
Enhancing Network Intrusion Detection
With Integrated Sampling and Filtering

Jose M. Gonzalez and Vern Paxson

International Computer Science Institute
Berkeley, California, USA

chema@icsi.berkeley.edu, vern@icir.org / vern@ee.lbl.gov

Abstract The structure of many standalone network intrusion detection systems
(NIDSs) centers around a chain of analysis that begins with packets captured by
a packet filter, where the filter describes the protocols (TCP/UDP port numbers)
and sometimes hosts or subnets to include or exclude from theanalysis. In this
work we argue for augmenting such analysis with an additional, separately fil-
tered stream of packets. This “Secondary Path” supplementsthe “Main Path” by
integrating sampling and richer forms of filtering into a NIDS’s analysis.
We discuss an implementation of a secondary path for the Bro intrusion detection
system and enhancements we developed to the Berkeley PacketFilter to work
in concert with the secondary path. Such an additional packet stream provides
benefits in terms of both efficiency and ease of expression, which we illustrate
by applying it to three forms of NIDS analysis: tracking verylarge individual
connections, finding “heavy hitter” traffic streams, and implementing backdoor
detectors (developed in previous work) with particular ease.

1 Introduction

The structure of many standalone network intrusion detection systems (NIDSs) centers
around a chain of analysis that begins with packets capturedby a packet filter [21,18].
The filter reduces the volume of the stream of packets to analyze by specifying which
protocols (TCP/UDP port numbers) and sometimes hosts or subnets to include or ex-
clude from the analysis. Such filtering can prove vital for operating a NIDS effectively
in a high-volume environment [5].

In addition, modern NIDS do not analyze isolated packets butinstead perform in-
spection at different layers (network/transport/application), which requires maintaining
large quantities of state in order to reassemble packet streams into byte streams and then
parse these into the corresponding Application Data Units (ADUs). A NIDS may there-
fore need to store an indefinite amount of per-connection data for an indefinite amount
of time, including both ADU contents and also network- and transport-layer contents
for resilience to evasions based on stack or topology ambiguities [19,18].

In this work we propose augmenting a NIDS’s analysis with an additional, sepa-
rately filtered stream of packets. This “Secondary Path” supplements the “Main Path”
by integrating sampling and richer forms of filtering into a NIDS’s analysis. We argue
that while many forms of NIDS analysis require the traditional deep-and-stateful pro-
cessing path, for other forms of analysis we can trade off isolated packet processing in

2

exchange for significant efficiency gains. The Secondary Path complements a NIDS’s
main analysis by providing a lightweight, stateless, packet-capture processing path.

The power of Secondary Path processing depends critically on the power of the fil-
tering mechanism that drives it. To this end, we develop two enhancements to the popu-
lar Berkeley Packet Filter (BPF; [16]) that allow analyzersto “cherry-pick” the packets
they are interested in. We can use the first enhancement, introducing randomness as a
first-class object in BPF, for in-kernel random sampling of packets, connections, hosts,
host pairs, or such. The second enhancement provides richerin-kernel filter control
mechanisms, including a lightweight form of persistent state. We do so by adding to
BPF fixed-size associative tables plus a set of hash functions to index them.

After presenting these enhancements, we then present threeexamples of additional
analysis enabled by the Secondary Path: tracking large connections, identifying “heavy
hitter” flows, and incorporating backdoor detection algorithms developed in previous
work. While we can easily implement each of these by themselves in a standalone fash-
ion, the Secondary Path allows us to unify their expression using a single mechanism,
one that also incorporates the analysis they provide into the broader context of a NIDS’s
full analysis.

Section 2 introduces related work. In Section 3 we discuss our enhancements to
BPF and in Section 4 our implementation of a Secondary Path for the Bro intrusion
detection system [18]. Section 5 presents the example applications mentioned above,
and Section 6 concludes.

2 Related Work

The field of network intrusion detection has an extensive literature. In particular, nu-
merous signature-based, packet-oriented approaches suchas provided by Snort [21] are
based in essence upon various forms of packet filtering. Here, we confine ourselves to
the subset closely related to the notion of incorporatingadditionalpacket processing
into a NIDS, or extending packet filters for enhanced performance.

Earlier work has discussed the central role which packet filters can play in high-
performance network intrusion detection [18,21]. More recent work has also explored
precompiling a set of filters that a NIDS can then switch amongdepending on its work-
load [15,5] or upon detecting floods. To our knowledge, however, supplementing a
NIDS’s primary filter with an additional, quite different filter, has not been previously
explored in the literature.

Related to our packet filter extensions, MPF [25] explored adding state to BPF [16]
in order to process IP fragments. xPF added persistent memory to BPF in the form of
an additional memory bank that BPF filters can switch to and from [12]. This work
also removed BPF’s prohibition of backward jumps, with an intent to enabling packet
filters to perform in-kernel analysis (such as computing connection round-trip times) as
opposed to simply filtering. xPF’s persistent state is similar in spirit to what we have
added to BPF, though implemented at a lower level of abstraction, which can provide
greater flexibility but at a cost of requiring many more BPF instruction executions,
and permitting arbitrary looping in BPF programs. mmdump introduces a method to
construct dynamic filters in order efficiently to support capture of multimedia sessions

3

for which some of the connections use dynamic ports [24]. Finally, some firewall packet
filters (Linux Netfilter, BSD pf) offer similar functionality to that of the packet filter
extensions, namely randomness and some state control.

The example applications described in Section 5 have roots in previous work. The
problem of detecting large connections is similar in spiritto previous work on “sample
and hold” [9], though our approach exploits the transport sequencing structure of TCP
rather than enhancing random sampling. (We note that we can combine our random-
number and associative table enhancements to BPF to implement sample-and-hold.)
Our “heavy hitters” detector, which aims to capture the quantitative importance of dif-
ferent granularities of traffic, was inspired byAutofocus, a tool that automatically char-
acterizes network traffic based on address/port/protocol five-tuples [8]. Finally, we take
our backdoor detectors from [26]. We use them as examples of the ease-of-expression
that the Secondary Path can provide.

3 New Packet Filter Mechanisms

In this section we introduce two extensions to BPF that bolster the expressive power of
the Secondary Path while minimizing the performance overhead of the additions. For
details and more discussion, including performance experiments, see [11].

3.1 Random Number Generation

When dealing with large volumes of network traffic, we can often derive significant
benefit while minimizing the processing cost by employing sampling. Generally, this
is done on either a per-packet or per-connection basis. BPF does not provide access
to pseudo-random numbers, so applications have had to rely on proxies for random-
ness in terms of network header fields with some semblance of entropy across packets
(checksum and IP fragment identifier fields) or connections (ephemeral ports). These
sometimes provide acceptable approximations to random sampling, but can also suffer
from significant irregularities due to lack of entropy or aliasing; see [11] for an analysis.

To address these problems, we added pseudo-random number generation to BPF.
We do so by providing a new instruction that returns a pseudo-random number in a
user-provided range. We also provide high-level access to these numbers via a new
“random” keyword for tcpdump’s expression syntax. The semantics of the new term
are straightforward: “random(x)” yields a random number between 0 andx− 1, so, for
example, the expression “random(3) = 0” returns true with probability 1 in 3.

Our implementation provides two different PRNGs, a fast-but-not-strong Linear
Congruential Generator [17], and a slower-but-stronger random number generator
based on RC4 [22]. We also permit the user to seed the PRNG directly to enforce
deterministic behavior, useful for debugging purposes.

The main implementation difficulties relate to BPF’s optimizer, which considers
itself free to arbitrarily reorder terms. Doing so can change the expression semantics
when using “random”. This problem also arises when using persistent state (see next
section), as an insert may affect a later retrieve. Moreover, BPF is keen to collapse
two equivalent subexpressions with no dependencies, whichwould cause two calls to

4

“random” with the same value ofx to produce the same result. We avoid these problems
by modifying the optimizer to forbid reordering around “random” terms or hash table
accesses, and by marking all “random” instructions differently so none are viewed as
equivalent [11].

3.2 Persistent State

The second modification to BPF consists of the introduction of persistent state, i.e., a
mechanism for storing and recovering information across packets. Our implementation
does so by providing multiple fixed-size associative arrays, which can be indexed using
a subset of packet header fields as hash keys, or, more generally, any values we can
compute using BPF expressions. For each associative array,the user can specify the key
length, value (yield) length, and table size. Access is via functions to insert, retrieve, and
delete entries.

Associative arrays permit efficient, dynamic, fine-grainedcontrol of the filter pro-
gram. For example, we can configure an associative array to keep one bit per connection
to indicate whether to filter packets from the connection in or out (essentially a Bloom
filter [1]). Testing this for the presence of a given packet’sconnection isO(1) (effi-
ciency), and adding or deleting elements in the table requires only an insert or a delete
operation (dynamic access).

A key issue, however, is sizing the arrays. We need to limit the size of each array
lest they grow to consume too much kernel memory; particularly problematic if an
attacker can cause the filter to continually add new entries.One possibility would be to
allow dynamic expansion of arrays up to a given point, using incremental resizing as
discussed in [5] to avoid processing spikes within the kernel as we expand an array.

This introduces considerable implementation complexity,however, so currently we
keep the arrays fixed-size. Doing so exacerbates a differentproblem, however: when
inserting a new entry, a collision in the hash table may require eviction of an existing
tuple without the BPF program explicitly requesting it, violating the consistency of the
state used by the program. We diminish this effect by providing pseudo-random hash
functions (to resist adversaries) and by introducing set-associativity in the tables, as
described below. However, these do not provide a complete solution, so for now we
must restrict ourselves to those applications for which we can tolerate such evictions.

Associative tables require hash functions to index them, and different applications
call for different tradeoffs in the properties of these functions. Our implementation pro-
vides three function types: (a) LCG [17], a simple, fast function, but prone to worst-
case behavior with either degenerated workloads or algorithm complexity attacks [3];
(b) MD5, slow but with cryptographic strength [20]; and (c) UHASH, a universal hash
function that provides less strong guarantees than cryptographic hash functions, but
runs much faster [2].

In addition, the user can specify for each table its set-associativity, i.e., how many
different keys reside at each hash location in the table. Thehigher the set-associativity,
the fewer forced evictions, but also the more processing required per lookup.

We provide two types of access to the associative arrays: from within BPF pro-
grams, which lets us maintain filtering decisions across packets (such as for random

5

sampling on a per-connection basis, in order to remember which connections we pre-
viously selected), and directly from user-level (viaioctl, though the implementation of
this is not complete yet). This latter allows us to flexibly and quickly tailor packet cap-
ture in response to changing conditions. For example, we canuse a filter that consults
a table indexed by connection 5-tuples (addresses, ports, transport protocol) to capture
packets corresponding to specific connections of interest,and might update this dynam-
ically when our user-level analysis parses an FTP control channel to find the dynamic
port negotiated for a pending FTP data connection.

User-level control also facilitates downloading very large tables; for example, a list
of 1000s of botnet addresses for which we wish to capture traffic involving any of
them. This application is infeasible using unmodified BPF. Even if the in-line BPF code
to check so many addresses fit within the space allowed for BPFprograms, theO(N)
processing for BPF to scan such a list would be prohibitive. Similarly, for unmodified
BPF, if an application needs to make any change to its filter (e.g., add a new connection
or delete an existing one), it must create the new filter from scratch, write the tcpdump
expression, compile and optimize it, and then send it to the kernel for the latter to check
and install.

Here is an example1 of a tcpdump filter that checks whether the connection asso-
ciated with a given packet is in table #2 (using the LCG hash function), and, if not
and the packet represents an initial SYN (no ACK), randomly samples the packet with
probability 1% by adding it in that case to the table (with a yield value of 1):

(lookup(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcp[2:2]))) or
(lookup(2, hash_lcg(ip[16:4], ip[12:4], tcp[2:2], tcp[0:2]))) or
((tcp[13] & 0x12 = 0x2) and

(random(100) = 1) and
(insert(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcp[2:2]), 1)))

Note that this code is imperfect: if the sender retransmits the initial SYN, we will
generate a fresh random number, increasing the probabilitythat we sample the connec-
tion. We could avoid this problem by always inserting connections into the table and
using different yield values to indicate whether or not to subsequently sample packets
belonging to the connection. The code will always be imperfect, however, since the
“insert” might cause eviction of a previous connection due to a collision. In general, we
cannot use our associative tables for bullet-proof analysis, but only for often-correct-is-
good-enough analysis (with which our example applicationsbelow conform).

4 Introducing a Secondary Path for Packet Processing

The structure of a stateful NIDS typically consists of (a) capturing traffic from one
or several packet-capture devices, (b) checking network- and transport-layer head-
ers, (c) reassembling application-layer contents (ADUs),and (d) dispatching the con-
tents to an application-specific analyzer. We call this mechanism the “Main Path.” The

1 The expression begins with two “lookup”’s to test both directions of the connection for presence in the
table. Clearly, it would be useful to introduce some tcpdumpidioms for some of the common constructions.

6

connection-oriented nature of the Main Path permits hidingthe details of header verifi-
cation and reassembly from the application-layer analyzers.

The main drawback of designing for full, application-oriented analysis is that the
traffic processed by the Main Path must correspond to full connections. This limits
substantially the use of input-volume control techniques (sampling or filtering)—which
may be highly desirable for performance reasons—to those that we can express on a
per-connection basis (such as filtering on elements of the connection 5-tuple).

While we view full-payload analysis as a must for sound, deep, stateful analysis,
for some forms of analysis we can obtain complementary information much more effi-
ciently by the analysis of isolated packets. In our architecture, we obtain this informa-
tion in a fashion independent from the Main Path, and use it tosupplement or disam-
biguate the analysis produced by the latter.

The “Secondary Path” provides an alternate channel for acquiring packets. It works
by capturing packets from one or several packet-capture devices in addition to those
used by the Main Path, and dispatching the packets to corresponding analyzers without
any previous analysis.

It is very important to note that the Secondary Path is an alternate channel: it pro-
vides a stateful NIDS with a means to obtain information about the monitored traffic
whose generation using the Main Path is either inefficient orambiguous. It does not aim
to substitute for the Main Path, but to complement it.

Our main contribution regards not the analysis by a NIDS of isolated (e.g., sampled)
packets, but rather the integration of the results from suchanalysis with a NIDS’s reg-
ular, full-payload analysis. In our case, this integrationis facilitated by the flexible and
powerful state capabilities of Bro. We use the Secondary Path to distill information that
when solely employing Primary Path processing would be expensive (due to volume)
or difficult to obtain (due to the Primary Path’s initial filtering not capturing the neces-
sary information). For example, we can use the Secondary Path to spot flooding sources
or victims via random sampling, which can then inform load-shedding decisions made
by the Primary Path [5]. For a number of types of analysis, Secondary Path processing
can be quite cheap because we can perform it at a much lower rate than Primary Path
processing, such as illustrated in the example applications discussed in § 5.

It is important to stress that the information distilled from the Secondary Path is
typically limited to identifying subsets of traffic that areeither large enough to ensure
they can be detected by sampling, or distinctive enough to ensure they can be spotted
using static filtering. The Secondary Path is therefore not atool to detect specific attacks
(unless their signature is distinctive enough as to permit detection by packet filtering),
but a means for gathering additional information or context.

One significant feature of the Secondary Path is its simplicity. It serves analyzers
isolated packets instead of full connections. Because it does not carry out reassembly,
its can operate in a stateless fashion, unless the analyzer itself chooses to maintain state.
However, an important, negative consequence of this stateless operation is that analysis
through the Secondary Path is often susceptible to evasion due to the inability to detect
or resolve traffic ambiguities [19,18]. Similarly, Secondary Path analyzers must exercise
care when using transport- or application-layer contents,as these may be only partially
present, or arrive out of order or even duplicated.

7

Table 1 summarizes the main differences between the Main Path and the Secondary
Path.

Main Path Secondary Path
Processing performedL3, L4 analysis none
Objects provided L7 ADUs L3 packets
L4 reassemble yes no
Memory stateful stateless
Filtering flexibility port-, address-oriented rich when coupled with stateful

BPF (see § 3.2)
Sampling connection-oriented onlyrich when coupled with randomness

in BPF (see § 3.1)

Table 1.List of Differences between the Main and Secondary Paths

4.1 Filtering

A major benefit of the Secondary Path is its potential efficiency, with its key application
being to tasks for which only a low volume of traffic will matchthe filters it employs.
Such filters can be in terms of network- and/or transport-layer headers, which are readily
supported by packet capture mechanisms such as BPF. Note however that transport-
layer based filtering is less reliable, as TCP headers can be divided across multiple IP
packets. On the other hand, in the absence of adversary evasion, such fragmentation is
generally rare [23].

The filter can also include application-layer contents. While BPF limits filtering
to matching bytes at essentially fixed positions, modern application-layer protocols
sometimes use headers with distinctive contents in specificlocations [26]. For exam-
ple, HTTP request headers start with one of seven different method strings (“GET”,
“POST”, etc.), and HTTP response headers start always with the string “HTTP/” [10].
We could thus filter on the first 5 bytes of TCP payload being “HTTP/” to capture with
high probability exactly one packet per HTTP transaction, since HTTP entity headers
are typically sent in a different packet than the previous entity body. Such an analyzer
can also access HTTP responses seen using non-standard ports.

Due to the fixed-location limitation of packet filtering, andthe stateless condition of
the Secondary Path, application-layer contents provide less leverage than network- or
transport-layer contents, and more vulnerability to attacker manipulation. For example,
if an attacker wants to avoid detection of an HTTP connection, they can split the first
5 bytes across two TCP packets; if they want burden a NIDS trying to detect HTTP
traffic, they can cheaply forge faked packets with those 5 bytes at the beginning.

4.2 Sampling

A particularly handy form of of filtering in terms of thinningthe volume of traffic the
NIDS must process for some types of analysis concerns sampling. Using our extensions

8

to BPF presented in the previous section, we can do this on (for example) either a per-
packet or per-connection basis. When deciding which to use,it is important to bear in
mind that packet-based sampling generates a completely unstructured traffic stream, but
for which many properties remain related to those of the original stream [6,7].

An example of the utility that sampling can provide is in efficiently detecting “heavy
hitters,” i.e., connections, hosts, protocols, or host pairs that account for large subsets
of all the traffic, or that have peculiarly large properties (such as very high fan-out).
Given unbiased sampling (which our BPF “random” operator provides, unlike previous
approaches based on masking out header bits), a heavy hitterin the full traffic stream is
very likely also a heavy hitter in a sampled traffic stream. Weexplore this further as an
example application in Section 5.2.

4.3 Operation

The operation of the Secondary Path is fairly simple: analyzers provide a packet fil-
ter expression that defines the traffic subset for which they wish to perform isolated
packet analysis. The Secondary Path creates a filter resulting from the union of all the
analyzer filters (Secondary Filter), and opens a packet filter device with it. When a
packet matches the common filter, the Secondary Path runs each particular analyzer fil-
ter against the packet, demultiplexing the packet to all analyzers whose filters match the
packet.

One subtlety arises, however, due to the fact that during Secondary Path operation
we actually run each analyzer filter twice (first as a part of the full Secondary Filter,
second to see whether the analyzer’s particular filter matched). This “re-filtering” does
not present problems for stock BPF filters, since they are idempotent—running a filter
F over a set of packets already filtered byF does not cause the rejection of any packet.
However, when using our BPF extensions for randomness and maintaining state, filters
are no longer idempotent.

This generally will not present a problem for filters that maintain state, since two
copies of the state exist, one in the kernel used for the initial filtering (i.e., the matching
of the entire Secondary Filter), and the other at user-levelused for the demultiplexing.
The latter will be brought into sync with the former when we rerun the filter.

However, the random operator remains problematic. Our current implementation
maintains a separate packet filter device for each filter thatuses “random”, so that we
do not require re-filtering to demultiplex what the filter captures. A drawback of doing
so is that the BPF optimizer can no longer factor out common elements of filters that
use “random”, which may significantly degrade performance if we have multiple such
filters. A second drawback is that the OS often limits the number of packet filter devices
available.

An alternate approach would be to modify BPF to track which elements of a filter
have been matched and to return this set when a packet is accepted. Designed correctly,
this would allow optimization across all packet filters (including the one used by the
Main Path), but is a significant undertaking given that the notion of “element of a filter”
becomes blurred as BPF’s optimizer rearranges and collapses terms within a filter.

9

4.4 Implementation

We have implemented the Secondary Path in Bro, a stateful, event-oriented NIDS [18].
Bro’s analyzers are structured around a Main Path such as we have outlined in this paper.
We added a new script-accessible table,secondary_filters, which is indexed by
a packet filter (expressed as a string) and yields a Bro event handler for packets the filter
matches.

We open the interface(s) being monitored twice, once for theMain Path and once
for the Secondary Path. The Secondary Filter is the OR’ed juxtaposition of all the filter
indices specified forsecondary_filters. Figure 1 shows an example Bro script.
It uses the secondary filter to invoke theSFR_flag_event event handler for every
packet matching the expression “tcp[13] & 7= 0!”, i.e., any TCP packet with any of the
SYN, FIN, or RST flags set.pkt_hdr is a Bro record type representing the network-
and transport-layer headers of a packet.

This particular filter can be used to track connection start and stop times, and hence
duration, participating hosts, ports, and (using differences in sequence numbers) bytes
transferred in each direction. The few lines shown are all that is required to then further
analyze these packets using Bro’s domain-specific scripting language.

redef secondary_filters += { ["tcp[13] & 7 != 0"] = SFR_flag_event };

event SFR_flag_event(filter: string, pkt: pkt_hdr)
{
Perform analysis on the packet header fields given in "pkt" here.
}

Figure 1. Secondary Path Use Example

4.5 Performance

In this section we briefly assess the performance of our Secondary Path implementa-
tion.2 Our goal is to compare the cost within a NIDS implementation of the infrastruc-
ture required to implement the Secondary Path (dispatchingplus internal piping) versus
the cost of the packet filter processing. To do so, we use the Secondary Filter to trigger
a null event handler, i.e., an event that does not carry out any work and returns as soon
as it is invoked.

The processing cost depends not only on the number of packetsthat raise the Sec-
ondary Path event, but also on the number of packets than do not raise the Secondary
Path event but still must be read by the kernel and eventuallydiscarded by the Secondary
Filter.

2 Unless otherwise noted, all experiments described in this paper were carried out using an idle single-
processor Intel Xeon (Pentium) CPU running at3.4 GHz, with 512 KB cache and 2 GB of total memory,
under FreeBSD 4.10. All times reported are the sum of user andsystem times as reported by the OS.
We ran each experiment 100 times, finding the standard deviation in timings negligible compared to the
average times.

10

Figure 2 shows the corresponding performance for differentvolumes of traffic and
different capture ratios (proportion of packets that matchthe filter). Note that both axes
are logarithmic.

1k 10k 100k

fixed, per-trace cost
variable cost (capture 1:1 packets)

variable cost (capture 1:10 packets)
variable cost (capture 1:100 packets)

variable cost (capture 1:1000 packets)

tim
e

(s
ec

)
100

10

1

0.1

0.01

0.001

trace packets
100 1 M 10 M

Figure 2. Performance of the Secondary Path with an Empty Event

The thick line represents the cost of rejecting all packets with the Secondary Filter.
We call this cost “fixed”, as it is independent of the number ofpackets accepted by the
Secondary Filter. It is the sum of two effects, namely (a) thefixed cost of running Bro,
and (b) the cost of accessing all the packets in the stream andrunning the Secondary
Filter over them. It is clear that the first effect is more important for small traces (the flat
part to the left of the 10K packet mark), while the second effect dominates with large
traces.

The dashed and dotted lines show the additional cost of emptyevent handlers when
a given ratio of the packets match the filter. Not surprisingly, we see that this variable
cost is proportional to the ratio of packets matching the filter: the variable cost of sam-
pling, say,1 in 10 packets is about10 times larger than the variable cost of sampling
1 in 100 packets. We also see that the fixed cost of running the Secondary Path is sim-
ilar to the variable cost of capturing1 in 100 packets. This means that provided the
analysis performed on captured secondary packets is not tooexpensive, whether the
detector’s filter matches say 1 in 1,000 packets, or 1 in 10,000 packets, does not affect
the Secondary Path overhead. When the ratio approaches 1 in 100 packets, however, the
Secondary Path cost starts becoming appreciable.

5 Applications

In this section we present three examples of analyzers we implemented that take advan-
tage of the Secondary Path: disambiguating the size of largeTCP connections (§ 5.1),

11

finding dominant traffic elements (§ 5.2), and easily integrating into Bro previous work
on detecting backdoors (§ 5.3; [26]). The first of these provides only a modest enhance-
ment to the NIDS’s analysis, but illustrates the use of a fairly non-traditional style of
filter. The second provides a more substantive analysis capability that a NIDS has dif-
ficulty achieving efficiently using traditional main-path filtering. The third shows how
the Secondary Path opens up NIDS analysis to forms of detection that we can readily
express using some sort of packet-level signature.

Unless otherwise stated, we assess these using a trace (named tcp-1) of all TCP
traffic sent for a 2-hour period during a weekday working hourat the Gbps Internet
access link of the Lawrence Berkeley National Laboratory (LBNL). The trace consists
of 127 M packets, 1.2 M connections, and 113 GB of data (averaging 126 Mbps and
892 bytes/packet).

5.1 Large Connection Detection

A cheap mechanism often used to calculate the amount of traffic in a stateful (TCP)
connection consists of computing the difference between the sequence numbers at the
beginning and at the end of a connection. While this often works well, it can fail for
(a) connections that do not terminate during the observation period, or for which the
NIDS misses their establishment, (b) very large (greater than 4 GB) connections that
wrap around the TCP sequence number (note that TCP’s operation allows this), or
(c) broken TCP stacks that emit incorrect sequence numbers,especially within RST
segments.

As we develop in this section, we can correct for these deficiencies using a sec-
ondary filter. In doing so, the aim is to augment the main path’s analysis by providing
a more reliable source of connection length, which also illustrates how the Secondary
Path can work in conjunction with, and complement, existingfunctionality.

Implementation Our large-connection detector works by filtering for several thin,
equidistant, randomly-located stripes in the sequence number space. A truly large flow
will pass through these stripes in an orderly fashion, perhaps several times. The detector
tracks all packets that pass through any of the stripes, counting the number of times a
packet from a given flow passes through consecutive regions (K).

Figure 3 shows an example. The4 horizontal stripes (sA, sB, sC , andsD) represent
the parts of the TCP sequence number space where the detector“listens” for packets.
As the TCP sequence number range is 4 GB long, each stripe is separated 1 GB from
the next one.

The thick diagonal lines depict the time and TCP sequence number of the packets
of a given TCP connection. The dotted, vertical lines represent events in the Secondary
Path. Note that we could use a different number of lines, and lines with different width
(see below). If the detector sees a connection passing through 2 consecutive stripes
(K = 1), it knows that the connection has likely accounted for at least 1 GB.

We locate the first stripe randomly to prevent an adversary from predicting the sec-
tions of monitored sequence space, which would enable them to overwhelm the detector
by sending a large volume of packets that fall in the stripes.The remaining stripes then

12

4 GB

sA

sB

sC

sD

0
time

seq number

Figure 3. Large Connection Detector Example

come at fixed increments from the first, dividing the sequencespace into equidistant
zones.

Our detector always returns two estimates, a lower and an upper limit. If a connec-
tion has been seen in two consecutive stripes, the estimatedsize may be as large as the
distance between 4 consecutive stripes, or as small as the distance between 2 consecu-
tive stripes. In the previous example, we know that the connection has accounted for at
least 1 GB and at most 3 GB of traffic.

We then use these estimates to annotate the connection record that Bro’s main con-
nection analyzer constructs and logs. This allows us to readily integrate the extra infor-
mation provided by the detector into Bro’s mainstream analysis.

One issue that arises in implementing the detector is constructing the tcpdump ex-
pression, given that we want to parameterize it in both the number of stripes and the
width of the stripes. See [11] for details on doing so, and thecurrent Bro distribution
(from bro-ids.org) for code in the filepolicy/large-conns.bro. Note that the number of
stripes does not affect the complexity of the tcpdump filter,just the computation of the
bitmask used in the filter to detect a sequence number the falls within some stripe.

A final problem that arises concerns connections for which the sampled packets
do not progress sequentially through the stripes, but either skip a stripe or revisit a
previous stripe. These “incoherencies” can arise due to network reordering or packet
capture drops. Due to limited space, we defer discussion of dealing with them to [11].

Evaluation We ran the Large Connection Detector on thetcp-1trace, varying the num-
berS of stripes. We used a fixed stripe-size of 2 KB; stripe size only plays a significant

13

co
nn

ec
tio

n
si

ze
(L

7
by

te
s)

02 GB

2.5 GB

3 GB

3.5 GB

4 GB

4.5 GB

number of stripes
4 16 64 256 1024 4096 16384 65536

ru
n

tim
e

(s
ec

)

200

400

600

800

1000

1200

upper estimation
real size

average estimation
lower estimation

running time (stripe: 2 KB)

Figure 4. Detector Estimation for a Large Connection

role in the presence of packet filter drops (see [11] for analysis), but for this trace there
were very few drops.

Figure 4 shows for the largest connection in the trace (3.5 GBapplication-layer
payload), its real size, the upper and lower estimations reported by the detector, and the
average of the last two (theaverage estimation), as we varyS. The lower line shows
the running time of the large connection detector. (Rerunning the experiment with wide
stripes, up to 16 KB, reported very similar results.) All experiments ran with the Main
Path disabled, but we separately measured its time (with no application-layer analysis
enabled) to be 890 sec. Thus, the running time is basically constant up toS = 8192
stripes, and a fraction of the Main Path time. Finally, we verified that as we increase
the number of stripes, our precision nominally increases, but at a certain point it actu-
ally degrades because of the presence of incoherences (non-sequential stripes); again,
see [11] for discussion.

5.2 Heavy Hitters

The goal of the “heavy hitters” (HH) detector is to discover heavy trafficmacroflows
using a low-bandwidth, pseudo-random sampling filter on theSecondary Path, where
we define a macroflow as a set of packets that share some subset of the 5-tuple fields
(IP source and destination addresses, transport-layer source and destination ports, and
transport protocol). This definition includes the high-volume connections (sharing all
5 fields), but also other cases such as a host undergoing a flood(all packets sharing
the same IP destination address field) or a busy server (all packets sharing a common
IP address and port value). The inspiration behind assessing along different levels of
granularity comes from theAutoFocustool of Estan et al [8].

As indicated above, macroflows can indicate security problems (inbound or out-
bound floods), or simply inform the operator of facets of the “health” of the network

14

in terms of the traffic it carries. However, if a NIDS uses filtering on its Main Path
to reduce its processing load, it likely has little visibility into the elements compris-
ing significant macroflows, since the whole point of the Main Path filtering is toavoid
capturing the traffic of large macroflows in order to reduce the processing loads on the
NIDS. Hence the Secondary Path opens up a new form of analysisdifficult for a NIDS
to otherwise efficiently achieve.

The HH detector starts accounting for a traffic stream using the most specific gran-
uarity, i.e., each sampled packet’s full 5-tuple, and then widens the granularity to a set
of other, more generic, categories. For example, a host scanning a network may not
have any large connection, but the aggregate of its connection attempts aggregated to
just source address will show significant activity.

Note that HH differs from the large connection detector discussed in Section 5.1 in
that it finds large macroflows even if none of the individual connections comprising the
macroflow is particularly large. It also can detect macroflows comprised of non-TCP
traffic, such as UDP or ICMP.

table namespecificitydescription

saspdadp 4 connection (traditional 5-tuple definition)
saspda__ 3 traffic between a host and a host-port pair
sa__da__ 2 traffic between two hosts
sasp____ 2 traffic to or from a host-port pair
sa____dp 2 traffic between a host and a remote port
sa______ 1 traffic to or from a host
__sp____ 1 traffic to or from a port

Table 2.Tables Used by the Heavy Hitters Detector

Operation HH works by clustering each pseudo-random sample of the traffic it ob-
tains at several granularities, maintaining counts for each corresponding macroflow.
Whenever a macroflow exceeds a user-defined threshold (e.g.,number of packets, con-
nections, or bytes), HH generates a Bro event reporting thisfact and removes the cor-
responding traffic from the coarser-grained table entries.Note that more specific tables
generally use lower thresholds than more generic ones.

Table 2 shows the tables maintained by HH. Thespecificityfield orders the tables
from more specific (higher numbers) to more general. The mnemonicssa stands for
“source address,”dp for “destination port,” etc. We use Bro’s state management ca-
pabilities to automatically remove table entries after a period of inactivity (no read or
write).

Output Table 3 shows an example of a report generated by HH (with anonymized net-
work addresses). The first 5 lines were produced in real-timeat the given timestamp.
The remaining lines are produced upon termination Theflagsfield states whether the

15

Time Macroflow Description Pkts Bytes Event Flags

1130965527164.254.132.227:* <-> *:* 986 K 823 MB large srcinternal
1130969123*:* <-> 164.254.133.198:80/tcp 1.07 M 654 MB large dstinternal
1130990210*:* <-> 164.254.133.194:* 1.12 M 357 MB large dstinternal
113099215354.75.124.72:19150/tcp <-> 164.254.133.146:*977 K 79 MB large flow
1130999627164.254.132.247:80/tcp <-> *:* 1.02 M 781 MB large srcinternal

164.254.132.227:* <-> *:* 1.90 M 1.47 GB large srcinternal
164.254.133.198:80/tcp <-> *:* 1.84 M 1.22 GB large srcinternal
164.254.132.247:80/tcp <-> *:* 1.21 M 968 MB large srcinternal
71.213.72.252:80/tcp <-> 164.254.133.56:* 498 K 522 MB large flow
:80/tcp <-> 164.254.132.88: 459 K 479 MB large dstinternal
: <-> 164.254.133.194:* 1.35 M 427 MB large dstinternal

Table 3.Example Report From Heavy Hitters Detector

reported host belongs to the list of hosts belonging to the internal network being mon-
itored (a user-configurable parameter); it is omitted for macroflows whose granularity
includes both an internal and an external host.

Finally, we note that we can extend this sort of analysis using additional macroflow
attributes, such as packet symmetry [14] or the ratio of control segments to data seg-
ments. Due to limited space, we defer discussion of these to [11].

5.3 Backdoor Detection

Another example of analysis enabled by the Secondary Path isour implementation of
previous work on using packet filters to efficiently detect backdoors [26]. That work
defines a backdoor as an application not running on its standard, well-known port, and
proposes two different mechanisms to detect these.

The first mechanism consists of looking for indications of interactive traffic by an-
alyzing the timing characteristics of small (less than 20 bytes of payload) packets. This
approach comes from the intuition that interactive connections will manifest by the
presence of short keystrokes (large proportion of small packets) caused by human re-
sponses (frequent delays between consecutive small packets).

The second mechanism consists of extracting signatures of particular protocols
(SSH, FTP, Gnutella, etc.) and looking for instances of these on ports other than the
protocol’s usual one.

We implemented both approaches in Bro using our Secondary Path mechanism.
Doing so is quite simple, and provides an operational capability of considerable value
for integrating into Bro’s mainstream analysis.

Keystroke-based Backdoor DetectionBro already includes an implementation of the
“generic algorithm” for detecting interactive backdoors.In creating an implementation
based on the Secondary Path, our goals were increased ease-of-expression and perfor-
mance.

See [11] for details regarding our implementation. We verified its correctness by
comparing its results with that of the original detector. Asour evaluation trace,tcp-
1, had almost no backdoor-like interactive traffic (just someAOL Instant Messenger),

16

we checked how well each detector performed for discoveringthe trace’s well-known
interactive connections, namely SSH traffic. (The site no longer allows Telnet or Rlogin
traffic over the Internet.) We did so by removing 22/tcp from the list of well-known ports
where the detector does not carry any processing. We also hadto adjust the original
algorithm’s notion of “small” packet upwards from 20 bytes to 50 bytes due to how
SSH pads packets with small payloads.

Approach Run Time

Main Path, no analyzers 890 sec
Main Path-based generic backdoor analyzer +406 sec
Main Path, SP-based generic backdoor analyzer+289 sec
SP-based generic backdoor analyzer, no Main Path284 sec

Table 4.Performance of Generic Backdoor Detector, Main Path vs. Secondary Path

We measured four different configurations on thetcp-1 trace, as shown in Table 4.
The extra time incurred by the original detector is 406 seconds, while the extra time
incurred by the SP-based version is 289 seconds.

Signature-Based Backdoor Detection We also implemented the signature-based
backdoor detectors developed in [26], except we discarded the Rlogin and Telnet ones
because we have found from subsequent experience (running the detectors 24x7 for
several years at LBNL) they are too broad. For example, intcp-1, 50 K packets match
the Rlogin signature, and 92 match the Telnet one.

Again, we gain both ease-of-implementation and performance by using the Sec-
ondary Path. Regarding the former, Figure 5 shows full code for a Secondary Path
implementation to detect SSH backdoors.

Approach time

Main Path, no analyzers 890 sec
Main Path-based backdoor analyzer +769 sec
Main Path, Secondary Path-based backdoor analyzer+174 sec
Secondary Path-based backdoor analyzer only 327 sec

Table 5.Performance of Signature-Based Backdoor Detector

Regarding the latter, we ran four experiments using thetcp-1 trace, for which Ta-
ble 5 shows the corresponding performance. The extra cost caused by the original,
Bro-event-based backdoor detector implementation is 769 sec. In comparison, the Sec-
ondary Path implementation (which is basically several pieces of the form depicted in
Figure 5) adds only 174 sec. The final row shows that the analyzer by itself requires

17

more time than just the 174 sec, since it must also read the entire (very large) traffic
stream into user memory prior to filtering it, which for the third row has already been
done by the Main Path.

The following gobbledygook comes from Zhang’s paper:
const ssh_sig_filter = "

tcp[(tcp[12]>>2):4] = 0x5353482D and
(tcp[((tcp[12]>>2)+4):2] = 0x312e or tcp[((tcp[12]>>2)+4):2] = 0x322e)";

Don’t report backdoors seen on these ports.
const ignore_ssh_backdoor_ports = { 22/tcp, 2222/tcp } &redef;

event backdoor_ssh_sig(filter: string, pkt: pkt_hdr)
{
Discard traffic using well-known ports.
if (["ssh-sig", pkttcpsport] in ignore_ssh_backdoor_ports ||

["ssh-sig", pkttcpdport] in ignore_ssh_backdoor_ports)
return;

print fmt("%s SSH backdoor seen, %s:%s -> %s:%s", network_time(),
pktipsrc, pkttcpsport, pktipdst, pkttcpdport);

}

Associate the event handler with the filter.
redef secondary_filters += { [ssh_sig_filter] = backdoor_ssh_sig };

Figure 5. SSH Backdoor Detector Example

We might also consider coupling this detector with BPF statetables (Section 3.2)
to activate the Main Path when a backdoor uses a protocol thatthe NIDS knows how
to analyze. For example, if the analyzer detects an SSH connection on a non-standard
port, it could add a new entry to a BPF table that captures packets for particular connec-
tions, and label the traffic accordingly so that the Main Pathknows it must use its SSH
analyzer to process traffic from that connection. A significant challenge with doing so,
however, is the race condition in changing the filter’s operation, and the NIDS’s appli-
cation analyzer missing the beginning of the connection. Concurrent work by Dreger et
al pursues this functionality using a different approach [4].

Finally, we have explored extending this approach further to implement the P2P
Traffic Profiling scheme proposed by Karagiannis et al [13]. See [11] for discussion.

6 Conclusions

We have described the Secondary Path, an alternate packet-capture channel for sup-
plementing the analysis performed by a network intrusion detection system. The Sec-

18

ondary Path supports analyzers oriented towards analyzingindividual, isolated packets,
rather than stateful, connection-oriented analysis.

The power of the Secondary Path depends critically on the richness of packet cap-
ture that we can use it to express. To this end, we presented enhancements to the stan-
dard BPF packet-capture framework [16] to support random sampling, and retention of
state between packets (similar in spirit to that of xPF [12])and in response to user-level
control.

Our implementation within the Bro intrusion detection system exhibits good per-
formance, with a rule-of-thumb being that the Secondary Path does not significantly
impair Bro’s overall performance provided that we keep the volume of traffic captured
with it below 1% of the total traffic stream.

We illustrated the additional power that Secondary Path processing provides with
three examples: disambiguating the size of large TCP connections, finding dominant
traffic elements (“heavy hitters”), and integrating into Bro previous work on detecting
backdoors [26]. While none of these by itself constitutes a “killer application,” the va-
riety of types of analysis they aid in addressing bodes well for the additional flexibility
that we gain using Secondary Path processing.

7 Acknowledgments

This work was made possible by the U.S. National Science Foundation grant STI-
0334088, for which we are grateful.

References

1. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.Communications
of the ACM, 13(7):422–426, 1970.

2. J.L. Carter and M.N Wegman. Universal classes of hash functions. InJournal of Computer
and Systems Sciences, volume 18, Apr 1979.

3. S. Crosby and D. Wallach. Denial of service via algorithmic complexity attacks. InProceed-
ings of the 12th USENIX Security Symposium, pages 29–44, Aug 2003.

4. H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic application-layer
protocol analysis for network intrusion detection. Technical report, in submission, 2006.

5. H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences with high-
volume network intrusion detection. InProceedings of CCS, 2004.

6. N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics from sam-
pled packet streams. InProceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurement, pages 159–171. ACM Press, 2002.

7. N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled flow statis-
tics. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 325–336. ACM Press, 2003.

8. C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource consump-
tion in network traffic. InProceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 137–148. ACM Press,
2003.

19

9. C. Estan and G. Varghese. New directions in traffic measurement and accounting. InPro-
ceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pages 323–336. ACM Press, 2002.

10. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC
2616: Hypertext transfer protocol – HTTP/1.1, June 1999. Status: INFORMATIONAL.

11. J.M. Gonzalez.Efficient Filtering Support for High-Speed Network Intrusion Detection. PhD
thesis, University of California, Berkeley, 2005.

12. S. Ioannidis, K. Anagnostakis, J. Ioannidis, and A. Keromytis. xpf: packet filtering for
lowcost network monitoring. InProceedings of the IEEE Workshop on High-Performance
Switching and Routing (HPSR), pages 121–126, 2002.

13. T. Karagiannis, A. Broido, M. Faloutsos, and K.C. Claffy. Transport layer identification of
p2p traffic. In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 121–134, 2004.

14. C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt. Using packet symmetry to
curtail malicious traffic. InProceedings of the Fourth Workshop on Hot Topics in Networks
(HotNets-IV) (to appear). ACM SIGCOMM, 2005.

15. W. Lee, J.B.D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y. Zhang. Performance
adaptation in real-time intrusion detection systems. InRAID, pages 252–273, 2002.

16. S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level packet
capture. InUSENIX Winter, pages 259–270, 1993.

17. S. K. Park and K. W. Miller. Random number generators: good ones are hard to find.Com-
munications of the ACM, 31(10):1192–1201, 1988.

18. V. Paxson. Bro: A system for detecting network intrudersin real-time. Proceedings of the
7th USENIX Security Symposium, 1998.

19. T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding network
intrusion detection. Technical report, Secure Networks, Inc., Calgary, Alberta, Canada, 1998.

20. R. Rivest. RFC 1321: The MD5 message-digest algorithm, April 1992. Status: INFORMA-
TIONAL.

21. M. Roesch. Snort: Lightweight intrusion detection for networks. InProceedings of the 13th
USENIX Conference on System Administration, pages 229–238. USENIX Association, 1999.

22. B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley & Sons, Inc., New York, NY, USA, 1995.

23. C. Shannon, D. Moore, and K. C. Claffy. Beyond folklore: Observations on fragmented
traffic. IEEE/ACM Transactions on Networking, 10(6):709–720, 2002.

24. J. van der Merwe, R. Caceres, Y. Chu, and C. Sreenan. mmdump: a tool for monitoring
internet multimedia traffic. InSIGCOMM Computer Communications Review, volume 30,
pages 48–59, 2000.

25. M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efficient packet demultiplexing for
multiple endpoints and large messages. InUSENIX Winter, pages 153–165, 1994.

26. Y. Zhang and V. Paxson. Detecting backdoors. InProceedings of the 9th USENIX Security
Symposium, pages 157–170, August 2000.

