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Abstract

Network arrivals are often modeled as Poisson processes for
analytic simplicity, even though a number of traffic studies
have shown that packet interarrivals are not exponentially
distributed. We evaluate 24 wide-area traces, investigating
a number of wide-area TCP arrival processes (session and
connection arrivals, FTP data connection arrivals within FTP
sessions, and TELNET packet arrivals) to determine the error
introduced by modeling them using Poisson processes. We
find that user-initiated TCP session arrivals, such as remote-
login and file-transfer, are well-modeled as Poisson processes
with fixed hourly rates, but that other connection arrivals
deviate considerably from Poisson; that modeling TELNET
packet interarrivals as exponential grievously underestimates
the burstiness of TELNET traffic, but using the empirical
Tcplib [Danzig et al, 1992] interarrivals preserves burstiness
over many time scales; and that FTP data connection arrivals
within FTP sessions come bunched into “connection bursts,”
the largest of which are so large that they completely domi-
nate FTP data traffic. Finally, we offer some results regarding
how our findings relate to the possibleself-similarityof wide-
area traffic.

1 Introduction

When modeling network traffic, packet and connection ar-
rivals are often assumed to be Poisson processes because
such processes have attractive theoretical properties [FM94].
A number of studies have shown, however, that for both
local-area and wide-area network traffic, the distributionof
packet interarrivals clearly differs from exponential [JR86,
G90, FL91, DJCME92]. Recent work argues convincingly
that LAN traffic is much better modeled using statistically
self-similarprocesses [LTWW94], which have much differ-
ent theoretical properties than Poisson processes. For self-
similar traffic, there is no natural length for a “burst”; traf-
fic bursts appear on a wide range of time scales. In this pa-
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per we show that for wide-area traffic, Poisson processes are
valid only for modeling the arrival of user sessions (TELNET
connections, FTP control connections); that they fail as accu-
rate models for other WAN arrival processes; and that WAN
packet arrival processes appear better modeled using self-
similar processes.

For our study we analyze 24 traces of wide-area TCP traf-
fic. We consider both previous and new models of aspects of
TELNET and FTP traffic, discuss the implications of these
models for burstiness at different time scales, and compare
the results of the models with the trace data. We show that
in some cases commonly-used Poisson models seriously un-
derestimate the burstiness of TCP traffic over a wide range
of time scales. (We restrict our study to time scales of 0.1
seconds and larger.)

We first show that for interactive TELNET traffic,connec-
tion arrivals are well-modeled as Poisson with fixed hourly
rates. However, the exponentially-distributed interarrivals
commonly used to modelpacketarrivals generated by the
user side of a TELNET connection grievously underesti-
mate the burstiness of those connections, and high degrees
of multiplexing do not help. Using the empirical Tcplib
[DJ91, DJCME92] distribution for TELNET packet interar-
rivals instead results in packet arrival processes significantly
burstier than Poisson arrivals, and in close agreement with
traces of actual traffic. From these findings we then con-
struct a model of TELNET traffic parameterized by only the
hourly connection arrival rate and show that it accurately re-
flects the burstiness found in actual TELNET traffic. (We do
not model the TELNET response, only the user side.) The
success with this model of using Tcplib packet interarrivals
confirms the finding in [DJCME92] that the arrival pattern of
user-generated TELNET packets has an invariant distribution,
independent of network details.

For small machine-generated bulk transfers such as SMTP
(email) and NNTP (network news), connection arrivals are
not well-modeled as Poisson, which is not surprising since
both types of connections are machine-initiated and can be
timer-driven. Previous research has discussed how the pe-
riodicity of machine-generated IP traffic such as routing
updates can result in network-wide traffic synchronization
[FJ94], a phenomenon impossible with Poisson models.

For large bulk transfer, exemplified by FTP, the traffic
structure is quite different than suggested by Poisson models.
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As with TELNET connections, user-generated FTP session
arrivals are well-modeled as Poisson with fixed hourly rates.
However, we find that FTP data connections within a single
FTP session (which are initiated whenever the user lists a di-
rectory or transfers a file) come clustered inbursts. Hereafter
we will refer to these data connections as FTPDATA connec-
tions, and the corresponding bursts as FTPDATA bursts. Nei-
ther FTPDATA-connection nor FTPDATA-burst arrivals are
well-modeled as Poisson processes. Furthermore, one of our
key findings is that the distribution of the number of bytes in
each burst has a very heavy upper tail; a small fraction of the
largest bursts carries almost all of the FTPDATA bytes. This
implies that faithful modeling of FTP traffic should concen-
trate heavily on the characteristics of the largest bursts.

Poisson arrival processes are quite limited in their bursti-
ness, especially when multiplexed to a high degree. Our find-
ings, however, show that wide-area traffic is much burstier
than Poisson models predict, over many time scales. This
greater burstiness has implications for many aspects of con-
gestion control and traffic performance. We conclude the pa-
per with a discussion of how our burstiness results mesh with
self-similar models of network traffic, and then with a look at
the general implications of our results.

2 Traces used

Dataset Date Duration What

Bellcore (BC) 10Oct89 13 days 17K TCP conn.
U.C.B. (UCB) 31Oct89 24 hours 38K TCP conn.
coNCert (NC) 04Dec91 24 hours 63K TCP conn.
UK-US (UK) 21Aug91 17 hours 26K TCP conn.
DEC 1-3 See refs. 24 hours×3 195K TCP conn.
LBL 1-8 See refs. 30 days×8 3.7M TCP conn.

Table 1: Summary of Wide-Area TCP Connection Traces

Dataset Date When What

LBL PKT-1 Fri 17Dec93 2PM-4PM 1.7M TCP pkts.
LBL PKT-2 Wed 19Jan94 2PM-4PM 2.4M TCP pkts.
LBL PKT-3 Thu 20Jan94 2PM-4PM 1.8M TCP pkts.
LBL PKT-4 Fri 21Jan94 2PM-3PM 1.3M pkts.
LBL PKT-5 Fri 28Jan94 2PM-3PM 1.3M pkts.
DEC WRL-1 Wed 08Mar95 10PM-11PM 3.3M pkts.
DEC WRL-2 Thu 09Mar95 2AM-3AM 3.9M pkts.
DEC WRL-3 Thu 09Mar95 10AM-11AM 4.3M pkts.
DEC WRL-4 Thu 09Mar95 2PM-3PM 5.7M pkts.

Table 2: Summary of Wide-Area Packet Traces

Our study is based on two sets of traces of wide-area net-
work traffic. The first set, shown in Table 1, consisted of
TCP SYN/FIN connection start/stop packets. SYN/FIN pack-
ets are enough to measure connection start times (and hence

connection arrival processes), durations, TCP protocol, par-
ticipating hosts, and data bytes transferred in each direction.
The BC and UCB traces are analyzed in depth in [DJCME92],
and also in [P94a], and the UCB trace forms the basis of the
connection characteristics used for Tcplib [DJ91]. The NC,
UK, and DEC traces are analyzed in [P94a], and the LBL
traces are analyzed in [P94a, P94b]. The “DEC 1-3” rows
represents three wide-area TCP SYN/FIN traces, each span-
ning 1 day, and the “LBL 1-8” row represents 8 wide-area
TCP SYN/FIN traces, each spanning 30 days. The reader is
referred to the abovementioned papers for details regarding
the characteristics of the traffic in each dataset, including the
number of connections and bytes due to each TCP protocol.

These traces are all fairly lengthy, allowing us to assess
how traffic varies over the course of a day or longer, and
giving us enough TCP connection arrivals to make a statis-
tically sound evaluation of the connection arrival processes.
These traces are used in§ 3 to evaluate the effectiveness
of using Poisson models for TCP connection arrivals. Be-
cause SYN/FIN traces allow us to characterize connection
size, we also used these trace in§ 6 to investigate the notion
of “FTPDATA bursts.”

Because the SYN/FIN traces do not contain information
regarding packet arrivals within a connection, to evaluate
packetarrival processes we acquired nine packet-level traces
of wide-area traffic, summarized in Table 2.1

The “LBL PKT-n” rows summarize traces gathered at the
Lawrence Berkeley Laboratory’s wide-area Internet gateway.
The first three traces captured all TCP packets, and lasted two
hours. The final two traces captured all packets and lasted one
hour. In the first set of traces, the fraction of dropped packets,
where known, was always≤ 5 · 10−6. For the second set, it
was always≤ 0.001.

The “DEC WRL-n” rows summarize traces gathered at the
primary Internet access point for the Digital Equipment Cor-
poration. The access point is operated by Digital’s Palo Alto
research groups, and the traces were supplied by Digital’s
Western Research Lab (hence “WRL”). For these traces, the
fraction of dropped packets was always≤ 0.00025.

The packet traces do not include a large number of TCP
connections, unlike the traces in Table 1, so we do not use
them for evaluating Poisson models for TCP connection ar-
rivals, nor for the size of FTPDATA bursts (though the traces
are used to illustrate the heaviness of the distribution’s upper
tail). Instead we use the LBL PKT datasets in§ 4 and§ 5
to evaluate different models for TELNET packet arrivals, and
both the LBL PKT and the DEC WRL datasets in§ 7 to inves-
tigate the presence of “large-scale correlations” in wide-area
network traffic. (We did not include the DEC WRL datasets

1The BC and UCB traces listed in Table 1 actually include all packets, and
are analyzed as such in [DJCME92]. We excluded a packet-level analysis of
the BC dataset because of its low traffic rate (on average, about 1 packet/sec
over the 11 days), and the UCB dataset because it forms the basis of the
Tcplib library, against which we compare the packet-level traces.
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in our packet-level TELNET evaluation because, due to the
use of a firewall proxy server, the DEC TELNET traffic is
dominated by a single, heavily-loaded machine.)

To disambiguate between the LBL and DEC SYN/FIN
traces and packet traces, we use LBL-n and DEC-n to re-
fer to SYN/FIN traces, and LBL PKT-n and DEC WRL-n to
refer to packet traces.

3 TCP connection interarrivals

This section examines the connection start times for several
TCP protocols. The pattern of connection arrivals is dom-
inated by a 24-hour pattern, as has been widely observed
before. We show that for TELNET connection arrivals and
for FTP session arrivals, within one-hour intervals the arrival
process can be well-modeled by a homogeneous Poisson pro-
cess; each of these arrivals reflects an individual user start-
ing a new session. Over one hour intervals, no other proto-
col’s connection arrivals are well-modeled by a Poisson pro-
cess. Even if we restrict ourselves to ten-minute intervals,
only FTP session and TELNET connection arrivals are sta-
tistically consistent with Poisson arrivals, though the arrival
of SMTP connections and of FTPDATA “bursts” (discussed
later in § 6) during ten-minute intervals are not terribly far
from what a Poisson process would generate. The arrivals of
NNTP, FTPDATA, and WWW (World Wide Web) connec-
tions, on the other hand, are decidedly not Poisson processes.
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Figure 1: Mean, relative, hourly connection arrival rate for
LBL-1 through LBL-4 datasets.

Figure 1 shows the mean hourly connection arrival rate for
datasets LBL-1 through LBL-4. For the different protocols,
we plot for each hour the fraction of an entire day’s connec-
tions of that protocol occurring during that hour. (In the fig-
ure, FTP refers to FTP sessions.) For example, TELNET con-
nections occur primarily during normal office hours, with a
lunch-related dip at noontime; this pattern has been widely

observed before. FTP file transfers have a similar hourly pro-
file, but they show substantial renewal in the evening hours,
when presumably users take advantage of lower networking
delays. The NNTP traffic maintains a fairly constant rate
throughout the day, only dipping somewhat in the early morn-
ing hours (but the mean size of each connection varies over
the course of the day; see [P94a]). The SMTP traffic is in-
teresting because it shows a morning bias for the LBL site
(west-coast U.S.) and an afternoon bias for the Bellcore site
(east-coast U.S.); perhaps the shift is due to cross-country
mail arriving relatively earlier in the Pacific time zone and
later in the Atlantic time zone.

Figure 1 shows enough daily variation that we cannot rea-
sonably hope to model connection arrivals using simple ho-
mogeneous Poisson processes, which require constant rates.
The next simplest model is to postulate that during fixed-
length intervals (say, one hour long) the arrival rate is constant
and the arrivals within each interval might be well modeled by
a homogeneous (fixed-rate) Poisson process. Telephone traf-
fic, for example, is fairly well modeled during one-hour inter-
vals using homogeneous Poisson arrival processes [FL91].

To evaluate these Poisson models, we developed a simple
statistical methodology (Appendix A) for testing whether ar-
rivals during a given one-hour or ten-minute interval are Pois-
son with a fixed rate. We test two aspects of each protocol’s
interarrivals: whether they are consistent with exponentially
distributed interarrivals, and whether they are consistent with
independent interarrivals. If the arrivals during the interval
are truly Poisson, then we would expect 95% of the tested in-
tervals to pass each test. Note that we would also expect test-
ing ten-minute intervals to perhaps be more successful than
testing one-hour intervals, because using ten-minute intervals
allows the arrival rate to change six times each hour rather
than remaining constant throughout the hour.

We applied our methodology to all of the TCP connec-
tion traces shown in Table 1. For each trace, we separately
tested the trace’s TELNET, FTP, FTPDATA, SMTP, NNTP,
and WWW connections. Only two of the traces had signifi-
cant WWW traffic, but as use of this protocol is rapidly grow-
ing, it is worth investigating even given the limited samples.

FTP here refers to an FTPsession(i.e., an FTP control
connection), while FTPDATA refers to the data-transfer con-
nections spawned by these control connections. Prior to our
analysis we removed the periodic “weather-map” FTP traffic
discussed in [P94b], to avoid skewing our results. We also
tested arrivals of FTPDATAbursts(see§ 6 below).

Figure 2 shows the results of our tests, for both one-hour
intervals (top plot) and ten-minute intervals (bottom plot).
Along thex-axis we plot the percentage of tested intervals
that passed the statistical test for exponentially distributed in-
terarrivals, and along they-axis the percentage that passed
the test for independent interarrivals. The dashed lines corre-
spond to a 95% pass-rate, which we would expect on average
if the arrivals were truly Poisson. In general, we expect Pois-
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Figure 2: Results of testing for Poisson arrivals.

son arrivals to cluster near the upper right corner of the plots.
Each letter in a plot corresponds to a single trace’s con-

nection arrivals for the given TCP protocol. Letters drawn
in largebold indicate that the trace’s arrivals are statistically
indistinguishable from Poisson arrivals (see Appendix A for
details). A+ or − after a letter indicates that consecutive
interarrival times are consistently either positively or nega-
tively correlated, even if the correlation itself is not particu-
larly strong (again, see Appendix A).

We see immediately that TELNET connection arrivals and
FTP session arrivals are very well modeled as Poisson, both
for 1-hour and 10-minute fixed rates. No other protocol’s ar-
rivals are well modeled as Poisson with fixed hourly rates.
If we require fixed rates only over 10-minute intervals, then
SMTP and FTPDATA burst arrivals are not terribly far from
Poisson, though neither is statistically consistent with Poisson
arrivals, and consecutive SMTP interarrival times show con-
sistent positive correlation. NNTP, FTPDATA, and WWW

arrivals, on the other hand, are clearly not Poisson.
That NNTP and to a lesser extent SMTP arrivals are not

Poisson is not too surprising. Because of the flooding mecha-
nism used to propagate network news, NNTP connections can
immediately spawn secondary connections as new network
news is received from one remote peer and in turn offered to
another. NNTP and SMTP connections are also often timer-
driven. Finally, SMTP connections are perturbed by mailing
list explosions in which one connection immediately follows
another, and possibly by timer effects due to using the Do-
main Name Service to locate MX records [P86].

That FTPDATA connection arrivals are clearly not Poisson
can be readily attributed to the fact that “multiple-get” file
transfers often result in a rapid succession of FTPDATA con-
nections, one immediately following another [P94a]. Coa-
lescing multiple FTPDATA connections into singleburst(§ 6)
arrivals improves the 10-minute Poisson fit somewhat, but
still falls short of statistical consistency.

The finding that TELNET connection arrivals are well-
modeled as a Poisson process with fixed hourly rates is at
odds with that of [MM85], who found that user interarrival
times looked “roughly log-normal”. We believe the discrep-
ancy is due to characterizing the distribution of all of the in-
terarrivals lumped together, rather than postulating separate
hourly rates.

Given that TELNET connection arrivals appear Poisson
over one-hour intervals, one might imagine that other human-
initiated traffic such as RLOGIN and X11 will also fit this
model. We find that RLOGIN does and X11 does not. We
conjecture that the difference is that during a single X11ses-
sion (corresponding to running an instance ofxterm, say) a
user initiates multiple X11 connections, while TELNET and
RLOGIN sessions are comprised of a single TCP connection.
Thus, TELNET connection arrivals correspond to users de-
ciding to beginusing the network; X11 connection arrivals
correspond to users deciding to do something newduring
their use of the network. The former behavior is likely to
be close to uncorrelated, memoryless arrivals, since each ar-
rival generally involves a new user. The latter is much more
akin to the creation of FTPDATA connections during a single
FTP session, since a single user is involved in generating new
arrivals. Because X11 connections are created in this way,
their arrivals do not have the memoryless property and hence
are not Poisson. If we could discern between X11 session
arrivals and X11 connection arrivals, then we conjecture we
would find the session arrivals to be Poisson.

4 TELNET packet interarrivals

The previous section showed that start times for TELNET
connections are well-modeled by Poisson processes. In
this section we look at the packet arrival process within a
TELNET connection. We restrict our study to packets gen-
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erated by the TELNET connection originator; this in general
is a user typing at a keyboard. We would expect the pack-
ets generated by the TELNET connection responder to have
a somewhat different arrival process, since they will usually
include both echoes of the user’s keystrokes and larger bursts
of bulk-transfer consisting of output generated by the user’s
remote commands.

Because the originator packets are initiated by a human,
we might hope that the arrival process is to some degree “in-
variant”; that is, the process may be independent of network
dynamics and instead mainly reflect the delays and bursts of
activity associated with people typing commands to a com-
puter. Indeed, our empirical results of the interarrival times
between packets in a single TELNET connection are con-
sistent with the empirical Tcplib distribution found by pre-
vious researchers. Unlike the exponential distribution, the
empirical distribution of TELNET packet interarrival times
is heavy-tailed; we show that using the exponential distribu-
tion results in seriously underestimating the burstiness both
of TELNET traffic within a single connection and of multi-
plexed TELNET traffic. Modeling TELNET packet arrivals
by a Poisson process, as is generally done, can result in sim-
ulations and analyses that significantly underestimate perfor-
mance measures such as average packet delay.
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Figure 3: Empirical distributions of packet-interarrivals
within TELNET connections.

Figure 3 shows two empirical distributions of the interar-
rival times of packets within TELNET connections. The solid
line shows the distribution used by Tcplib [DJ91, DJCME92];
the dashed line shows the same for the LBL PKT-1 trace.
Above 0.1 seconds, the agreement is quite good, especially
in the upper tail. That different sites produce the same dis-
tribution argues heavily that the distribution is independent
of network dynamics and instead reflects human typing dy-
namics. Below 0.1 seconds the interarrival times probably
are dominated by network dynamics; but, as stated earlier, in
this paper we are not concerned with time scales below 0.1
seconds.

Even ignoring the lower tail, the interarrival distribution is

not even close to exponential in shape (note that thex-axis is
logarithmically scaled). To dramatize this fact, we have also
plotted two logarithmically-scaled exponential distributions.
The lefthand one (“fit #1”) has the same geometric mean as
the LBL PKT-1 distribution, and the righthand one has the
same arithmetic mean.

The exponential fits are very poor. Using the exponential
distribution fitted to the same geometric mean will faithfully
capture only the distribution of packet interarrivals thatare
between 200 and 400 msec apart. Shorter interarrivals will
be overestimated, and longer interarrivals will be underesti-
mated. For example, the exponential distribution models a
full 25% of the interarrivals as being less than 8 msec, and
only 2% as being longer than 1 sec, but for the actual data
under 2% were less than 8 msec apart, and over 15% were
more than 1 sec apart.

The exponential distribution fitted to the arithmetic mean
fares even worse. For example, it predicts nearly 70% of the
packets will arrive more than 1 sec apart, when the actual
observed distribution is 15% of the packets.

Thus, simple exponential distributions for packet interar-
rival times, which are necessary for Poisson models of packet
arrivals, provide very poor fits to the observed distribution.
On the other hand, the main body of the observed distribution
fits very well to a Pareto distribution (doubly-exponential; see
Appendix B) with shape parameterβ ≈ 0.9, and the upper
3% tail to a Pareto distribution withβ ≈ 0.95. Interestingly,
a Pareto distribution withβ < 1 has infinite mean and vari-
ance; a very different beast than an exponential distribution.
We will see later that Pareto-distributed interarrivals lead to
observable large-scale correlations (Appendix C).

It is not surprising that interactive packet arrivals do notfit
a Poisson model, since earlier work looking at many differ-
ent components of interactive traffic failed to find any statisti-
cally significant exponential fits to the observed distributions
[FJ70]. This leaves the question: What are the consequences
of using Poisson packet arrivals rather than the Tcplib distri-
bution for TELNET traffic?

(Row 1: Tcplib Interarrivals.  Row 2: Exponential Interarrivals.)
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Figure 4: Comparisons between Tcplib and exponential in-
terpacket times.

Figure 4 shows two views of packet arrivals from two simu-
lated TELNET connections, each lasting 2,000 seconds. The
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first graph shows the first 200 seconds, and the second graph
the entire 2,000 seconds. Row 1 for each graph shows a con-
nection using independent, identically-distributed (i.i.d.) in-
terpacket times from the Tcplib distribution, and row 2 shows
a connection using i.i.d. interpacket times from an exponen-
tial distribution with a mean of 1.1 seconds (to give roughly
the same number of packets as the Tcplib distribution). We
have plotted a dot for each packet arrival, with thex-axis giv-
ing the time of the arrival. In all, there were 1,926 Tcplib
interarrivals and 2,204 exponential interarrivals. Over both
time scales, the packets from the connection with Tcplib in-
terpacket times are dramatically more clustered.

This difference in burstiness between exponential and
heavy-tailed (i.e., Tcplib) interpacket times persists tosome
extent for multiplexed connections. For example, we ran 10-
minute simulations with 100 active TELNET connections,
where all connections were active for the entire duration
of the simulation. In one simulation each connection used
Tcplib interpacket times, and in the other simulation each
connection used exponential interpacket times. We found
that the multiplexed packet arrival processes with Tcplib in-
terpacket times remained more bursty. For each simulation,
consider the number of TELNET packets arriving during suc-
cessive one-second intervals. For the simulation with individ-
ual connections using Tcplib interpacket times, this aggre-
gate number had a mean of 92 and a variance of 240; for the
simulation with exponential interpacket times, the aggregate
number had a mean of 92 and a variance of 97. Even a high
degree of statistical multiplexing failed to smooth away the
difference between the two packet arrival processes.

One of the natural performance measures for TELNET
traffic is average packet delay. It would not be hard to con-
struct simulations, one using Tcplib and the other using expo-
nential interarrivals, where making the mistake of using ex-
ponential interarrivals instead of Tcplib significantly under-
estimates the average queueing delay for TELNET packets.

The above shows that the Tcplib packet interarrival distri-
bution behaves quite differently than a Poisson process, even
in the presence of multiplexing. We now show that for mea-
sured network traffic, these differences extend far beyond the
time scale of individual packets. To look at the difference
in burstiness at different time scales, we first extracted all
TELNET originator packets, except those consisting of no
user data (“pure ack”), from the two-hour LBL PKT-2 trace.
These packets belonged to 277 separate TCP connections. Of
these connections, 4 were anomalously large and rapid (more
than210 bytes transferred by the originator at sustained data
rates exceeding 8 bytes/sec). These are unlikely to corre-
spond to human typing, were clear outliers, and are probably
better modeled as bulk transfer connections. Removing the
outliers left us with 273 connections.

We then synthesized several two-hour packet traces as fol-
lows. For each of the TELNET connections, we synthe-
sized a connection with the same starting time within the

two-hour period and the same size (in packets). One of the
synthesized traces used the Tcplib empirical distributionfor
the packet interarrivals within each connection (“TCPLIB”);
one used exponential interarrivals with mean 1.1 (“EXP”);
and one uniformly distributed each connection’s packet ar-
rivals over the interval between when the connection began
and when during the LBL PKT-2 trace the connection termi-
nated (“VAR-EXP”). This last method corresponds to expo-
nential interarrivals with the mean adjusted to reflect the con-
nection’s actual observed packet rate. Thus, for the TCPLIB
and EXP schemes, we generated connections with the same
starting times and sizes (in packets) as their counterpartsin
the LBL PKT-2 trace, but perhaps with different durations,
while with the VAR-EXP scheme, the generated connections
shared starting time, size, and duration.

A valuable tool for assessing burstiness over different time-
scales is the “variance-time plot” [LTWW94, GW94], which
we describe here by example rather than rigorously. Suppose
we have a count process consisting of 72,000 observations,
corresponding to a two-hour trace viewed every 0.1 seconds.
Each observation gives the number of packet arrivals during
that 0.1 second interval. The variance of this count process
gives us an indication of how bursty the traffic was when
viewed on a time scale of 0.1 seconds.

If however we are interested in the process’s burst-
structure on a time scale of 10 seconds, we could construct
a “smoothed” version of the process by averaging the first
100 observations to obtain the process’s mean value during
the first 10 seconds, the next 100 observations for the next
10 seconds, and so on. In general we can do this sort of
smoothing for any aggregation levelM , where in this exam-
ple M = 100. The variance of the smoothed process then
gives us an indication of how bursty the traffic was when
viewed on a 10-second time scale.

A natural question is then: how does the variance change
as we progressively smooth the process? By plotting variance
vs. degree of smoothing (M ), we can examine how burstiness
changes according to the time scale used to view the traffic.

For count processes with rapidly decaying autocorrelation
functions, such as Poisson processes, the variance of a pro-
cess aggregated to levelM will be 1/M times the variance
of the unaggregated process (see§ 7.3.1). For processes with
more persistent autocorrelation functions, however, the vari-
ance will decay more gradually. Given this relationship, we
can then construct a variance-time plot by smoothing the pro-
cess for different values ofM and plotting the variance of
the smoothed process on they-axis vs. the aggregation level
(M ) on thex-axis. We use logarithmic scales because they
allow us to immediately assess whether the variance decays
as 1/M (which will show up on the plot as a straight line
with slope−1), or more slowly (a slope more shallow than
−1), indicating slowly decaying autocorrelation or possibly
non-stationarity; that is, from the plot we can tell a great deal
about burstiness at different time scales.
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Figure 5: Variance-Time Plot for TELNET packet arrival pro-
cess. The line from the upper left corner has slope−1.

Figure 5 shows such a plot for the LBL PKT-2 TELNET
trace and for the three schemes discussed above. Here the
unaggregated process (M = 1) corresponds to 72,000 obser-
vations of the number of TELNET originator packets arriving
during 0.1-second intervals. They-axis is the variance of the
aggregated process normalized by dividing by the square of
the average number of packets per 0.1-second. This normal-
ization allows us to compare the variance of processes with
different numbers of arrivals, as the traces consisted of be-
tween 82,500 and 86,000 packets.

From the plot it is immediately clear that the variance of
the TCPLIB scheme agrees closely with the LBL PKT-2 trace
data, while both EXP and VAR-EXP exhibit far less variance,
indicating they are much less bursty over a large range of
time scales. Thus, the TCPLIB scheme preserves the bursti-
ness present in the measured traffic, while the EXP and VAR-
EXP schemes both sacrifice burstiness at larger time scales.
At very large time scales (M = 103), we again get agree-
ment between all of the schemes and the measured traffic,
because these time scales are so coarse that we are essentially
viewing each connection’s arrivals lumped together as a sin-
gle observation—differences in the distribution of the arrivals
within the connection are lost due to the coarse granularityof
our observations.

Figure 6 shows the difference in burstiness between the
schemes explicitly. Here we plot the arrival process corre-
sponding to 5-second intervals (M = 50) for the LBL PKT-2
trace and for the EXP trace. Thex-axis shows the time in
seconds, and they-axis shows the total number of TELNET
packets in each 5-second interval. The average number of
packets in the two traces are similar; the LBL PKT-2 trace
has an average of 59 packets in each 5-second interval, and
the fixed-rate exponential trace has an average of 57 packets
in each 5-second interval. The variances, however, are quite
different. With 5-second bins, the LBL PKT-2 trace has a
variance of 672, while the exponential trace has a variance of
260.

Telnet Trace Data.
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Figure 6: Comparisons of actual and exponential TELNET
packet interarrival times.

Clearly, this difference in the packet-generation rate over
5-second intervals could have consequences for queueing de-
lays in simulations using these two different traces. As the
variance-time plot shows, the LBL PKT-2 trace is more bursty
over many time intervals, not only over the five-second inter-
vals shown here. The conclusions are that using exponential
packet interarrival times for TELNET connections results in
substantial underestimations of the burstiness of multiplexed
TELNET traffic, but using i.i.d. interarrivals drawn from the
Tcplib distribution faithfully reproduces the burst structure.

5 Fully modeling TELNET originator
traffic

Section 3 has shown that over 1-hour periods, TELNET con-
nection arrivals are well-modeled as Poisson processes, and
§ 4 has shown that within a TELNET connection, packet in-
terarrival times can be modeled using the heavy-tailed dis-
tribution in Tcplib. The connection size inbyteshas been
previously modeled by a log-extreme distribution [P94a]; the
distribution of the connection size inpacketsis somewhat dif-
ferent, and seems to be better modeled by a log-normal distri-
bution (see below). In this section, we put these three pieces
together to construct a complete model of TELNET origina-
tor traffic that is parameterized only by the connection arrival
rate. Variance-time plots show that this model corresponds
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well to empirical measurements.
First, we look at the difference in the distributions of orig-

inator bytes per connection vs. originator packets. Previous
work reports that the number of bytes sent by the origina-
tor in a wide-area TELNET connection is well-modeled us-
ing a log-extreme distribution with location parameterα =
log2 100 and scale parameterβ = log2 3.5 [P94a]. We ex-
perimented with using this distribution to produce sizes for
an equal number of TELNET connections as appeared in the
LBL PKT-2 trace. We found that the distribution consistently
generates connection sizes (in bytes) much larger than the
connection sizes (in packets) observed in the trace. We at-
tribute this difference to two effects:

• The [P94a] fit was made using month-long traces of
TELNET connections, allowing for much longer and
larger connections than are present in our two-hour
trace;

• The [P94a] fit models connection size inbytesand not
in packets. One generally assumes that each TELNET
originator packet conveys one byte of user data, corre-
sponding to a keystroke. Often, however, a packet car-
ries more than one byte, either due to effects of the Nagle
algorithm [N84] or because the TELNET connection is
operating in “line mode” [B90] or “line-at-a-time mode”
[PR83, S94]. For example, the LBL PKT-2 TELNET
originator traffic comprised about 85,000 packets carry-
ing 139,000 user data bytes.

Given these difficulties, we attempted to fit the observed
TELNET connection sizes (in packets) with another simple
analytic distribution. We found that alog2-normal distribu-
tion with log2-meanx̄ = log2 100 andlog2-standard devia-
tion σ = 2.24 fit the connection size in packets well visually,
considerably better than a log-extreme distribution with pa-
rameters fitted to the data. (The exact numerical values of
x̄ andσ here should not be taken too seriously, as they came
from a small sample.) We also found that a log-extreme distri-
bution fit the connection size in bytes better than a log-normal
distribution, so our data remains consistent with the models
presented in [P94a].

Putting all of this together, we have a complete model
for TELNET traffic, FULL-TEL, parameterized only by the
TELNET connection arrival rate. FULL-TEL uses Poisson
connection arrivals, log-normal connection sizes (in packets),
and Tcplib packet interarrivals.

We then used FULL-TEL to generate three synthetic traces
of TELNET originator traffic, using a connection arrival rate
of 273 connections in 2 hours. Because such traces start off
with no traffic and build up to a steady-state corresponding to
the connection arrival rate, we trimmed the traces to just their
second hour. We then used variance-time plots to compare
the traces with the second hour of the LBL PKT-2 TELNET
trace.
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Figure 7: Variance-time plot comparing LBL PKT-2 trace
data with the complete TELNET model, FULL-TEL.

Figure 7 shows the results of the comparison. In general
the agreement is quite good, though the models have slightly
higher variance than the trace data forM > 102. We con-
clude that FULL-TEL faithfully captures TELNET originator
traffic, except to be a bit burstier on time scales above 10 sec-
onds. As a final note, we also tested the model’s fit to the LBL
PKT-1 and PKT-3 TELNET traces; the results were similar.

6 FTPDATA connection arrivals

This section investigates arrival processes for FTP traffic.
Modeling FTP is particularly important because FTPDATA
connections currently carry the bulk of the data bytes in wide
area networks ([CBP93]). Section 3 showed that while FTP
session arrivals can be modeled as Poisson processes, this is
not the case for FTPDATA connection arrivals. This section
shows that FTPDATA connections within a session are clus-
tered in bursts, and that the distribution of burst sizes in bytes
is quite heavy-tailed; half of the FTP traffic volume comes
from the largest 0.5% of the FTPDATA bursts. These large
bursts are likely to completely dominate FTP traffic dynam-
ics.

In this paper, we do not attempt to model FTPDATA
packet arrivals within a connection. Unlike TELNET connec-
tions, where the originator packet arrival process is largely
determined by the packet generation pattern at the source,
the packet arrival process for an FTPDATA connection is
largely determined by network factors such as the available
bandwidth, congestion, and details of the transport-protocol
congestion control algorithms. Previous studies have found
that FTPDATA packet interarrivals are far from exponential
[DJCME92]; this is not surprising, since the above network
factors lead to a process quite different from memoryless ar-
rivals.

To begin,§ 3 showed that FTPDATA connection arrivals
are not well-modeled as Poisson. Each FTP session spawns
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a number of FTPDATA connections; one key question is how
these connections are distributed within the duration of the
FTP session.
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Figure 8: FTPDATA Intra-session Connection Spacing.

We computed the distribution of spacing between
FTPDATA connections spawned by the same FTP session
for six datasets: LBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and
UCB. Here, “spacing” refers to the amount of time between
the end of one FTPDATA connection within a session and
the beginning of the next. Figure 8 plots the results. In each
case the upper tail of the distribution is much heavier than
exponential (thex-axis is logarithmic), and is better approx-
imated using a log-normal or log-logistic distribution. Fur-
thermore, all of the distributions show inflection points at
spacings between 2 and 6 seconds, indicating bimodality. We
conjecture that spacings shorter than these points reflect se-
quential FTPDATA connections due to multiple transfers (the
FTP “mget” command) or a user issuing a “list directory com-
mand” very shortly followed by a “get.” Such closely-spaced
connections might well be interpreted as corresponding to a
single “burst” of file-transfer activity. We somewhat arbi-
trarily chose a spacing of≤ 4 seconds (the dashed vertical
line) as defining connections belonging to the sameburst, and
we note that such spacings are not inordinately larger than
the 1-2 second spacings that can occur internal to a single
FTPDATA connection due to TCP retransmission timeouts.
Here, “somewhat arbitrarily” means that, for example, using
a cutoff spacing of 2 seconds instead (which actually slightly
better delimits the two modes of activity) results in virtually
identical results as those discussed in the remainder of this
section.

With this definition of a burst of FTPDATA connections,
we analyzed the same datasets to measure the distribution of
the number of bytes transferred during a single connection
burst. The distribution proves to be remarkably heavy-tailed.
Figure 9 shows the percentage of all FTPDATA bytes (y-axis)
due to the largest 10% of the FTPDATA bursts (x-axis). The
numbers in parentheses in the legend give the total number
of FTPDATA bursts occurring during each trace. The first
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Figure 9: Percentage of all FTPDATA bytes due to largest
10% FTPDATA bursts.

vertical line marks the upper 0.5% of the FTPDATA bursts,
and the line to its right, the upper 2%.

The key point to draw from this figure is that the upper
0.5% tail of the FTPDATA bursts holdsbetween 30% and
60% of all of the data bytes. Thus, at any given time FTP
traffic will most likely becompletely dominated by a single or
small handful of bursts. Note that this phenomenon is present
in all of the connection datasets we studied. The dataset with
the least heavy tail is UK (shown in the figure), which still
held 30% of the data bytes in the upper 0.5% tail and 55% in
the 2% tail. The NC dataset lies about halfway between UK
and the others in the figure, and the remainder lie within the
bounds of the others shown in the figure.

This finding means that for many aspects of network be-
havior, modeling small FTP sessions or bursts is irrelevant;
all that matters is the behavior of a few huge bursts. The sizes
and durations of these bursts will vary considerably from one
time to another; but theywill be present. We also note that
our finding that the size of an FTPDATA burst has a heavy
tail matches a survey conducted by Irlam [I93] of the sizes of
files in 1,000 file systems comprising 12 million files and 250
GB of data: 1.9% of the files accounted for 71% of the bytes,
and 0.5% accounted for 54% of the bytes.

We performed fitting of the upper tail of the distribution
of data bytes per FTPDATA burst and found that the upper
5% tail fits well to a Pareto distribution with0.9 ≤ β ≤
1.4 [P94a]. As the Pareto distribution is heavy-tailed (see
Appendix B), this agrees with our findings in Figure 9. In
contrast, the upper 0.5% tail of an exponential distribution
always holds about 3% of the entire mass of the distribution,
regardless of the distribution’s mean.

Figures 10 and 11 graphically illustrate the dominance of
the upper FTPDATA-burst tail. The four plots in Figure 10
show the FTPDATA traffic rate in bytes/minute for the LBL
PKT-1, PKT-2, PKT-3, and PKT-5 datasets, and in Figure 11
the same is shown for the DEC WRL datasets. The shaded
areas represent traffic contributed by the largest 2% of the
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PKT-1 FTPDATA (7, 19)
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PKT-2 FTPDATA (10, 89)
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PKT-3 FTPDATA (11, 68)
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PKT-5 FTPDATA (5, 49)
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Figure 10: Proportion of LBL PKT FTPDATA traffic due to
largest 2% (shaded) and 0.5% (black) connection bursts.

bursts, and the black areas the largest 0.5%. The numbers in
parentheses give the number of bursts and FTPDATA connec-
tions comprising the 2% burst upper-tail. (For example, the
upper 2% tail of the PKT-1 bursts was made up of 7 bursts
consisting of a total of 19 FTPDATA connections, while for
WRL-2 this tail was made up of 16 bursts and 1,796 con-
nections.) We see that sometimes bursts contain many sepa-
rate connections and sometimes not. Indeed, the distribution
of the number of connections per burst is well-modeled as a
Pareto distribution. For example, a single burst in the LBL-7
dataset was made up of 979 separate FTPDATA connections.

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper
2% and 0.5% tails hold around 50% and 15% of all the traf-
fic; for PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and
60%. The large degree of difference between PKT-1/PKT-3
and PKT-2/PKT-5 illustrates how volatile the upper-tail be-
havior is; a trace comprising 400 bursts (and substantially
more FTPDATA connections) might well be completely dom-
inated by 2 of the bursts, or it might not, since 2 is a very small
sample of the upper-tail behavior. Thus we are left in the dif-
ficult position of knowing that upper-tail behavior dominates
traffic, but with such small numbers of bursts that we cannot
reliably use large-number laws to predict what we are likely
to see during any given trace. Furthermore, the PKT-2 and
PKT-5 bursts were not geographically anomalous, either: the
largest PKT-2 burst was to a government site in Colorado, and
the largest PKT-5 burst was to a commercial site in Washing-
ton state. These sites are about 1,500 km and 1,000 km distant
from LBL, respectively.

WRL-1 FTPDATA (19, 86)
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WRL-2 FTPDATA (16, 1796)
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WRL-3 FTPDATA (43, 202)
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WRL-4 FTPDATA (42, 119)
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Figure 11: Proportion of DEC WRL FTPDATA traffic due to
largest 2% (shaded) and 0.5% (black) connection bursts.

For the DEC datasets, the difference in the size of the burst
tails is not so pronounced: in WRL-1 (971 bursts), WRL-3
(2,161 bursts), and WRL-4 (2,100 bursts) the 2% and 0.5%
tails hold 54-70% and 33-42% of all the traffic, while for
WRL-2 (788 bursts) they hold 45% and 18%. The lesser de-
gree of difference between the datasets is what we would ex-
pect: since the datasets have considerably more bursts than
their LBL counterparts, large-number laws become more re-
liable in predicting the size of the tails.

We would also like to know whether the arrivals of the
upper-tail bursts can be modeled as a Poisson process, as that
would provide a first step toward predicting their effect on
network traffic. We analyzed the 199 upper-0.5%-tail LBL-6
bursts, first removing effects due to daily variation in traffic
rates by looking at interarrivals in terms of number of inter-
vening bursts instead of seconds. We found that the dataset
failed the statistical test (Appendix A) for exponential inter-
arrivals at all significance levels. Thus, caution must be used
if approximating large-burst arrivals using a Poisson process;
further analysis is needed to model the burst-clustering.

7 Large-scale correlations and possi-
ble connections to self-similarity

We have argued in the previous sections that on any time-
scale smaller than user-session arrivals, modeling wide-area
TCP traffic using Poisson processes fails to faithfully capture
the traffic’s dynamics. Recent work [LTWW94] shows that
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local-area Ethernet traffic (and perhaps wide-area TCP traf-
fic) is much better modeled as aself-similarprocess, which
displays substantially more burstiness over a wide range of
time scales than do Poisson processes.

In this section we discuss the degree of “large-scale cor-
relation” present in the LBL PKT traces of TELNET traffic,
and the LBL PKT and DEC WRL traces of FTPDATA traf-
fic and aggregate wide-area traffic. We also consider the evi-
dence for whether such correlation is well modeled using self-
similar processes. We begin with a discussion of the concepts
of “large-scale correlation,” “long-range dependence,” and
“self-similarity.” We next give an overview of two existing
methods for generating truly self-similar traffic, along with a
new method for producing “pseudo-self-similar” traffic. We
then discuss how the traffic models developed in this paper
might match these methods. We finish with a preliminary as-
sessment of the possible self-similarity of general wide-area
traffic. We find the evidence inconclusive, though the traf-
fic clearly exhibits large-scale correlations inconsistent with
Poisson processes.

7.1 Definitions

We use the term “large-scale correlation” as an informal way
of describing correlations that persist across large time scales.
For example, the lower right plot in Figure 10 shows a 40-
minute burst of highly correlated traffic.

A related, more precise notion of sustained correlation is
that of “long-range dependence.” A stationary process is
long-range dependentif its autocorrelation functionr(k) is
nonsummable (i.e.,

∑

k r(k) = ∞) [C84]. Thus, the defi-
nition of long-range dependence applies only to infinite time
series.

The simplest models with long-range dependence areself-
similar processes, which are characterized by hyperbolically-
decaying autocorrelation functions. Self-similar and asymp-
totically self-similar processes are particularly attractive
models because the long-range dependence can be character-
ized by a single parameter, the Hurst parameter (which can
be estimated using Whittle’s procedure [GW94, LTWW94]).

In the following sections, we look at ways in which long-
range dependence in general, and self-similarity in particular,
might arise in wide-area network traffic. An important point
to bear in mind is that, even if the finite arrival process derived
from a particular packet trace does not appear self-similar, if
it exhibits large-scale correlations suggestive of long-range
dependence then that process is almost certainly better ap-
proximated using a self-similar process than using Poisson
processes. Thus, we believe that self-similar modeling is a
promising successor to Poisson modeling. It may not be ex-
actly right, but given our current understanding of networking
phenomena, it appears in any case a good approximation.

7.2 Producing self-similar traffic

There are several methods for producing self-similar traffic
that could account for self-similarity in wide-area TCP traf-
fic. As discussed in [LTWW94], self-similar traffic can be
produced by multiplexing ON/OFF sources that have a fixed
rate in the ON periods and ON/OFF period lengths that are
heavy-tailed(see Appendix B).

A second method for generating self-similar traffic that
could fit TCP traffic is an M/G/∞ queue model, where cus-
tomers arrive according to a Poisson process and have ser-
vice times drawn from a heavy-tailed distribution with infi-
nite variance [C84, LTWW94]. In this model,Xt is the num-
ber of customers in the system at timet. The count process
{Xt}t=0,1,2,... is asymptotically self-similar (see Appendix D
for further discussion). The M/G/∞ model implies that mul-
tiplexing constant-rate connections that have Poisson connec-
tion arrivals and a heavy-tailed distribution for connection
lifetimes would result in self-similar traffic.

We investigated an additional method of producing ar-
rival processes that appear to some extent self-similar. This
method involves constructing arrivals using i.i.d. Paretointer-
arrivals withβ ≈ 1, and then considering the corresponding
count process (the number of arrivals in consecutive inter-
vals). The goal behind the method is to explore how a simple
model of TELNET traffic might lead to self-similarity. We re-
fer to this method as “pseudo-self-similar” because while the
traffic it generates has large-scale correlations and the “visual
self-similarity” property [LTWW94] over many time scales,
we show in Appendix C that the traffic generated is not actu-
ally long-range dependent (and thus not self-similar).

7.3 Relating the methods to traffic models

7.3.1 TELNET

As explained in [LTWW94], straight lines on variance-time
plots with slopes more shallow than−1, such as that for
the PKT-2 TELNET trace in Figure 5, are suggestive of
self-similarity. In general, the slope of an arrival process’s
variance-time plot is a function of the process’s autocorrela-
tion function [C84], and a long-range dependent process will
exhibitslowly-decaying varianceson such a plot. That is, the
variance-time plot will decline in a more shallow fashion than
with slope−1, though not necessarily in a straight line. An
important point is that such slow decline can also occur due
to the presence of non-stationarity.

In addition to looking at variance-time plots of the
TELNET traffic, we also used Whittle’s procedure [GW94,
LTWW94] and Beran’s goodness-of-fit test [B92a] to gauge
the agreement between the traffic and the simplest type of
self-similar process,fractional Gaussian noise[B92b]. All
of the results are consistent with self-similarity on scales of
tens of seconds or more.
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We postulate that two different mechanisms contribute to
the apparent self-similarity of TELNET traffic. On smaller
time scales, apparent self-similarity might arise from thefact
that within individual TELNET connections, packet interar-
rivals are well modeled as i.i.d. Pareto (§ 4). Thus, individ-
ual TELNET connections match the i.i.d. Pareto method of
generating pseudo-self-similar traffic that appears self-similar
over a range of time scales (Appendix C). On larger time
scales, we note that our source model of TELNET connec-
tions presented in§ 5 in some respects matches the M/G/∞
model described in the previous section. TELNET connec-
tion sizes in packets have along-tailed[WT92] distribution,
in that the tail function of a log-normal distribution decreases
more slowly than any exponential function. While we show in
Appendix E that the M/G/∞ queue with log-normal service
times doesnot result in long-range dependent or self-similar
traffic, the difference in tail weight between a log-normal dis-
tribution and a Pareto distribution may be small enough that
over the time scales of interest (seconds to minutes) the traffic
still appears self-similar.

Put together, these models of TELNET traffic suggest why
the traffic might appear self-similar (or at least long-range
dependent) over many time scales. While individually the
models fall short of proving self-similarity, it could be the
case that the combination of i.i.d. Pareto interpacket times
and the M/G/∞ effect due to multiplexing makes TELNET
traffic truly self-similar. At a minimum, these models ex-
plain why the traffic exhibits large-scale correlations. Fur-
ther work is needed for a definitive statement regarding actual
self-similarity.

7.3.2 FTP

Like the model of TELNET traffic discussed in the previous
section, our model of FTP traffic also fits in some respects to
the M/G/∞ model of Poisson arrivals with heavy-tailed life-
times. The distribution of bytes per FTPDATAburstis heavy-
tailed (§ 6), and FTPsessionshave Poisson arrivals (§ 3).
Over larger time scales the packet arrival process within an
FTPDATA burst can be plausibly approximated as constant-
rate. If we approximated FTPDATA burst arrivals as Poisson
(a bit of a stretch, as shown in§ 3 above), and assumed that
each FTPDATA burst received the same average rate, then
multiplexed FTP traffic would fit the M/G/∞ model above,
and should be self-similar.

It turns out, though, that variance-time plots, Whittle’s pro-
cedure, and goodness-of-fit tests of our FTP traces all sug-
gest that our FTPDATA traces are not well-modeled as frac-
tional Gaussian noise, although the heavy-tailed distribution
of FTPDATA bursts clearly leads to large-scale correlations.
The sole exception to this finding is the DEC WRL-3 trace,
for which the tests are consistent with self-similarity at time
scales of 1 second or greater.

One reason the FTP traces might not be well-modeled as
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Figure 12: Variance-time plot for all TCP / all link-level
packet arrivals in the LBL PKT datasets.

fractional Gaussian noise is that the traces exhibit extremely
high burstiness, including lengthy periods during which there
is no FTP traffic. These “lulls” mean that the marginal distri-
bution function of the arrival process has a large peak at zero
arrivals. Since fractional Gaussian noise is a form of Gaus-
sian process, its marginal distribution is normal, and cannot
accommodate such a peak. It is still possible that FTP traffic
is well-modeled using different self-similar processes; or that
it instead is not well-modeled as self-similar. In this paper we
do not try to resolve this issue, but limit our discussion to the
interplay between mechanisms affecting FTP traffic dynam-
ics and large-scale correlations in the traffic.

Unlike TELNET traffic, where the timing of packets gener-
ated at the source is reasonably close to the timing of the same
packets transmitted on the network, the timing of FTPDATA
packets transmitted on the network is intimately related to
the dynamics of TCP’s congestion control algorithms. The
following paragraphs discuss several ways that, due in part
to the effects of TCP, multiplexed FTP traffic differs from
the M/G/∞ model of self-similar traffic with constant-rate
connections. While these factors could account for our FTP
traces not appearing statistically self-similar, they do not im-
ply the absence of long-range dependence.

Unlike the M/G/∞ model, which best fits an environment
where all connections have the same fixed constant rate, dif-
ferent FTP connections have quite different average rates,and
within a single FTP connection the average rate varies over
time. TCP’s congestion control algorithms increase the TCP
congestion window to probe for additional bandwidth, and
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Figure 13: Variance-time plot for all link-level packet arrivals
in the DEC WRL datasets.

reduce the congestion window again in response to conges-
tion (packet drops). TCP’s window flow control has several
separate effects on the traffic pattern for an individual FTP
connection. First, over intervals less than a roundtrip time the
FTP connection does not have a constant rate; each packet is
sent only after the TCP source receives an acknowledgement
for an earlier packet. Second, if there is congestion in the
network, then an FTP connection does not have a constant
rate even over longer time intervals; the average rate over
a roundtrip time varies as the TCP congestion control win-
dow varies. Third, whether or not there is congestion in the
network, different FTP connections will have different aver-
age rates, depending on such factors as the TCP window and
packet sizes, the connection’s roundtrip time, and the conges-
tion encountered in the network. These factors give rise to
serious discrepancies between our trace data and the M/G/∞
model.

One way to incorporate the effect of limited bandwidth into
the M/G/∞ model would be to explore a model of an M/G/k
queue instead of an M/G/∞ queue. In an M/G/k queue, be-
cause there are onlyk servers, the actual arrival times of in-
dividuals at a server would occasionally have to be delayed
until there was available capacity. While this limited capacity
would have the effect of reducing the fit of the multiplexed
traffic to a self-similar model, it does not eliminate the under-
lying large-scale correlations in the M/G/∞ model. However,
the M/G/k model as applied to FTP connections assumes that
all active connections have the same constant rate, and thisis
not the case in actual FTP traffic.

Another discrepancy between the M/G/∞ model and our
link traces concerns the effect of FTP traffic competing with
other families of traffic on a congested link. The four main
classes of traffic in our link traces were TCP, Mbone (pri-
marily multicast UDP audio traffic), Domain Name System
requests and replies (UDP-based), and DECnet. Unlike TCP,
the UDP protocol does not incorporate congestion-avoidance
mechanisms. Therefore, when TCP-based FTP traffic is com-
peting for bandwidth with Mbone UDP sources, only the FTP
traffic will adjust to fit the available bandwidth. The UDP
traffic will continue unimpeded. The effect of this interac-
tion on the overall structure of FTP traffic remains an open
question.

7.4 Large-scale correlations in general wide-
area traffic

We finish with a preliminary look at whether wide-area traf-
fic multiplexed over different protocols appears self-similar.
Figure 12 shows variance-time plots for all of the LBL PKT
traces listed in Table 2. Here, the unaggregated process
(M = 1) corresponds to observing the packets arriving dur-
ing each 0.01 second interval.

Recall that the first three LBL PKT traces captured all TCP
packets for two hours, and the last two captured all wide-
area packets appearing on the gateway Ethernet for one hour.
The first three traces consist of between 1.7 and 2.4 million
packets, and the last two traces each have around 1.3 million
packets. The corresponding rates of packets/hour are above
those of the “low hours” in [LTWW94], so we would hope to
find that the traces exhibit exact self-similarity.

We see in Figure 12 that PKT-4 and PKT-5, the full link-
level traces, both yield straight lines with shallow slope,
consistent with asymptotic self-similarity forM ≥ 10 (0.1
second). For the TCP traces, PKT-1 is concave down for
small and largeM , inconsistent with exact self-similarity,
PKT-2 appears consistent with asymptotic self-similarityfor
M ≥ 103 (10 seconds), and PKT-3 has a straight section be-
tweenM = 10 andM = 103, but not before or after, also
inconsistent with exact self-similarity.

In contrast, use of Whittle’s procedure and goodness-of-
fit tests suggest that the link-level PKT-4 trace and the TCP
PKT-1 and PKT-3 traces are consistent with fractional Gaus-
sian processes, while the link-level PKT-5 trace and the TCP
PKT-2 trace are not. As Figure 10 shows, the FTP traffic in
the PKT-5 and PKT-2 traces is heavily dominated by a few
large FTPDATA bursts. Thus, while large-scale correlations
are clearly present in these traces, it might be difficult to char-
acterize the correlations over the entire trace with a single
Hurst parameter.

Figure 13 shows the same sort of variance-time plot for the
DEC WRL datasets listed in Table 2. The least active of the
WRL datasets exceeds the most active in [LTWW94], so we
would again expect to find exact self-similarity. The variance-
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time plots for WRL-2 and WRL-4 are encouraging in this
regard, lying in essentially straight lines for time scalesof
0.1 seconds and higher. WRL-3 lies in a straight line at time
scales of 1 second and higher, while WRL-1 does so only at
10 seconds and higher. But of these datasets, Whittle’s proce-
dure and Beran’s goodness-of-fit test indicate that only WRL-
3 is consistent with fractional Gaussian noise (at time scales
of 1 second and greater). The others, while clearly exhibiting
large-scale correlations, do not appear to be well-modeledby
a simple self-similar process. This could be due to distort-
ing effects of short-range dependence, better fits to other self-
similar models such asfractional ARIMAprocesses [B92b],
or the presence of non-stationarity. WRL-3 was also the only
dataset whose FTP traffic appears consistent with fractional
Gaussian noise, though we have not assessed whether this
coincidence is significant. Clearly, further work is required to
fully understand the correlational structure of wide-areatraf-
fic.

We end with a comment regarding the balance between
link-level modeling and protocol-specific modeling. One ap-
proach to investigating self-similarity is to model multiplexed
link traffic as self-similar, without attempting to model indi-
vidual connections. This approach could have many uses in
simulations and in analysis. For example, self-similar traffic
could be used instead of Poisson traffic to model cross-traffic,
or self-similar traffic could be used in simulations investigat-
ing link-sharing between two different classes of traffic.

However, for many simulations, the simulator needs to
model individual sources. In particular, it is only from mod-
eling of individual sources, and a direct implementation of
TCP’s congestion control algorithms, that a simulation can
take into account the effects of the TCP algorithms in differ-
ent environments. TCP’s congestion control algorithms con-
tribute long-term oscillations to the traffic pattern for a par-
ticular connection, as the TCP congestion window changes
over the lifetime of the connection. In addition, TCP’s win-
dow flow control contributes a shorter-term periodicity to the
traffic pattern, as each packet is transmitted in response to
an acknowledgement returned for an earlier packet [FJ92]. It
is particularly important to take into account these effects in
simulations investigating changes to either TCP, the gateway
scheduling algorithms, or the network’s packet-dropping al-
gorithms.

8 Implications

This paper’s findings are summarized in the Introduction. In
this section we conclude with a look at the implications of our
results.

Several researchers have previously discussed the implica-
tions of long-range dependence (burstiness across different
time scales) in network traffic. Modeling TCP traffic using
Poisson or other models that do not accurately reflect the

long-range dependence in actual traffic will result in simu-
lations and analyses that significantly underestimate perfor-
mance measures such as average packet delay or maximum
queue size.

[FL91] examines the burstiness of data traffic over a wide
range of time scales, and discusses the impact of this bursti-
ness for network congestion. Their conclusions are that con-
gested periods can be quite long, with losses that are heavily
concentrated; that, in contrast to Poisson traffic models, lin-
ear increases in buffer size do not result in large decreasesin
packet drop rates; and that a slight increase in the number of
active connections can result in a large increase in the packet
loss rate. They suggest that, because the level of busy period
traffic is not predictable, it would be difficult to efficiently
size networks to reduce congestion adequately. They observe
that, in contrast to Poisson models, in reality “traffic ‘spikes’
(which cause actual losses) ride on longer-term ‘ripples’,that
in turn ride on still longer-term ‘swells’.” They suggest that
a filtered variable can be used to detect the low-frequency
component of congestion, giving some warning before packet
losses become significant.

[LTWW94] discusses some additional implications of
long-range dependence of packet traffic. These include an
explanation of the inadequacy of many commonly-used no-
tions of burstiness, and the somewhat counter-intuitive obser-
vation that the modeling of individual connections can gain
insight from an understanding of the fundamental character-
istics of multiplexed traffic. In this paper, observations of the
characteristics of multiplexed traffic motivated our revisita-
tion of models for individual connections; indeed, we orig-
inally set out to challenge the notion that wide-area traffic
might be self-similar, and have come full circle.

[GW94] examines the long-range dependence of variable-
bit-rate (VBR) video traffic. Their empirical measurements
of VBR traffic show strong low-frequency components, and
they propose source models for video traffic that display the
same long-range dependence. Given the likelihood that VBR
traffic will soon comprise a significant fraction of Mbone traf-
fic, we soon will have wide-area traffic of which a substantial
portion is perforce self-similar, simply due to the source char-
acteristics of its individual connections.

There are some additional respects in which the burstiness
and long-range dependence of aggregate traffic can affect
traffic performance. Consider a link with priority scheduling
between classes of traffic, where the higher-priority classhas
no enforced bandwidth limitations (other than the link band-
width itself). In such a partition, interactive traffic suchas
TELNET might be given priority over bulk-data traffic such
as FTP. If the higher-priority class has long-range dependence
and a high degree of variability over long time scales, then the
bursts from the higher-priority traffic could starve the lower-
priority traffic for long periods of time.

A second impact of the long-range dependence of packet
traffic concerns classes with admissions control procedures
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that are based on measurements of recent traffic, rather
than on policed traffic parameters of individual connections
[CSZ92]. As has been shown by numerous researchers, such
admissions control procedures could lead to a much more ef-
fective use of the available bandwidth [YKTH93]. Neverthe-
less, if the measured class has high burstiness consisting of
both a high variance and significant long-range dependence,
then an admissions control procedure that considers only re-
cent traffic could be easily mislead following a long period of
fairly low traffic rates. (This is similar to a situation in Cali-
fornia geology some decades ago. Because there hadn’t been
a large earthquake for a long time, people began to believe it
unlikely that there would be another one.)

In summary: we should abandon Poisson-based model-
ing of wide-area traffic for all but user session arrivals. For
TELNET traffic, we offer a faithful model of originator traf-
fic parameterized by only the hourly connection arrival rate.
Modeling the TELNET responder remains to be done. For
FTP traffic, we have shown that modeling should concen-
trate heavily on the extreme upper tail of the largest bursts.
A wide-area link might have only one or two such bursts an
hour, but they tend to strongly dominate that hour’s FTP traf-
fic. Finally, our look at multiplexed TCP and all-protocol
traffic suggests that anyone interested in accurate modeling
of wide-area traffic should begin by studying self-similarity.
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A Methodology for testing for Poisson
arrivals

To test whether a trace of connection arrivals corresponds to
a nonhomogeneous Poisson process, we first pick an interval
lengthI over which we hypothesize that the arrival rate does
not change. If the trace spans a total ofT time units, we di-
vide the entire trace intoN = T/I intervals each of length
I. We then separately test each interval to see whether the
arrivals during the interval are consistent with arrivals from
a Poisson process with rate fixed so that the expected num-
ber of arrivals is the same as the number actually observed.
Thus, we reduce the problem of testing for nonhomogeneous
Poisson arrivals to that of testing a number of intervals for
homogeneous Poisson arrivals.

Poisson arrivals have two key characteristics: the interar-
rival times are both exponentially distributed, and indepen-
dent. We discuss testing for each in turn.

For each interval, we test the interarrivals for an exponen-
tial distribution using the Anderson-Darling (A2) test, recom-
mended by Stephens in [DS86] because it is generally much
more powerful than either of the better-known Kolmogorov-
Smirnov orχ2 tests.A2 is also particularly good for detect-
ing deviations in the tails of a distribution.A2 is anempirical
distribution test; it looks at the entire observed distribution,
rather than reducing the distribution into bins as is required
by χ2.

We associate asignificance levelwith eachA2 test. For
example, a test with a significance level of 5% will correctly
confirm the null hypothesis (if it is correct) with probability
0.95; with probability 0.05, the test will erroneously declare
the hypothesis false. Thus, the significance level indicates
the proportion of “false negatives” (in general it is difficult to
assess the corresponding percentage of “false positives”). We
can use significance-level testing as follows. Suppose we test
N intervals for exponential interarrivals andK of them pass
theA2 test at the 5% significance level. If the null hypothesis
is correct, then the probability ofK successes inN trials will
be given by a binomial distribution with parameterp = .95.
If we find that the probability of observingK successes was
less than 5%, then we conclude with 95% confidence that the
arrival process is inconsistent with exponential interarrivals.

There are two important details for correctly applying and
interpreting theA2 test. The first is that estimating the pa-
rameters of our model from the data to be tested alters the
significance levels of theA2 test (this applies to our null hy-
pothesis above, in which we derive the mean of the exponen-
tial fit from the data rather than knowing ita priori). The
second is that the number of data points tested also alters the
significance levels. In general, the more points tested, the
more likely the test will detect an incorrect null hypothesis.
[DS86] gives procedures for incorporating both of these con-
siderations intoA2 tests.

We also need to test the interarrivals for independence. One
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indication of independence is an absence of significant auto-
correlation among the interarrivals. Autocorrelation canbe
significant in two different ways: it can be too strong in mag-
nitude, or it can be too frequently positive or negative. We
address each of these in turn.

Given a time series ofn samples from an uncorrelated
white-noise process, the probability that the magnitude ofthe
autocorrelation at any lag will exceed1.96/

√
n is 5%. Thus

we can test for independence by observing how often this
occurs and using a binomial test similar to the one outlined
above. (Because for many non-Poisson processes autocorre-
lation among interarrivals peaks at lag one, to keep our test
tractable we restrict it to just the lag one autocorrelation.)

We also apply one further test for independent interarrivals.
If the interarrivals are truly independent, then we would ex-
pect their autocorrelation to be negative with probability0.5
and positive with probability 0.5. For Poisson arrivals, then,
the number of positive lag one autocorrelation values should
be binomially distributed with parameterp = 0.5. Given
this assumption, we assess the probability of at least the ob-
served number of positive values occurring. If its probability
is too low (< 2.5%) then we conclude that the interarrivals are
significantly positively correlated. Similarly, if the observed
number of negative values has probability< 2.5%, then the
interarrivals are significantly negatively correlated.

B Pareto distributions

In this paper the Pareto distribution plays a role both in
TELNET packet interarrivals and in the size of FTPDATA
bursts. This appendix discusses the Pareto distribution and its
occurrence in the physical world.

The classical Pareto distribution with shape parameterβ
and location parametera has the cumulative distribution func-
tion [HK80]:

F (x) = P [X ≤ x] = 1 − (a/x)β , a, β ≥ 0, x ≥ a,

with the corresponding probability density function:

f(x) = βaβx−β−1.

If β ≤ 2, then the distribution has infinite variance, and if
β ≤ 1, then it has infinite mean.

The Pareto distribution (also referred to as the power-law
distribution, the double-exponential distribution, and the hy-
perbolic distribution) has been used to model distributions
of incomes exceeding a minimum value, and sizes of as-
teroids, islands, cities and extinction events [K93, M63].
Leland and Ott also found that a Pareto distribution with
1.05 < β < 1.25 is a good model for the amount of CPU time
consumed by an arbitrary process [LO86].

In communications, heavy-tailed distributions have been
used to model telephone call holding times [DMRW94] and

frame sizes for variable-bit-rate video [GW94]. The discrete
Pareto (Zipf) distribution [A83, p.95]:

P [x = n] = 1/((n + 1)(n + 2)) for n ≥ 0.

arises in connection with platoon lengths for cars at differ-
ent speeds traveling on an infinite road with no passing [A83,
p.95] [F66, p.40], a model suggestively analogous to com-
puter network traffic.

Following [LTWW94], we define a distribution asheavy-
tailed if:

P [X ≥ x] ∼ cx−β , as x → ∞, β ≥ 0. (1)

By this, we mean that for someβ and some constantc, the
ratioP [X ≥ x]/(cx−β) tends to 1 asx → ∞. This definition
includes the Pareto and Weibull distributions [DMRW94].

A more general definition ofheavy-taileddefines a dis-
tribution as heavy-tailed if the conditional mean exceedance
(CMEx) of the random variableX is an increasing function
of x [HK80], where

CMEx = E[X − x|X ≥ x].

Using this second definition of heavy-tailed, consider a ran-
dom variableX that represents a waiting time. For wait-
ing times with a light-tailed distribution such as the uniform
distribution, the conditional mean exceedance is a decreas-
ing function of x. For such a light-tailed distribution, the
longer you have waited, the sooner you are likely to be done.
For waiting times with a medium-tailed distribution such as
the (memoryless) exponential distribution, the expected fu-
ture waiting time is independent of the waiting time so far.
In contrast, for waiting times with a heavy-tailed distribution,
the longer you have waited, the longer is your expected future
waiting time. For the Pareto distribution withβ > 1 (that is,
with finite mean), the conditional mean exceedance is a linear
function ofx [A83, p.70]:

CMEx = x/(β − 1).

The Pareto distribution is scale-invariant, in that the prob-
ability that the wait is at least2x seconds is a fixed fraction
of the probability that the wait is at leastx seconds, for any
x ≥ a.

A related result shows that the Pareto distribution is the
only distribution that is “invariant under truncation frombe-
low” [M83, p.383] [A83, p.81]. That is, for the classical
Pareto distribution, fory ≥ x0,

P [X > y|X > x0] = P [(x0/a)X > y]. (2)

Hence the conditional distribution is also a Pareto distribu-
tion, with the same shape parameterβ and new location pa-
rametera′ = x0. We make use of this property in the next
section.
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Finally, we note that Mandelbrot argues that because the
asymptotic behavior of Pareto distributions withβ ≤ 2 is un-
changed for a wide variety of filters (including aggregation,
maximums, and the weighted mixture of distributions), and
because this is true of no other distribution, this invariance
could in some respects explain the widespread observance
of Pareto distributions in the social sciences [M63] [M83,
p.344].

C Pareto interpacket times

In this section we give some intuition for the observed long-
range dependence of traces of TELNET traffic. Recall that
the main body of the distribution of TELNET interpacket
times fits a Pareto distribution with shape parameter 0.9,
while the upper 3% tail fits a Pareto distribution with shape
parameter 0.95. In this section we consider packets generated
by a single connection using i.i.d. Pareto interpacket times,
for a Pareto distribution with shape parameterβ and location
parametera. We then consider the associated count process
X = {Xi}i=0,1,2,..., whereXi is the number of packets arriv-
ing during theith time interval, each time interval being a bin
of width b. We give an intuitive explanation for the observed
long-range dependence of the count process by looking at the
properties of the point process of packet arrivals, concentrat-
ing on the interpacket times. We show that while this process
is not truly long-range dependent, when observed over a finite
time scale it exhibits properties we associate with self-similar
processes. In particular, we show that aggregating the process
by increasingb does not change the dominant features of the
process.

Let{X(b)
i } denote the count process associated with count-

ing arrivals using bins of sizeb. We are interested in the be-
havior of{X(b)

i } for different sizes ofb.
Rather than analyzing relationships between the precise

values of different bins, we simplify the problem by just look-
ing at whether, for a giveni, X

(b)
i = 0 or X

(b)
i > 0. We refer

to the former as anemptybin and the latter as anoccupiedbin.
Further, forj ≥ i, we callX(b)

i,...,j a burstof occupied bins if

for all k, i ≤ k ≤ j, bin k is occupied. Similarly,X(b)
i,...,j is a

lull if all the corresponding bins are empty. Sample paths of
X are made up of alternating bursts and lulls.

We are interested in the relative predominance of bursts
vs. lulls, as we change the bin sizeb and the Pareto shape
parameterβ.

Suppose bini is occupied and bini − 1 is empty. Then
bin i begins a burst. Associated with each bin is a set of
Pareto interarrival times, beginning withIn, the arrival that
first fell into the bin. For bini, we know thatIn > b because
the previous bin is unoccupied. Consider now the subsequent
interarrivalsIn+1 . . . In+l contributing to the burst of consec-
utive occupied bins. Clearly each of these interarrivals must

be< 2b, as otherwise they will skip a bin and end the burst.
Furthermore, any interarrival in the rangeb < I < 2b has
the potential of skipping a bin, depending on where we are
positioned in the current bin prior to the arrival. Thus, any
interarrivalI > 2b definitely will end the burst, andI > b
possibly will end the burst.

Since the interarrivals are independent, we have a situation
similar to that of a geometric random variable: for any given
interarrival, it will with probabilitypt terminate the burst, and
with probability1 − pt continue the burst. Herept is a func-
tion of exactly where we are in the current bin, but is bounded
as follows:

( a

2b

)β

≤ pt ≤
(a

b

)β

, (3)

wherea andβ are the Pareto location and shape parameters,
andb is the bin width.

We can then bound the expected length of a burst using the
expected value of the geometric random variables that corre-
spond to the lower and upper bounds in Equation 3. LetB
be the expected number of bins spanned by a burst. It can be
shown that:

B ≈







b/a, if β = 2, b � a,
log(b/a), if β = 1, b � a, and
∈ [1..

√
2] if β = 1

2 ,

whereb � a holds if b − a ≈ b.
Thus, forβ = 2, as we “widen” our view by choosing

b larger and larger, we will observe longer and longer bursts;
for β = 1, the bursts grow longer with increasing bin size, but
only very slowly; and forβ = 1

2 , the bursts have a constant
length regardless of the size of the bins (!).

Consider now the length of the lulls separating bursts. Let
L be the length of a lull, andLb be the number of bins (of
sizeb) spanned by the lull. Each lull is due to a single inter-
arrival that is possibly greater than2b and definitely greater
thanb. Due to the Pareto distribution’s invariance to trunca-
tion from below (Equation 2), this means that the distribu-
tion of L will be stochastically bounded betweenP(b, β) and
P(2b, β), whereP(a, β) denotes the Pareto distribution with
parametersa andβ.

From this observation, it follows that:

1 −
(

2

k

)β

≤ P [Lb ≤ k] ≤ 1 −
(

1

k

)β

.

Thus, the distribution ofLb is invariant with respect tob. That
is, regardless of the time scale over which we view the count
process, the lulls between bursts will “look” the same.

We now can summarize the behavior of the count process
for varying values ofβ:

• For β = 2, the number of bins spanned by the bursts
grows linearly withb, while bins spanned by the lulls re-
mains constant, so aggregation fairly quickly smoothes
out the main variations of the count process.
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Figure 14: Count process for i.i.d. Pareto interarrivals, bin
sizeb = 103 (β = 1, a = 1), 9 different seeds.

• Forβ = 1
2 , the burst lengths are constant across all time

scales, as are the lull lengths:the process appears self-
similar over all time scales.

• For β = 1, the burst lengths (in bins) grow only very
slowly (logarithmically). This means that over a large
time scale, the predominance of bursts vs. lulls remains
virtually unchanged:the process appears self-similar
over many time scales.

Figures 14 and 15 illustrate the “visual self-similarity”
[LTWW94] of this process. Each figure plots 1,000 obser-
vations of the count process corresponding to i.i.d. Paretoin-
terpacket times forβ = 1 anda = 1. Nine different random
seeds were used in generating each figure. The first figure cor-
responds to using a bin-width ofb = 103, while the second
figure usesb = 107. To the eye, the two sets of arrivals exhibit
the same general activity in terms of alternations of burstsand
lulls and the fairly regular ceiling of activity, though theoc-
cupied bins of theb = 107 arrivals appear to have a higher
mean than those of theb = 103 arrivals. As predicted by
the analysis above, the average number of bins in a burst for
b = 107 is somewhat higher than forb = 103 (a factor of
2.6), while the average lull size is virtually the same (a fac-
tor of 1.2). Overall, the sustained variation even when the
process is aggregated by a factor of104 is striking.

In general, the process associated withβ = 1 is similar
to that of a single TELNET connection’s traffic, which we
model using i.i.d. Pareto interpacket times withβ = 0.95 for
the upper tail of the distribution. Thus this model explainsin
part why TELNET traffic appears self-similar.
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Figure 15: Count process for i.i.d. Pareto interarrivals, bin
sizeb = 107 (β = 1, a = 1), 9 different seeds.

We finish with an explanation of why the count processes
associated withβ = 1 andβ = 1

2 are not, in fact, self-similar,
even though the balance they exhibit between bursts and lulls
suggests they might be. We have shown that the lull length
L is stochastically bounded between two Pareto distributions
with the same shape parameterβ. But forβ ≤ 1, the mean of
a Pareto-distributed random variable is infinite. The expected
burst size, on the other hand, is finite. Using these facts, and
viewing the count process’s bursts and lulls as an alternating
renewal process, it follows that, forβ ≤ 1, once the process
reaches steady-state, each bin is empty with probability 1 (re-
gardless of the value ofb). The autocorrelation function of
the process is thus 0 everywhere, and hence summable, so the
process is not long-range dependent (and so cannot be self-
similar).

Even though the count processes are not strictly self-
similar, an important point remains that, when viewed over
a finite time scale (i.e., before settling into steady-state), the
count process associated with i.i.d. Pareto interarrivals(with
β ≤ 1) appears in many ways like a self-similar process. As-
suming that this likeness persists when the process is mul-
tiplexed, this finding gives an understanding as to why ob-
served TELNET traffic appears self-similar. The fact that the
count process is not truly long-range dependent doesnot im-
ply that TELNET traffic is not truly self-similar. It may be
that TELNET trafficis truly self-similar but the simplifying
assumptions in our argument (i.i.d. arrivals; no multiplexing)
fail to faithfully model the traffic properties necessary for true
self-similarity.

This argument also shows that it is possible for a pro-
cess which is not long-range dependent to appear to be so
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over many time scales. This illustrates some of the dan-
gers of arguing for true self-similarity (or, more generally,
long-range dependence) based on (necessarily finite) mea-
surements alone, without a corresponding model from which
to argue for self-similarity analytically.

At the same time, the question of whether a particular (infi-
nite) model based on a finite process is long-range dependent
is only one of the questions we are exploring. Equally impor-
tant is whether or not long-range dependent models in gen-
eral are useful as parsimonious approximations to particular
finite processes arising in network traffic. Finally, we should
not underestimate the value of the fundamental insights and
shifts in focus that come from considering questions of self-
similarity and long-range dependence.

D The M/G/∞ model for generating
self-similar traffic

This section briefly discusses the M/G/∞ model for generat-
ing self-similar traffic [CI80, p.136] [C84, p.67]. The M/G/∞
queue model considers customers that arrive at an infinite-
server queue according to a Poisson process with rateρ. In the
count process{Xt}t=0,1,2,... produced by the M/G/∞ queue
model,Xt gives the number of customers in the system at
time t. From [CI80, p.139], for customers with a service
time with distribution functionF , the autocorrelation func-
tion r(k) for the count process is as follows:

r(k) = cov{X(t), X(t + k)} = ρ

∫

∞

k

(1 − F (x))dx. (4)

D.1 The M/G/∞ model and the Pareto distri-
bution

Consider customers with independent service times (or life-
times) drawn from the Pareto distribution with location pa-
rametera and shape parameterβ, for 1 < β < 2. From
Equation 4, the autocorrelation functionr(k) is as follows:

r(k) = ρ

∫

∞

k

(a

x

)β

dx.

=
ρaβ

β − 1
k(1−β).

Following [BSTW94], the process{Xt}t=0,1,2,... is
asymptotically self-similarif

r(k) ∼ k−DL(k) as k → ∞, (5)

for 0 < D < 1 andL a slowly-varying function.2 Thus, for
a ≥ 0 and1 < β < 2, the count process of the M/G/∞ model

2For a slowly-varying functionL, limt→∞ L(tx)/L(t) = 1 for all
x > 0. Constants and logarithms are examples of slowly-varying functions.

with Pareto lifetimes is asymptotically self-similar, andthere-
fore long-range dependent.

From [BSTW94], the process{Xt}t=0,1,2,... is exactly
self-similaronly if

r(k) = 1/2
(

(k + 1)2H − 2k2H + (k − 1)2H
)

for 1/2 < H < 1 [BSTW94] [C84, p.59]. In this case the

process{Xt} and the aggregated process{X(m)
t } have the

same autocorrelation function. From this result, for Pareto
service times and an arbitrary arrival rateρ, the count process
of the M/G/∞ model is not exactly self-similar.

From [CI80, p.138],{Xt} has a Poisson marginal distri-
bution with meanρµ, whereµ is the expected service time.
For the M/G/∞model with Pareto service times, the expected
service time isβa/(β−1), for β > 1. Thus, in this case{Xt}
has a Poisson marginal distribution with meanρβa/(β − 1).

E Log-normal distributions

From [WT92], the log-normal distribution is calledsub-
exponentialbecause, along with the Pareto and Weibull dis-
tributions, the tail function is subexponential (i.e., decreases
slower than any exponential function). In that paper, the
Pareto, log-normal, and Weibull distributions are all defined
as long-tailed. In this section we show that the log-normal
distribution is not heavy-tailed, according to the definition
given in Equation 1.

We use the estimate of the upper tail function for a standard
normal random variable N as

P [N ≥ y] ∼ 1√
2πy

e−y2/2

[F50, p.175]. Thus for X a log-normal random variable with
scale parameter1 and shape parameter1,

P [X ≥ x] ∼ 1√
2π log x

e− log2 x/2. (6)

Thus, for some constant c,

P [X ≥ x] ∼ c
e− log2 x/2

log x
.

So X is only heavy-tailed if for some constantc1 and some
β ≥ 0,

xβ ∼ c1 log x elog2 x/2.

But we can show that for anyn,

log x elog2 x/2 > xn

for x sufficiently large. (This follows becauselog x > n,
thereforelog2 x > n log x, and thereforeelog2 x > xn.) So
the log-normal distribution is not heavy-tailed. Note thatthe
log-normal distribution is not heavy-tailed even if we expand
our definition of heavy-tailed to include slowly-varying func-
tions, as in Equation 5.
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E.1 The M/G/∞ model and the log-normal
distribution

We consider the M/G/∞ model for service times with distri-
bution functionF . It is already known (Appendix D) that
if F is a Pareto distribution, then the count process from the
M/G/∞ model is asymptotically self-similar, and therefore
long-range dependent. In this section we show that if the life-
times have a log-normal distribution, then the count process
from the M/G/∞ model is not long-range dependent.

From Equations 4 and 6, we have:

r(k) ∼ ρ

∫

∞

k

log−1 x
1

(2π)1/2
e− log2 x/2dx

∼ ρ

(2π)1/2

∫

∞

k

1

log x x(log x)/2
dx

The count process from the M/G/∞ model with log-normal
lifetimes is long-range dependent only if

∑

∞

k=K r(k) is infi-
nite. For largeK,

∞
∑

k=K

r(k) ∼
∞
∑

k=K

ρ

(2π)1/2

∫

∞

k

1

log x x(log x)/2
dx

∼ ρ

(2π)1/2

∞
∑

k=K

∞
∑

x=k

1

log x x(log x)/2

∼ ρ

(2π)1/2

∞
∑

x=K

(x − K + 1)

log x x(log x)/2
.

Because
∑

∞

x=1 1/x2 is finite and

(x − K + 1)

log x x(log x)/2
≤ x

x(log x)/2
≤ 1

x2

for x sufficiently large, then
∑

∞

k=K r(k) is finite, and the
count process of the M/G/∞ model with log-normal lifetimes
is not long-range dependent.

This analysis shows that,in the limit, the behavior of the
M/G/∞ queue completely changes if the service times are
log-normal and not Pareto. An important open question, how-
ever, is over what sort of finite time scales are these differ-
ences actually significant?
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D. Estrin, “An Empirical Workload Model for Driv-
ing Wide-area TCP/IP Network Simulations,”Internet-
working: Research and Experience, 3(1), pp. 1-26,
March, 1992.

[DMRW94] D. Duffy, A. McIntosh, M. Rosenstein, and W.
Willinger, “Statistical Analysis of CCSN/SS7 Traffic
Data from Working CCS Subnetworks,”IEEE JSAC,
12(3), pp. 544-551, April, 1994.

[F50] W. Feller,An Introduction to Probability Theory and
Its Applications, Volume I,John Wiley and Sons, 1950.

[F66] W. Feller,An Introduction to Probability Theory and
Its Applications, Volume II, John Wiley and Sons, 1966.

[FJ92] S. Floyd and V. Jacobson, “On Traffic Phase Effects
in Packet-Switched Gateways,”Internetworking: Re-
search and Experience, 3(3), pp. 115-156, September,
1992.

20



[FJ94] S. Floyd and V. Jacobson, “The Synchronization of
Periodic Routing Messages,”IEEE/ACM Transactions
on Networking, 2(2), pp. 122-136, April 1994.

[FL91] H. Fowler and W. Leland, “Local Area Network
Traffic Characteristics, with Implications for Broadband
Network Congestion Management,”IEEE JSAC, 9(7),
pp. 1139-1149, September, 1991.

[FM94] V. Frost and B. Melamed, “Traffic Modeling for
Telecommunications Networks,”IEEE Communica-
tions Magazine, 32(3), pp. 70-80, March, 1994.

[FJ70] E. Fuchs and P. E. Jackson, “Estimates of Distribu-
tions of Random Variables for Certain Computer Com-
munications Traffic Models,”Communications of the
ACM, 13(12), pp. 752-757, December, 1970.

[GW94] M. Garrett and W. Willinger, “Analysis, Modeling
and Generation of Self-Similar VBR Video Traffic,”
Proceedings of SIGCOMM ’94, pp. 269-280, Septem-
ber, 1994.

[G90] R. Gusella, “A Measurement Study of Diskless Work-
station Traffic on an Ethernet,”IEEE Transactions on
Communications, 38(9), pp. 1557-1568, September,
1990.

[HK80] T. Hettmansperger, and M. Keenan, “Tailweight,
Statistical Inference, and Families of Distributions - A
Brief Survey,” in Statistical Distributions in Scientific
Work, V.1, G. P. Patil et al (eds), Kluwer Boston, pp.
161-172, 1980.

[I93] G. Irlam
(gordoni@netcom.com), “ufs’93 [Updated file size sur-
vey results],” USENET newsgroup comp.os.re-search,
message 2ddp3b$jn5@darkstar.UCSC.EDU, Nov. 29,
1993.

[JR86] R. Jain and S. Routhier, “Packet Trains — Measure-
ments and a New Model for Computer Network Traffic,”
IEEE JSAC, 4(6), pp. 986-995, September, 1986.

[K93] S. Kauffman, The
Origins of Order: Self-Organization and Selection in
Evolution, Oxford University Press, 1993.

[LO86] W. Leland and T. Ott, “Load-balancing Heuris-
tics and Process Behavior,”PERFORMANCE ’86 and
ACM SIGMETRICS 1986 Joint conference on Computer
Performance Modelling, Measurement and Evaluation,
North Carolina State University, pp. 54-69, May 1986.

[LTWW94] W. Leland, M. Taqqu, W. Willinger, and D. Wil-
son, “On the Self-Similar Nature of Ethernet Traffic
(Extended Version),”IEEE/ACM Transactions on Net-
working, 2(1), pp. 1-15, February 1994.

[M63] B. Mandelbrot, “New Methods in Statistical Eco-
nomics,”Journal of Political Economy, 71(5), pp. 421-
440, October, 1963.

[M83] B. Mandelbrot, The Fractal Geometry of Nature,
Freeman, New York, 1983.

[MM85] W. Marshall and S. Morgan, “Statistics of Mixed
Data Traffic on a Local Area Network,”Computer Net-
works and ISDN Systems10(3,4), pp. 185-194, 1985.

[N84] J. Nagle, “Congestion Control in IP/TCP Internet-
works,” RFC 896, Network Information Center, SRI In-
ternational, Menlo Park, CA, January, 1984.

[P86] C. Partridge, “Mail Routing and the Domain System,”
RFC 974, Network Information Center, SRI Interna-
tional, Menlo Park, CA, January, 1986.

[P94a] V. Paxson, “Empirically-Derived Analytic Models
of Wide-Area TCP Connections,”IEEE/ACM Transac-
tions on Networking, 2(4), pp. 316-336, August, 1994.

[P94b] V. Paxson, “Growth Trends in Wide-Area TCP Con-
nections,”IEEE Network, 8(4), pp. 8-17, July/August,
1994.

[PR83] J. Postel and J. Reynolds, “Telnet Protocol Specifi-
cation,” RFC 854, Network Information Center, SRI In-
ternational, Menlo Park, CA, May, 1983.

[S94] W. Richard Stevens,TCP/IP Illustrated, Volume 1:
The Protocols, Addison-Wesley, 1994.

[WT92] E. Willekens and J. Teugels, “Asymptotic expan-
sions for waiting time probabilities in an M/G/1 queue
with long-tailed service time,”Queueing Systems10,
pp. 295-312, 1992.

[YKTH93] D. Yates, J. Kurose, D. Towsley, and M. Hluchyj,
“On per-session end-to-end delay distributions and the
call admission problem for real-time applications with
QOS requirements,”Proceedings of SIGCOMM ’93, pp.
2-12, September, 1993.

21


