
Detecting Forged TCP Reset Packets

Nicholas Weaver
ICSI

nweaver@icsi.berkeley.edu

Robin Sommer
ICSI & LBNL
robin@icir.org

Vern Paxson
ICSI and UC Berkeley

vern@icir.org

Abstract

Several off-the-shelf products enable network operators
to enforce usage restrictions by actively terminating con-
nections when deemed undesirable. While the spectrum of
their application is large—from ISPs limiting the usage of
P2P applications to the “Great Firewall of China”—many
of these systems implement the same approach to disrupt
the communication: they inject artificial TCP Reset (RST)
packets into the network, causing the endpoints to shut
down communication upon receipt. In this work, we study
the characteristics of packets injected by such traffic con-
trol devices. We show that by exploiting the race-conditions
that out-of-band devices inevitably face, we not only can
detect the interference but often also fingerprint the spe-
cific device in use. We develop an efficient injection detector
and demonstrate its effectiveness by identifying a range of
disruptive activity seen in traces from four different sites,
including termination of P2P connections, anti-spam and
anti-virus mechanisms, and the finding that China’s “Great
Firewall” has multiple components, sometimes apparently
operating without coordination. We also find a number of
sources of idiosyncratic connection termination that do not
reflect third-party traffic disruption, including NATs, load-
balancers, and spam bots. In general, our findings highlight
that (i) Internet traffic faces a wide range of control devices
using injected RST packets, and (ii) to reliably detect RST
injection while avoiding misidentification of other types of
activity requires significant care.

1 Introduction

Arguments tend to become heated when network oper-
ators restrict their users’ communication by actively inter-
fering with traffic. Recently, when Comcast was accused of
interrupting their customers’ BitTorrent connections [11],
the public debate eventually even led to a high-profile FCC
hearing on the legality of their practice [13]. One conse-
quence of such uproar is that network operators may decline
to openly inform customers about active measures they de-

ploy, leaving users with only speculation about the cause
for connections terminating without apparent reason—and
sometimes users then wrongly accuse their ISP [26].

A different form of such active traffic interference comes
not from ISPs but governments. For example, the “Great
Firewall of China” censors Internet communication by ter-
minating connections that relate to transfer of information
deemed undesirable by the Chinese government [12].

Faced with uncertainty about the presence and degree of
active interference, a natural question arises: to what degree
can we detect when a network actively disrupts communica-
tion? In this study, we pursue answering this question. We
focus on a specific, commonly deployed method to termi-
nate an active connection on demand, namely the injection
of forged TCP Reset (RST) packets into TCP flows, which
manipulates the involved endpoints into shutting down their
communication. While this method has been well-known
for years, it recently gained traction with several companies
now offering such functionality in high-performance, off-
the-shelf products.

A crucial observation about RST injectors is their out-of-
band operation. They can modify neither timing nor con-
tent of any packets sent by end-hosts (if they could, they
could control traffic by simply dropping any further pack-
ets). Therefore, such injectors face race conditions: be-
tween the time when they inject RSTs until the endpoints
receives these, the TCP connection state can change due to
the transmission or reception of additional legitimate pack-
ets. These changes can delay the connection termination or
even render it ineffective.

In this work we exploit these race-conditions to identify
instances of injected RSTs via passive monitoring. We de-
velop a set of tests for a number of relevant situations and
combine them into a detector that can operate on both traces
and real-time on live traffic. In addition, we find that many
real-world injectors exhibit idiosyncratic peculiarities in the
specifics of how they craft the RST packets, enabling us to
develop injector fingerprints that identify which specific de-
vice is deployed on a given network path.

We have designed our detector to operate in a conserva-
tive fashion: it only reports RSTs that with high probability



correspond to external injection, preferring false negatives
over false positives. This trade-off is crucial because, as we
see during our evaluation, regular network devices can also
create unusual situations that a passive observer could mis-
interpret as a sign of injection. When carefully examining
our datasets, we indeed discover anomalous RSTs sent by
NATs, load-balancers, PlanetLab hosts, and buggy TCP im-
plementations of spam bots. Thus, it is valuable to not only
detect a RST as suspicious, but to also develop fingerprints
in an attempt to classify an injected RST’s source. Finally,
while in this work we do not aim to take a position regard-
ing the legitimacy of active traffic interference, we note that
we observe evidence of anti-spam and virus blockers that
also use RST-injection to block malicious traffic.

We structure the remainder of this paper as follows. In
Section 2 we cover related work on known sources of in-
jected RST packets. Section 3 discusses the principles of
out-of-band flow blocking. Section 4 discusses the free-
doms involved in creating RST packets, both from the end
host and for an injector. Section 5 presents our detector for
anomalous packets commonly generated by RST injectors.
Section 6 introduces the four datasets we used in our eval-
uation, and Section 7 discusses the injectors we were able
to find and fingerprint, as well as several types of anoma-
lous RSTs not caused by packet injection. We conclude in
Section 8.

2 Related Work

A study by Arlitt and Williamson [1] shows that RSTs
are surprisingly common on the Internet. They examined
a year of SYN/FIN/RST packets from the University of
Calgary’s border and found that roughly 15% of all TCP
flows were terminated by a RST packet after payload had
already been sent in at least one direction. The reset rate
was even higher for HTTP traffic, with 22% of the flows ter-
minated by a client-side RST, and 3% by a server-side RST.
To understand these surprisingly high numbers, the authors
evaluated different combinations of Web servers and clients
to determine when they generate RSTs instead of normal
FIN shutdowns. Among other effects, they discovered Web
servers closing idle connections with RST packets as well
as browsers consistently terminating persistent connections
with RSTs.

Packet injection is a well known technique employed by
network intrusion detection systems (NIDS) to terminate
malicious connections. Snort’s [24] sp response and
sp response2 plugins support RST and ICMP injection.
The Bro NIDS [19] likewise comes a with a tool to inject
RST packets. Song’s tcpkill [25] is a stand-alone utility for
the same purpose. We discuss the operation of these tools
in Appendix B.

A well-known deployment of RST injectors is the “Great
Firewall of China”, which terminates Internet connections
deemed undesirable by the Chinese government [12]. Clay-
ton et al. [5] observe that the “Great Firewall” sends se-
quences of RST packets with TCP sequence numbers in-
creasing by 1460 with each packet,1 apparently to compen-
sate for potential further data having arrived at the destina-
tion in the meantime, as discussed below. They also report
that the RSTs have IP TTLs that differ from other packets
from the purported source address. Once a host pair has had
a connection terminated, the “Great Firewall” then sends in-
dividual RSTs for each newly initiated connection to main-
tain the block. As a counter-measure, the authors propose
to ignore RST packets with wildly different TTLs. How-
ever, as developed in our study, we do not find this a prac-
tical mitigation technique, as similar wildly different TTLs
arise in normal traffic (see Appendix C). Crandall et al. [8]
spent considerable effort mapping the “Great Firewall”, in-
cluding determining the first point where filtering occurs by
sending probes with different TTLs, and developing key-
word maps of the detector’s sensitivity. Independent of the
detailed functioning of the “Great Firewall”, Fallows [12]
argues that it does not need to be technically perfect to reach
its goal; rather it suffices to make access to external infor-
mation enough of nuisance to spur people to prefer using
resources within China’s borders.

A recent controversial use of RST injection is restrict-
ing peer-to-peer (P2P) traffic as practiced by multiple ISPs,
particularly to block bulk transfers such as those of BitTor-
rent [2]. Extensive publicity surrounded Comcast’s use of
this technique [11], leading to significant debate and mul-
tiple (somewhat ad hoc) studies. It can prove difficult to
conduct such investigations in a sound fashion. One study,
since retracted, claimed detection of RST injection that in
fact occurred due to an artifact of the local NAT reacting
to a large number of distinct flows [26]. Vuse, based on
simply counting the total number of received RST pack-
ets seen by a client, claimed that AT&T performs RST in-
jection without regard to their context [27]; AT&T denied
these allegations [4]. The EFF has initiated a “Test Your
ISP” project [10] with the goal to develop information and
software tools that allow customers to examine their Inter-
net connections for active interference. So far the two tools
released in this context are pcapdiff, which compares two
packet traces of the same communication captured at dif-
ferent locations for telltale differences, and Switzerland, a
higher-level tool that automates the comparison process by
utilizing a central server. In both cases, only if both sides
of a flow are operating the tool, injected RSTs and other
changes will be detected. Dischinger and colleagues de-
veloped a Java applet for volunteers to run which imitates

11460 is a common maximal TCP payload, based on 1500-byte Ether-
net payloads minus 40 bytes of TCP/IP headers.



BitTorrent traffic [9]. Although they used a very differ-
ent method, many of their results agree with ours in terms
of detecting individual ISPs, including Cox, Comcast, and
StarHub.

A somewhat different RST injection attack than those we
consider in this study is blind RST injection. While its goal
is the same—externally shutting down a connection using
forged traffic—here attackers cannot observe the connec-
tion’s packets. As such, they lack sufficient information to
craft in-sequence RST packets, but they can still carry out
brute-force attacks by sending many RSTs with different se-
quence numbers (abetted by guessing likely values of some
fields), hoping to hit the target’s TCP window with at least
one. As Watson [28] shows, such an attack can be success-
ful within a few minutes using a DSL line. The threat of
such attacks disrupting Internet routing lead to the develop-
ment of the TCP MD5 signature option [14], and [21] pro-
poses requiring RSTs to exactly match the current sequence
point.

3 Out-of-Band Flow Blocking

In this section we summarize approaches to block com-
munication deemed undesirable. We assume use of a traf-
fic monitor that inspects TCP flows for violations of a net-
work’s policy; it instructs a (generally) independent con-
nection terminator to stop those identified. Such policy de-
cisions can for example be taken based on security policy
(e.g., by an IDS), access restrictions (e.g., China’s “Great
Firewall”) or for traffic management purposes (e.g., Com-
cast’s BitTorrent policy). The main difference of such a
monitor/terminator setup compared to a traditional firewall
is that typically all flows are initially allowed through (“de-
fault allow”), with potential blocking decisions taken only
later if a connection is found to violate policy.

Devices to interrupt communication can operate either
inline or out-of-band. For inline devices, blocking undesir-
able connections is easy: once the drop decision is made,
the device simply ceases to forward (i.e., drops) all subse-
quent packets associated with the flows. However, inline
operation also introduces new points of failure and can eas-
ily become a performance bottleneck. Consequently, many
operators prefer out-of-band devices operating on a copy
of the traffic stream (e.g., received via an optical splitter),
which does not impact the network’s principle operation
when stressed or upon failure. This may be true even when
devices support inline operation, such as the Sandvine tool
used by Comcast [6].

Since out-of-path devices cannot directly block undesir-
able traffic, they must resort to indirect mechanisms to ter-
minate flows, of which several exist: (i) instruct an exist-
ing in-path device, such as router, to block the flow (ACL
injection); (ii) insert bogus TCP data packets to desynchro-

nize the endpoints’ TCP stacks (this can however lead to
“storms” of packets between the endpoints that consume
considerable network resources [15]); (iii) inject forged
TCP FIN packets into the flow, one for each direction; and
(iv) injecting forged RST packets instead of FINs, which
has the advantage of requiring only one endpoint to accept
a packet, and runs less risk of desynchronization storms.

In this study, we focus on the last of these, injection of
forged RST packets, a method commonly used today (e.g.,
it is deployed by the “Great Firewall” as well as by Com-
cast’s P2P disrupter). More broadly, however, the principles
underlying our techniques—in particular, the insight that in-
jection based on passive monitoring will face race condi-
tions due to delays in the packet creation process—should
apply to other forms of injection, including TCP FIN pack-
ets and spoofed DNS replies.

4 Properties of RST Packets

We now explore how benign, end-host initiated RSTs
should appear versus how injectors can craft their pack-
ets. (Not surprisingly, we find end-hosts do not always be-
have like they “should”, however, per Section 7.2.) Accord-
ing to RFC 793 [20], an end-host should sent a TCP RST
packet when it either aborts (prematurely terminates) an ex-
isting connection, or when it receives a TCP packet (other
than an initial SYN or a RST) that does not correspond to
an active connection, which includes connections already
aborted. Once an end-host has sent a RST for a connection,
it should not send further data packets. It can however send
more RSTs in response to continued traffic from the other
side of the connection.2

The crucial field in a RST is its sequence number, which
must be chosen correctly for the packet to be accepted by
the destination. Per the RFC, when aborting a connection
the sender should send an in-sequence RST, i.e., set the se-
quence number to the next available octet in sequence space
if terminating an active connection. If the host is responding
to a packet received for an inactive or already closed con-
nection, the RST’s sequence number should reflect the ACK
field in the eliciting packet (or zero, if ACK was not set).
Thus, the first RST packet sent should not have a sequence
number lower than a previous data packet—although subse-
quent RST packets, responding to ACKs for data sent earlier
in the sequence space, may use a lower sequence number.

The RFC however also specifies that receivers should
treat arriving RSTs liberally: any in-window sequence num-
ber is considered acceptable because data packets preceding
the RST may have been lost. Yet not all TCP stacks follow

2This is another reason why TCP RSTs, rather than FINs, are preferable
for terminating connections. With a FIN, a host may accept a FIN but still
send data in a half-open state, while a host that accepts a RST will neither
accept nor send subsequent data on that connection.



this advice. Some are very lax and accept RSTs outside
of the window; others are strict and require the sequence
number to be exactly in-sequence, ignoring other values
within the window (which prevents blind RST injection at-
tacks [21]). Figure 4 of [23] summarizes the behavior of
numerous systems.

An injector might attempt to exploit the standard’s ad-
vice by sending RSTs with multiple sequence numbers,
with the additional sequence numbers deliberately picked
higher than the current sequence point in order to counter
the race-condition of further data packets being already in
flight (see Section 5). We do not expect to see such be-
havior from benign end-hosts, as this would require the end
host sending RSTs that don’t correspond to any data packets
sent or received.

Other fields of the IP and TCP header are less crucial for
a RST packet, and an injector has therefore considerable
freedom in choosing them. If their values however divert
from characteristics exhibited by the purported endpoint, a
possibility for fingerprinting or detection arises.

Four significant header fields not checked for correct-
ness when receiving a RST packet are other TCP flags, TCP
ACK number, IPID and TTL. We would however expect an
end-system to set these in a consistent fashion. According
to our analysis, common choices for the ACK number are
zero, the current sequence point, and an ACK number cor-
rectly acknowledging received data. The IPID is often zero,
or incremented in consistent steps for subsequent packets.
We might also expect that the TTL should not vary signifi-
cantly across packets from the same source.

For all three of these fields, an injector can in principle
pick arbitrary values for its forged RSTs. Looking for in-
consistencies thus would appear to offer a means to spot
injectors that do not try to evade detection. However, as we
report in Appendix C, both IPID and TTL are highly volatile
even for normal RST traffic. Thus, they are not suitable by
themselves for detecting injected RSTs, but do prove useful
in constructing fingerprints for individual RST injectors.

Another feature to look at is payload. While RST pack-
ets can carry data payloads (for diagnostic messages—not
part of the regular bytestream), most commonly they do not.
The forged RSTs we have observed are usually also empty,
and therefore the presence of payload does not provide a
suitable feature for detection. As we show in Section 7.1.7,
there are however sources that insert readable messages into
RST packets.

Finally, the timing of RST packets is important to con-
sider as well. The gap between a RST and the packet pre-
ceding it can vary widely for end-host generated RSTs. For
example, Web browsers often abort connections within mil-
liseconds, while RSTs triggered by state timeouts are pre-
ceded by a substantial interval of non-activity. An injector
does not have this freedom: the longer it takes it to inject

the RST, the higher the likelihood that further packets are
transmitted between the endpoints, rendering the termina-
tion ineffective. Therefore, in our injection detector we fo-
cus on RSTs occurring in short succession to the preceding
packets.

5 Detection Toolbox

We now develop a set of detectors for abnormal situa-
tions that active, out-of-band RST injection can cause. As
our discussion in Section 4 shows, due to the large degree
of freedom an injector has when building a RST packet,
a passive observer cannot always reliably differentiate be-
tween injected RSTs and normal end-host/network behav-
ior. Therefore, when building our toolbox of tests, we do
not strive for comprehensive coverage of all the ways in
which an injected RST packet can show up at our moni-
toring point. We rather pick cases in which injection causes
artifacts sufficiently distinct from normal end-host traffic to
warrant further inspection. As we later show in Section 7.1,
our set of detectors is indeed able to identify a wide spec-
trum of active interference.

Each of our detectors targets a specific situation that is
likely to indicate the presence of one or more injected RST
packets. We assume that injectors will send at least one
RST to each endpoint of the connection to be terminated,
which is nearly all injectors known to us work (the excep-
tion is tcpkill [25]). In the following we describe the de-
tectors informally and refer to Appendix A for their precise
definitions.

We start with two detectors, RST SEQ DATA and
DATA SEQ RST, which target two race conditions that any
out-of-path RST injector inevitably faces:

• RST SEQ DATA: One race condition occurs between
the time when an injector sees a data packet that trig-
gers its decision to terminate the connection, and the
time when the injector sends out the fake RST packet.
During this interval, further packets from the sender
may pass the injector’s observation point. If this hap-
pens we will observe that the RST packet is “out of se-
quence”, with the receiver observing a sequence num-
ber less than the preceding data packet would suggest,
a condition we detect as RST SEQ DATA. Most re-
ceivers will likewise consider the RST to be out-of-
sequence and therefore ignore it. As data packets are
often sent quickly back-to-back, we expect this situa-
tion to occur frequently when an injector is in use. In
the absence of injection, however, it should not occur
during normal TCP operation, other than in quite pe-
culiar situations.

• DATA SEQ RST: Another race condition occurs when
at the time the RST is injected, further packets are now



already in flight, or will be sent shortly later, because
the injector cannot stop the sender quickly enough. In
these cases, the receiver will see further data packets
from the sender after it has already received the RST.
Our detector DATA SEQ RST triggers for such situa-
tions by looking for data packets having a larger se-
quence number than indicated by a previously arriving
RST packet. Again, this situation should in general not
occur during normal end-host communication.

These race conditions do not have to occur. In particular,
RST SEQ DATA race conditions depend upon the reaction
time of the injector—whether it can make a decision and
generate a RST packet before the next packet passes the
injector. Thus, the prevalence of this race condition may
depend on the injector’s implementation and current load.
The DATA SEQ RST race depends more on network topol-
ogy. If the injector is far from the end-host, it is more likely
that there will be a subsequent in-flight packet.

Our third detector triggers when it sees a common
counter-measure many injectors take: sending multiple
RSTs instead of just one. Without this countermeasure, a
conforming TCP stack would ignore the RST packet when
a RST SEQ DATA race occurs.

• RST SEQ CHANGE: By quickly sending multiple
RSTs with increasing sequence numbers, an injector
can increase the likelihood of getting at least one of
them through. It however faces the dilemma of hav-
ing to pick a higher sequence number without knowing
what the source will sent, and therefore might guess a
value higher than the maximum sequence number the
receiver will have seen at the time the RST arrives.
The RST SEQ CHANGE detector leverages this obser-
vation by looking for back-to-pack pairs of RSTs in
which the second RST has a sequence number higher
than the first, and that exceeds the current maximum
sequence number. A standard compliant TCP stack
should never send such a packet because its RSTs
should either be in sequence with the data (so at the
maximum sequence number) or in response to packets
from the other side (which should have an ACK field
less than the maximum sequence number sent).

The RST SEQ CHANGE detector does not depend on a
race condition. Rather, it detects a natural consequence
of constructing a robust RST injector. Thus, our detector
is not guaranteed to detect injectors that are not robust to
the RST SEQ DATA race condition, but will detect injec-
tors that send multiple packets to avoid the race condition.

Finally, we add three more detectors to our toolbox
which, even though they are not clear indicators for the
presence of an active injector, trigger for RST traffic that
is sufficiently odd to warrant further inspection:

• RST ACK CHANGE: Detects RSTs with seemingly
nonsensical ACK numbers. Specifically, the detector
looks for pairs of RSTs in which the second RST’s
ACK number differs from its predecessor and does not
lie within the range of sequence numbers seen from the
data sender. Although not a necessary feature for in-
jected RSTs, we have observed that some injectors in-
correctly increment the ACK rather than the SEQ field
when sending multiple packets.

• SYN RST: Detects initial SYNs immediately followed
by a RST in the same direction. While this behavior
can occur benignly for some applications (e.g., Web
browsers), it can be an indicator of active interference
for others.

• SYN ACK RST: Detects initial SYN/ACKs immedi-
ately followed by a RST in the same direction with
no intervening packet. Similar to SYN RST, this can
be an indicator of RST injection. We however also see
it with servers making a decision to accept a connec-
tion only after their TCP stack has already acknowl-
edged the initial SYN (e.g., because load-monitoring
finds the server’s load too high to accept new requests,
or due to consulting an SMTP blacklist).

Finally, for our detectors we need to select values for
two parameters (T1 and T2 in Appendix A). The first of
these governs the maximum delay an injector can exhibit
in issuing its response to traffic, for which we chose 2 sec
as sufficient for a very slow injector even on a very slow
link. RSTs with larger delays likely reflect state manage-
ment or sender-side bugs rather than injection. The sec-
ond parameter bounds the delay for termination of con-
nections during the establishment phase (for the SYN RST
and SYN ACK RST detectors). Here we chose 0.1 sec, be-
cause such decisions should be quick for an injector to make
(since only inspection of header information can come into
play).

We implement our detector in Click [16], aiming for high
performance when running on large traffic streams such as
campus borders. To keep memory management efficient
and simple, we use a fixed cache to track active flows, rather
than dynamically allocated tables. We provision the cache
with 256K entries and 32-way associativity with LRU re-
placement. Bad evictions from this cache lead to missed
alerts rather than false positives; we checked for such evic-
tions when running on particularly large UCB traces and
did not record any that would have resulted in loss of accu-
racy. To enable further analysis, we couple the detector to a
500K-packet buffer to extract context surrounding possible
detections.

We insert all detections into a database, including packet
headers for the alerting packet, up to 200 prior and 100 sub-



sequent packets, and payloads of any RST packets. This
provides us with significant context around the alert to de-
velop and evaluate fingerprints of injectors. We also store
in the database the fully qualified reverse-lookup (PTR)
for the IP addresses, excluding the actual hostname (thus
foo.bar.baz.com is recorded as bar.baz.com), as
well as the nation, state, and city lookup results from the
GeoLite City GeoIP database [17]. To enable others to run
our detector, it optionally can anonymize the IP addresses
and hostnames.

6 Datasets

We used the datasets from four institutions for our study:

International Computer Science Institute: We ran a pro-
totype of our detector at ICSI from January 23rd, 2008 until
May 1st, running on all TCP traffic other than SSH. This de-
tector was used to guide a “hosts-of-interest” selection, cap-
turing all traffic between any two hosts generating an alert
for later analysis. During the measurement period the detec-
tor was not static, but received several improvements. It ini-
tially only detected DATA SEQ RST and RST SEQ DATA
anomalies, but later ran the entire complement of alerts.
Thus, we cannot use this data to gauge the overall presence
of injected packets, but because it has extensive context it
allows detailed investigation of individual activity.

UC Berkeley: We captured the UCB trace using an exper-
imental intrusion detection cluster that receives traffic from
the campus’ two border routers. As the routers aggregate
traffic onto a single 1 Gbps SPAN port, this environment
can saturate during traffic peaks. We captured data repre-
senting 40% of the total border traffic, except for data in-
volving UCB’s PlanetLab nodes. The monitoring setup re-
ceives a subselection of the flows from the SPAN port; in
most cases, both halves of each flow, but in some cases only
a single side. These latter do not hinder our analysis ex-
cept that we suppress the RST ACK CHANGE alert, and the
RST SEQ CHANGE alert does not check the ACK value.

This trace ran for 19 hours starting at 2PM, April 21,
2008, capturing 5.2 Gpkts and 73M TCP flows. Excluding
backscatter and partially created flows, the trace contains
30.2M TCP flows.

In evaluating this trace, we also verified that our caching
was not causing problematic evictions: we experienced no
evictions from our data structure’s caches for data less than
4 sec old. Thus, our caching-based structure did not cause
us to miss alerts. However, the limited buffer of 500K pack-
ets did cause us to lose significant context for the alerts. At
worst, the buffer only held 7 sec of associated traffic, limit-
ing the context around each alert for further analysis.

Columbia University: The Columbia trace consists of a
day captured at the border of the institute’s Computer Sci-
ence Department, excluding PlanetLab servers. We do not
have packet counts for this trace.

George Mason University: The GMU trace consists of 5 hr
of traffic captured at the campus border, totaling approx-
imately 70 GB. This trace was processed live rather than
offline.

For all traces, we excluded SYN RST alerts for ports 80,
113, and 443, and SYN ACK RST alerts for ports 25, 80,
and 443, in both cases due to there being a large number
of benign causes for the alerts. (For example, Facebook’s
HTTP servers generated a large number of SYN ACK RST
alerts in the UCB data.) One source of SYN RST alerts on
port 80 and 443 comes from users hitting the “Stop” but-
ton on their web browser. Alerts on port 113 arise from
how some mail servers contact the “identification” service.
SYN ACK RST alerts on port 25 can be due to mail server
aborts, where the mail server accepts a connection and then
checks a blacklist, while port 80 and 443 alerts appear due
to high-load issues, where a Web server will initially accept
a connection and then reject it due to its load policies.

Once all alerts, context, and data are loaded into the
database, we were able to correlate between multiple alerts
and develop fingerprints of individual RST injectors as well
as benign sources. We developed these fingerprints through
manual examination, looking for common patterns present
in the alerts from the same and different IP addresses.

When we could fingerprint an injector or a non-injected
source, we classified it as either a true detection or as non-
injected (such as due to a misbehaving in-path device or a
misconfigured TCP stack). In addition, as discussed later,
we also find behavior that we deem as likely one or the
other, but, because we could not determine a reliable fin-
gerprint for it, we cannot precisely identify.

7 Results

We now present the results of our detector running on the
datasets discussed in the previous section. We start with the
kinds of injectors we were able to identify by their charac-
teristic fingerprints, followed by a discussion of unexpected
RSTs we observed that do not appear due to out-of-band
injection. Table 1 summarizes the fingerprints we deter-
mined for different RST injectors, and Table 2 summarizes
the alerts for these reported by the detector.

Counts in Table 2 reflect distinct IP addresses, not dis-
tinct flows. Any given address may have multiple flows that
generate an alert, as systems may retry connections.



Identified Source Signature
Identified Injector

Sandvine Multipacket: First Packet IPID += 4, second packet SEQ + 12503, IPID += 5
Bezeqint Multipacket: Constant sequence, RST ACK CHANGE, IPID = 16448
Yournet SYN RST: Only on SMTP, TTL usually +3 to +5, unrelated IPID
Victoria Multipacket: Sequence Increment 1500, IPID = 305, TTL += 38
IPID 256 Single packet: Usually less TTL, IPID = 256
IPID 64 Multipacket: IPID = 64, often sequence increment of 1460
IPID -26 Multipacket: First IPID -= 26, often sequence increment of 1460
SEQ 1460 Multipacket: Sequence increment always 1460
RAE Single packet: Sets RST, ACK and ECN nonce sum (control bit 8)
Go Away Single packet: Payload on RST of “Go Away, We’re Not Home”
Optonline Multipacket: No fingerprint, all activity from a single ISP

Identified Non-Injected Source
SYN/RST 128 SYN RST with RST TTL += 128
SYN/RST 65259 SYN RST with RST IPID = 65259
0-Seq RST Reset with SEQ = 0
IPID 0 IPID = 0, multiple RSTs, limited range
IPID 0 Solo IPID = 0, spurious RST (often ignored)
Stale RST RST belonging to a previous connection (port reuse)
Spambot SR Spam source sending payload packets with SYN and RST flags
DNS SYN RST Normal DNS servers aborting connections at initiation

Table 1. Features for both identified RST injectors and identified non-injected sources.

7.1 Identified RST Injectors

By correlating the characteristics of RSTs across our
datasets, we identified and fingerprinted a number of in-
jectors that we believe our detector consistently identifies.
We present these in Section 7.1.1–7.1.6 and then discuss in
Section 7.1.7 additional cases that appear likely to reflect in-
jection, yet for which we lack sufficient evidence to confirm
that suspicion.

7.1.1 The Sandvine RST Injector

Comcast has publicly stated that they use RST injection to
manage P2P traffic [11], and it has been reported that these
devices were purchased from Sandvine [22, 6]. We exam-
ined all flows reported by our detector involving a Comcast
host (as identified via reverse DNS lookups). Across the
four sites, 90% (174 of 193) of the alerting sources have
at least one alerting flow with a back-to-back pair of RSTs
for which the second has a sequence number 12503 higher
than the first and an IPID incremented by 1. Additionally,
in 164 cases at least one of the alerting flows had the IPID
of the first RST corresponding to that of the previously seen
packet incremented by 4.

Given the consistency of these RSTs, we consider these
features to be a fingerprint of the Sandvine injector. In the
ICSI trace we observe 106 distinct Comcast IP addresses,

30 at UCB, 36 at Columbia, and 2 at GMU (top row of Ta-
ble 2).

The Sandvine CTO subsequently indicated to us that the
particular sequence number increment of 12503 represents a
known bug in their tool, and that the intended increment was
far smaller [3]. Incrementing the IPID by 4 does not have
any fundamental reasons, since the only network mecha-
nism sensitive to IPID (fragmentation) should not come into
play. If the goal is to avoid repeating a previous IPID, se-
lecting a value at random would work just as well, or using
a larger increment.

Comcast’s Use of Sandvine: We looked closer at Com-
cast’s usage of RST injection to verify the company’s public
statements about its application of traffic management. At
ICSI, we confirmed that RSTs reported for Comcast traffic
indeed correspond to the usage of P2P software. Almost
all of the Comcast alerts came in 4 bursts: 10 on February
9th, 23 on February 18th, 39 between March 8th and 10th,
and 26 between April 22nd and 24th. Two bursts matched
with reported instances of excessive bandwidth usage by lo-
cal users running P2P software, and we verified that these
remote hosts were communicating with the offending local
systems. One of the solo alerts was also manually corre-
lated with a user who forgot to turn off his BitTorrent trans-
fer when entering ICSI’s network. These alerts all reflected
high TCP ports (> 1050), which fits with many forms of
P2P software.



Identified Alert Source ICSI UCB Columbia GMU
Identified Forged RSTs

Sandvine Comcast 106 30 36 2
Sandvine Cox 35 262 3 0
Sandvine Korea 1 50 4 0
Sandvine Other 0 1 0 1
Bezeqint Bezeq Int. 25 0 2 0
Yournet yournet.ne.jp 29 0 0 0
Victoria UVic.ca 1 0 0 0
IPID 256 Korea 9 90 16 0
IPID 256 Other 0 5 0 0
IPID 64 China 13 6 0 0
IPID -26 China 35 1 0 0
SEQ 1460 China 21 5 3 1
RAE China 229 4,162 8 0
Total Identified 275 450 64 4

Possibly Forged RSTs
Go Away Various 3 5 0 0
Optonline Optimum Online 12 0 0 0
Exact Multipacket Various 7 11 2 0
Approx. Multipacket Various 2 2 2 0
Total Identified 253 4,180 12 0

Identified Non-Injected RSTs
SYN/RST 128 Various 98 36 2 0
SYN/RST 65259 Various 9 2 0 0
0-Seq Reset Various 48 46 6 1
IPID 0 Various 17 35 19 0
IPID 0 Solo Various 36 149 17 0
Stale RST Various 36 72 3 1
Spambot SR Various 11 1 0 0
DNS SYN/RST Various 2 14 0 0
Total Identified 257 355 47 2

Likely Non-Injected RSTs
Web Server Various 17 134 1 0
SMTP SYN RST Various 61 54 0 0
Unknown SYN RST Various 38 172 10 0
Unknown SYN ACK RST Various 5 321 14 0
Unknown RST ACK CHANGE Various 74 97 32 5
Confused Multipacket Various 18 36 7 1
Hanson Hanson Infosystems 1 0 0 0
Total Identified 214 814 64 6
Total Unknowns 210 588 28 8
Total Sources 1,209 6,387 215 20

Table 2. Number of alerting source IP addresses and their classifications in each trace.
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Figure 1. Bytes transferred and received to/from Comcast hosts communicating with ICSI. The left
plot shows sizes for connections terminated by Sandvine-injected RST packets, with Comcast hosts
identified based on hostnames. For comparison, the right plot shows sizes for all connections be-
tween the same ICSI hosts and Comcast hosts that were instead closed with a normal FIN handshake;
here, we identified Comcast hosts based on WHOIS data for P2P traffic.

Comcast has stated that their P2P traffic management
targets only uploads, i.e., Comcast users sending signifi-
cant volumes to others [7]. To verify this, we estimated
the data transferred by the affected flows in each direc-
tion before they were terminated. Figure 1 shows that ter-
minated connections accorded with Comcast’s statement—
disruption mostly occurred on uploads from Comcast hosts,
and did not occur on flows where the Comcast host received
substantially more data than it sent. (The second plot shows
that this pattern is not simply an artifact of regular commu-
nication patterns with Comcast hosts.) However, we also
see that 7% of the affected flows did not transfer a signifi-
cant volume of data in either direction before being blocked
by an injected RST, suggesting that traffic upload is not the
only discriminator in use. According to Sandvine, their
software supports direct recognition that a client is acting
as a BitTorrent seed by parsing BitTorrent messages [3].

Other Users of Sandvine: We have observed two other
ISPs using the Sandvine injector: Cox Communications,
and a Korean ISP. The former confirms a report by Topol-
ski of Cox disrupting P2P traffic [18], and we have iden-
tified the tool in use as the same as deployed by Comcast.
We have not identified the Korean ISP, but the fingerprint is
clear. We also found one alerting source in each of two other
traces, both geolocating to the USA, but without resolvable
hostnames.

7.1.2 The BezeqInt Injector

Another injector consistently appears in traffic involving
hosts from Bezeq International, an ISP belonging to the pri-
mary Israeli phone company. Like with Comcast hosts, we
could confirm these cases as reflecting P2P usage at ICSI.
Again, this is a multiple-packet injector. However, rather
than changing the sequence number, for unknown reasons it
increments the ACK number (based on the received packet
window size, and without setting the ACK flag). It also al-
ways uses IPID 16448 and a differing TTL. These features
appear due to either ease of implementation or bugs.

This injector operates more aggressively than Comcast’s.
Out of 30 flows blocked at ICSI, only two managed to ex-
change more than a few hundred bytes of data. For both of
these flows, the data was almost exclusively sent from ICSI
to the Bezeq International host.

7.1.3 The IPID 256 Injector

Another injection source we found is the “IPID 256” dis-
ruptor, an injector that uses a constant IPID of 256. We
observe this injector primarily in hosts that geo-locate to
Korea, along with some other Asian countries. Use of this
injector appears unrelated to Korean use of the Sandvine
injector. Again, this disruptor appears to target P2P traffic.



7.1.4 The Yournet Injector

At ICSI we observed 29 addresses that generated SYN RST
alerts, all from a single Japanese ISP, yournet.ne.jp.
Each alert corresponds to SMTP traffic incoming to ICSI,
representing 30% of all SMTP clients that exhibit only
SYN RST alerts. (There is also one RST SEQ CHANGE
alert.) In this case we observe the TTL of the RST
packet as usually 5 higher, and the IPID appears to
have no relationship with the data IPID. Thus, it appears
that yournet.ne.jp actively disrupts email delivery at-
tempts, presumably in an attempt to control spam originated
by bots.

7.1.5 The Victoria Injector

One peculiar host generated 96 alerts in ICSI traces dur-
ing a 5-day period in April. From the traffic contents, this
host appears to be a mail server that repeatedly attempts
to deliver a “mail undeliverable” message triggered by the
W32/MyDoom-O mail virus. The server never success-
fully transferred the message, with each attempt suffering
interruption mid-transfer by a sequence of 10 RST pack-
ets. These RSTs always have IPID 305 and a TTL that is
38 higher than the data packet, and with sequence numbers
increasing by 1500 per RST.

We speculate this traffic reflects an in-network “virus
scanner” that heuristically (mis-)recognizes the bounce
message as malicious. We attempted to contact postmaster
and security at this site, but have not yet received a response.

7.1.6 The Chinese Injectors

We observe four distinct RST injectors that appear only in
traffic with Chinese hosts. The “IPID 64” injector uses a
constant IPID value of 64, and the “IPID -26” injector an
IPID value 26 less than the preceding data packet. The
“RAE” injector sets the RST flag, the ACK flag, and bit 8
of the TCP flags (ECN nonce sum). The “SEQ 1460” in-
jector is a multipacket injector that increments the sequence
number by 1460 regardless of the previous packet’s size or
apparent MTU; sets the ACK flag on the RST packet; and
appears to choose an arbitrary IPID and TTL.

All of these injectors disrupt a variety of traffic, includ-
ing email, Web, and P2P. The RAE injector is by far the
most common, and apart from its strange use of the ECN
nonce sum flag is hard to fingerprint. It is a single packet
injector, so it does not generate clear RST SEQ CHANGE
alerts. It often, but not always, takes its IPID from the previ-
ous packet. The injector’s aggressiveness triggers SYN RST
and SYN ACK RST alerts as well as DATA SEQ RST and
RST SEQ DATA alerts.

Sometimes multiple Chinese injectors operate simulta-
neously. For example, we observed an SMTP client com-

municating with the ICSI mail server that exhibits packets
originating from both the SEQ 1460 and IPID 64 injectors,
while a web server visited from Columbia manifests the
IPID 64 injector, likely the SEQ 1460 injector (though an
imperfect match), a RST seemingly generated by the end
host and a RST apparently generated by the IPID -26 in-
jector whose IPID suggests that it was at least partially re-
sponding to the packet injected by the 1460 injector! The
only other apparent explanation is that our fingerprints are
overly narrow, i.e., we have assigned two distinct finger-
prints to the same device.

Of all 298 ICSI hosts classified as disrupted by one or
more of the Chinese injectors, 102 hosts contain the finger-
prints of two or more injectors. In general, the RAE injec-
tor appears independent of the other three (only two sources
overlap), but the other three injectors appear to target simi-
lar, and sometimes the same, flows.

7.1.7 Likely RST Injectors

One interesting type of source sends RSTs with a payload
of “Go Away, we’re not home”. The RST sequence
numbers, although changing from packet to packet, never
exceed the maximum-sent sequence, so we believe the
source is either stateful or uses incoming ACKs to generate
the sequence numbers; thus, we can only detect it when a
RST SEQ DATA or DATA SEQ RST race condition occurs.
We saw such sources from SBC/Pacific Bell (AT&T) as well
as from two Mexican ISPs (prod-infinitum.com.mx
and telnor.net). All alerts correlate with P2P activity.
As these are not unique to just one ISP, and are too few to
fully classify, we suspect the traffic could be generated by a
non-ISP source—possibly end-system software.

It appears that Optimum Online, a division of Cablevi-
sion, terminates P2P flows as well. 12 sources at ICSI from
this domain generate RST SEQ CHANGE alerts, which ap-
pear due to a multi-packet injector. The injector usually uses
either the last packet’s TCP payload size as the sequence
number increment or twice this value. We were not able
to generate a more precise fingerprint, and as we do not see
any evidence of this injector in the other, more recent traces,
we assume the practice may have been discontinued. Thus,
we classify these only as a probable injector rather than a
confirmed source.

Finally there is a group of systems that exhibit
RST SEQ CHANGE alerts, either using an exact interval
from the previous packet or a slightly different interval. We
have been unable to classify these further, although some
correspond to the StarHub network previously reported as
blocking P2P by Dischinger et. al [9].



7.2 Apparently Legitimate but Unexpected RSTs

Our detector identifies anomalous RSTs, yet not all of
them are due to injectors. We cross-checked the alerts us-
ing several strategies in order to assess those due to sources
other than injection, including looking for RSTs sent by
local hosts (for which we could obtain ground truth) and
for external hosts known to not be subjected to traffic man-
agement. These may represent either in-path network de-
vices with various bugs, or bugs in end-system TCP stacks,
rather than packets injected by a separate traffic manage-
ment/disruption system.

Just as RST injectors can show clear signatures, we can
fingerprint some benign sources of unexpected RSTs as
well. We discuss these cases first, followed by likely-non-
injected RSTs for which we could not develop an effective
signature.

7.2.1 Legitimate Resets With Fingerprint

Common SYN/RST Signatures: We see a large num-
ber of SYN RST alerts with repeated signatures, including
TTL 128 higher than the triggering SYN (“SYN/RST 128”),
and a constant IPID of 65259 (“SYN/RST 65259”). As
these signatures do not appear to have any geographic or
ISP commonality, we consider them to reflect non-injected
sources.

Common RST Signatures: Three other seemingly be-
nign signatures are (i) RSTs with a sequence number of
zero (“0-Seq RST”), (ii) sending multiple RSTs with IPID
0 within a limited sequence number range (“IPID 0”),
and (iii) hosts that generate spurious RST SEQ DATA and
DATA SEQ RST errors with a RST packet with IPID 0 in
active flows (“IPID 0 Solo”). Traces of these appear quite
peculiar; we suspect the behavior is due to middlebox or
end-host bugs.

Stale RSTs: We observed a rare RST SEQ DATA alert gen-
erated by our institute’s mail server. Further examination
shows the cause: A system (presumably a spam bot) con-
tacting the mail server first receives a SYN/ACK, prior to a
blacklist check causing the server to terminate the connec-
tion. Several seconds later, the presumed spam bot connects
again, using the same TCP source port (in violation of the
TCP spec). This second SYN is acknowledged with a differ-
ent sequence number, a few packets are exchanged, and then
the mail server sends a TCP RST with the sequence number
of the first flow, creating a completely out-of-sequence RST
that trips the detector. We term this situation “Stale RST”.

Spambot SYN/RST Bug: We observed non-injected RSTs
due to an apparently buggy custom TCP stack in spam bots.
These systems at first communicate normally, and then for

unknown reasons generate an out-of-sequence packet with
both SYN and RST flags set, and payload containing por-
tions of a spam message.

DNS SYN/RST: We find that DNS servers can generate
SYN RST alerts on TCP communication, for unknown rea-
sons. This appears to be benign activity caused by the end-
system.

Planetlab: In an early test trace of Columbia traffic,
we observed more than 300 distinct RST SEQ DATA and
DATA SEQ RST alerts involving communication between
Columbia’s three PlanetLab nodes. We do not know the
cause, but due to PlanetLab’s experiment nature we ex-
cluded these.

7.2.2 Ambiguous Cases

HTTP Servers: Several domains, including Google and
Yahoo, show rare DATA SEQ RST and RST SEQ DATA
alerts with HTTP/HTTPS connections. We assume that
these domains do not perform active traffic management via
RST injection; manual examination did not reveal any ap-
parent cause. We speculate this traffic is due to bugs or race
conditions in HTTP load-balancers employed by these sites.

For example, the ICSI trace shows 18 instances of
RST SEQ DATA alerts generated by ad1.p1.vip.rm.
sp1.yahoo.com, where two MTU-sized data packets are
sent followed by two RST packets. The first RST packet has
a sequence equal to the start of the second data packet, and
the second RST packet comes properly in sequence. Man-
ually examining one of these connections shows an appar-
ently normal request to one of Yahoo’s ad servers. Google
generates similar alerts, as well as DATA SEQ RST alerts.

We were not able to develop a fingerprint for such load-
balancers, and thus consider Web servers that generate only
RST SEQ DATA and DATA SEQ RST alerts as probably
non-injected sources. However, the Web server of one
particular site, flightglobal.org, does show a very
distinct fingerprint. On an HTTP 302 (“Temporarily
moved”) error in a persistent connection, instead of send-
ing a normal data packet it sends a TCP RST packet with
the payload containing the HTTP “Object Moved” mes-
sage. Not only does this not make sense, but the RST
packet’s sequence number equals that of the previous data
packet: a RST SEQ DATA error.

SMTP SYN RST alerts: Unless we find a significant clus-
tering (e.g., the Yournet alerts in Section 7.1.4), SYN RST
alerts are so common from SMTP clients that we must treat
them as non-injected sources.

Inefficacy of Some Tests: We find three of the alerts—
RST ACK CHANGE, SYN RST, and SYN ACK RST—non-



definitive on their own. We can sometimes correlate across
alerts (such as the Japanese SMTP interference and the
BezeqInt injector) to create a global picture or fingerprint,
but in isolation these alerts do not provide convincing evi-
dence of injection, so we consider them as likely not reflect-
ing injected RSTs.

Confused Multipacket: Although RST SEQ CHANGE is
an effective tool at fingerprinting injectors, we occasion-
ally see obviously anomalous cases, where the second RST
packet is very close (< 200) or very far away (> 4x) from
the last data packet’s position in the sequence space. We
do not consider these as part of deliberate injection activity
unless we can fingerprint them in some other manner (such
as the Sandvine injector), because for deliberate injection
the choice of increment would be ineffective and hence is
puzzling.

Hanson Infosystems: We have observed a single SMTP
server belonging to Hanson Systems that shows unusual be-
havior. It could be end-host software or it could be RST
injection that is triggering on the message. This host gen-
erates RST SEQ DATA alerts when the ICSI mail server at-
tempts to forward a user’s spam to this site. The remote mail
server issues a rejection message immediately followed by
a RST packet with sequence equal to the previous packet’s
starting sequence, a RST SEQ DATA error.

NATs: One internal host at ICSI generated 30 alerts
during operation, almost all RST SEQ DATA alerts, with
one DATA SEQ RST alert. Investigation revealed that the
source is not an end-host host but a NAT, so we suspect that
the RSTs result from erroneous state expiration on the part
of the NAT. (Erroneous because the connection was active
at the time of termination.) We suspect that some addresses
counted as “unknown” in Table 2 might likewise be due to
NATs.

8 Conclusions

In this work we develop an efficient detector for forged
TCP RST packets, as deployed for example by some ISPs
to manage P2P traffic, as well as by the “Great Firewall
of China” to censor communication deemed undesirable by
the Chinese government. Our detector identifies injected
RSTs by exploiting the race conditions that out-of-band in-
jectors fundamentally face. We then further leverage the id-
iosyncratic peculiarities specific to many brands of injectors
to fingerprint their particular type.

Using datasets from four network sites, our evaluation is
able to confirm the use of RST injection by several ISPs.
We also observe that multiple distinct injectors operate in
China. As sometimes they are independently attempting to
block the same connection, they may have been installed by

local ISPs, independent of the “Great Firewall”. In addi-
tion to traffic management and censoring, we also find RST
injection used as a tool to counter spam and virus spreading.

Our study also shows the limits of passive monitoring
to detect active traffic interference. The most fundamen-
tal limitation stems from likely benign in-network devices,
often end-hosts, that produce abnormal effects similar to
those observed when RSTs are injected. As regularly ex-
perienced by network researchers, the variety observed in
network traffic includes many situations not covered by any
RFC; in our case that means RSTs sent by buggy TCP
stacks and misbehaving middle-boxes. We therefore de-
signed our injection detector to operate in a conservative
fashion, correlating several distinct properties to ensure re-
liable results. Our experiences also highlight the pitfalls one
can encounter if assuming that peculiar RSTs necessarily
reflect traffic control.
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A The Complete Detector Toolbox

For a more precise description of our toolbox, we in-
troduce some terminology. Each detector works on a per-
connection basis. A connection consists of two sequences
of packets, one per direction: the originator sends packets
(p1, p2, . . ., pn) and the responder sends (p1, p2, . . ., pm).
As much of our discussion is symmetric in terms of di-
rectionality, here we consider only detection of originator-
side activity. We indicate a packet’s TCP flags by writing
pflags, where flags is a subset of {S,A, F,R} correspond-
ing to which of SYN, ACK, FIN, and RST are set. We use
pD to indicate a data packet (which will have ACK set, but
not SYN, FIN, or RST). seq(p) is the sequence number of
packet p; ack(p) the ACK number; len(p) the TCP payload
length; and time(p) the packet’s timestamp. When we com-
pare sequence/ack numbers, we do so in accordance with
TCP’s sequence space (e.g., taking 32-bit wrap-arounds into
account). τ(i) yields the largest index j so that time(pi) >

time(pj), pinpointing the most recent packet (relative to pi)
in the opposite direction. Finally, for easier notation we de-
fine a predicate earlier(p, flags, [same-dir‖opp-dir]), which
is true if and only if there exists a packet earlier than p, sent
by either the same endpoint (same-dir) or the opposite one
(opp-dir), that has one of the specified flags set. If the di-
rection is omitted, the predicate holds if such a packet has
been seen in either direction. Using this terminology, Ta-
ble 3 provides the precise definition for our detectors.

B Open-Source Injector Implementations

Although we did not have access to the tools/devices we
detected in our datasets, there are open-source RST injec-
tors available that we studied: two separate plug-ins for this
task that come with the Snort NIDS [24]; the rst utility
that comes with the Bro NIDS [19]; and tcpkill, a stand-
alone tool for RST injection [25].

We find (as discussed below) that each tool crafts its
RST packets somewhat differently. While the TCP standard
mandates some packet header elements for injected RSTs
(e.g., IP addresses and ports), other fields exhibit more free-
dom. In Section 4 we systematically discuss the range of
choices available to an injector. Most injectors will send
packets to both endhosts, reversing the SYN and ACK fields
for the packets in the reverse direction.



Snort (as of version 2.8.1) has two plugins able to per-
form RST injection. The older plugin, sp respond sends
a single packet in each direction with a random IPID, a
random TTL, and zero window size. The newer plugin,
sp respond2 sends by default 3 RSTs to each endpoint. In
each it sets the TTL to one of four values (depending on
the triggering packet) and selects a random IPID. The first
RST is initialized with the current SEQ number, with sub-
sequent RSTs increasing the ACK number by half the TCP
window size, but not incrementing the sequence number.
Although sp respond2 has the same basic logic bug as the
Bezeq injector of incrementing the ACK instead of the SEQ
field, the different ACK increment and constant IPID for
the Bezeq injector suggest that these are independent im-
plementations.

The Bro NIDS comes with an external tool, rst, which
takes the connection’s 4-tuple as well as the most recently
observed sequence numbers as arguments. The injected
RSTs have a TTL of 255, IPID and window size of 0, and
the SEQ and ACK value from the arguments. The tool gen-
erates a controllable number of RSTs in each direction; if
sending more than one, then it also inserts fake data pack-
ets with rising sequence numbers in between to attempt to
advance the sequence point if the first RST is ignored, with
each data packet is followed by an in-sequence RST.

tcpkill ships as part of the dsniff toolbox and is the only
injector that operates in a single direction. It monitors a net-
work link via libpcap and selects a subset of TCP packets
as specified by a user-supplied BPF expression. For each
(non-control) packet, tcpkill sends (by default) three RSTs
back to the packet’s source address. When building the
RSTs, it sets the TTL to 64, picks a random IPID, keeps the
packet’s window size, and sets the sequence number to the
ACK number plus i times the window size, with i = 0..2
according to the number of the RST sent. It sets the RST’s
ACK number to zero.

Although all these injectors have potential fingerprints,
we did not notice any of them being used in a significant
amount.

C Real-World IPIDs and TTLs

In initial experiments aimed at understanding which of a
RST’s features an injection detector can rely on, we exam-
ined IPID and TTL values in depth before concluding that
they did not provide suitable criteria for detecting injected
RSTs.

As these fields can in principle be freely chosen by an
injector (see Section 4), we thought that at least a subset
of forged RSTs would be detectable by observing inconsis-
tent choices within individual flows. However, as is often
the case due to network traffic’s variability, we found that
these values are highly volatile even within normal network

traffic. To demonstrate this, we examined one week of our
research institute’s border traffic, starting on April 18, 2008.
The dataset included 4,033,204 flows, 25.0% of which had
more than 10 packets from either the source or the destina-
tion.

We started by testing whether the results on the preva-
lence of RST traffic from [1] held. Of all flows, about 5%
were terminated with an originator-side RST and 0.6% with
a responder-side RST. While lower than the 15% figure in
the original study, the general observation still holds: a sig-
nificant portion of connections are terminated via RSTs.

In general, we found that the TTLs of the RST packets
varied markedly from the previous data packet. Examin-
ing only RST-terminated flows, for about 7% of those ter-
minated by the originator the RST packet’s TTL differed;
this rose to 28% for responder-terminated flows. We might
expect such TTL differences to be minor, but in fact the
volatility was often very high, with TTL changes clustering
around 64, 96, 128, and 192, with a significant number of
seemingly arbitrary differences.3

We also confirmed that affected flows were not particu-
larly unusual. We randomly selected 200 flows where the
RST packets had a differing TTL, 20 flows where the client
was volatile and 20 where the server was volatile, in each
of 5 TTL ranges. Of these, only two flows appeared to be
unusual (these flows triggered our detector).

Thus, we conclude that the recommendation in [5] to ig-
nore RST packets with unusual TTLs will suffer from sig-
nificant false positives.

We also examined the IPID volatility on these reset con-
nections. For originator-terminated connections, 36% used
an increment consistent with the current flow; 34% were
four times the normal increment; a bit under 1% had a RST
IPID of 0; another 1% used the same IPID as the previ-
ous packet; a bit over 1% used twice the normal increment;
0.5% used three times the current increment; and 27% had
no apparent relation. We found a similar distribution for
responder-terminated connections. Thus, although we use
both TTL and IPID to fingerprint injectors (Section 7), we
do not find these to be effective distinguishers of injected
RST packets.

3We also observed a similar level of TTL volatility between SYNs and
data packets, as well as between data packets and FINs.



Name Description Definition

RST SEQ DATA Outdated RST following data. (pD
i , pR

i+1) , where
seq(pi+1) < seq(pi) + len(pi+1), and
time(pi+1) − time(pi) < T1, and
¬ earlier(pi, F |R)

DATA SEQ RST Data following a RST. (pR
i , pD

i+1) , where
seq(pi+1) + len(pi+1) > minj≤iseq(pR

j ), and
time(pi+1) − time(pi) < T1

RST SEQ CHANGE Multiple RSTs with increasing seq. (pR
i , pR

i+1) , where
seq(pi+1) > seq(pi) + 2, and
seq(pi+1) > maxj<iseq(pj), and
seq(pi+1) > maxj≤τ(i)ack(pj) + 2, and
time(pi+1) − time(pi) < T1, and
¬ earlier(pi, F ), and
¬ earlier(pi, R, opp-dir)

RST ACK CHANGE Multiple RSTs with increasing ack. (pR
i , pR

i+1) , where
ack(pi+1) /∈ {ack(pi), seq(pi), 0}, and
ack(pi+1) > maxj≤τ(i)seq(pj) + 2, and
time(pi+1) − time(pi) < T1, and
¬ earlier(pi, F ), and
¬ earlier(pi, R, opp-dir)

SYN RST RST after SYN. (pS
i , pR

i+1) , where
time(pi+1) − time(pi) < T2, and
¬ earlier(pi, any, opp-dir)

SYN ACK RST RST after SYN/ACK. (pSA
i , pR

i+1) , where
time(pi+1) − time(pi) < T2, and
¬ earlier(pi, any, opp-dir)

Table 3. Detector Toolbox. See Appendix A for terminology and Section 5 for the rationale behind
choosing T1 = 2 sec and T2 = 0.1 sec.


