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Abstract per we show that for wide-area traffic, Poisson processes are
valid only for modeling the arrival of user sessions (TELNET
Network arrivals are often modeled as Poisson processes f@bnnections, FTP control Connections); that they fail @siac
analytic simplicity, even though a number of traffic studiesrate models for other WAN arrival processes; and that WAN
have shown that packet interarrivals are not exponentiallpacket arrival processes appear better modeled using self-
distributed. We evaluate 24 wide-area traces, investigati similar processes.
a number of wide-area TCP arrival processes (session and For our study we analyze 24 traces of wide-area TCP traf-
connection arrivals, FTP data connection arrivals withi#*F  fic. We consider both previous and new models of aspects of
sessions, and TELNET packet arrivals) to determine the erroTELNET and FTP traffic, discuss the implications of these
introduced by modeling them using Poisson processes. Wodels for burstiness at different time scales, and compare
find that user-initiated TCP session arrivals, such as remot the results of the models with the trace data. We show that
login and file-transfer, are well-modeled as Poisson psE®S in some cases commonly-used Poisson models seriously un-
with fixed hourly rates, but that other connection arrivalsderestimate the burstiness of TCP traffic over a wide range
deviate considerably from Poisson; that modeling TELNETof time scales. (We restrict our study to time scales of 0.1
packet interarrivals as exponential grievously undemestts  seconds and larger.)
the burstiness of TELNET traffic, but using the empirical  we first show that for interactive TELNET trafficonnec-
Teplib [Danzig et al, 1992] interarrivals preserves burssis  tion arrivals are well-modeled as Poisson with fixed hourly
over many time scales; and that FTP data connection arrivalgites. However, the exponentially-distributed intexads
within FTP sessions come bunched into “connection bUfStS,’éommonly used to modedacketarrivals generated by the
the largest of which are so large that they completely domiuser side of a TELNET connection grievously underesti-
nate FTP data traffic. Finally, we offer some results regaydi mate the burstiness of those connections, and high degrees
how our findings relate to the possilsielf-similarityof wide-  of multiplexing do not help. Using the empirical Tcplib
area traffic. [DJ91, DICME92] distribution for TELNET packet interar-
rivals instead results in packet arrival processes sigmiflg
burstier than Poisson arrivals, and in close agreement with
traces of actual traffic. From these findings we then con-

When modeling network traffic. nacket and connection ar_struct a model of TELNET traffic parameterized by only the
: 9 » pac hourly connection arrival rate and show that it accurately r
rivals are often assumed to be Poisson processes becal

e : . X
such processes have attractive theoretical propertieS4FM Yi&ets the burstiness found in actual TELNET traffic. (We do

A number of studies have shown, however, that for bothnOt model 'the TELNET response, only the user side.) . The
. ! s success with this model of using Tcplib packet interargval
local-area and wide-area network traffic, the distributidn

packet interarrivals clearly differs from exponential iR confirms the finding in [DJCME92] that the arrival pattern of
G90, FL91, DJCME92]. Recent work argues ConVincingIyuser—generated TELNET packets has an invariant distabuti

o ) - independent of network details.
that LAN traffic is much better modeled using statistically .
self-similar processes [LTWW94], which have much differ- For small machine-generated bulk transfers such as SMTP

ent theoretical properties than Poisson processes. Her SeFemaiI) and NNTP (network news), connection arrivals are
. ICal prope P R not well-modeled as Poisson, which is not surprising since
similar traffic, there is no natural length for a “burst”; ftra

fic bursts appear on a wide ranae of time scales. In this both types of connections are machine-initiated and can be
bp 9 ' P&mer-driven. Previous research has discussed how the pe-
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As with TELNET connections, user-generated FTP sessiogonnection arrival processes), durations, TCP protoadt, p
arrivals are well-modeled as Poisson with fixed hourly ratesticipating hosts, and data bytes transferred in each drect
However, we find that FTP data connections within a singleThe BC and UCB traces are analyzed in depth in [DJCME92],
FTP session (which are initiated whenever the user lists a dand also in [P94a], and the UCB trace forms the basis of the
rectory or transfers a file) come clusteredimsts Hereafter connection characteristics used for Tcplib [DJ91]. The NC,
we will refer to these data connections as FTPDATA connecUK, and DEC traces are analyzed in [P94a], and the LBL
tions, and the corresponding bursts as FTPDATA bursts. Neitraces are analyzed in [P94a, P94b]. The “DEC 1-3” rows
ther FTPDATA-connection nor FTPDATA-burst arrivals are represents three wide-area TCP SYN/FIN traces, each span-
well-modeled as Poisson processes. Furthermore, one of oning 1 day, and the “LBL 1-8" row represents 8 wide-area
key findings is that the distribution of the number of bytes inTCP SYN/FIN traces, each spanning 30 days. The reader is
each burst has a very heavy upper tail; a small fraction of theeferred to the abovementioned papers for details regagrdin
largest bursts carries almost all of the FTPDATA bytes. Thisthe characteristics of the traffic in each dataset, inclythire
implies that faithful modeling of FTP traffic should concen- number of connections and bytes due to each TCP protocol.
trate heavily on the characteristics of the largest bursts. These traces are all fairly lengthy, allowing us to assess

Poisson arrival processes are quite limited in their burstihow traffic varies over the course of a day or longer, and
ness, especially when multiplexed to a high degree. Our findgiving us enough TCP connection arrivals to make a statis-
ings, however, show that wide-area traffic is much burstietically sound evaluation of the connection arrival proesss
than Poisson models predict, over many time scales. Thi$hese traces are used §n3 to evaluate the effectiveness
greater burstiness has implications for many aspects of corf using Poisson models for TCP connection arrivals. Be-
gestion control and traffic performance. We conclude the pacause SYN/FIN traces allow us to characterize connection
per with a discussion of how our burstiness results mesh witlsize, we also used these traceif to investigate the notion
self-similar models of network traffic, and then with a lodk a of “FTPDATA bursts.”
the general implications of our results. Because the SYN/FIN traces do not contain information
regarding packet arrivals within a connection, to evaluate
packetarrival processes we acquired nine packet-level traces
of wide-area traffic, summarized in Tablé 2.

The “LBL PKT-n" rows summarize traces gathered at the
Lawrence Berkeley Laboratory’s wide-area Internet gajewa

2 Traces used

[ Dataset [ Date | Durafion | What The first three traces captured all TCP packets, and lasted tw
Bellcore (BC) | 100ct89 | 13 days 17K TCP conn. hours. The final two traces captured all packets and lasted on
U.C.B.(UCB) | 310ct89 | 24 hours 38K TCP conn. hour. In the first set of traces, the fraction of dropped ptscke
coNCert (NC) | 04Dec91 | 24 hours 63K TCP conn. .10—"6 i
UK-US (UK) | 21Augol | 17 hours 26K TOP conn. whereI known, waf always 5 - 10~°. For the second set, it
DEC 1-3 See refs. | 24 hoursx3 | 195K TCP conn. was always< 0.001. )

LBL1-8 Seerefs. | 30 daysx8 | 3.7M TCP conn. The “DEC WRL-" rows summarize traces gathered at the

primary Internet access point for the Digital Equipment-Cor
poration. The access point is operated by Digital's Palo Alt
research groups, and the traces were supplied by Digital’s
Western Research Lab (hence “WRL"). For these traces, the
fraction of dropped packets was alway<.00025.

Table 1: Summary of Wide-Area TCP Connection Traces

| E;tl_a;‘z“ | Eétfm — | ZPV':’Ahng | \lN:SItTCP - | The packet traces do not include a large number of TCP
- ri ec - . pkts. ; ; ;
LBLPKT2 | Wed19Jan94| 2PM-4PM | 2.4M TOP pkis. connections, unlllke the_ traces in Table 1, so we do qot use
LBLPKT-3 | Thu20Jan94 | 2PM-4PM | 1.8M TCP pkis. them for evaluating Poisson models for TCP connection ar-
LBL PKT-4 | Fri21Jan94 2PM-3PM | 1.3M pkts. rivals, nor for the size of FTPDATA bursts (though the traces
LBL PKT-5 | Fri28Jan94 2PM-3PM | 1.3M pkts. are used to illustrate the heaviness of the distributiopjsen
DEC WRL-1 | Wed 08Mar95] 10PM-11PM | 3.3M pkis, tail). Instead we use the LBL PKT datasets§id and§ 5
DEC WRL-2 | Thu09Mar95 | 2AM-3AM | 3.9M pkts. . .
DEC WRL-3 | Thu09Mar95 | 10AM-11AM | 4.3M pkts. to evaluate different models for TELNET packet arrivalsd an
DEC WRL-4 | Thu09Mar95 | 2PM-3PM | 5.7M pkis. both the LBL PKT and the DEC WRL datasetsii to inves-
tigate the presence of “large-scale correlations” in wadea
Table 2: Summary of Wide-Area Packet Traces network traffic. (We did not include the DEC WRL datasets

. . 1The BC and UCB traces listed in Table 1 actually include atkets, and

Our study is based on two sets of traces of wide-area netre analyzed as such in [DJICME92]. We excluded a packeltdadysis of
work traffic. The first set, shown in Table 1, consisted ofthe BC dataset because of its low traffic rate (on averagaitdbpacket/sec
TCP SYN/FIN connection start/stop packets. SYN/FIN pa_Ck_over the 11 days), and the UCB dataset because it forms the dfaghe

. . Tcplib library, against which we compare the packet-levatés.
ets are enough to measure connection start times (and hence a9 P P



in our packet-level TELNET evaluation because, due to thebserved before. FTP file transfers have a similar hourly pro
use of a firewall proxy server, the DEC TELNET traffic is file, but they show substantial renewal in the evening hours,
dominated by a single, heavily-loaded machine.) when presumably users take advantage of lower networking
To disambiguate between the LBL and DEC SYN/FIN delays. The NNTP traffic maintains a fairly constant rate
traces and packet traces, we use LBland DECx to re-  throughoutthe day, only dipping somewhat in the early morn-
fer to SYN/FIN traces, and LBL PK®=and DEC WRLn to  ing hours (but the mean size of each connection varies over
refer to packet traces. the course of the day; see [P94a]). The SMTP traffic is in-
teresting because it shows a morning bias for the LBL site

. . . (west-coast U.S.) and an afternoon bias for the Bellcoee sit

3 TCP connection interarrivals (east-coast U.S.); perhaps the shift is due to cross-opuntr

. ) i i i mail arriving relatively earlier in the Pacific time zone and
This section examines the connection start times for sbverqaater in the Atlantic time zone.

TCP protocols. The pattern of connection arrivals is dom- Figure 1 shows enough daily variation that we cannot rea-

inated by a 24-hour pattern, as has been widely observeghhapiy hope to model connection arrivals using simple ho-
before. We show that for TELNET connection arrivals andyqgeneous Poisson processes, which require constant rates
for FTP session arrivals, within one-hour intervals th&valr  1ha next simplest model is to postulate that during fixed-
process can be well-modeled by a homogeneous Poisson prgyqih intervals (say, one hour long) the arrival rate isstant
cess; each of these arrivals reflects an individual uset starynq the arrivals within each interval might be well modelgd b
ing a new session. Over one hour intervals, no other protos homogeneous (fixed-rate) Poisson process. Telephone traf
col’s connection arrivals are well-modeled by a Poisson Profic, for example, is fairly well modeled during one-hour inte

cess. Even if we restrict ourselves to ten-minute intervals,, s sing homogeneous Poisson arrival processes [FL91].
only FTP session and TELNET connection arrivals are sta- To evaluate these Poisson models, we developed a simple

tistically consister)t with Poisson arrivals“, thouq,h thEival‘ statistical methodology (Appendix A) for testing whether a
of SMTP conngctlons anq of F_TPDATA bursts (d|§cussed rivals during a given one-hour or ten-minute interval aresPo
later in § 6) during ten-minute intervals are not terribly far g4 \yith a fixed rate. We test two aspects of each protocol’s

from what a Poisson process would generate. The arrivals Gfyerarrivals: whether they are consistent with exporaigti
NNTP, FTPDATA, and WWW (World Wide Web) connec- isiributed interarrivals, and whether they are conststath

tions, on the other hand, are decidedly not Poisson progessgnqependent interarrivals. If the arrivals during the g

are truly Poisson, then we would expect 95% of the tested in-
tervals to pass each test. Note that we would also expect test
ing ten-minute intervals to perhaps be more successful than
testing one-hour intervals, because using ten-minuteviale
allows the arrival rate to change six times each hour rather
than remaining constant throughout the hour.

We applied our methodology to all of the TCP connec-
tion traces shown in Table 1. For each trace, we separately
tested the trace’s TELNET, FTP, FTPDATA, SMTP, NNTP,
and WWW connections. Only two of the traces had signifi-
cant WWW traffic, but as use of this protocol is rapidly grow-
ing, it is worth investigating even given the limited sangple

FTP here refers to an FT&ession(i.e., an FTP control
connection), while FTPDATA refers to the data-transfer-con
Hour nections spawned by these control connections. Prior to our
analysis we removed the periodic “weather-map” FTP traffic
discussed in [P94b], to avoid skewing our results. We also
tested arrivals of FTPDATAursts(see§ 6 below).

. . . Figure 2 shows the results of our tests, for both one-hour
Figure 1 shows the mean hourly connection arrival rate for

. intervals (top plot) and ten-minute intervals (bottom flot
datasets LBL-1 through LBL-4. For the different ?rOtOCOIS’AIong the z-axis we plot the percentage of tested intervals
we plot for each hour the fraction of an entire day’s connecs

. : . .~ that the statistical test for exponentially disted in-
tions of that protocol occurring during that hour. (In the-fig at passed the statistical test for exponentially disted

: terarrivals, and along thg-axis the percentage that passed
ure, .FTP refers to .FTP_sessm_ns.) Forexample, TELNET COhe test for independent interarrivals. The dashed linegeo
nections occur primarily during normal office hours, with a

) o2 ., spond to a 95% pass-rate, which we would expect on average
lunch-related dip at noontime; this pattern has been W'de|¥f the arrivals were truly Poisson. In general, we expectPoi
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Figure 1: Mean, relative, hourly connection arrival rate fo
LBL-1 through LBL-4 datasets.
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arrivals, on the other hand, are clearly not Poisson.

That NNTP and to a lesser extent SMTP arrivals are not
Poisson is not too surprising. Because of the flooding mecha-
nism used to propagate network news, NNTP connections can
immediately spawn secondary connections as new network

N : news is received from one remote peer and in turn offered to
B ‘ another. NNTP and SMTP connections are also often timer-
o 3 driven. Finally, SMTP connections are perturbed by mailing
‘ list explosions in which one connection immediately foltow

another, and possibly by timer effects due to using the Do-
main Name Service to locate MX records [P86].

- ‘ That FTPDATA connection arrivals are clearly not Poisson
o : can be readily attributed to the fact that “multiple-getéfil
transfers often result in a rapid succession of FTPDATA con-
nections, one immediately following another [P94a]. Coa-
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° 20 %% Exponentiar = lescing multiple FTPDATA connections into sindlarst(§ 6)
_ arrivals improves the 10-minute Poisson fit somewhat, but
ST N MFFBZ@ N el g still falls short of statistical consistency.
N w o ooVer o %B?SS* T The finding that TELNET connection arrivals are well-
B on s TSkmB T . e .
o . P5. TR s - modeled as a Poisson process with fixed hourly rates is at
o o+ ‘ odds with that of [MM85], who found that user interarrival

times looked “roughly log-normal”. We believe the discrep-
ancy is due to characterizing the distribution of all of the i

‘ terarrivals lumped together, rather than postulating 1sg¢pa
. ‘ hourly rates.

Given that TELNET connection arrivals appear Poisson
over one-hour intervals, one might imagine that other human
initiated traffic such as RLOGIN and X11 will also fit this
model. We find that RLOGIN does and X11 does not. We
conjecture that the difference is that during a single Xé&4-
sion (corresponding to running an instancexdérm say) a
user initiates multiple X11 connections, while TELNET and
RLOGIN sessions are comprised of a single TCP connection.
Thus, TELNET connection arrivals correspond to users de-
ciding to beginusing the network; X11 connection arrivals
. ) correspond to users deciding to do something mkewing
son arrivals to cluster near the upper right corner of thésplo iair use of the network. The former behavior is likely to

Each letter in a plot corresponds to a single trace’s conpg cjose to uncorrelated, memoryless arrivals, since each a
nection arrivals for the given TCP protocol. Letters drawny generally involves a new user. The latter is much more

?n Igrgebqld indicate that t.he trace"s arrivals are stati§tically akin to the creation of FTPDATA connections during a single
indistinguishable from Poisson arrivals (see Appendix A fo £1p gession, since a single user is involved in generatiwg ne
details). A+ or — after a letter indicates that consecutive 5rjyals. Because X11 connections are created in this way,
interarrival times are consistently either positively @ga-  hqir arrivals do not have the memoryless property and hence
tively correlated, even if the correlation itself is notpau-  5re not Poisson. If we could discern between X11 session

larly strong (again, see Appendix A). _ _ arrivals and X11 connection arrivals, then we conjecture we
We see immediately that TELNET connection arrivals and,o1d find the session arrivals to be Poisson.

FTP session arrivals are very well modeled as Poisson, both

for 1-hour and 10-minute fixed rates. No other protocol’s ar-

rivals are well modeled as Poisson with fixed hourly rates4 TELNET packet interarrivals

If we require fixed rates only over 10-minute intervals, then

SMTP and FTPDATA burst arrivals are not terribly far from The previous section showed that start times for TELNET

Poisson, though neither is statistically consistent wils8on  connections are well-modeled by Poisson processes. In
arrivals, and consecutive SMTP interarrival times show-conthis section we look at the packet arrival process within a

sistent positive correlation. NNTP, FTPDATA, and WWW TELNET connection. We restrict our study to packets gen-
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Figure 2: Results of testing for Poisson arrivals.



erated by the TELNET connection originator; this in generalnot even close to exponential in shape (note thatthgis is
is a user typing at a keyboard. We would expect the packlogarithmically scaled). To dramatize this fact, we haweoal
ets generated by the TELNET connection responder to havglotted two logarithmically-scaled exponential disttibns.
a somewhat different arrival process, since they will ugual The lefthand one (“fit #1”) has the same geometric mean as
include both echoes of the user’s keystrokes and largetsursthe LBL PKT-1 distribution, and the righthand one has the
of bulk-transfer consisting of output generated by the 'sser same arithmetic mean.
remote commands. The exponential fits are very poor. Using the exponential
Because the originator packets are initiated by a humardistribution fitted to the same geometric mean will faithful
we might hope that the arrival process is to some degree “ineapture only the distribution of packet interarrivals thad
variant”; that is, the process may be independent of networketween 200 and 400 msec apart. Shorter interarrivals will
dynamics and instead mainly reflect the delays and bursts dfe overestimated, and longer interarrivals will be undéeres
activity associated with people typing commands to a commated. For example, the exponential distribution models a
puter. Indeed, our empirical results of the interarrivalgs  full 25% of the interarrivals as being less than 8 msec, and
between packets in a single TELNET connection are conenly 2% as being longer than 1 sec, but for the actual data
sistent with the empirical Tcplib distribution found by pre under 2% were less than 8 msec apart, and over 15% were
vious researchers. Unlike the exponential distributidre t more than 1 sec apart.
empirical distribution of TELNET packet interarrival time The exponential distribution fitted to the arithmetic mean
is heavy-tailed we show that using the exponential distribu- fares even worse. For example, it predicts nearly 70% of the
tion results in seriously underestimating the burstinasth b packets will arrive more than 1 sec apart, when the actual
of TELNET traffic within a single connection and of multi- observed distribution is 15% of the packets.
plexed TELNET traffic. Modeling TELNET packet arrivals  Thus, simple exponential distributions for packet interar
by a Poisson process, as is generally done, can result in simival times, which are necessary for Poisson models of gacke
ulations and analyses that significantly underestimat®per arrivals, provide very poor fits to the observed distribatio
mance measures such as average packet delay. On the other hand, the main body of the observed distribution
fits very well to a Pareto distribution (doubly-exponentale
Appendix B) with shape parametgr= 0.9, and the upper

1.0

| [— Toplib 3% tail to a Pareto distribution with ~ 0.95. Interestingly,
o | E)'f;'flitt;w a Pareto distribution witl < 1 has infinite mean and vari-
° C - Expfiti2 ance; a very different beast than an exponential distobuti

We will see later that Pareto-distributed interarrivalsdeo
observable large-scale correlations (Appendix C).

Itis not surprising that interactive packet arrivals do fitot
a Poisson model, since earlier work looking at many differ-
ent components of interactive traffic failed to find any stai
cally significant exponential fits to the observed distridus

0.4

0.2

9 ——= ‘ ‘ ‘ ‘ ‘ [FJ70]. This leaves the question: What are the consequences
3 2 1 0 1 2 of using Poisson packet arrivals rather than the Tcplitridist
Logl0 Seconds bution for TELNET traffic?

Figure 3: Empirical distributions of packet-interarrigal
within TELNET connections.

Figure 3 shows two empirical distributions of the interar- —; =3 160 150 260
rival times of packets within TELNET connections. The solid o Time (in Seconds) .
. . ) . . (Row 1: Teplib Interarrivals. Row 2: Exponential Interarrivals.)
line shows the distribution used by Tcplib [DJ91, DJCME92];
the dashed line shows the same for the LBL PKT-1 trace.
Above 0.1 seconds, the agreement is quite good, especially »:
in the upper tail. That different sites produce the same dis- — 500 1000 1500 2000
tr|but|0n argues h.eaV"y tha‘t the dIStrIbUtlon IS Indem (Row 1: Tcplib Interarr-li—\llr:lz.(I;(?vszo:ngf;))onential Interarrivals.)
of network dynamics and instead reflects human typing dy-
namics. Below 0.1 seconds the interarrival times probabI)F ket i
are dominated by network dynamics; but, as stated earlier, iferpackettimes.

this paper we are not concerned with time scales below 0.1 _ _ .
seconds. Figure 4 shows two views of packet arrivals from two simu-

Even ignoring the lower tail, the interarrival distributiés lated TELNET connections, each lasting 2,000 seconds. The

1— - — . —— e e

igure 4: Comparisons between Tcplib and exponential in-



first graph shows the first 200 seconds, and the second grapio-hour period and the same size (in packets). One of the
the entire 2,000 seconds. Row 1 for each graph shows a cosynthesized traces used the Tcplib empirical distribution
nection using independent, identically-distributeddi)iin-  the packet interarrivals within each connection (“TCPLIB”"
terpacket times from the Tcplib distribution, and row 2 seow one used exponential interarrivals with mean 1.1 (“EXP");
a connection using i.i.d. interpacket times from an expenenand one uniformly distributed each connection’s packet ar-
tial distribution with a mean of 1.1 seconds (to give roughlyrivals over the interval between when the connection began
the same number of packets as the Tcplib distribution). Weand when during the LBL PKT-2 trace the connection termi-
have plotted a dot for each packet arrival, with thaxis giv-  nated (“VAR-EXP”). This last method corresponds to expo-
ing the time of the arrival. In all, there were 1,926 Tcplib nential interarrivals with the mean adjusted to reflect the-c
interarrivals and 2,204 exponential interarrivals. Ovethb  nection’s actual observed packet rate. Thus, for the TCPLIB
time scales, the packets from the connection with Tcplib in-and EXP schemes, we generated connections with the same
terpacket times are dramatically more clustered. starting times and sizes (in packets) as their counterparts
This difference in burstiness between exponential andhe LBL PKT-2 trace, but perhaps with different durations,
heavy-tailed (i.e., Tcplib) interpacket times persistséone  while with the VAR-EXP scheme, the generated connections
extent for multiplexed connections. For example, we ran 10shared starting time, size, and duration.
minute simulations with 100 active TELNET connections, A valuable tool for assessing burstiness over differengtim
where all connections were active for the entire duratiorscales is the “variance-time plot” [LTWW94, GW94], which
of the simulation. In one simulation each connection usedve describe here by example rather than rigorously. Suppose
Tcplib interpacket times, and in the other simulation eachwe have a count process consisting of 72,000 observations,
connection used exponential interpacket times. We foundorresponding to a two-hour trace viewed every 0.1 seconds.
that the multiplexed packet arrival processes with Tcplib i Each observation gives the number of packet arrivals during
terpacket times remained more bursty. For each simulatiorthat 0.1 second interval. The variance of this count process
consider the number of TELNET packets arriving during suc-gives us an indication of how bursty the traffic was when
cessive one-second intervals. For the simulation withviddi  viewed on a time scale of 0.1 seconds.
ual connections using Tcplib interpacket times, this aggre If however we are interested in the process’s burst-
gate number had a mean of 92 and a variance of 240; for thetructure on a time scale of 10 seconds, we could construct
simulation with exponential interpacket times, the aggteg a “smoothed” version of the process by averaging the first
number had a mean of 92 and a variance of 97. Even a highOO observations to obtain the process’s mean value during
degree of statistical multiplexing failed to smooth awag th the first 10 seconds, the next 100 observations for the next
difference between the two packet arrival processes. 10 seconds, and so on. In general we can do this sort of
One of the natural performance measures for TELNETsmoothing for any aggregation levél, where in this exam-
traffic is average packet delay. It would not be hard to conple M = 100. The variance of the smoothed process then
struct simulations, one using Tcplib and the other usinggexp gives us an indication of how bursty the traffic was when
nential interarrivals, where making the mistake of using ex viewed on a 10-second time scale.
ponential interarrivals instead of Tcplib significantlyden- A natural question is then: how does the variance change
estimates the average queueing delay for TELNET packets.as we progressively smooth the process? By plotting vagianc
The above shows that the Tcplib packet interarrival distri-vs. degree of smoothing{), we can examine how burstiness
bution behaves quite differently than a Poisson process ev changes according to the time scale used to view the traffic.
in the presence of multiplexing. We now show that for mea- For count processes with rapidly decaying autocorrelation
sured network traffic, these differences extend far beybad t functions, such as Poisson processes, the variance of a pro-
time scale of individual packets. To look at the differencecess aggregated to lev&! will be 1/M times the variance
in burstiness at different time scales, we first extractéd alof the unaggregated process (§6&£3.1). For processes with
TELNET originator packets, except those consisting of nhomore persistent autocorrelation functions, however, té v
user data (“pure ack”), from the two-hour LBL PKT-2 trace. ance will decay more gradually. Given this relationship, we
These packets belonged to 277 separate TCP connections. €fn then construct a variance-time plot by smoothing the pro
these connections, 4 were anomalously large and rapid (moress for different values af/ and plotting the variance of
than2'© bytes transferred by the originator at sustained datéhe smoothed process on thexis vs. the aggregation level
rates exceeding 8 bytes/sec). These are unlikely to corré\/) on thex-axis. We use logarithmic scales because they
spond to human typing, were clear outliers, and are probablgllow us to immediately assess whether the variance decays
better modeled as bulk transfer connections. Removing thas 1/M (which will show up on the plot as a straight line
outliers left us with 273 connections. with slope—1), or more slowly (a slope more shallow than
We then synthesized several two-hour packet traces as fol-1), indicating slowly decaying autocorrelation or possibly
lows. For each of the TELNET connections, we synthe-non-stationarity; that is, from the plot we can tell a gresdld
sized a connection with the same starting time within theabout burstiness at different time scales.
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trace and for the three schemes discussed above. Here the
unaggregated procesk/(= 1) corresponds to 72,000 obser- o,

2000 2000 6000

. . . - 0
vations of the number of TELNET originator packets arriving Time (in Seconds)
during 0.1-second intervals. T@eaxis is the variance of the Telnet Trace, Substituting Exponential Interpacket Times.

aggregated process normalized by dividing by the square of . )

the average number of packets per 0.1-second. This normdrgure 6: Comparisons of actual and exponential TELNET
ization allows us to compare the variance of processes witRacket interarrival times.

different numbers of arrivals, as the traces consisted of be

tween 82,500 and 86,000 packets, Clearly, this difference in the packet-generation raterove

th F'rrocr:TDtLTg pl?]t Iis |mmed|a}tely|cle§}[;‘ttt;]atlfgel_ \Ig?(r_'?;ie of5_second intervals could have consequences for queueing de
€ scheme agrees closely i N ) racelays in simulations using these two different traces. As the

plegng, vyhile Eoth EXP ani\TAR-EbXP exhibit far Iless variance,gariance-time plot shows, the LBL PKT-2 trace is more bursty
n Icating they are much less bursty over a large range of, o many time intervals, not only over the five-second inter
time scales. Thus, the TCPLIB scheme preserves the burskll—

: . i als shown here. The conclusions are that using exponential
ness presentin the measured traffic, while the EXP and VARbacket interarrival times for TELNET connections resutts i

EXP schemes both sacrifice burstiness at larger time Scale§ubstantial underestimations of the burstiness of mebigd

H _ 3 i - . . .. . .
At very large time scalesi( = 10°), we again get agree TELNET traffic, but using i.i.d. interarrivals drawn frometh
ment between all of the schemes and the measured trafflcr,

b i f:plib distribution faithfully reproduces the burst sttuie.
ecause these time scales are so coarse that we are elsentia
viewing each connection’s arrivals lumped together as a sin
gle observation—differences in the distribution of thevals 5 Fu||y mode|ing TELNET originator
within the connection are lost due to the coarse granulafity .
our observations. traffic

Figure 6 shows the difference in burstiness between th
schemes explicitly. Here we plot the arrival process corre
sponding to 5-second intervald/( = 50) for the LBL PKT-2

_%ection 3 has shown that over 1-hour periods, TELNET con-
nection arrivals are well-modeled as Poisson processés, an
§ 4 has shown that within a TELNET connection, packet in-

trace and for the EXP trace. Theaxis shows the time in : val ti b deled using the h tailed di
seconds, and thg-axis shows the total number of TELNET ‘cla/Tval imes can be modeled using the heavy-talled dis-
bution in Tcplib. The connection size ibyteshas been

packets in each 5-second interval. The average number & . 7
packets in the two traces are similar; the LBL PKT-2 traceprewously modeled by a log-extreme distribution [P94ag; t

has an average of 59 packets in each 5-second interval, ar?&stribution of the connection size packetss somewhat dif-
gr

the fixed-rate exponential trace has an average of 57 pack fnt’ and sbeelms toI b(ihpetter Todeled bY{ ?hlog—rlarmalﬁstrl
in each 5-second interval. The variances, however, are qui ution (see below). In this section, we put these three piece

different. With 5-second bins, the LBL PKT-2 trace has atogethgr to cqnstruct a complete model of TELNET °”9if‘a'
- dor traffic that is parameterized only by the connectiorvairi

260 rate. Variance-time plots show that this model corresponds



well to empirical measurements.

First, we look at the difference in the distributions of erig
inator bytes per connection vs. originator packets. Presvio
work reports that the number of bytes sent by the origina-
tor in a wide-area TELNET connection is well-modeled us-
ing a log-extreme distribution with location parameter=
log, 100 and scale parametgr = log, 3.5 [P94a]. We ex-
perimented with using this distribution to produce sizes fo
an equal number of TELNET connections as appeared in the
LBL PKT-2 trace. We found that the distribution consistgntl
generates connection sizes (in bytes) much larger than the
connection sizes (in packets) observed in the trace. We at-
tribute this difference to two effects: logL0 M (Aggregation Size)

0.0

Trace data, 2nd hour

FULL-TEL model, seed 1
FULL-TEL model, seed 2
FULL-TEL model, seed 3

-0.2

-08 -06 -04

1.0
T

log10 Normalized Variance

-1.2

-1.4

e The [P944a] fit was made using month-long traces ofFigure 7: Variance-time plot comparing LBL PKT-2 trace
TELNET connections, allowing for much longer and data with the complete TELNET model, FULL-TEL.
larger connections than are present in our two-hour

trace; . .
Figure 7 shows the results of the comparison. In general

e The [P944a] fit models connection sizeligtesand not  the agreement is quite good, though the models have slightly
in packets One generally assumes that each TELNEThigher variance than the trace data fdr > 102. We con-
originator packet conveys one byte of user data, correelude that FULL-TEL faithfully captures TELNET originator
sponding to a keystroke. Often, however, a packet cartraffic, except to be a bit burstier on time scales above 10 sec
ries more than one byte, either due to effects of the Naglends. As a final note, we also tested the model’s fit to the LBL
algorithm [N84] or because the TELNET connection is PKT-1 and PKT-3 TELNET traces; the results were similar.
operating in “line mode” [B90] or “line-at-a-time mode”

[PR83, S94]. For example, the LBL PKT-2 TELNET . .
originator traffic comprised about 85,000 packets carry-6 FTPDATA connection arrivals

ing 139,000 user data bytes. ) . ) , .
This section investigates arrival processes for FTP traffic

Given these difficulties, we attempted to fit the observedModeling FTP is particularly important because FTPDATA
TELNET connection sizes (in packets) with another simpleconnections currently carry the bulk of the data bytes inewid
analytic distribution. We found thatlag,-normal distribu-  area networks ([CBP93]). Section 3 showed that while FTP
tion with log,-meanz = log, 100 andlog,-standard devia- session arrivals can be modeled as Poisson processes, this i
tion o = 2.24 fit the connection size in packets well visually, not the case for FTPDATA connection arrivals. This section
considerably better than a log-extreme distribution with p shows that FTPDATA connections within a session are clus-
rameters fitted to the data. (The exact numerical values dkred in bursts, and that the distribution of burst sizes/tie®
Z ando here should not be taken too seriously, as they cames quite heavy-tailed; half of the FTP traffic volume comes
from a small sample.) We also found that a log-extreme distrifrom the largest 0.5% of the FTPDATA bursts. These large
bution fit the connection size in bytes better than a log-radrm bursts are likely to completely dominate FTP traffic dynam-
distribution, so our data remains consistent with the nodelics.
presented in [P94a]. In this paper, we do not attempt to model FTPDATA
Putting all of this together, we have a complete modelpacket arrivals within a connection. Unlike TELNET connec-
for TELNET traffic, FULL-TEL, parameterized only by the tions, where the originator packet arrival process is lgrge
TELNET connection arrival rate. FULL-TEL uses Poissondetermined by the packet generation pattern at the source,
connection arrivals, log-normal connection sizes (in pé&k  the packet arrival process for an FTPDATA connection is
and Tcplib packet interarrivals. largely determined by network factors such as the available
We then used FULL-TEL to generate three synthetic tracebandwidth, congestion, and details of the transport-maito
of TELNET originator traffic, using a connection arrivaleéat congestion control algorithms. Previous studies havedoun
of 273 connections in 2 hours. Because such traces start afiat FTPDATA packet interarrivals are far from exponential
with no traffic and build up to a steady-state corresponding t [DJCME92]; this is not surprising, since the above network
the connection arrival rate, we trimmed the traces to juait th factors lead to a process quite different from memoryless ar
second hour. We then used variance-time plots to compangévals.
the traces with the second hour of the LBL PKT-2 TELNET To begin,§ 3 showed that FTPDATA connection arrivals
trace. are not well-modeled as Poisson. Each FTP session spawns



a number of FTPDATA connections; one key questionis how o

these connections are distributed within the duration ef th |
FTP session. °
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Figure 9: Percentage of all FTPDATA bytes due to largest

10% FTPDATA bursts.

Log10 Seconds

Figure 8: FTPDATA Intra-session Connection Spacing. vertical line marks the upper 0.5% of the FTPDATA bursts,
and the line to its right, the upper 2%.

We computed the distribution of spacing between The key point to draw from this figure is that the upper
FTPDATA connections Spawned by the same FTP SESSiOH'S% tail of the FTPDATA bursts holdsetween 30% and
for six datasets: LBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and 60% of all of the data bytesThus, at any given time FTP
UCB. Here, “spacing” refers to the amount of time betweentraffic will most likely becompletely dominated by a single or
the end of one ETPDATA connection within a session angsmall handful of burstsNote that this phenomenon is present
the beginning of the next. Figure 8 plots the results. In eachn all of the connection datasets we studied. The dataset with
case the upper tail of the distribution is much heavier tharthe least heavy tail is UK (shown in the figure), which still
exponential (the:-axis is logarithmic), and is better approx- held 30% of the data bytes in the upper 0.5% tail and 55% in
imated using a log-normal or log-logistic distribution. rFu  the 2% tail. The NC dataset lies about halfway between UK
thermore, all of the distributions show inflection points atand the others in the figure, and the remainder lie within the
spacings between 2 and 6 seconds, indicating bimodality. weounds of the others shown in the figure.
conjecture that spacings shorter than these points relect s  This finding means that for many aspects of network be-
guential FTPDATA connections due to multiple transferg(th havior, modeling small FTP sessions or bursts is irrelgevant
FTP “mget" Command) or auser issuing a “list directory Com_a” that matters is the behavior of a few huge bursts. Thessize
mand” very shortly followed by a “get.” Such closely-spaced and durations of these bursts will vary considerably frora on
connections might well be interpreted as corresponding to me to another; but thewill be present. We also note that
single “burst” of file-transfer activity. We somewhat arbi- our finding that the size of an FTPDATA burst has a heavy
trarily chose a spacing of 4 seconds (the dashed vertical tail matches a survey conducted by Irlam [I93] of the sizes of
line) as defining connections belonging to the st and files in 1,000 file systems comprising 12 million files and 250
we note that such spacings are not inordinately larger thafPB of data: 1.9% of the files accounted for 71% of the bytes,
the 1-2 second spacings that can occur internal to a singfnd 0.5% accounted for 54% of the bytes.

FTPDATA connection due to TCP retransmission timeouts. We performed fitting of the upper tail of the distribution
Here, “somewhat arbitrarily” means that, for example, gsin Of data bytes per FTPDATA burst and found that the upper
a cutoff spacing of 2 seconds instead (which actually dijght 5% talil fits well to a Pareto distribution with.9 < g <
better delimits the two modes of activity) results in vittya 1.4 [P94a]. As the Pareto distribution is heavy-tailed (see

identical results as those discussed in the remainder f thAPPendix B), this agrees with our findings in Figure 9. In
section. contrast, the upper 0.5% tail of an exponential distributio

With this definition of a burst of FTPDATA connections, always holds about 3% of the entire mass of the distribution,

we analyzed the same datasets to measure the distribution gardless of the distribution’s mean.

the number of bytes transferred during a single connection Figures 10 and 11 graphically illustrate the dominance of
burst. The distribution proves to be remarkably heavyethil the upper FTPDATA-burst tail. The four plots in Figure 10
Figure 9 shows the percentage of all FTPDATA bym((is) show the FTPDATA traffic rate in byteS/minUte for the LBL
due to the largest 10% of the FTPDATA burstsdxis). The ~PKT-1, PKT-2, PKT-3, and PKT-5 datasets, and in Figure 11
numbers in parentheses in the legend give the total numbéhe same is shown for the DEC WRL datasets. The shaded
of FTPDATA bursts occurring during each trace. The firstareas represent traffic contributed by the largest 2% of the
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Figure 10: Proportion of LBL PKT FTPDATA traffic due to Figure 11: Proportion of DEC WRL FTPDATA traffic due to
largest 2% (shaded) and 0.5% (black) connection bursts. largest 2% (shaded) and 0.5% (black) connection bursts.

bursts, and the black areas the largest 0.5%. The numbers inFor the DEC datasets, the difference in the size of the burst
parentheses give the number of bursts and FTPDATA connedails is not so pronounced: in WRL-1 (971 bursts), WRL-3
tions comprising the 2% burst upper-tail. (For example, thg2,161 bursts), and WRL-4 (2,100 bursts) the 2% and 0.5%
upper 2% tail of the PKT-1 bursts was made up of 7 burstgails hold 54-70% and 33-42% of all the traffic, while for
consisting of a total of 19 FTPDATA connections, while for WRL-2 (788 bursts) they hold 45% and 18%. The lesser de-
WRL-2 this tail was made up of 16 bursts and 1,796 con-gree of difference between the datasets is what we would ex-
nections.) We see that sometimes bursts contain many sepgect: since the datasets have considerably more bursts than
rate connections and sometimes not. Indeed, the diswibuti their LBL counterparts, large-number laws become more re-
of the number of connections per burst is well-modeled as &able in predicting the size of the tails.

Pareto distribution. For example, a single burst in the LBL- We would also like to know whether the arrivals of the
dataset was made up of 979 separate FTPDATA connectionapper-tail bursts can be modeled as a Poisson processtas tha
For PKT-1 (364 bursts) and PKT-3 (552 bursts), the uppewould provide a first step toward predicting their effect on

2% and 0.5% tails hold around 50% and 15% of all the traf-network traffic. We analyzed the 199 upper-0.5%-tail LBL-6
fic; for PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% andbursts, first removing effects due to daily variation in fiaf
60%. The large degree of difference between PKT-1/PKT-3Fates by looking at interarrivals in terms of number of inter
and PKT-2/PKT-5 illustrates how volatile the upper-tail be vening bursts instead of seconds. We found that the dataset
havior is; a trace comprising 400 bursts (and substantiallfailed the statistical test (Appendix A) for exponentiaien
more FTPDATA connections) might well be completely dom- arrivals at all significance levels. Thus, caution must bedus
inated by 2 of the bursts, or it might not, since 2 is a very $malif approximating large-burst arrivals using a Poisson pss¢
sample of the upper-tail behavior. Thus we are left in the dif further analysis is needed to model the burst-clustering.

ficult position of knowing that upper-tail behavior domiest

traffic, but with such small numbers of bursts that we canno . .
reliably use large-number laws to predict what we are likely/ ~ Large-scale correlations and possi-

to see during any given trace. Furthermore, the PKT-2 and  hle connections to self-similarity
PKT-5 bursts were not geographically anomalous, either: th

largest PKT-2 burst was to a governmentsite in Colorado, angve have argued in the previous sections that on any time-
the largest PKT-5 burst was to a commercial site in Washingscale smaller than user-session arrivals, modeling wida-a
ton state. These sites are about 1,500 km and 1,000 km distantp traffic using Poisson processes fails to faithfully oapt
from LBL, respectively. the traffic’s dynamics. Recent work [LTWW94] shows that
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local-area Ethernet traffic (and perhaps wide-area TCP traf7.2 Producing self-similar traffic
fic) is much better modeled assalf-similarprocess, which h | methods f duci lf-similar traffi
displays substantially more burstiness over a wide range o ere are several methods Tor producing sei-simitar oatt
time scales than do Poisson processes. t. at coulq account.for self-similarity in _\NlQe-area_TCPf{ra
In this section we discuss the degree of “large-scale corlC: AS d|scussed_ n [!‘TWW94]’ self-similar traffic can .be
relation” present in the LBL PKT traces of TELNET traffic produced by multiplexing ON/OFF sources that have a fixed
and the LBL PKT and DEC WRL traces of ETPDATA traf: rate in the ON periods and ON/OFF period lengths that are
fic and aggregate wide-area traffic. We also consider the evhezvy-talIe;(seetﬁ\pgefndlx B). i f-similar traffic that
dence for whether such correlation is well modeled usirfg sel second metnod for generating seit-similar traftic tha

similar processes. We begin with a discussion of the coscepfowd fit T(.:P traffic (|js antM/st queue model, thﬁ; cus-
of “large-scale correlation,” “long-range dependenceiti a omers arrive according to a Poisson process and have ser-

“self-similarity.” We next give an overview of two existing v!;:e times draévg 4frg_nwe\1/\?9e4aV)|/-t3|1lle d d'zt;?u.tlotﬂ with infi-
methods for generating truly self-similar traffic, alonghwa E' ev?rlantce[ N th t]. n ttl'?inm'(l?h t1S te num-
new method for producing “pseudo-self-similar” traffic. We er ot customers in the system at timefhe count process

then discuss how the traffic models developed in this papeﬁXﬁ}t:m’?w IS as_ymptoncally self-5|m|la-r (sge Appendix D
might match these methods. We finish with a preliminary as:o' f”'.“her discussion). The M/(.‘% model |mpI|es.that mul-
sessment of the possible self-similarity of general widesaa t!plexmg constant-rate conne'ct|ons. th‘.”‘t hgve PO'SSO”@‘”’?
raffic. We find the evidence inconclusive, though the traf_t|on arrivals and a heavy-tailed distribution for conneunti

fic clearly exhibits large-scale correlations inconsisteith Ilfe\;c\llmgs wogld ;e;ult n s;(ljf:['smlllar tra;;flca f duci
PoiSsoN processes. e investigated an additional method of producing ar-

rival processes that appear to some extent self-similais Th
o method involves constructing arrivals using i.i.d. Paieter-
7.1 Definitions arrivals with 3 ~ 1, and then considering the corresponding

We use the term “large-scale correlation” as an informal Wafolet%r]ocessl (bthﬁ, ncli,lrr;]ber ofhaar|yals n clonSE(:utlve 'mtelr-
of describing correlations that persist across large ticaées. vals). The goal behind the method is to explore how a simple

For example, the lower right plot in Figure 10 shows a 40_modequTELNET traific might lead t.o ;elf;similarity. WPT re-
minute burst of highly correlated traffic. fer tp t.h|s method as “pseudo-self-similar .because witite t

A related, more precise notion of sustained correlation iéraﬁlclltgeqer’?ﬂes has large-scale correlations gnd tiseray
that of “long-range dependence.” A stationary process i?e”'S'm'lE?‘”ty propgrty [LTWW94] over many t|m.e scales,
long-range dependeitit its autocorrelation function:(k) is we show in Appendix C that the traffic generat_ed_ls notactu-
nonsummable (e, r(k) = o) [C84]. Thus, the defi ally long-range dependent (and thus not self-similar).
nition of long-range dependence applies only to infinitestim
series. 7.3 Relating the methods to traffic models

The simplest models with long-range dependenceselfe
similar processes, which are characterized by hyperbolically?'?"1 TELNET
decaying autocorrelation functions. Self-similar andragy  As explained in [LTWW94], straight lines on variance-time
totically self-similar processes are particularly atthee  plots with slopes more shallow thaal, such as that for
models because the long-range dependence can be charactge PKT-2 TELNET trace in Figure 5, are suggestive of
ized by a single parameter, the Hurst parameter (which cagelf-similarity. In general, the slope of an arrival progss
be estimated using Whittle’s procedure [GW94, LTWW94]). variance-time plot is a function of the process’s autodatre

In the following sections, we look at ways in which long- tion function [C84], and a long-range dependent proceds wil
range dependence in general, and self-similarity in paetic  exhibitslowly-decaying variancesn such a plot. That s, the
might arise in wide-area network traffic. An important point variance-time plot will decline in a more shallow fashioarth
to bear in mind is that, even if the finite arrival processwti  with slope—1, though not necessarily in a straight line. An
from a particular packet trace does not appear self-siniflar important point is that such slow decline can also occur due
it exhibits large-scale correlations suggestive of loagge  to the presence of non-stationarity.
dependence then that process is almost certainly better ap-in addition to looking at variance-time plots of the
proximated using a self-similar process than using PoisSOMELNET traffic, we also used Whittle’s procedure [GW94,
processes. Thus, we believe that self-similar modeling is @TWW94] and Beran’s goodness-of-fit test [B92a] to gauge
promising successor to Poisson modeling. It may not be exthe agreement between the traffic and the simplest type of
actly right, but given our current understanding of netvilogk  self-similar processfractional Gaussian noisgB92b]. All
phenomena, it appears in any case a good approximation. of the results are consistent with self-similarity on ssadé

tens of seconds or more.
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We postulate that two different mechanisms contribute to
the apparent self-similarity of TELNET traffic. On smaller
time scales, apparent self-similarity might arise fromfeu
that within individual TELNET connections, packet interar
rivals are well modeled as i.i.d. Paretp4). Thus, individ-
ual TELNET connections match the i.i.d. Pareto method of

0.0
I

-0.5
I

generating pseudo-self-similar traffic that appearssetitar S%O%Oauo%o%o%

over a range of time scales (Appendix C). On larger time  _ . = o0
scales, we note that our source model of TELNET connec- £~ M, E“jugtp

tions presented if 5 in some respects matches the M/ % oo AAAAAA .

model described in the previous section. TELNET connec- e N

tion sizes in packets havelang-tailed[WT92] distribution, Sl M, g D

in that the tail function of a log-normal distribution deases = e Aggzm
more slowly than any exponential function. While we show in T, o =

Appendix E that the M/G queue with log-normal service
times doesiotresult in long-range dependent or self-similar
traffic, the difference in tail weight between a log-normiald
tribution and a Pareto distribution may be small enough that
over the time scales of interest (seconds to minutes) tiitra ol
still appears self-similar. -t L ! L
Put together, these models of TELNET traffic suggest why 10910 M (Aggregation Size)
the traffic might appear self-similar (or at least long-rang
dependent) over many time scales. While individually the
models fall short of proving self-similarity, it could beeth
case that the combination of i.i.d. Pareto interpacket gime
and the M/G#o effect due to multiplexing makes TELNET fractional Gaussian noise is that the traces exhibit exthem
traffic truly self-similar. At a minimum, these models ex- high burstiness, including lengthy periods during whiokréh
plain why the traffic exhibits large-scale correlations.r-Fu s no FTP traffic. These “lulls” mean that the marginal distri
ther work is needed for a definitive statement regardingectu bution function of the arrival process has a large peak at zer

-2.0
I

PKT-1 (TCP)
PKT-2 (TCP)
PKT-3 (TCP)
PKT-4 (ALL)
PKT-5 (ALL)
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Figure 12: Variance-time plot for all TCP / all link-level
packet arrivals in the LBL PKT datasets.

self-similarity. arrivals. Since fractional Gaussian noise is a form of Gaus-
sian process, its marginal distribution is normal, and cann
7.3.2 FTP accommodate such a peak. It is still possible that FTP traffic

ke th | of fic di in th i is well-modeled using different self-similar processeshat
Like the model of TELNET traffic discussed in the PreviouS it instead is not well-modeled as self-similar. In this pape

section, our model of FTP traffic also fits in some respects tqy, ¢ try to resolve this issue, but limit our discussionte t
the M/Gho model of Poisson arrivals with heavy-tailed life- interplay between mechanisms affecting FTP traffic dynam-
times. The distribution of bytes per FTPDATAIrstis heavy- ics and large-scale correlations in the traffic.

tailed ( 6), and FTPsessionshave Poisson arrivals; (3). Unlike TELNET traffic, where the timing of packets gener-

Over larger time scales tlhe pafket arrival process within aye j ot the source is reasonably close to the timing of the sam
FTPDATA burst can be plausibly approximated as constanty,, cets transmitted on the network, the timing of FTPDATA

rate. If we approximated FTPDATA burst arrivals as PoiSsOn 5 .y ets transmitted on the network is intimately related to

(a bit of a stretch, as showp i3 above), and assumed that v, dynamics of TCP’s congestion control algorithms. The
each FTPDATA burst' recelved'the same average rate, th%llowing paragraphs discuss several ways that, due in part
multiplexed FTP trafflc' would fit the M/Gb model above, to the effects of TCP, multiplexed FTP traffic differs from
and should be self-similar. . , , the M/Ghbo model of self-similar traffic with constant-rate
Itturns out, though, that variance-time plots, Whitle’sp  .nnections. While these factors could account for our FTP

cedurﬁ, and goodness-of-fit tests of our :TTP galczs all sugzaces not appearing statistically self-similar, they doim-
gest that our FTPDATA traces are not well-modeled as frac-ply the absence of long-range dependence.

tional Gaussian noise, although the heavy-tailed disﬂdhy Unlike the M/Gho model, which best fits an environment
of FTPDATA bursts clearly leads to large-scale correlaion where all connections have the same fixed constant rate, dif-

The sole exception to this finding is the DEC WRL-3 race.forent FTP connections have quite different average rates,
for which the tests are consistent with self-similarityiete | .hi0 o single FTP connection the average rate varies over

scales of 1 second or greater. , time. TCP’s congestion control algorithms increase the TCP
One reason the FTP traces might not be well-modeled 8, gestion window to probe for additional bandwidth, and
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Figure 13: Variance-time plot for all link-level packetiagls

in the DEC WRL datasets.

Another discrepancy between the M&G/model and our
link traces concerns the effect of FTP traffic competing with
other families of traffic on a congested link. The four main
classes of traffic in our link traces were TCP, Mbone (pri-
marily multicast UDP audio traffic), Domain Name System
requests and replies (UDP-based), and DECnet. Unlike TCP,
the UDP protocol does not incorporate congestion-avoiglanc
mechanisms. Therefore, when TCP-based FTP traffic is com-
peting for bandwidth with Mbone UDP sources, only the FTP
traffic will adjust to fit the available bandwidth. The UDP
traffic will continue unimpeded. The effect of this interac-
tion on the overall structure of FTP traffic remains an open
question.

7.4 Large-scale correlations in general wide-
area traffic

We finish with a preliminary look at whether wide-area traf-
fic multiplexed over different protocols appears self-&mi
Figure 12 shows variance-time plots for all of the LBL PKT
traces listed in Table 2. Here, the unaggregated process
(M = 1) corresponds to observing the packets arriving dur-
ing each 0.01 second interval.

Recall that the first three LBL PKT traces captured all TCP
packets for two hours, and the last two captured all wide-

reduce the congestion window again in response to congearea packets appearing on the gateway Ethernet for one hour.
tion (packet drops). TCP's window flow control has severalThe first three traces consist of between 1.7 and 2.4 million
separate effects on the traffic pattern for an individual FTFpackets, and the last two traces each have around 1.3 million
connection. First, over intervals less than a roundtrigtihe  packets. The corresponding rates of packets/hour are above
FTP connection does not have a constant rate; each packettfose of the “low hours” in [LTWW94], so we would hope to
sent only after the TCP source receives an acknowledgemefiid that the traces exhibit exact self-similarity.
for an earlier packet. Second, if there is congestion in the We see in Figure 12 that PKT-4 and PKT-5, the full link-
network, then an FTP connection does not have a constafdvel traces, both yield straight lines with shallow slope,
rate even over longer time intervals; the average rate ovefonsistent with asymptotic self-similarity fa/ > 10 (0.1
a roundtrip time varies as the TCP congestion control winsecond). For the TCP traces, PKT-1 is concave down for
dow varies. Third, whether or not there is congestion in thesmall and largeM/, inconsistent with exact self-similarity,
network, different FTP connections will have differentave PKT-2 appears consistent with asymptotic self-similafity
age rates, depending on such factors as the TCP window and > 10? (10 seconds), and PKT-3 has a straight section be-
packet sizes, the connection’s roundtrip time, and theesng tweenM = 10 and M = 103, but not before or after, also
tion encountered in the network. These factors give rise tonconsistent with exact self-similarity.
serious discrepancies between our trace data and thesM/G/  |n contrast, use of Whittle’s procedure and goodness-of-
model. fit tests suggest that the link-level PKT-4 trace and the TCP
One way to incorporate the effect of limited bandwidth into PKT-1 and PKT-3 traces are consistent with fractional Gaus-
the M/Gho model would be to explore a model of an MAG/  sian processes, while the link-level PKT-5 trace and the TCP
queue instead of an M/Gd queue. In an M/G/ queue, be-  PKT-2 trace are not. As Figure 10 shows, the FTP traffic in
cause there are onlyservers, the actual arrival times of in- the PKT-5 and PKT-2 traces is heavily dominated by a few
dividuals at a server would occasionally have to be delayetarge FTPDATA bursts. Thus, while large-scale correlation
until there was available capacity. While this limited ceipa  are clearly present in these traces, it might be difficulttare
would have the effect of reducing the fit of the multiplexed acterize the correlations over the entire trace with a sing|
traffic to a self-similar model, it does not eliminate the and  Hurst parameter.
lying large-scale correlations in the M/&/model. However, Figure 13 shows the same sort of variance-time plot for the
the M/Gk model as applied to FTP connections assumes thadbEC WRL datasets listed in Table 2. The least active of the
all active connections have the same constant rate, anthiswRL datasets exceeds the most active in [LTWW94], so we
not the case in actual FTP traffic. would again expect to find exact self-similarity. The vaden
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time plots for WRL-2 and WRL-4 are encouraging in this long-range dependence in actual traffic will result in simu-
regard, lying in essentially straight lines for time scabés lations and analyses that significantly underestimateoperf
0.1 seconds and higher. WRL-3 lies in a straight line at timemance measures such as average packet delay or maximum
scales of 1 second and higher, while WRL-1 does so only afjueue size.
10 seconds and higher. But of these datasets, Whittle’sproc  [FL91] examines the burstiness of data traffic over a wide
dure and Beran’s goodness-of-fit test indicate that only WRL range of time scales, and discusses the impact of this bursti
3 is consistent with fractional Gaussian noise (at timeescal ness for network congestion. Their conclusions are that con
of 1 second and greater). The others, while clearly exhnipiti gested periods can be quite long, with losses that are lyeavil
large-scale correlations, do not appear to be well-modajed concentrated; that, in contrast to Poisson traffic modeis, |
a simple self-similar process. This could be due to distort-ear increases in buffer size do not result in large decreéases
ing effects of short-range dependence, better fits to o#ier s packet drop rates; and that a slight increase in the number of
similar models such asactional ARIMAprocesses [B92b], active connections can result in a large increase in thegback
or the presence of non-stationarity. WRL-3 was also the onljoss rate. They suggest that, because the level of busydperio
dataset whose FTP traffic appears consistent with fradtiondraffic is not predictable, it would be difficult to efficientl
Gaussian noise, though we have not assessed whether tisize networks to reduce congestion adequately. They observ
coincidence is significant. Clearly, further work is re@aito  that, in contrast to Poisson models, in reality “traffic lss’
fully understand the correlational structure of wide-dre&  (which cause actual losses) ride on longer-term ‘ripplbsit
fic. in turn ride on still longer-term ‘swells’.” They suggestth
We end with a comment regarding the balance betweea filtered variable can be used to detect the low-frequency
link-level modeling and protocol-specific modeling. One ap component of congestion, giving some warning before packet
proach to investigating self-similarity is to model muléped  losses become significant.
link traffic as self-similar, without attempting to modeliin [LTWW94] discusses some additional implications of
vidual connections. This approach could have many uses itong-range dependence of packet traffic. These include an
simulations and in analysis. For example, self-similaffita explanation of the inadequacy of many commonly-used no-
could be used instead of Poisson traffic to model crossdraffi tions of burstiness, and the somewhat counter-intuitigeob
or self-similar traffic could be used in simulations invgatr  vation that the modeling of individual connections can gain
ing link-sharing between two different classes of traffic. insight from an understanding of the fundamental character
However, for many simulations, the simulator needs toistics of multiplexed traffic. In this paper, observatiorishe
model individual sources. In particular, it is only from mod characteristics of multiplexed traffic motivated our réas
eling of individual sources, and a direct implementation oftion of models for individual connections; indeed, we orig-
TCP’s congestion control algorithms, that a simulation carninally set out to challenge the notion that wide-area traffic
take into account the effects of the TCP algorithms in differ might be self-similar, and have come full circle.
ent environments. TCP’s congestion control algorithms con  [GW94] examines the long-range dependence of variable-
tribute long-term oscillations to the traffic pattern forarp bit-rate (VBR) video traffic. Their empirical measurements
ticular connection, as the TCP congestion window changesf VBR traffic show strong low-frequency components, and
over the lifetime of the connection. In addition, TCP’s win- they propose source models for video traffic that display the
dow flow control contributes a shorter-term periodicityhet same long-range dependence. Given the likelihood that VBR
traffic pattern, as each packet is transmitted in response twaffic will soon comprise a significant fraction of Mboneftra
an acknowledgement returned for an earlier packet [FJ92]. fic, we soon will have wide-area traffic of which a substantial
is particularly important to take into account these efaént  portion is perforce self-similar, simply due to the sourbare
simulations investigating changes to either TCP, the gafew acteristics of its individual connections.
scheduling algorithms, or the network’s packet-droppihRg a  There are some additional respects in which the burstiness
gorithms. and long-range dependence of aggregate traffic can affect
traffic performance. Consider a link with priority schedgli
. . between classes of traffic, where the higher-priority chess
8 |mp||cat|0ns no enforced bandwidth limitations (other than the link band
) o ) ] ] width itself). In such a partition, interactive traffic suek
This paper's findings are summarized in the Introduction. Inrg) NET might be given priority over bulk-data traffic such
this section we conclude with a look at the implications af ou 55 FTP. Ifthe higher-priority class has long-range depeoele

results. and a high degree of variability over long time scales, then t

Several researchers have previously discussed the implicg;sts from the higher-priority traffic could starve the tw
tions of long-range dependence (burstiness across diﬁerepriority traffic for long periods of time.

tim.e scales) in network traffic. Modeling TCP traffic using = A second impact of the long-range dependence of packet
Poisson or other models that do not accurately reflect thgagfic concerns classes with admissions control procedure
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that are based on measurements of recent traffic, rathéd ~Methodology for testing for Poisson
than on policed traffic parameters of individual connection arrivals
[CSZ92]. As has been shown by numerous researchers, such

admissions control procedures could lead to a much more efr, o.qt \whether a trace of connection arrivals correspamds t
fective use of the available bandwidth [YKTH93]. Neverthe- o nonhomogeneous Poisson process, we first pick an interval

less, if the measured class has high burstiness consisting RngthI over which we hypothesize that the arrival rate does
both a high variance and significant long-range dependencg,; change. If the trace spans a totallofime units, we di-
then an admissions control procedure that considers only r€,4q the entire trace intd&V — T/1 intervals each of length
cent traffic could be easily mislead following a long periéd o ; - \ye then separately test each interval to see whether the
falrly low traffic rates. (This is similar to a situation in {Ga arrivals during the interval are consistent with arrivatsn
fornia geology some decades ago. Because there hadn'tbegrpisson process with rate fixed so that the expected num-
a large earthquake for a long time, people began to believe o, of 4rrivals is the same as the number actually observed.

unlikely that there would be another one.) Thus, we reduce the problem of testing for nonhomogeneous

_ In summary: we should abandon Poisson-based modepisson arrivals to that of testing a number of intervals for
ing of wide-area traffic for all but user session arrivalsr Fo homogeneous Poisson arrivals

TELNET traffic, we offer a faithful model of originator traf-  pgisson arrivals have two key characteristics: the interar
fic pargmeterlzed by only the hourly copnectlon arrival rate rival times are both exponentially distributed, and indepe
Modelmg_ the TELNET responder remains to be done. FOlyant We discuss testing for each in turn.

FTP traffic, we have shown that modeling should concen- For each interval, we test the interarrivals for an exponen-

trate heavily on the extreme upper tail of the largest bursts;j) gistribution using the Anderson-Darling?) test, recom-

A wide-area link might have only one or two such bursts anyqqeq by Stephens in [DS86] because it is generally much
hour, but they tend to strongly dominate that hour’s FTR traf |, .o powerful than either of the better-known Kolmogorov-

fic. .Finally, our look at mult?plexed TC.P and aII-protocoI' Smirnov ory? tests. A2 is also particularly good for detect-
trafn_c suggests that anyone mterested n accurat_e m@e“r\ng deviations in the tails of a distributionl? is anempirical
of wide-area traffic should begin by studying self-simari gistribution test it looks at the entire observed distribution,

rather than reducing the distribution into bins as is rezplir

by x2.
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well as the comments of the referees. the hypothesis false. Thus, the significance level indicate
We particularly want to thank Walter Willinger for many the proportion of “false negatives” (in general it is difficto
fruitful discussions, and also for making available Jan Be-2SS€SS the corresponding percentage of “false positivag")

ran’s S programs to compute Whittle's estimator and Beran’§2" Use significance-level testing as follows. Suppose sie te
goodness-of-fit test. N intervals for exponential interarrivals add of them pass

We would also very much like to thank Jeff Mogul for the A2 test at the 5% significance level. If the null hypothesis
both the DEC SYN/FIN datasets and the DEC WRL packetS COTect, then the probability df’ successes iV trials wil
datasets; Peter Danzig and his coauthors for the UCB and BB€ 9iven by a binomial distribution with paramejer= .95.
datasets; lan Wakeman and Jon Crowcroft for the UK dataseff We find that the probability of observing successes was
Wayne Sung for the NC dataset; Ramon Caceres and SuglSS than 5%, then we conclude with 95% confidence that the
Jamin, who between them made available all of the non-LBLa!TiVal process is inconsistent with exponential intevats.
SYN/FIN datasets: and Kate Lance, Robert Elz, Geoff Mar- 1here are two important details for correctly applying and
tin, Tony Nicholson, and Douglas Ray, for their efforts ipea interpreting theA? test. The first is that estimating the pa-
turing additional packet traces. rameters of our model from the Qata to'be tested alters the

The LBL traces were gathered with the help of Craig LeresSignificance levels of thel” test (this applies to our null hy-

and Steve McCanne. The Bellcore traces were gathered HPthesis above, in which we derive the mean of the exponen-
D. V. Wilson. tial fit from the data rather than knowing dt priori). The

second is that the number of data points tested also alters th
significance levels. In general, the more points tested, the
more likely the test will detect an incorrect null hypottgesi
[DS86] gives procedures for incorporating both of these con
siderations intod? tests.

We also need to test the interarrivals for independence. One
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indication of independence is an absence of significant autdrame sizes for variable-bit-rate video [GW94]. The disere
correlation among the interarrivals. Autocorrelation ¢en  Pareto (Zipf) distribution [A83, p.95]:

significant in two different ways: it can be too strong in mag-

nitude, or it can be too frequently positive or negative. We Plz =n]=1/((n+1)(n+2)) forn=>0.

address each of these in turn.

Given a time series ofi samples from an uncorrelate
white-noise process, the probability that the magnitudaef
autocorrelation at any lag will excedd6/+/n is 5%. Thus )
we can test for independence by observing how often thi®Uter network traffic. , S
occurs and using a binomial test similar to the one outlined Following [LTWW94], we define a distribution aseavy-
above. (Because for many non-Poisson processes autocorfailedif:
lation among interarrivals peaks at lag one, to keep our test
tractable we restrict it to just the lag one autocorrelajion

We also apply one further test for independent interarsival By this, we mean that for some and some constant the
If the interarrivals are truly independent, then we would ex ratio P[X > z]/(cz~") tends to 1 as — oo. This definition
pect their autocorrelation to be negative with probabty ) des the Pareto and Weibull distributions [DMRW94].
and positive with probability 0.5. For Poisson arrivalsrih A more general definition oheavy-taileddefines a dis-
the number of positive lag one autocorrelation values shoulyyip ition as heavy-tailed if the conditional mean exceegan

be binomially distributed with parametgr = 0.5. Given (g, of the random variablé is an increasing function
this assumption, we assess the probability of at least the ol . [HK80], where

served number of positive values occurring. If its prokigbil

is too low (< 2.5%) then we conclude that the interarrivals are CME, = E[X — z|X > z].

significantly positively correlated. Similarly, if the cdrwed

number of negative values has probabikty2.5%, then the  Using this second definition of heavy-tailed, consider a ran

interarrivals are significantly negatively correlated. dom variableX that represents a waiting time. For wait-
ing times with a light-tailed distribution such as the umifo

.. . distribution, the conditional mean exceedance is a decreas

B Pareto distributions ing function ofz. For such a light-tailed distribution, the

longer you have waited, the sooner you are likely to be done.

In this paper the Pareto distribution plays a role both ingqr \yaiting times with a medium-tailed distribution such as
TELNET packet interarrivals and in the size of FTPDATA o (memoryless) exponential distribution, the expected f

bursts. This.appendixcﬁscusses the Pareto distributiditan e waiting time is independent of the waiting time so far.
occurrence in the physical world. _ In contrast, for waiting times with a heavy-tailed disttiom,

The classical Pareto distribution with shape paramgter he |onger you have waited, the longer is your expectedéutur
and location parameterhas the cumulative distribution func- waiting time. For the Pareto distribution with> 1 (that is,
tion [HK8OJ: with finite mean), the conditional mean exceedance is atinea
function ofx [A83, p.70]:

d arises in connection with platoon lengths for cars at differ
ent speeds traveling on an infinite road with no passing [A83,
p.95] [F66, p.40], a model suggestively analogous to com-

PX >z ~cx™” asx— o0, f>0. 1)

F(zr)=P[X <z]=1-(a/2)?, a,8>0, > a,

with the corresponding probability density function: CME, = /(5 —1).
The Pareto distribution is scale-invariant, in that thebpro
ability that the wait is at leastz seconds is a fixed fraction
¢ of the probability that the wait is at leastseconds, for any

f(z) = palz=P71,

If B < 2, then the distribution has infinite variance, and i
B < 1, then it has infinite mean. T2 a. S

The Pareto distribution (also referred to as the power-law A related result shows that the Pareto distribution is the
distribution, the double-exponential distribution, ahe hy- OHIX distribution that is “invariant under truncation frdoe-
perbolic distribution) has been used to model distribution 10W" [M83, p.383] [A83, p.81]. That s, for the classical
of incomes exceeding a minimum value, and sizes of astareto distribution, foy > o,
teroids, islands, cities and extinction events [K93, M63].
Leland and Ott also found that a Pareto distribution with
1.05 < # < 1.25is a good model for the amount of CPU time joyce the conditional distribution is also a Pareto diatrib

consumed by an arbitrary process [LO86]. tion, with the same shape paramefeand new location pa-
In communications, heavy-tailed distributions have beenmeters’ — 2. We make use of this property in the next
used to model telephone call holding times [DMRW94] and

PIX > y|X > xo] = Pl(z0/a)X > yl. )

section.
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Finally, we note that Mandelbrot argues that because thbe < 25, as otherwise they will skip a bin and end the burst.
asymptotic behavior of Pareto distributions with< 2 isun-  Furthermore, any interarrival in the rangje< I < 2b has
changed for a wide variety of filters (including aggregation the potential of skipping a bin, depending on where we are
maximums, and the weighted mixture of distributions), andpositioned in the current bin prior to the arrival. Thus, any
because this is true of no other distribution, this invece&an interarrivall > 2b definitely will end the burst, and > b
could in some respects explain the widespread observang®ssibly will end the burst.
of Pareto distributions in the social sciences [M63] [M83, Since the interarrivals are independent, we have a situatio
p.344]. similar to that of a geometric random variable: for any given

interarrival, it will with probabilityp, terminate the burst, and
with probabilityl — p; continue the burst. Heng is a func-

C Pareto interpacket times tion of exactly where we are in the current bin, but is bounded
as follows:

In this section we give some intuition for the observed long- a\b e < (8 B 3

range dependence of traces of TELNET traffic. Recall that (2_(,) =Pt = (5) ’ ®)

the main body of the distribution of TELNET interpacket yhereq and3 are the Pareto location and shape parameters,
times fits a Pareto distribution with shape parameter 0.95nqp is the bin width.

while the upper 3% tail fits a Pareto distribution with shape \we can then bound the expected length of a burst using the
parameter 0.95. In this section we consider packets g&terateypected value of the geometric random variables that corre
by a single connection using i.i.d. Pareto interpacket$ime gnond to the lower and upper bounds in Equation 3. et

for a Pareto distribution with shape paramefemd location  pe the expected number of bins spanned by a burst. It can be
parametern. We then consider the associated count procesgnown that:

X ={X,}iz0.1.2,..., whereX; is the number of packets arriv-

ing during theith time interval, each time interval being a bin b/a, if 3=2,0>a,
of width b. We give an intuitive explanation for the observed B~ q log(b/a), if 5= 11, b>> a, and
long-range dependence of the count process by looking at the e[l.v2] ifp= oL

properties of the point process of packet arrivals, cormreént .

: : . . : whereb > a holds ifb — a =~ b.

ing on the interpacket times. We show that while this process o ” . .

. ..~ Thus, forg = 2, as we “widen” our view by choosing

is not truly long-range dependent, when observed overafmltb larger and larger. we will observe longer and lonaer bursts:

time scale it exhibits properties we associate with selfilair 9 ger, > 0ng : \ger '
for g = 1, the bursts grow longer with increasing bin size, but

processes. In particular, we show that aggregating theepsoc only very slowly: and for3 = &, the bursts have a constant
by increasing does not change the dominant features of thqength regardles’s of the size c?f,the bins (1)

process. (®)y 4 h iated with Consider now the length of the lulls separating bursts. Let
Let{.X; "} denote the count process associated wit county pe the length of a lull, and,;, be the number of bins (of

ing f':lrrivals lf;ing bin; of SiZE_ We are interested in the be- sizeb) spanned by the lull. Each lull is due to a single inter-
havior of { X"} for different sizes ob. arrival that is possibly greater thah and definitely greater

Rather than analyzing relationships between the precisgyany. Due to the Pareto distribution’s invariance to trunca-
values of different bins, we simplify the problem by justkeo  tjon from below (Equation 2), this means that the distribu-

ing at whether, for a giveny Xi(b) =0 orXi(b) > 0. We refer  tion of L will be stochastically bounded betwegb, 3) and
to the former as aamptybin and the latter as atcupiedin. P (2b, 3), whereP(a, 3) denotes the Pareto distribution with
Further, forj > i, we caIIXi(f?wj aburstof occupied binsif  parameters andg.

forall k,i < k < j, bink is occupied. SimilarlyX.” . isa From this observation, it follows that:

lull if all the corresponding bins are empty. Sample paths of 9\ A

X are made up of alternating bursts and lulls. 1— (—) <P[Ly <k <1- (—) .
We are interested in the relative predominance of bursts k k

vs. lulls, as we change the bin sizeand the Pareto shape Thysg; the distribution of ; is invariant with respect té. That
parametefs. _ - . is, regardless of the time scale over which we view the count
Suppose bin is occupied and bir — 1 is empty. Then  nrocess, the lulls between bursts will “look” the same.

bin i begins a burst. Associated with each bin is a set of \ye now can summarize the behavior of the count process
Pareto interarrival times, beginning witly, the arrival that = ¢, varying values of3:

first fell into the bin. For biri, we know thatl,, > b because

the previous bin is unoccupied. Consider now the subsequent ® For 3 = 2, the number of bins spanned by the bursts

interarrivalsl,,. 1 . . . I,,;; contributing to the burst of consec- grows linearly withb, while bins spanned by the lulls re-

utive occupied bins. Clearly each of these interarrivalstmu mains constant, so aggregation fairly quickly smoothes
out the main variations of the count process.
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Figure 14: Count process for i.i.d. Pareto interarrivaig, b Figure 15: Count process for i.i.d. Pareto interarrivais, b
sizeb =103 (8 = 1,a = 1), 9 different seeds. sizeb=107 (8 = 1,a = 1), 9 different seeds.

e Forg = % the burst lengths are constant across all time We finish with an explanation of why the count processes
scales, as are the lull lengthtéte process appears self- associated witl¥ = 1 andg = % are not, in fact, self-similar,
similar over all time scales. even though the balance they exhibit between bursts argd lull

o suggests they might be. We have shown that the lull length

e For§ = 1, the burst lengths (in bins) grow only very  iq siochastically bounded between two Pareto distribstion
§Iowly (Ioganthmlcally): This means that over a Iarg.e with the same shape parameterBut for 3 < 1, the mean of
time scale, the predominance of bursts vs. lulls remaing, pareto-distributed random variable is infinite. The etexéc
virtually unchanged:the process appears self-similar st size, on the other hand, is finite. Using these facts, an
over many time scales. viewing the count process’s bursts and lulls as an altergati

Figures 14 and 15 illustrate the “visual self-similarity” renewal process, it follows that, fgr < 1, once the process

[LTWW94] of this process. Each figure plots 1,000 obser-reéaches steady-state, each bin is empty with probabi_liltg—l(
vations of the count process corresponding to i.i.d. Paneto 9ardless of the value df). The autocorrelation function of
terpacket times fof = 1 anda = 1. Nine different random the process is thus 0 everywhere, and hence summable, so the

seeds were used in generating each figure. The first figure cdpfOCeSS is not long-range dependent (and so cannot be self-
responds to using a bin-width 6f= 103, while the second Similar). _

figure uses = 107. To the eye, the two sets of arrivals exhibit _EVen though the count processes are not strictly self-
the same general activity in terms of alternations of busts ~ SiMilar, an important point remains that, when viewed over
lulls and the fairly regular ceiling of activity, though tioe- 2 finite time scale (i.e., before settling into steady-§tate
cupied bins of thé = 107 arrivals appear to have a higher count process a;somated W|th.|.|.d. Paret'o |'nterarr(x/aim
mean than those of the = 103 arrivals. As predicted by B < 1) appears in many ways like a self-similar process. As-
the analysis above, the average number of bins in a burst fg{iMing that this likeness persists when the process is mul-

b = 107 is somewhat higher than fér = 10% (a factor of tiplexed, this finding gives an understanding as to why ob-
2.6), while the average lull size is virtually the same (a fac served TELNET traffic appears self-similar. The fact that th

tor of 1.2). Overall, the sustained variation even when thé?@Unt process is not truly long-range dependent aogsn-
process is aggregated by a factor6f is striking. ply that TELNET traffic is not truly self-similar. It may be
In general, the process associated with= 1 is similar that TELNET trafficis truly self-similar but the simplifying
to that of a single TELNET connection’s traffic, which we 2SSUmptions in our argument (i.i.d. arrivals; no multiiey
model using i.i.d. Pareto interpacket times with= 0.95 for fail to faithfully model the traffic properties necessarytime

the upper tail of the distribution. Thus this model explams ~Self-similarity. o _
part why TELNET traffic appears self-similar. This argument also shows that it is possible for a pro-
cess which is not long-range dependent to appear to be so
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over many time scales. This illustrates some of the danwith Pareto lifetimes is asymptotically self-similar, aihere-
gers of arguing for true self-similarity (or, more geneyall fore long-range dependent.
long-range dependence) based on (necessarily finite) mea-From [BSTW94], the proces$X,}i—o1,2,.. iS exactly
surements alone, without a corresponding model from whiclself-similaronly if
to argue for self-similarity analytically.

Atgtlhe same time, the é/uestign of v)\:hether a particular (infi- r(k) = 1/2 ((k + 1) = 26*7 4 (k — 1)*)
nite) model based on a finite process is long-range dependefdr 1/2 < H < 1 [BSTW94] [C84, p.59]. In this case the

is only one of the questions we are exploring. Equally impor-yrocess{ X, } and the aggregated proces&,™} have the
tant is whether or not long-range dependent models in gensame autocorrelation function. From this result, for Raret

eral are useful as parsimonious approximations to paglicul seryice times and an arbitrary arrival ratehe count process
finite processes arising in network traffic. Finally, we skiou  of the M/G/o model is not exactly self-similar.

not underestimate the value of the fundamental insights and rrom [CI80, p.138]{X,} has a Poisson marginal distri-

shifts in focus that come from considering questions of-self jytion with mearpy, wherep is the expected service time.
similarity and long-range dependence. For the M/Gho model with Pareto service times, the expected
servicetime igia/(3—1), for 5 > 1. Thus, in this casé€X;}
has a Poisson marginal distribution with mesgttu /(5 — 1).

D The M/G/oc model for generating

self-similar traffic E Log-normal distributions

This section briefly discusses the M&G/model for generat- S

ing self-similar traffic [CI80, p.136] [C84, p.67]. TheM/g/ ~ From [WT92], the log-normal distribution is callesub-
queue model considers customers that arrive at an infinite2XPonentiabecause, along with the Pareto and Weibull dis-
server queue according to a Poisson process withratethe tributions, the tail function is subexponentlal (i.e., dEmses
count proces$.X; }1—o.1.2.... produced by the M/Gb queue slower than any exponential function). In that paper, the

model, X; gives the number of customers in the system afPareto, log-normal, and Weibull distributions are all dedin
time ¢. From [CI80, p.139], for customers with a service aslong-tailed In this section we show that the log-normal

time with distribution function¥, the autocorrelation func- distribution is not heavy-tailed, according to the deforti

tion (k) for the count process is as follows: given in Equation 1. _ _
We use the estimate of the upper tail function for a standard

r(k) = cov{ X (8), X (t 1 k)} = p/:o(l S normal random variable N as

P[N > y] ~ e~V /2

\V2my

D.1  The M/G/oo model and the Pareto distri- [F50, p.175]. Thus for X a log-normal random variable with

bution scale parametdrand shape parameter
Consider customers with independent service times (or life PIX > 1 ~log? z/2 5
times) drawn from the Pareto distribution with location pa- [X 2 2] ~ \/Elogxe : (6)
rametera and shape parametgt for 1 < 5 < 2. From Thus.
Equation 4, the autocorrelation functio(k) is as follows: us, for some constant c,
e~ log? /2
*° B PX>z]~c ——.
r(k) = p/ (E) dx. (X za]~e log x
k x
So X is only heavy-tailed if for some constantand some
B >
= k00, p=0 8 log? z/2
-1 x’ ~c; logxwe©® )
Following [BSTW94], the process{X:}:—01.2.. is Butwe can show that for any,
asymptotically self-similaif
ymp y 1ng elog21/2>xn
—D
r(k) ~ k7 L(k) as k — oo, ®)  forz sufficiently large. (This follows becausegz > n,

thereforelog® z > nlogz, and therefore!os” = > x™.) So
the log-normal distribution is not heavy-tailed. Note ttia
log-normal distribution is not heavy-tailed even if we erga

2For a slowly-varying functionL, lim¢ o L(tz)/L(t) = 1 for all our definition of heavy-tailed to include slowly-varyingtcr
z > 0. Constants and logarithms are examples of slowly-varyimgtions. tions. as in Equation 5.

for0 < D < 1 andL a slowly-varying functior?. Thus, for
a > 0andl < g < 2, the count process of the M/&/ model
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E.1 The M/G/c model and the log-normal
distribution

We consider the M/Gb model for service times with distri-
bution functionF'. It is already known (Appendix D) that

[BSTW94] J. Beran, R. Sherman, M. Taqqu, and W. Will-

inger, “Variable-Bit-Rate Video Traffic and Long-Range
Dependence,” to appear IREE Transactions on Com-
munications

if F'is a Pareto distribution, then the count process from th¢B90] D. Borman, “Telnet Linemode Option,” RFC 1184,

M/G/oo model is asymptotically self-similar, and therefore
long-range dependent. In this section we show that if tlee lif
times have a log-normal distribution, then the count preces

from the M/Gbo model is not long-range dependent.
From Equations 4 and 6, we have:

o0 1 5
k) ~ 1 -1 — log I/Qd
r(k) p/k o8 I(27T)1/2e !

~ p /OO ! dx
(271-)1/2 & 1ng x(logw)/2
The count process from the M/&/ model with log-normal
lifetimes is long-range dependent only)it -, (k) is infi-
nite. For largek,
p /OO ! dx
(271-)1/2 & 1ng x(logw)/2

oo oo 1

p - -
(2m)1/2 k:K;C log x x(legx)/2

P i (x—K+1)
1/2 logz)/2"
(2m)1/? = logx allos=)/

~—

Becausé .-, 1/2? is finite and

(r —K+1) x 1
log z g(log2)/2 = glogz)/2 = 42

for x sufficiently large, thery_ ;- .- (k) is finite, and the
count process of the M/Gd model with log-normal lifetimes
is not long-range dependent.

This analysis shows thaity the limit, the behavior of the

M/G/oo queue completely changes if the service times are
log-normal and not Pareto. An important open question, how-
ever, is over what sort of finite time scales are these differ

ences actually significant?
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