tcpdump.

Figure 3 shows the result of applying all of the dis-
cussed ingredients. We have run plain tcpdump, tcpdump
changing the kernel buffer size to 1 MB, and pktd also
using 1 MB of kernel buffer space. All experiments were
carried out in the same way: an unloaded capture host
with a GigEthernet NIC sees the test stream and tries
to capture as much traffic as possible. The top drawing
shows the percentage of packets captured, and the bottom
one the total number of bytes captured.

There are several interesting aspects in the figure.
First, we can see how the kernel buffer size affects
tcpdump performance. A small buffer size is better
when capturing few bytes per packet, but performance
degrades rapidly when increasing it.

pktd does not lose traffic until you pass the 94-byte
snaplen milestone. That number is a consequence of the
two-device (fast vs. slow, per Section III-B) architecture
in the daemon. If snaplen is 80 bytes (20 for the IP
header and 60 for the maximum TCP header with op-
tions) plus the link layer length (14 bytes for the Ethernet
header) or smaller, then the fast device is used (with
94 bytes of snaplen). Once the capture size surpasses the
94 byte limit, snaplen is set to the maximum possible
amount (the slow device), so performance degrades very
quickly.

As mentioned in Section III-H, pktd supports compres-
sion of packet headers when conveying them from fmgr
to the measurement client. We find that the compression
works quite well: pktd carries out lossless compression
of UDP headers with just 7 bytes/packet (including
timestamps), and TCP headers in only 15 bytes/packet,
including timestamps and TCP options. The UDP traces
are those used for the test stream: synthetic, fat traffic
(heavily-fragmented UDP packets with an average length
of 1500 bytes) corresponding to a single connection.
The TCP traces are from measured FTP traffic, with an
average 4.16 bytes of options per packet.

Compression is carried out with no noticeable perfor-
mance loss. Using a 68 byte snaplen, we can support
multiple concurrent pktd client capturing the test stream



PSfrag replacements

Pe
rf

or
m

an
ce

(M
eg

ab
yt

es
/s

)

Write Size (bytes)

lfwrite (8 KB)
fwrite (default, 8 KB)

write

32 64 128 256 512 1 KB 2 KB 4 KB 8 KB 16 KB
0

50

100

150

200

Fig. 2. User-Level Write Buffer Performance

with no packet losses (we’ve tested up to a dozen).
This is a consequence of pktd spending less memory
bandwidth when transmitting compressed copies of the
headers to the clients, a savings that more than offsets the
extra cycles required for compression and decompression

V. CONCLUSIONS

We have designed and implemented pktd, a packet
capture/injection daemon that provides policy-controlled,
fine-grained access to the network device. Our prelim-
inary measurements have found that, once we tuned
the implementation, it is able to capture high-volume
streams of traffic without significant performance prob-
lems.

pktd is a helpful tool for implementing safe measure-
ment techniques, where “safe” means that tools needing
packet capture or injection can only capture or source
traffic that conforms with the local administrative policy,
and themselves require no special privileges.

pktd is part of the NIMI project infrastructure, and
is also being used by the Self-Configuring Network
Monitor (SCNM) Project 4 at several U.S. National
Laboratories [12]. Source code is available on request.

VI. ACKNOWLEDGMENTS

We gratefully acknowledge Deb Agarwal, Brian Tier-
ney, and Jin Guojun for all of their help during pktd

4http://www-itg.lbl.gov/Net-Mon/

development. They have been our main users, and as
such provided invaluable comments and suggestions.
Thanks also to Andrew Adams for helpful discussions.

This work was partially supported by the Spanish
Ministerio de Ciencia y Tecnologı́a’s ICSI fellowship,
and the NSF National Middleware Initiative, Award
0222846.

REFERENCES

[1] G. Almes et al., “Surveyor Home Page, Tools, and Infrastruc-
ture,” 1997. [Online]. Available: http://io.advanced.org/surveyor

[2] C. Labovitz et al., “The Internet Performance and Analysis
Project,” 1997. [Online]. Available: http://www.merit.edu/ipma

[3] H. Werner-Braun et al., “Active Measurements, Tools, and
Infrastructure,” 1998. [Online]. Available: http://amp.nlanr.net

[4] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An archi-
tecture for large-scale internet measurement,” IEEE Communica-
tions, vol. 36, no. 8, pp. 48–54, August 1998.

[5] V. Paxson, A. Adams, and M. Mathis, “Ex-
periences with NIMI,” in Proceedings of Passive
and Active Measurement, 2000. [Online]. Available:
http://citeseer.nj.nec.com/paxson00experiences.html

[6] S. McCanne and V. Jacobson, “The BSD packet filter:
A new architecture for user-level packet capture,” in
USENIX Winter, 1993, pp. 259–270. [Online]. Available:
http://citeseer.nj.nec.com/mccanne92bsd.html

[7] V. Jacobson, C. Leres, and S. McCanne, “tcpdump—dump traffic
on a network. UNIX man page,” 1993. [Online]. Available:
http://www.tcpdump.org

[8] G. Minshall, “TCPdpriv command manual,” 1996. [Online].
Available: http://ita.ee.lbl.gov

[9] J. Turner, “New directions in communication (or which
way in the information age),” IEEE Communications
Magazine, vol. 24, no. 8–15, 1986. [Online]. Available:
http://citeseer.nj.nec.com/context/311305/0



0

20%

40%

60%

80%

100%

34 54 68 94 150 200 250 300

pktd w/o compression
tcpdump with 1 MB BPF kernel buffer

tcpdump with 32 KB BPF kernel buffer

PSfrag replacements
Total data captured

Pe
rc

en
ta

ge
of

pa
ck

et
s

ca
pt

ur
ed

Client snaplen

pktd device switch threshold

0

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

35 MB

40 MB

34 54 68 94 150 200 250 300

pktd w/o compression
tcpdump with 1 MB BPF kernel buffer

tcpdump with 32 KB BPF kernel buffer

PSfrag replacements

To
ta

l
da

ta
ca

pt
ur

ed

Percentage of packets captured

Client snaplen

pktd device switch threshold

Fig. 3. pktd vs. tcpdump Performance for an 800 Mbps Stream

[10] N. Duffield et al., “A Framework for Passive
Packet Measurement (work in progress),” 2002. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-psamp-
framework-01.txt

[11] P. S. (psamp) Charter, “Packet sampling (psamp),” 2002.
[Online]. Available: http://www.ietf.org/html.charters/psamp-
charter.html

[12] D. Agarwal, J. González, G. Jin, and B. Tierney,
“An Infrastructure for Passive Network Monitoring of
Application Data Streams,” in Proceedings of Passive and
Active Measurement, 2003. [Online]. Available: http://www-
itg.lbl.gov/Net-Mon

[13] V. Jacobson, “Compressing TCP/IP headers for

low-speed serial links,” 1990. [Online]. Available:
http://citeseer.nj.nec.com/ncontextsummary/60581/0

[14] M. Schiffman, “The libnet reference manual,” 1999. [Online].
Available: http://www.packetfactory.net/libnet/manual

[15] J. Guong, “Personal communication,” 2002.
[16] C. Leres, “SCNM FreeBSD mods,” 2002. [Online]. Available:

http://www-didc.lbl.gov/SCNM/FreeBSD mods.html


