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Abstract. We present two light-weight worm detection algorithms that offer sig-
nificant advantages over fixed-threshold methods. The first algorithm, RBS (rate-
based sequential hypothesis testing), aims at the large class of worms that at-
tempts to quickly propagate, thus exhibiting abnormal levels of the rate at which
hosts initiate connections to new destinations. The foundation of RBS derives
from the theory of sequential hypothesis testing, the use of which for detecting
randomly scanning hosts was first introduced by our previous work developing
TRW [6]. The sequential hypothesis testing methodology enables us to engineer
detectors to meet specific targets for false-positive and false-negative rates, rather
than triggering when fixed thresholds are crossed. In this sense, the detectors that
we introduce are truly adaptive.
We then introduce RBS+TRW, an algorithm that combines fan-out rate (RBS)
and probability of failure (TRW) of connections to new destinations. RBS+TRW
provides a unified framework that at one end acts as pure RBS and at the other
end as pure TRW. Selecting an operating point that includes both mechanisms ex-
tends RBS’s power in detecting worms that scan randomly selected IP addresses.
Using four traces from three qualitatively different sites, we evaluate RBS and
RBS+TRW in terms of false positives, false negatives, and detection speed, find-
ing that RBS+TRW provides good detection of high-profile worms as well as
internal Web crawlers that we use as proxies for targeting worms. In doing so,
RBS+TRW generates fewer than 1 false alarm per hour for wide range of param-
eter choices.

1 Introduction

If a network worm penetrates a site’s perimeter, it can quickly spread to other vulnerable
hosts inside the site. The infection propagates by the compromised hosts repeatedly
attempting to contact and infect new potential victims. The traffic pattern of fast worm
propagation—a single host quickly contacting many different hosts—is a prominent
feature across a number of types of worms, and detecting such patterns constitutes the
basis for several worm detection approaches [2, 8, 13].



The problem of accurately detecting such worm scanning becomes particularly
acute for enterprise networks comprised of a variety of types of hosts running numerous,
different applications. This diversity makes it difficult to tune existing worm detection
methods [2, 13] that presume preselected thresholds for connection rates and window
sizes over which to compute whether a host’s activity is “too quick.” First, finding a sin-
gle threshold rate that accommodates all (or almost all) benign hosts requires excessive
tuning because of diverse application behaviors (e.g., a Web browser generating mul-
tiple concurrent connections to fetch embedded objects vs. an SSH client connecting
to a server). Second, the window size chosen to compute the average rate affects the
detection speed and accuracy; if too small, the detection algorithm is less resilient to
small legitimate connection bursts, but if too big, the detection algorithm reacts slowly
to fast propagating worms, for which brisk response is vital.

In this paper, we first develop an algorithm for detecting fast-propagating worms
that use high-qualitytargeting information. We base our approach on analyzing the
rate at which hosts initiate connections to new destinations. One such class of worms
are those that spread in atopological fashion [11, 16]: they gather information on the
locally infected host regarding other likely victims. For example, the Morris worm ex-
amined.rhostsfiles to see what other machines were known to the local machine [4,
10]. A related technique is the use ofmeta-servers, such as worms that query search
engines for likely victims [5]. These targeting worms can spread extremely quickly,
even using relatively low-rate scanning, because the vulnerability density of the ad-
dresses they probe is so much higher than if they use random scanning. Furthermore,
these worms can evade many existing worm defense systems that rely on the artifacts
of random scanning such as number of failed connections and the absence of preceding
DNS lookups [2, 8, 17, 18].

Our detection algorithm,rate-based sequential hypothesis testing(RBS), operates
on a per-host and per-connection basis and does not require access to packet contents.
It is built on a probabilistic model that captures benign network characteristics, which
allows us to discriminate between benign traffic and worm traffic. RBS also provides an
analytic framework that enables a site to tailor its operation to its network traffic pattern
and security policies.

We then present RBS+TRW, a unified framework for detecting fast-propagating
worms independent of their scanning strategy. RBS+TRW is a blend of RBS and our
previousthreshold random walk(TRW) algorithm, which rapidly discriminates be-
tween random scanners and legitimate traffic based on their differing rates of connection
failures [6]. Wald’s sequential hypothesis testing [14] forms the basis for RBS+TRW’s
adaptive detection.

We begin with an overview of related work in§2. §3 then presents an analysis of
network traces we obtained from twointernal routers of a medium-size enterprise. The
traced traffic includes more than 650 internal hosts, about 10% of the total at the site.
We examine the distribution of the time between consecutivefirst-contact connection
requests, defined by [8] as a packet addressed to a host with which the sender has
not previously communicated. Our analysis finds that for benign network traffic, these
interarrival times are bursty, but within the bursts can be approximately modeled using
exponential distributions with a few hundred millisecond average intervals.



In §4, we develop the RBS algorithm, based on the same sequential hypothesis
testing framework as TRW. RBS quickly identifies hosts that initiate first-contact con-
nection requests at a raten times higher than that of a typical benign host. RBS updates
its decision process upon each data arrival, triggering an alarm after having observed
enough empirical data to make a distinction between the candidate models of (some-
what slower) benign and (somewhat faster) malicious host activity.

In §5, we evaluate RBS using trace-driven simulations. We show that computing a
simple trimmed mean suffices to automatically discover an effective set of parameters
for running RBS. Moreover, we show that RBS triggers few false positives whenn
is small (0 false positives whenn ≤ 5) when assessed against a trace that includes a
variety of applications.
§6 presents RBS+TRW, which automatically adapts between the rate at which a

host initiates first-contact connection requests and observations of the success of these
attempts, combining two different types of worm detection. Using datasets that contain
active worms caught in action, we show that RBS+TRW provides fast detection of
scanners and two hosts infected by Code Red II worms, while generating less than
1 false alarm per hour.

2 Related Work

Williamson first proposed limiting the rate of outgoing packets to new destinations [19]
and implemented a virus throttle that confines a host to sending packets to no more
than one new host a second [13]. While this virus throttling slows traffic that could
result from worm propagation below a certain rate, it remains open how to set the rate
such that it permits benign traffic without impairing detection capability. For example,
Web servers that employ content distribution services cause legitimate Web browsing
to generate many concurrent connections to different destinations, which a limit of one
new destination per second would significantly hinder. If the characteristics of benign
traffic cannot be consistently recognized, a rate-based defense system will be either
ignored or disabled by its users.

Numerous efforts have since aimed to improve the simple virus throttle by taking
into account other metrics such as increasing numbers of ICMP host-unreachable pack-
ets or TCP RST packets [2], number of failed first-contact connections [8, 17], and the
absence of preceding DNS lookups [18]. However, these supplementary metrics will
be not much of use if worms target only hosts that are reachable and have valid names
(e.g., topological worms).

This work is inspired by our previous paper [6], which first used sequential hy-
pothesis testing for scan detection. Our previous paper develops the threshold random
walk (TRW) portscan detection algorithm based on the observation that a remote port
scanner has a higher probability of attempting to contact a local host that does not exist
or does not have the requested service running.

Weaveret al. [17] present an approximation to TRW suitable for implementation in
high-performance network hardware for worm containment. For the same problem of
detecting scanning worms, Schechteret al. [8] combine credit-based rate-limiting and
reverse sequential hypothesis testing optimized to detect infection instances. In com-



parison, our RBS+TRW provides a unified framework built on sequential hypothesis
testing with two metrics, a rate and a probability of success of a first-contact connec-
tion, that cover a broad range of worms, mostly independent of their scanning strategy
or propagation speed.

There have been recent developments of worm detection usingcontent sifting(find-
ing common substrings in packets that are being sent in a many-to-many pattern) and
automatic signature generation [7, 9, 15]. These approaches are orthogonal to our ap-
proach based on traffic behavior in that the former require payload inspection, for
which computationally intensive operations are often needed. Moreover, although our
approach requires a few parameter settings, it requires no training nor signature up-
dates. However, content-based approaches are capable of detecting slowly-propagating
(stealthy) worms that are indistinguishable from benign hosts by their connection-level
traffic behaviors.

3 Data Analysis

We hypothesize that we can bound a benign host’s network activity by a reasonably low
fan-out per unit time, where we define fan-out as the number of first-contact connection
requests a given host initiates. This fan-out per unit time, orfan-out rate, is an impor-
tant traffic measure that we hope will allow us to separate benign hosts from relatively
slowly scanning worms. In this section, we analyze traces of a site’s internal network
traffic, finding that a benign host’s fan-out rate rarely exceeds a few first-contact con-
nections per second, and time intervals between these connections can be approximately
modeled as exponentially distributed.

We analyze a set of 22 anonymized network traces, each comprised of 10 minutes’
of traffic recorded atLab on Oct. 4, 2004. These were traced usingtcpdump at two
internal routers withinLab , enabling them to collect bidirectional traffic originated by
internal hosts to bothexternalhosts outsideLab and to otherinternalhosts insideLab .
Although we present the results from one particular site in this section, we studied 4
additional traces collected from three different sites. We used the additional traces to
double-check empirical findings and later to evaluate our detection algorithm.

Table 1 summarizes theLab dataset after some initial filtering to remove peri-
odic NTP traffic and “triggered” connections in which a connection incoming to a host
causes the host to initiate a secondary connection outbound. Such triggered connections
should not be considered as first-contact connections when assessing whether a host is
probing. The table shows that the traffic between internalLab hosts consists of about
70% of the total outbound traffic recorded in the datasets. Had we traced the traffic at
the site’s border, we would have seen much less of the total network activity, and lower
first-contact connections accordingly.

For each 10-minute trace, we observe a varying number of internal hosts initiating
outbound traffic during the observation period. The last row in Table 1 shows that the
largest number of active internal hosts in a 10-minute trace is 652.4

4 Because each trace was anonymized separately, we are unable to tell how many distinct internal
hosts appear across all of the traces.



Table 1.Lab dataset summary: This analysis does not includeNTPtraffic or triggered outgoing
connections such asIdent , Finger , andFTP data-transfer

Outgoing connections49,049 (100%)
to internal hosts 32,967 (67.21%)
to external hosts16,082 (32.79%)

Internal hosts ≥ 652

From the traces we observe that over 99.5% of the hosts contacted fewer than 60 dif-
ferent hosts in 10 minutes, corresponding to an average fan-out rate below 0.1/sec. We
categorize these hosts as benign. (Note that Twycross and Williamson [13] use fan-out
rate of 1/sec as a maximum allowed speed for throttling virus spreads.)

Only 9 hosts exceed this threshold in this trace. Of these, 4 were aliases (introduced
by the traces having separate anonymization namespaces) for an internal scanner used
by the site for its own vulnerability assessment. Of the remainder, 3 hosts are main
mail servers that forward large volumes of email, and the other 2 hosts are internal
web crawlers that build search engine databases of the content served by internal Web
servers. By manual inspection, we also later found another appearance of the internal
scanner that we missed using our 0.1/sec fan-out rate threshold, as in that instance
the scanner contacted only 51 different IP addresses during the 10-minute period. We
exclude the scanners and the crawlers5 from our subsequent analysis. In what follows,
we develop a model that captures fan-out rate statistics of this set of “purely” benign
hosts.

3.1 Time Interval to Visit New Destinations

A host engaged in scanning or worm propagation will generally probe a significant
number of hosts in a short time period, yielding an elevated first-contact connection
rate. In this section, we analyze our dataset to determine the distribution of first-contact
interarrivals as initiated by benign hosts. We then explore the discriminating power of
this metric for a worm whose first-contact connections arrive a factor ofn more quickly.

Figure 1 shows the distribution of the amount of time between first-contact con-
nections for individual hosts. Here we have separated out the scanners (identified as
discussed above). While the average interarrival time is 39.2 sec, we often see benign,
non-scanner hosts initiating multiple first-contact connections separated by very little
(< 1 sec) time. In fact, these short time intervals account for about 40% of the total in-
tervals generated by benign hosts, which makes it impractical to use 1/sec fan-out rate
to identify possible worm propagation activity.

However, when focusing on sub-second interarrivals, we find that a benign host’s
short-time-scale activity fits fairly well to an exponential distribution, as illustrated in
Figure 2. Here the fit to the empirical data usesµ = 261 msec. We note that a scanner
could craft its probing scheduling such that its fine-grained scanning behavior matches

5 Note that we do not include the mail servers in the set of scanners, as they are not scanners per
se, but rather applications that happen in this environment to exhibit high fan-out.
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that of benign users, or at least runs slower than what we model as benign activity.
However, this will significantly slow down the scanning speed, so compelling attackers
to make this modification constitutes an advance in the ongoing “arms race” between
attackers and defenders.

We also note that we could extract significantly more precise interarrival models—
including differing mean interarrival rates—if we partitioned the traffic based on its ap-
plication protocol. While investigating this refinement remains a topic for future work,
in our present effort we want to explore the efficacy of assimplea model as possible.
If our algorithm can prove effective without having to characterize different protocols
separately, we will benefit a great deal from having fewer parameters that need to be
tuned operationally.

In the next section, based on these characteristics of benign activity, we develop our
detection algorithm, RBS, for quickly identifying scanners or worm infectees with a
high accuracy.

4 RBS: Rate-Based Sequential Hypothesis Testing

In this section, we develop a rate-based sequential hypothesis testing algorithm, RBS,
which aims to quickly identify hosts issuing first-contact connections at rates higher
than what we model as benign activity.

Let H1 be the hypothesis that a given host is engaged in worm propagation, and
let H0 be the null hypothesis that the host exhibits benign network activity. A host
generates aneventwhen it initiates a connection to a destination with which the host has
not previously communicated, i.e., when the host initiates a first-contact connection. As
discussed in the previous section, we assume that the interarrival times of such events
follow an exponential distribution with mean1/λ0 (benign host) or1/λ1 (scanner).
When a host generates theith event at timeti, we can compute an interarrival time,



Xi = ti− ti−1 for i ≥ 1 andt0 the initial starting point, and update the likelihood ratio
of the host being engaged in scanning (or benign).

DefineX1, X2, . . . , Xn as a sequence of such interarrival times. Since we model
eachXi as IID non-negative exponential random variables, their sum,Tn, is then-
Erlang distribution:

fn(Tn|H1) =
λ1(λ1Tn)n−1

(n− 1)!
exp−λ1Tn (1)

Based on Equation (1), we can develop a sequential hypothesis test in which we
define the likelihood ratio as:

Λ(n, Tn) =
fn(Tn|H1)
fn(Tn|H0)

=
(

λ1

λ0

)n

exp−(λ1−λ0)Tn (2)

and the detection rules as:

Output=

H1 if Λ(n, Tn) ≥ η1

H0 if Λ(n, Tn) ≤ η0

Pending ifη0 < Λ(n, Tn) < η1

where we can setη1 andη0 in terms of a target false positive rate (the proportion of
benign hosts that are erroneously reported as scanners),α and a target detection rate (the
proportion of scanners that are correctly reported as scanners),β [14]:

η1 ←
β

α
(3)

η0 ←
1− β

1− α
(4)

Wald shows that setting thresholds as above guarantees that the resulting false pos-
itive rate is bounded byαβ and the false negative rate is by1−β

1−α [14]. Given thatβ is
usually set to a value higher than 0.99 andα to a value lower than 0.001, the margin of
error becomes negligible (i.e.,1β ≈ 1 and 1

1−α ≈ 1).

An essential advantage of RBS over a simpler scheme using a fixed-rate threshold
is that RBS is more robust to legitimate bursty connections. Figure 3 illustrates how an
average arrival rate can fluctuate a great deal depending on the window size over which
we compute the average. However, RBS effectively canadapt its window size until it
finds consistency over a sufficient number of observations to reach a decision.

For instance, if a host has initiatedn first-contact connections and the elapsed time
for the nth connection isTn, RBS choosesH1 (scanner) only if the likelihood ratio
Λ(n, Tn) exceedsη1. Using Equations (2) and (3), we can obtain a threshold on the
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Fig. 3. 10 first-contact connection arrivals in 10 seconds: The figure illustrates that the average
arrival rate can vary depending on the window size.

elapsed time,TH1 , below which we arrive at anH1 (scanner) decision:

β

α
≤ Λ(n, Tn)

β

α
≤

(
λ1

λ0

)n

exp−(λ1−λ0)Tn

ln
β

α
≤ n ln

λ1

λ0
− (λ1 − λ0)Tn

Tn ≤ n
ln λ1

λ0

λ1 − λ0
−

ln β
α

λ1 − λ0
= TH1 (5)

Likewise, we can obtain a threshold elapsed timeTH0 , above which we concludeH0

(benign host):

TH0 = n
ln

λ1
λ0

λ1−λ0
− ln 1−β

1−α

λ1−λ0
(6)

Figure 4 shows how those threshold elapsed times,TH1 andTH0 , partition the area
into three decision regions—H1, H0, andPending . Figure 4(a) illustratesTn of a host
issuing first-contact connections at 100/second. At the8th event,T8 falls belowTH1 ,
which drives the likelihood ratio to reach theH1 decision. Note that with the set of
parameters used in Figure 4, RBS defers making a decision until it sees at least 7 events;
this occurs because the elapsed time,Tn, is always greater thanTH1 up ton = 6. (Ti

is a non-negative, non-decreasing random variable andTH1 becomes positive when
n > 6.1, givenλ0 =3/sec,λ1 =20/sec,α = 10−5, andβ = 0.99.) This initial holding
period makes RBS robust against small traffic bursts. We can shorten this initial holding
period, however, if we use a smallerβ or largerα.

In general, Equation (5) provides important insights into the priors and the per-
formance of RBS.TH1 is a function ofn, taking a form ofg(n) = a(n − c), where
a = (ln λ1

λ0
)/(λ1 − λ0) andc = (ln β

α )/(ln λ1
λ0

):

1. α andβ affect onlyc, the minimum number of events required for detection (i.e., the
minimum window size). For fixed values ofλ1 andλ0, lower values ofα or higher
values ofβ (i.e., greater accuracy in our decisions) let more initial connections
escape before RBS declaresH1. One can shorten this initial holding period by
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increasingα or decreasingβ. But we can only do so to a limited degree, asc needs
to be greater than the size of bursty arrivals that we often observe from Web or
P2P applications, in order to avoid excessive false alarms. Another different way to
prevent damage from those initially allowed connection attempts is to hold them at
a switch until proven innocent [8].

2. λ0 andλ1 determinea, the slope ofTH1 overn. The inverse of the slope gives the
minimum connection rate that RBS can detect. Any host generating first-contact
connections at a higher rate thanλ1 interceptsg(x) with probability 1. There is
a built-in robustness in this, because the slope is strictly larger than1

λ1
(what we

model as a scanner), which follows from the inequalityln(x) < x− 1, 0 < x < 1.

3. Although we useλ1 to model a scanner’s first-contact connection rate, RBS can
detect any scanner with a rateλ′ provided that:

λ′ >
1
a

=
λ1 − λ0

lnλ1 − lnλ0
(7)

because a host with a rate higher thanλ′ will eventually cross the line ofTH1 and
thus trigger an alarm.

Finally, Equations (5) and (6) show that RBS bases its decision on two parameters—
the number of attempts,n, and the elapsed time,T (n)—and not the actual realization
of the arrival process.



5 Evaluation

We evaluated the performance of RBS in terms of false positives using a trace-driven
simulation of theEnterprise dataset. RBS is in essence an algorithm that provides
a tight bound of benign hosts’ fan-out rate, enabling us to detect worms and scanners
that employ higher-than-normal fan-out rates.

The Enterprise packet trace was captured at internal routers of a small enter-
prise network in November 2006. The trace contains 184 active hosts that initiated
238,407 TCP connections during the 1-hour collection period. To establish a ground
truth, we extensively analyzed the trace using well-known application signatures and
the Ethereal program [3] and found that about 76 applications were running at the time,
including P2P clients such as BitTorrent and KaZaA, and VoIP programs such as Skype.
Moreover, we found no infected machines nor scanners in the trace, making it suitable
for testing RBS’s accuracy in terms of false positives.

We need to set four parameters (α, β, λ0, andλ1) in order to run RBS. For high
accuracy, we setβ = 0.99 (99% target detection rate) andα = 10−6 (0.0001% target
false alarm rate). Note that we setα very low because the detection algorithm executes
for every first-contact connection initiated by a local host, which adds up to a very large
number of tests.

The typical fan-out rate of benign hosts (λ0) can change according to time (e.g.,
weekdays vs. weekend) and site (e.g., a small company where most network traffic is
related to database transactions vs. a big ISP). To accommodate such changes, rather
than asking an administrator to provide a magic number, we automatically infer the
parameterλ0 as follows:

– Observation: We observe interarrival times of first-contact connections generated
by each host (i) and keep a list of mean interarrival times per host (µ1, µ2, µ3, . . . )
for a 10-minute period.

– Inference: At the end of an observation run, we compute a 10% trimmed mean [12]
of theµi’s: we first sort the data and remove the top and bottom 10% of the data be-
fore evaluating the arithmetic mean. As such, the inferred mean will not be affected
by newly infected machines as long as the population of the infected machines stays
below 10%. We set1/λ0 equal to the inferred mean. Figure 5 shows the inferred
values ofλ0 for theEnterprise dataset.

However, there is no obvious pick forλ1, since a worm can choose an arbitrary
propagation rate. Ifλ1/λ0 is close to 1, RBS takes longer to make a decision; but on the
other hand, it can detect slower scanners than for higherλ1/λ0 ratios, per Equation (7).

Figure 6 shows the simulation results of RBS for theEnterprise dataset as we
vary λ1 as a multiple ofλ0. As described above, bothλ0 andλ1 get updated every
10 minutes. RBS generates no false positives whenλ1/λ0 is less than 6. However, RBS
erroneously triggers for 2 hosts (a BitTorrent client and a chatty Web browser) when
the ratio is higher than 7. The main reason for these false positives is short bursts. As
discussed in§4, whenλ1/λ0 is high, RBS becomes sensitive to short bursts, making it
prone to generating false positives. Given that bursty connections are somewhat preva-
lent among many applications, this result leads us to recommend a smallλ1/λ0 ratio.
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A caveat of using a small ratio is that RBS may miss carefully crafted scan traffic if the
scanner repeatedly generates short bursts followed by a long idle time.

Thus, while this assessment is against a fairly modest amount of data, we find the
results promising. We conduct a more extensive evaluation in§6.

6 Hybrid Approach: RBS+TRW

RBS usesfan-out rateto differentiate benign traffic from scanners (or targeting worms),
which we model as Poisson processes with ratesλ0 (benign) andλ1 (scanner), with
λ0 < λ1. Another discriminatory metric proved to work well in detecting scanners
is the failure ratio of first-contact connections [6, 17, 8]. TRW [6] works by model-
ing Bernoulli processes withsuccessprobabilities,θ0 (benign) andθ1 (scanner), with
1 − θ0 < 1 − θ1. In this section, we develop a combined worm detection algorithm
that exploitsboth a fan-out rate model and a failure ratio model. We evaluate the hy-
brid using trace-driven simulation, finding that this combined algorithm, RBS+TRW,
improves both overall accuracy and speed of detection.

Suppose that a given host has initiated connections ton different destinations, and
that the elapsed time until thenth connection isTn. Among thosen destinations,Sn

accepted the connection request (success) andFn = n − Sn rejected or did not re-
spond (failure). Applying the models from RBS and TRW [6], we obtain a conditional
probability distribution function for scanners:

f [(Sn, Tn)|H1] = P [Sn|Tn,H1]× f [Tn|H1]

=
(

n

Sn

)
θSn
1 (1− θ1)Fn

×λ1(λ1Tn)n−1

(n− 1)!
exp−λ1Tn



whereP [Sn|Tn,H1] is the probability of gettingSn success events when each event
will succeed with an equal probability ofθ1, andf [Tn|H1] is ann-Erlang distribution
in which each interarrival time is exponentially distributed with mean1/λ1.

Analogous tof [(Sn, Tn)|H1], for benign hosts we can derive:

f [(Sn, T )|H0] =
(

n

Sn

)
θSn
0 (1− θ0)Fn

×λ0(λ0Tn)n−1

(n− 1)!
exp−λ0Tn .

We then define the likelihood ratio,Λ(Sn, Tn), as

Λ(Sn, Tn) =
f [(Sn, Tn)|H1]
f [(Sn, Tn)|H0]

=
(

θ1

θ0

)Sn
(

1− θ1

1− θ0

)Fn

×
(

λ1

λ0

)n

exp−(λ1−λ0)Tn .

It is interesting to note thatΛ(Sn, Tn) is just the product ofΛTRW andΛRBS . More-
over,Λ(Sn, Tn) reduces toΛTRW when there is no difference in fan-out rates between
benign and scanning hosts (λ1 = λ0). Likewise,Λ(Sn, Tn) reduces toΛRBS when there
is no difference in failure ratios (θ1 = θ0).

We evaluate this combined approach, RBS+TRW, using two new sets of traces,
each of which contains different types of scanners that happen to wind up contrasting
the strengths of RBS and TRW. We first categorize hosts into four classes based on their
fan-out rates and failure ratios. In what follows, we discuss types of scanners falling into
each region and detection algorithms capable of detecting such hosts.

– Class LH (low fan-out rate, high failure ratio): Slow-scanning worms or scanners
that probe blindly (randomly or sequentially) will likely generate many failures,
triggering TRW with a high probability.

– Class HH (high fan-out rate, high failure ratio): Fast-scanning worms (e.g., Code
Red, Slammer) that exhibit both a high fan-out rate and a high failure ratio will very
likely to drive both TRW and RBS to quickly reach their detection thresholds.

– Class HL (high fan-out rate, low failure ratio): Flash, metaserver, and topological
worms [16] belong to this class. These worms build or acquire a list of target hosts
and then propagate over only those potential victims, so their connection attempts
tend to succeed. While these targeting worms can bypass TRW, their high fan-out
rate should trigger RBS.

– Class LL (low fan-out rate, low failure ratio): Most benign hosts fall into this class,
in which their network behavior is characterized by a low fan-out rate and a low
failure ratio. Typically, a legitimate host’s fan-out rate rarely exceeds a few first-
contact connections per second. In addition, benign users do not initiate traffic to
hosts unless there is reason to believe the host will accept the connection request,
and thus will exhibit a high success probability. Neither TRW nor RBS will trigger



hosts in this class, which in turn, allows particularly stealthy worms, or passive
“contagion” worms that rely on a user’s behavior for propagation [16], to evade
detection. Worms of this type represent a formidable challenge that remains for
future work to attempt to address.
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Fig. 7.Classification of hosts present in the evaluation datasets: Each point represents a local host
that generated more than 5 first-contact connections

We use an average 5 Hz fan-out rate (λ0) and 0.5 failure ratio (1-θ0) as baselines
in order to categorize hosts in our trace. Ideally, we should investigate all the hosts in
the traces to obtain a ground truth, but because of the sheer amount of traffic volume
(more than 2 million connections), we resort to this screening process to sift out the
many hosts with quite limited activity.

We compute a fan-out rate with a sliding window of size 5 in order to capture bursty
arrivals that often result from concurrent Web connections addressed to different Web
sites for embedded objects. Figure 7 classifies hosts in the datasets based on the 5 Hz
fan-out rate and 0.5 failure ratio thresholds.

Table 2 shows the details of the datasets we use for evaluation. TheLab-II dataset
was collected at the same enterprise network asLab . It is composed of 137 one-hour
long traces from December 2004 and Janunary 2005, recorded at internal routers con-
necting a variety of subnets to the rest of the enterprise and the Internet. TheISP dataset
was recorded usingtcpdump at the border of a small ISP in April 2003. It contains
traffic from 389 active hosts during the 10-hour monitoring period (The high number of
connections is due to worm infections during the time of measurement.).



Table 2. Evaluation datasets:scanning hosts include vulnerability scanners, worm infectees,
and hosts that we use proxies for targeting worms because of their anomalous high-fan-out rate.

Lab-II ISP
Outgoing Connections 796,049 1,402,178

Duration 137 hours10.5 hours
HH scanning 2 3

H benign 1 2
LH scanning 1 2

O benign 34 3
HL scanning 2 0

S benign 26 0
LL scanning 0 0

T benign 1321 260
≤ 5 first-contact connections 2,621 119

S Total scanning 5 5
benign 4,003 384

Total 4,008 389

The table shows the division of the internal hosts into the four categories discussed
above. Manual inspection of the hosts inHH , HL , andLH 6 reveals that there are 5 hosts
each in both ofLab-II andISP whose behavior qualifies them as scanners and worms
that we aim to detect (H1) because of their high-fan-out or high-failure behaviors: For
Lab-II , the 2HH hosts are one internal vulnerability scanner and one host that did a
fastnmap [1] scan of 7 other hosts; 1LH host is another internal vulnerability scanner;
2 HL hosts are internal Web crawlers that occasionally contacted tens of internal Web
servers to update search engine databases. ForISP , theHH hosts are two Code Red II
infectees plus an HTTP scanner, and theLH hosts are 2 slower HTTP scanners.

The oneHH host in theLab-II dataset that we classify as benign (H0) turns out
to be a NetBIOS client that often (benignly) made connection requests to absent hosts.
The 2 benignHH hosts in theISP dataset are all clients running P2P applications
that attempt to contact a large number of transient peers that often do not respond.
Most benignLH hosts are either low-profile NetBIOS clients (Lab-II ) or P2P clients
(ISP ), and most benignHL hosts fromLab-II are caused by Web clients accessing
Web sites with many images stored elsewhere (e.g., a popular news site using Akamai’s
content distribution service, and a weather site having sponsor sites’ images embedded).

Table 2 also shows that while those two thresholds are useful for nailing down a set
of suspicious hosts (all in eitherHH , LH , or HL ), a simple detection method based on
fixed thresholds would cause 66 false positives because of benign hosts scattered in the
LH andHL regions, as shown in Figure 7. However, using dynamic thresholds based
on the previously observed behavior, RBS+TRW accurately identifies those 10 target
hosts while significantly reducing false positives.

6 We looked into each host in those three classes for theISP dataset, and the 66 of such hosts
for the Lab-II dataset that generated more than 20 first-contact connections in a one-hour
monitoring period.



We evaluate RBS+TRW by varyingλ1 from λ0 to 10λ0, andθ1 from 0.2θ0 to θ0. As
discussed in§5, we inferλ0 andθ0 using 10% trimmed means.7 We setβ = 0.99, and
α = 10−6. Figures 8 and 9 show the number of detections and false positives for each
pair of λ1 andθ1. In particular, forλ1 = λ0, the combined algorithm reduces to TRW
(dashed vertical lines along theθ axis), and whenθ1 = θ0, to RBS (dashed vertical
lines along theλ axis).
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Table 3. Evaluation of RBS+TRW vs. RBS and TRW. BothLab-II and ISP each have 5
scanners.N |H1 represents the average number of first-contact connections originated by the
detected hosts upon detection.

Lab-II ISP
λ1 θ1 False -False +N |H1 False -False +N |H1

RBS 10λ0 = θ0 0 2 5.6 2 3 6.4
TRW = λ0 0.2θ0 3 21 18.5 0 7 10.0

RBS+TRW 5λ0 0.6θ0 0 3 6.9 1 3 5.0

Table 3 compares the performance of the combined algorithm against that of RBS
and TRW alone. First, we find the priors that make RBS (TRW) the most effective (0
false negatives) in identifying scanners in theLab-II (ISP ) dataset. The nature of our
test datasets keeps either algorithm from working better across both datasets. In fact,

7 We placed an upper bound (0.9) onθ0, since a small value ofθ0 (e.g., 0.9999) causes TRW to
trigger for a few spurious failures.
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whenλ1 = 10λ0 andθ1 = θ0, RBS has 0 false negatives forLab-II , but misses
2 LH scanners inISP . In comparison, whenλ1 = λ0 andθ1 = 0.2θ0, TRW has 0 false
negatives forISP , but misses 3 scanners inLab-II , including the two Web crawlers.

We could address the problem of false negatives for either algorithm by running
TRW and RBS in parallel, raising an alarm if either algorithm decides so. However, this
approach comes at a cost of an increased number of false alarms, which usually result
from LH hosts (e.g., Windows NetBIOS connections, often made to absent hosts) or
HL hosts (e.g., a busy mail server or a Web proxy).

In general, improving the accuracy of a detection algorithm requires iterative adjust-
ments of decision rules: first improving the detection rate by loosening the decision rule,
and then decreasing the false positive rate by tightening the decision rule without los-
ing too many correct detections. For this iteration, our combined algorithm, RBS+TRW
provides two knobs,λ1 andθ1, that we can adjust to tune the detector to a site’s traffic
characteristics.

The trace-driven simulation shows that RBS+TRW withλ1 = 5λ0 andθ1 = 0.6θ0

misses only one low-profile target host (a slow HTTP scanner fromISP ) while gener-
ating no more than 6 false positives, per Table 3. Had we run RBS and TRW in parallel,
we could have eliminated all the false negatives, but at the cost of 33 false alarms alto-
gether.

Overall, RBS+TRW provides the good detection of high-profile worms and scan-
ners (no more than 2 misses across both datasets) while generating less than 1 false
alarm per hour for a wide range of parameters (λ1 ∈ [4λ0, 8λ0] andθ1 ∈ [0.4θ0, 0.7θ0]),
and reaching its detection decisions quickly (less than 7 first-contact connections on av-
erage).



7 Discussion

This section discusses several technical issues that may arise when employing RBS+TRW
in practice. While addressing these issues is beyond the scope of this paper, we outline
ideas and directions based on which we will pursue them in future work.

Operational issues:A worm detection device running RBS+TRW needs to main-
tain per local host information. For each host, a detector must track first-contact con-
nections originated by the host, their failure/success status, and the elapsed time. The
state thus increases proportional to the number of local hosts in the network (N ) and
the sum of all their currently pending first-contact connections. Given that RBS+TRW
requires≤ 10 first-contact connections on average to reach a decision (§6), we can es-
timate amount of state as scaling on the order of10N . Note that every time RBS+TRW
crosses either threshold, it resets its states for the corresponding host.

When constrained by computation and storage resources, one can employ cache
data structures suggested by Weaveret al. [17] that track first-contact connections with
a high precision. However, we note that running RBS+TRW on aggregate traffic across
hosts (as opposed to the per-host operation for which it is designed) can significantly
affect the detection performance due to the uneven traffic distribution generated by each
end-host [20].

Post-detection response:The results in Table 3 correspond to RBS+TRW generat-
ing 0.07 false alarms per hour at theLab-II site and 0.57 per hour at theISP site. This
low rate, coupled with RBS+TRW’s fast detection speed, make it potentially suitable
for automated containment, crucial to defending against fast-spreading worms. Alter-
natively, a network operator could employ connection rate-limiting for hosts detected
by RBS+TRW, automatically restricting such hosts to a low fan-out rate.

Extensions:One can complement RBS+TRW with a classification engine and run
the algorithm with specific parameters per application. For instance, many peer-to-peer
applications probe other neighboring hosts in order to find the best peer from which to
download a file. For a peer-to-peer client having a large number of transient peers, this
probing activity can generate many failed connections, leading to an alarm. In such a
case, grouping peer-to-peer traffic and running a separate instance of RBS+TRW with
the parameters particularly tuned for this application should significantly improve the
algorithm’s performance.

Limitations: As indicated in Figure 7, RBS+TRW is unable to detect targeting
worms using high-quality hit lists comprised of at least 70% active hosts and spreading
no faster than several first-contact connections per second. Detecting such worms might
be possible by working on larger time scales. For example, a scanner that generates first-
contact connections at a rate of 1 Hz will end up accessing 3,600 different hosts in an
hour, far outnumbering the sustained activity of a typical benign host. Thus, a natural
avenue for future work is assessing the operation of RBS on longer timescales.

Finally, attackers can game our detection algorithm by tricking end users into gen-
erating first-contact connections either at a high rate (RBS), or that will likely end up
failing (TRW). For instance, similar to an attack in [8], an attacker could put content on
a web site with numerous embedded links to non-existent destinations.



8 Conclusion

We have presented a worm detection algorithm, RBS (rate-based sequential hypothesis
testing), that rapidly identifies high-fan-out behavior by hosts based on the rate at which
the hosts initiate connections to new destinations. RBS uses the sequential hypothesis
testing [14] framework. While built using a model that the time between connection at-
tempts to new destinations is exponentially distributed (which we show is a reasonable
approximation for bursts of activity), RBS decisions reflect the aggregate measurement
of the total elapsed time over a number of attempts, not the characteristics of individual
arrivals. We define RBS in terms of a single discriminating metric—the rate of connec-
tion attempts—which differs substantially between benign hosts and an important class
of worms. While the choice of such a metric evokes the measurement of an average
rate over a window of certain size (and the comparison of the measured rate to a fixed
threshold), RBS is more elaborate. The algorithm draws from sequential hypothesis
testing the ability to adapt its decision-making in response to the available measure-
ments in order to meet specified error requirements. We can view this as an adaptation
of both the window size (i.e., how many attempts to make a decision) and the threshold
(i.e., what is the minimum measured rate over that window that leads to a trigger). This
adaptation gives RBS a robustness unseen in fixed window/threshold schemes.

We evaluated RBS using trace-driven simulations. We find that when the factor of
speed difference,n, between a scanner and a benign host is small, RBS requires more
empirical data to arrive at a detection decision but stays robust against short bursts.
Whenn is less than 6, RBS generates no false positives for a 1-hour trace that includes
P2P clients and VoIP programs known to connect to a set of peers.

We then presented RBS+TRW, a hybrid of RBS and TRW [6] which combines
fan-out rateand probability of successof each first-contact connection. RBS+TRW
provides a unified framework for detecting fast-propagating worms independent of their
scanning strategy (i.e., topological or scanning worms). Using two traces from two
qualitatively different sites, containing 389 active hosts and 4,008 active hosts, we show
that RBS+TRW provides fast detection of hosts infected by Code Red II, as well as the
internal Web crawlers that we use as proxies for topological worms. In doing so, it
generates less than 1 false alarm per hour.
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