Enhancing Network Intrusion Detection
With Integrated Sampling and Filtering

Jose M. Gonzalez and Vern Paxson

International Computer Science Institute
Berkeley, California, USA

chema@icsi.berkeley.edu, vern@icir.org / vern@eedbl.g

Abstract The structure of many standalone network intrusion deiecystems
(NIDSs) centers around a chain of analysis that begins vettikgts captured by
a packet filter, where the filter describes the protocols (UTHP port numbers)
and sometimes hosts or subnets to include or exclude frorarthlysis. In this
work we argue for augmenting such analysis with an additjseparately fil-
tered stream of packets. This “Secondary Path” supplenteat§viain Path” by
integrating sampling and richer forms of filtering into a NBB analysis.

We discuss an implementation of a secondary path for therlnasion detection
system and enhancements we developed to the Berkeley Heiltketto work
in concert with the secondary path. Such an additional pestkeam provides
benefits in terms of both efficiency and ease of expressioichale illustrate
by applying it to three forms of NIDS analysis: tracking veayge individual
connections, finding “heavy hitter” traffic streams, and liempenting backdoor
detectors (developed in previous work) with particulareeas

1 Introduction

The structure of many standalone network intrusion detacystems (NIDSs) centers
around a chain of analysis that begins with packets captwedpacket filter [21,18].
The filter reduces the volume of the stream of packets to aadly specifying which
protocols (TCP/UDP port numbers) and sometimes hosts oredslto include or ex-
clude from the analysis. Such filtering can prove vital foexgiing a NIDS effectively
in a high-volume environment [5].

In addition, modern NIDS do not analyze isolated packetdrisiead perform in-
spection at different layers (network/transport/appiad, which requires maintaining
large quantities of state in order to reassemble packetragénto byte streams and then
parse these into the corresponding Application Data UAIB(s). A NIDS may there-
fore need to store an indefinite amount of per-connectioa fatan indefinite amount
of time, including both ADU contents and also network- arahsiport-layer contents
for resilience to evasions based on stack or topology anitiEg(19,18].

In this work we propose augmenting a NIDS'’s analysis with ddittonal, sepa-
rately filtered stream of packets. This “Secondary Path’bfements the “Main Path”
by integrating sampling and richer forms of filtering into #0$’s analysis. We argue
that while many forms of NIDS analysis require the traditibdeep-and-stateful pro-
cessing path, for other forms of analysis we can trade ofiied packet processing in



exchange for significant efficiency gains. The Secondarly Pamplements a NIDS'’s
main analysis by providing a lightweight, stateless, paciapture processing path.

The power of Secondary Path processing depends criticaltiiepower of the fil-
tering mechanism that drives it. To this end, we develop tmta@cements to the popu-
lar Berkeley Packet Filter (BPF; [16]) that allow analyz&rScherry-pick” the packets
they are interested in. We can use the first enhancememtginding randomness as a
first-class object in BPF, for in-kernel random sampling afkets, connections, hosts,
host pairs, or such. The second enhancement provides iictk@rnel filter control
mechanisms, including a lightweight form of persistentest&e do so by adding to
BPF fixed-size associative tables plus a set of hash fursctmimdex them.

After presenting these enhancements, we then presentekaegples of additional
analysis enabled by the Secondary Path: tracking largesations, identifying “heavy
hitter” flows, and incorporating backdoor detection algoris developed in previous
work. While we can easily implement each of these by thenesdlva standalone fash-
ion, the Secondary Path allows us to unify their expressgingua single mechanism,
one that also incorporates the analysis they provide idtbader context of a NIDS'’s
full analysis.

Section 2 introduces related work. In Section 3 we discusseahancements to
BPF and in Section 4 our implementation of a Secondary Patthé&Bro intrusion
detection system [18]. Section 5 presents the examplecgioihs mentioned above,
and Section 6 concludes.

2 Related Work

The field of network intrusion detection has an extensiditure. In particular, nu-
merous signature-based, packet-oriented approacheasiycbvided by Snort [21] are
based in essence upon various forms of packet filtering.,hereonfine ourselves to
the subset closely related to the notion of incorporatidgitional packet processing
into a NIDS, or extending packet filters for enhanced pertoroe.

Earlier work has discussed the central role which packefrsilcan play in high-
performance network intrusion detection [18,21]. Moreergovork has also explored
precompiling a set of filters that a NIDS can then switch amaeending on its work-
load [15,5] or upon detecting floods. To our knowledge, havesupplementing a
NIDS’s primary filter with an additional, quite differenttfir, has not been previously
explored in the literature.

Related to our packet filter extensions, MPF [25] exploratirzgistate to BPF [16]
in order to process IP fragments. xPF added persistent nygim®&PF in the form of
an additional memory bank that BPF filters can switch to andhff12]. This work
also removed BPF’s prohibition of backward jumps, with ateirt to enabling packet
filters to perform in-kernel analysis (such as computingamtion round-trip times) as
opposed to simply filtering. xPF’s persistent state is gimih spirit to what we have
added to BPF, though implemented at a lower level of absbractvhich can provide
greater flexibility but at a cost of requiring many more BPBtinction executions,
and permitting arbitrary looping in BPF programs. mmdumjpaduces a method to
construct dynamic filters in order efficiently to supportitap of multimedia sessions



for which some of the connections use dynamic ports [24]linsome firewall packet
filters (Linux Netfilter, BSD pf) offer similar functionalitto that of the packet filter
extensions, namely randomness and some state control.

The example applications described in Section 5 have ragtsavious work. The
problem of detecting large connections is similar in sp@iprevious work on “sample
and hold” [9], though our approach exploits the transpajusacing structure of TCP
rather than enhancing random sampling. (We note that we @abioe our random-
number and associative table enhancements to BPF to imptesample-and-hold.)
Our “heavy hitters” detector, which aims to capture the dqjtztive importance of dif-
ferent granularities of traffic, was inspired Bytofocusa tool that automatically char-
acterizes network traffic based on address/port/protoasttiples [8]. Finally, we take
our backdoor detectors from [26]. We use them as exampldweaddse-of-expression
that the Secondary Path can provide.

3 New Packet Filter Mechanisms

In this section we introduce two extensions to BPF that bolbte expressive power of
the Secondary Path while minimizing the performance oettaf the additions. For
details and more discussion, including performance erpants, see [11].

3.1 Random Number Generation

When dealing with large volumes of network traffic, we careoftlerive significant
benefit while minimizing the processing cost by employingnpbing. Generally, this
is done on either a per-packet or per-connection basis. RiéE dot provide access
to pseudo-random numbers, so applications have had to nepraxies for random-
ness in terms of network header fields with some semblancetafp®y across packets
(checksum and IP fragment identifier fields) or connecti@mhémeral ports). These
sometimes provide acceptable approximations to randorplsagnbut can also suffer
from significant irregularities due to lack of entropy ofeaiing; see [11] for an analysis.

To address these problems, we added pseudo-random nunmezatgen to BPF.
We do so by providing a new instruction that returns a pseagoom number in a
user-provided range. We also provide high-level accesfdeet numbers via a new
“random” keyword for tcpdump’s expression syntax. The setioa of the new term
are straightforward: “random(x)” yields a random numbemnen 0 and: — 1, so, for
example, the expression “random(3) = 0” returns true withbpbility 1 in 3.

Our implementation provides two different PRNGs, a fastimt-strong Linear
Congruential Generator [17], and a slower-but-strongedoan number generator
based on RC4 [22]. We also permit the user to seed the PRNGtlgite enforce
deterministic behavior, useful for debugging purposes.

The main implementation difficulties relate to BPF's optiet, which considers
itself free to arbitrarily reorder terms. Doing so can chatige expression semantics
when using “random”. This problem also arises when usingig&nt state (see next
section), as an insert may affect a later retrieve. Mored®EF is keen to collapse
two equivalent subexpressions with no dependencies, winichd cause two calls to



“random” with the same value afto produce the same result. We avoid these problems
by modifying the optimizer to forbid reordering around “diom” terms or hash table
accesses, and by marking all “random” instructions difiélgeso none are viewed as
equivalent [11].

3.2 Persistent State

The second modification to BPF consists of the introductibpessistent state, i.e., a
mechanism for storing and recovering information acros&@a. Our implementation
does so by providing multiple fixed-size associative arraysch can be indexed using
a subset of packet header fields as hash keys, or, more dgnangl values we can
compute using BPF expressions. For each associative tireayser can specify the key
length, value (yield) length, and table size. Access iswigcfions to insert, retrieve, and
delete entries.

Associative arrays permit efficient, dynamic, fine-graicedtrol of the filter pro-
gram. For example, we can configure an associative arrayefdiee bit per connection
to indicate whether to filter packets from the connectionriout (essentially a Bloom
filter [1]). Testing this for the presence of a given packetsnection isO(1) (effi-
ciency), and adding or deleting elements in the table reguwinly an insert or a delete
operation (dynamic access).

A key issue, however, is sizing the arrays. We need to lingtdize of each array
lest they grow to consume too much kernel memory; partiularoblematic if an
attacker can cause the filter to continually add new ent®e&. possibility would be to
allow dynamic expansion of arrays up to a given point, usimgamental resizing as
discussed in [5] to avoid processing spikes within the Keasaeve expand an array.

This introduces considerable implementation complekRityyever, so currently we
keep the arrays fixed-size. Doing so exacerbates a diffpretlem, however: when
inserting a new entry, a collision in the hash table may megeviction of an existing
tuple without the BPF program explicitly requesting it, kaiting the consistency of the
state used by the program. We diminish this effect by progjigiseudo-random hash
functions (to resist adversaries) and by introducing setaiativity in the tables, as
described below. However, these do not provide a compldtei®o, so for now we
must restrict ourselves to those applications for which aretolerate such evictions.

Associative tables require hash functions to index therd,diffierent applications
call for different tradeoffs in the properties of these ftimies. Our implementation pro-
vides three function types: (a) LCG [17], a simple, fast fiow, but prone to worst-
case behavior with either degenerated workloads or algortomplexity attacks [3];
(b) MD5, slow but with cryptographic strength [20]; and (clSH, a universal hash
function that provides less strong guarantees than cryapdgc hash functions, but
runs much faster [2].

In addition, the user can specify for each table its set@abwity, i.e., how many
different keys reside at each hash location in the table hidiger the set-associativity,
the fewer forced evictions, but also the more processingired per lookup.

We provide two types of access to the associative arrays fkithin BPF pro-
grams, which lets us maintain filtering decisions acrosk@ac(such as for random



sampling on a per-connection basis, in order to rememberhwddnnections we pre-
viously selected), and directly from user-level (idatl, though the implementation of
this is not complete yet). This latter allows us to flexiblydaquickly tailor packet cap-

ture in response to changing conditions. For example, weusara filter that consults
a table indexed by connection 5-tuples (addresses, patsport protocol) to capture
packets corresponding to specific connections of intemestmight update this dynam-
ically when our user-level analysis parses an FTP contrahnhl to find the dynamic

port negotiated for a pending FTP data connection.

User-level control also facilitates downloading very ktgbles; for example, a list
of 1000s of botnet addresses for which we wish to capturéidriivolving any of
them. This application is infeasible using unmodified BPFerkif the in-line BPF code
to check so many addresses fit within the space allowed for@B§rams, the)(N)
processing for BPF to scan such a list would be prohibitivenil&rly, for unmodified
BPF, if an application needs to make any change to its filtgr,(@dd a new connection
or delete an existing one), it must create the new filter froratsh, write the tcpdump
expression, compile and optimize it, and then send it to énedd for the latter to check
and install.

Here is an exampleof a tcpdump filter that checks whether the connection asso-
ciated with a given packet is in table #2 (using the LCG hasittion), and, if not
and the packet represents an initial SYN (no ACK), randoraimsles the packet with
probability 1% by adding it in that case to the table (with elgivalue of 1):

(lookup(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcpA))) or
(lookup(2, hash_lcg(ip[16:4], ip[12:4], tcp[2:2], tcpl]))) or
((tcp[13] & 0x12 = 0x2) and

(random(100) = 1) and

(insert(2, hash_lcg(ip[12:4], ip[16:4], tcp[0:2], tcpRA), 1)) )

Note that this code is imperfect: if the sender retransrhigsinitial SYN, we will
generate a fresh random number, increasing the probatititywve sample the connec-
tion. We could avoid this problem by always inserting coniwes into the table and
using different yield values to indicate whether or not tbseguently sample packets
belonging to the connection. The code will always be impzrfeowever, since the
“insert” might cause eviction of a previous connection due tollision. In general, we
cannot use our associative tables for bullet-proof anglysit only for often-correct-is-
good-enough analysis (with which our example applicatl#lew conform).

4 Introducing a Secondary Path for Packet Processing

The structure of a stateful NIDS typically consists of (aptcaing traffic from one

or several packet-capture devices, (b) checking netwankl teansport-layer head-
ers, (c) reassembling application-layer contents (ADde}l (d) dispatching the con-
tents to an application-specific analyzer. We call this raeggm the “Main Path.” The

1 The expression begins with two “lookup™s to test both dii@es of the connection for presence in the
table. Clearly, it would be useful to introduce some tcpdusigms for some of the common constructions.



connection-oriented nature of the Main Path permits hitlregdetails of header verifi-
cation and reassembly from the application-layer anatyzer

The main drawback of designing for full, application-otieth analysis is that the
traffic processed by the Main Path must correspond to fulheotions. This limits
substantially the use of input-volume control technigwasr(pling or filtering)—which
may be highly desirable for performance reasons—to thostewle can express on a
per-connection basis (such as filtering on elements of thaextion 5-tuple).

While we view full-payload analysis as a must for sound, deggteful analysis,
for some forms of analysis we can obtain complementary im&tion much more effi-
ciently by the analysis of isolated packets. In our architex; we obtain this informa-
tion in a fashion independent from the Main Path, and use sufgplement or disam-
biguate the analysis produced by the latter.

The “Secondary Path” provides an alternate channel forieingypackets. It works
by capturing packets from one or several packet-captureeevn addition to those
used by the Main Path, and dispatching the packets to camelsmg analyzers without
any previous analysis.

It is very important to note that the Secondary Path is anrate channel: it pro-
vides a stateful NIDS with a means to obtain information dlitba monitored traffic
whose generation using the Main Path is either inefficieanabiguous. It does not aim
to substitute for the Main Path, but to complement it.

Our main contribution regards not the analysis by a NIDSdgited (e.g., sampled)
packets, but rather the integration of the results from sudlysis with a NIDS’s reg-
ular, full-payload analysis. In our case, this integrai®facilitated by the flexible and
powerful state capabilities of Bro. We use the Secondary ®adistill information that
when solely employing Primary Path processing would be esige (due to volume)
or difficult to obtain (due to the Primary Path'’s initial fitteg not capturing the neces-
sary information). For example, we can use the Secondamt®apot flooding sources
or victims via random sampling, which can then inform lodeédding decisions made
by the Primary Path [5]. For a number of types of analysisp8dary Path processing
can be quite cheap because we can perform it at a much loveetht Primary Path
processing, such as illustrated in the example applicatiistussed in § 5.

It is important to stress that the information distilledrfrdhe Secondary Path is
typically limited to identifying subsets of traffic that aggher large enough to ensure
they can be detected by sampling, or distinctive enough sarerthey can be spotted
using static filtering. The Secondary Path is therefore noovkto detect specific attacks
(unless their signature is distinctive enough as to pergtitation by packet filtering),
but a means for gathering additional information or context

One significant feature of the Secondary Path is its sintplitii serves analyzers
isolated packets instead of full connections. Becauseds thmt carry out reassembly,
its can operate in a stateless fashion, unless the analyeichooses to maintain state.
However, an important, negative consequence of this sgg@peration is that analysis
through the Secondary Path is often susceptible to evasietadthe inability to detect
or resolve traffic ambiguities [19,18]. Similarly, SecongdRath analyzers must exercise
care when using transport- or application-layer contergshese may be only partially
present, or arrive out of order or even duplicated.



Table 1 summarizes the main differences between the Maimdpat the Secondary
Path.

[Main Path Secondary Path
Processing performed3, L4 analysis none
Objects provided |L7 ADUs L3 packets
L4 reassemble yes no
Memory stateful stateless

Filtering flexibility  |port-, address-oriented|rich when coupled with statefu
BPF (see § 3.2)
Sampling connection-oriented onlyich when coupled with randomness
in BPF (see § 3.1)

Table 1. List of Differences between the Main and Secondary Paths

4.1 Filtering

A major benefit of the Secondary Path is its potential efficjewith its key application
being to tasks for which only a low volume of traffic will mattte filters it employs.
Suchfilters can be in terms of network- and/or transporéf&gaders, which are readily
supported by packet capture mechanisms such as BPF. No&véothat transport-
layer based filtering is less reliable, as TCP headers caivizied across multiple 1P
packets. On the other hand, in the absence of adversarypayasich fragmentation is
generally rare [23].

The filter can also include application-layer contents. M/BPF limits filtering
to matching bytes at essentially fixed positions, moderriegtpon-layer protocols
sometimes use headers with distinctive contents in spédedations [26]. For exam-
ple, HTTP request headers start with one of seven differathod strings (GET”,
“POST”, etc.), and HTTP response headers start always with thegstdT TP/ " [10].
We could thus filter on the first 5 bytes of TCP payload beiH§TP/ " to capture with
high probability exactly one packet per HTTP transactiagmces HTTP entity headers
are typically sent in a different packet than the previougtybody. Such an analyzer
can also access HTTP responses seen using non-standard port

Due to the fixed-location limitation of packet filtering, atté stateless condition of
the Secondary Path, application-layer contents proviske lleverage than network- or
transport-layer contents, and more vulnerability to &aenanipulation. For example,
if an attacker wants to avoid detection of an HTTP connectiogly can split the first
5 bytes across two TCP packets; if they want burden a NID®dryo detect HTTP
traffic, they can cheaply forge faked packets with those Bdgt the beginning.

4.2 Sampling

A particularly handy form of of filtering in terms of thinnine volume of traffic the
NIDS must process for some types of analysis concerns sagnflsing our extensions



to BPF presented in the previous section, we can do this ereximple) either a per-
packet or per-connection basis. When deciding which toitigeimportant to bear in
mind that packet-based sampling generates a completetlyiohged traffic stream, but
for which many properties remain related to those of theioaigtream [6,7].

An example of the utility that sampling can provide is in effittly detecting “heavy
hitters,” i.e., connections, hosts, protocols, or hostgtiat account for large subsets
of all the traffic, or that have peculiarly large propertisach as very high fan-out).
Given unbiased sampling (which our BPF “random” operatoxjates, unlike previous
approaches based on masking out header bits), a heavyimitterfull traffic stream is
very likely also a heavy hitter in a sampled traffic stream.adflore this further as an
example application in Section 5.2.

4.3 Operation

The operation of the Secondary Path is fairly simple: areatyprovide a packet fil-

ter expression that defines the traffic subset for which thisp wo perform isolated

packet analysis. The Secondary Path creates a filter reg@iim the union of all the

analyzer filters (Secondary Filter), and opens a packet filéwice with it. When a

packet matches the common filter, the Secondary Path ruhgeaiicular analyzer fil-

ter against the packet, demultiplexing the packet to allyaeas whose filters match the
packet.

One subtlety arises, however, due to the fact that duringr®kry Path operation
we actually run each analyzer filter twice (first as a part effill Secondary Filter,
second to see whether the analyzer’s particular filter neatchrhis “re-filtering” does
not present problems for stock BPF filters, since they anmp#ent—running a filter
F over a set of packets already filtered Bydoes not cause the rejection of any packet.
However, when using our BPF extensions for randomness aidairang state, filters
are no longer idempotent.

This generally will not present a problem for filters that ntain state, since two
copies of the state exist, one in the kernel used for thalriliering (i.e., the matching
of the entire Secondary Filter), and the other at user-lesedt for the demultiplexing.
The latter will be brought into sync with the former when weurethe filter.

However, the random operator remains problematic. Oureatiimplementation
maintains a separate packet filter device for each filterubas “random”, so that we
do not require re-filtering to demultiplex what the filter bags. A drawback of doing
so is that the BPF optimizer can no longer factor out commemehts of filters that
use “random”, which may significantly degrade performameesi have multiple such
filters. A second drawback is that the OS often limits the neindb packet filter devices
available.

An alternate approach would be to modify BPF to track whiadnednts of a filter
have been matched and to return this set when a packet istadcBsigned correctly,
this would allow optimization across all packet filters (umting the one used by the
Main Path), but is a significant undertaking given that thiamoof “element of a filter”
becomes blurred as BPF's optimizer rearranges and cofidpaas within a filter.



4.4 Implementation

We have implemented the Secondary Path in Bro, a stateemteriented NIDS [18].

Bro’s analyzers are structured around a Main Path such aavesdutlined in this paper.
We added a new script-accessible tabkegondary _fil t er s, which is indexed by

a packet filter (expressed as a string) and yields a Bro eamdiér for packets the filter
matches.

We open the interface(s) being monitored twice, once foMa@& Path and once
for the Secondary Path. The Secondary Filter is the OR’eposition of all the filter
indices specified fosecondary_fil t ers. Figure 1 shows an example Bro script.
It uses the secondary filter to invoke tBER f | ag_event event handler for every
packet matching the expression “tcp[13] & 7= 0!", i.e., an$H packet with any of the
SYN, FIN, or RST flags sepkt _hdr is a Bro record type representing the network-
and transport-layer headers of a packet.

This particular filter can be used to track connection stagtstop times, and hence
duration, participating hosts, ports, and (using diffeesin sequence numbers) bytes
transferred in each direction. The few lines shown are allirequired to then further
analyze these packets using Bro’s domain-specific scgdinguage.

redef secondary_filters +={ ["tcp[13] & 7 != 0"] = SFR flag_event };

event SFR flag_event(filter: string, pkt: pkt_hdr)
{

# Performanal ysis on the packet header fields given in "pkt" here.

}

Figure 1. Secondary Path Use Example

4.5 Performance

In this section we briefly assess the performance of our SkrgrPath implementa-
tion.2 Our goal is to compare the cost within a NIDS implementatibthe infrastruc-
ture required to implement the Secondary Path (dispatgilirginternal piping) versus
the cost of the packet filter processing. To do so, we use tberSary Filter to trigger
a null event handler, i.e., an event that does not carry outamk and returns as soon
as it is invoked.

The processing cost depends not only on the number of pattiegtmise the Sec-
ondary Path event, but also on the number of packets than tdaise the Secondary
Path event but still must be read by the kernel and eventdisitarded by the Secondary
Filter.

2 Unless otherwise noted, all experiments described in thjeepwere carried out using an idle single-
processor Intel Xeon (Pentium) CPU running3at GHz, with 512 KB cache and 2 GB of total memory,
under FreeBSD 4.10. All times reported are the sum of usersgatém times as reported by the OS.
We ran each experiment 100 times, finding the standard dmviat timings negligible compared to the
average times.



10

Figure 2 shows the corresponding performance for diffevehtmes of traffic and
different capture ratios (proportion of packets that maiehfilter). Note that both axes
are logarithmic.

100 xed, per-trace ost—-—
vari Ie COS! (ca ture 1:1 packets
o eecggigi R
variable cost ap?u 1: 1% ac ets
10r v i
o L
o 1
n
N—r
£
= 0.1
0.01p |
' a
0.00, 00 fk 1ng 1(;0k 1 ‘M 10M

trace packets

Figure 2. Performance of the Secondary Path with an Empty Event

The thick line represents the cost of rejecting all packetis the Secondary Filter.
We call this cost “fixed”, as it is independent of the numbepatkets accepted by the
Secondary Filter. It is the sum of two effects, namely (a)ftked cost of running Bro,
and (b) the cost of accessing all the packets in the streamuanming the Secondary
Filter over them. It is clear that the first effect is more impat for small traces (the flat
part to the left of the 10K packet mark), while the secondaftlominates with large
traces.

The dashed and dotted lines show the additional cost of eevetyt handlers when
a given ratio of the packets match the filter. Not surprisingle see that this variable
cost is proportional to the ratio of packets matching therfithe variable cost of sam-
pling, say,1 in 10 packets is about0 times larger than the variable cost of sampling
1in 100 packets. We also see that the fixed cost of running the SeppRd#h is sim-
ilar to the variable cost of capturingin 100 packets. This means that provided the
analysis performed on captured secondary packets is naxpensive, whether the
detector’s filter matches say 1 in 1,000 packets, or 1 in 1Dp&@kets, does not affect
the Secondary Path overhead. When the ratio approache®Q petkets, however, the
Secondary Path cost starts becoming appreciable.

5 Applications

In this section we present three examples of analyzers wiemgnted that take advan-
tage of the Secondary Path: disambiguating the size of [B@f& connections (8 5.1),



11

finding dominant traffic elements (8 5.2), and easily intdggpinto Bro previous work
on detecting backdoors (8 5.3; [26]). The first of these mtesionly a modest enhance-
ment to the NIDS'’s analysis, but illustrates the use of dyfaipn-traditional style of
filter. The second provides a more substantive analysisbdépahat a NIDS has dif-
ficulty achieving efficiently using traditional main-pathtdiing. The third shows how
the Secondary Path opens up NIDS analysis to forms of detetttat we can readily
express using some sort of packet-level signature.

Unless otherwise stated, we assess these using a traced(tepv® of all TCP
traffic sent for a 2-hour period during a weekday working hauthe Gbps Internet
access link of the Lawrence Berkeley National LaboratoyNL). The trace consists
of 127 M packets, 1.2 M connections, and 113 GB of data (auegat6 Mbps and
892 bytes/packet).

5.1 Large Connection Detection

A cheap mechanism often used to calculate the amount ofctiaffa stateful (TCP)
connection consists of computing the difference betweersélgquence numbers at the
beginning and at the end of a connection. While this oftenkaavell, it can fail for
(a) connections that do not terminate during the obsemat&riod, or for which the
NIDS misses their establishment, (b) very large (greatan #h GB) connections that
wrap around the TCP sequence number (note that TCP’s aperalfows this), or
(c) broken TCP stacks that emit incorrect sequence numespgcially within RST
segments.

As we develop in this section, we can correct for these defioés using a sec-
ondary filter. In doing so, the aim is to augment the main gaginalysis by providing
a more reliable source of connection length, which alsatithtes how the Secondary
Path can work in conjunction with, and complement, existimgctionality.

Implementation Our large-connection detector works by filtering for sel/¢hin,
equidistant, randomly-located stripes in the sequencebeuspace. A truly large flow
will pass through these stripes in an orderly fashion, pesisaveral times. The detector
tracks all packets that pass through any of the stripes,to@uthe number of times a
packet from a given flow passes through consecutive regigis (

Figure 3 shows an example. Thdorizontal stripesd4, sz, s¢, andsp) represent
the parts of the TCP sequence number space where the détestéms” for packets.
As the TCP sequence number range is 4 GB long, each strippasated 1 GB from
the next one.

The thick diagonal lines depict the time and TCP sequencéeuwf the packets
of a given TCP connection. The dotted, vertical lines regmésvents in the Secondary
Path. Note that we could use a different number of lines, aved Wwith different width
(see below). If the detector sees a connection passingghr@uconsecutive stripes
(K = 1), it knows that the connection has likely accounted for astd. GB.

We locate the first stripe randomly to prevent an adversam foredicting the sec-
tions of monitored sequence space, which would enable thewerwhelm the detector
by sending a large volume of packets that fall in the stripég remaining stripes then



12

seq number

////
INANANA
[l ) )

Figure 3. Large Connection Detector Example

4GB

SD

sc

SB

SA

time

come at fixed increments from the first, dividing the sequespzee into equidistant
zones.

Our detector always returns two estimates, a lower and aerdjppit. If a connec-
tion has been seen in two consecutive stripes, the estirsetednay be as large as the
distance between 4 consecutive stripes, or as small asdtaande between 2 consecu-
tive stripes. In the previous example, we know that the cotioe has accounted for at
least 1 GB and at most 3 GB of traffic.

We then use these estimates to annotate the connection thabBro’s main con-
nection analyzer constructs and logs. This allows us toilseadegrate the extra infor-
mation provided by the detector into Bro's mainstream asialy

One issue that arises in implementing the detector is aactstg the tcpdump ex-
pression, given that we want to parameterize it in both theber of stripes and the
width of the stripes. See [11] for details on doing so, andcingent Bro distribution
(from bro-ids.org for code in the filepolicy/large-conns.broNote that the number of
stripes does not affect the complexity of the tcpdump fijtest the computation of the
bitmask used in the filter to detect a sequence number treavghin some stripe.

A final problem that arises concerns connections for whighghmpled packets
do not progress sequentially through the stripes, but iegkip a stripe or revisit a
previous stripe. These “incoherencies” can arise due twarktreordering or packet
capture drops. Due to limited space, we defer discussioealfrty with them to [11].

Evaluation We ran the Large Connection Detector ontitye 1trace, varying the num-
berS of stripes. We used a fixed stripe-size of 2 KB; stripe sizg pidys a significant



13

4.5 GB T T T T ——
upper estimation——
real size
: average esfimation » -
~ running time tipe- S KB) - 11200
$ 4GBf\
) [ 11000
N~ . 6\
S L [ (<}
S 35GB e = ﬁ teo &
N S e s
U) *
5 ” leoo E
= 3GBf 600 &
9 S
GC.) =
[ o 1400
)
© 25GB}
1200
2GB L 1 L 1 . A LP
4 16 64 256 1024 4096 16384 65536

number of stripes

Figure 4. Detector Estimation for a Large Connection

role in the presence of packet filter drops (see [11] for aig)ybut for this trace there
were very few drops.

Figure 4 shows for the largest connection in the trace (3.5aP@lication-layer
payload), its real size, the upper and lower estimationgrted by the detector, and the
average of the last two (theverage estimatign as we varysS. The lower line shows
the running time of the large connection detector. (Remittie experiment with wide
stripes, up to 16 KB, reported very similar results.) All ekments ran with the Main
Path disabled, but we separately measured its time (withppbcation-layer analysis
enabled) to be 890 sec. Thus, the running time is basicaligtant up toS = 8192
stripes, and a fraction of the Main Path time. Finally, weifiex that as we increase
the number of stripes, our precision nominally increasasaba certain point it actu-
ally degrades because of the presence of incoherenceséuprential stripes); again,
see [11] for discussion.

5.2 Heavy Hitters

The goal of the “heavy hitters"HH) detector is to discover heavy trafficacroflows
using a low-bandwidth, pseudo-random sampling filter onSbeondary Path, where
we define a macroflow as a set of packets that share some stiltisetstuple fields
(IP source and destination addresses, transport-layetesand destination ports, and
transport protocol). This definition includes the highwole connections (sharing all
5 fields), but also other cases such as a host undergoing a(8tiquhckets sharing
the same IP destination address field) or a busy server (@tkepasharing a common
IP address and port value). The inspiration behind asgpséimg different levels of
granularity comes from th&utoFocugool of Estan et al [8].

As indicated above, macroflows can indicate security probléinbound or out-
bound floods), or simply inform the operator of facets of thedlth” of the network



14

in terms of the traffic it carries. However, if a NIDS uses filtig on its Main Path
to reduce its processing load, it likely has little visityjilinto the elements compris-
ing significant macroflows, since the whole point of the Maattiltering is toavoid
capturing the traffic of large macroflows in order to reduahocessing loads on the
NIDS. Hence the Secondary Path opens up a new form of andifftsilt for a NIDS
to otherwise efficiently achieve.

The HH detector starts accounting for a traffic stream udieghost specific gran-
uarity, i.e., each sampled packet’s full 5-tuple, and thétews the granularity to a set
of other, more generic, categories. For example, a hoshgtga network may not
have any large connection, but the aggregate of its cororeattempts aggregated to
just source address will show significant activity.

Note that HH differs from the large connection detector d$sed in Section 5.1 in
that it finds large macroflows even if none of the individuatgections comprising the
macroflow is particularly large. It also can detect macrofilmemprised of non-TCP
traffic, such as UDP or ICMP.

| table naméspecificityldescription |

saspdadp 4 connection (traditional 5-tuple definition)
saspda__ 3 traffic between a host and a host-port pair
sa__da__ 2 traffic between two hosts

sasp_____ 2 traffic to or from a host-port pair
sa____dp 2 traffic between a host and a remote pofrt
sa___ 1 traffic to or from a host

_sp___ 1 traffic to or from a port

Table 2. Tables Used by the Heavy Hitters Detector

Operation HH works by clustering each pseudo-random sample of thédiafob-
tains at several granularities, maintaining counts fotheamrresponding macroflow.
Whenever a macroflow exceeds a user-defined thresholdr{ergber of packets, con-
nections, or bytes), HH generates a Bro event reportingdleisand removes the cor-
responding traffic from the coarser-grained table entNete that more specific tables
generally use lower thresholds than more generic ones.

Table 2 shows the tables maintained by HH. Bpecificityfield orders the tables
from more specific (higher numbers) to more general. The nomézasa stands for
“source addressfip for “destination port,” etc. We use Bro’s state management c
pabilities to automatically remove table entries after aqaeof inactivity (no read or
write).

Output Table 3 shows an example of a report generated by HH (withyanized net-
work addresses). The first 5 lines were produced in real-tithe given timestamp.
The remaining lines are produced upon termination flagsfield states whether the



15

[Time [Macroflow Description | Pkts] Bytes] Event[Flags |
1130965527164.254.132.227:* <-> *:* 986 K| 823 MB| large sr¢ginternal
1130969128** <-> 164.254.133.198:80/tcp 1.07 M{654 MB| large dstinternal
1130990210*:* <-> 164.254.133.194:* 1.12 M{357 MB| large dstinternal
113099215854.75.124.72:19150/tcp <-> 164.254.133.146977 K| 79 MB|large flow
1130999627164.254.132.247:80/tcp <-> *:* 1.02 M[{781 MB| large sr¢internal

164.254.132.227:* <-> *:* 1.90 M[1.47 GB large sr¢internal
164.254.133.198:80/tcp <->*:* 1.84 M[1.22 GB large sr¢internal
164.254.132.247:80/tcp <->** 1.21 M[{968 MB| large sr¢internal
71.213.72.252:80/tcp <-> 164.254.133.56:*| 498 K|522 MB|large flow

*:80/tcp <-> 164.254.132.88:* 459 K479 MB| large dstinternal
** <->164.254.133.194:* 1.35 M[{427 MB| large dstinternal

Table 3.Example Report From Heavy Hitters Detector

reported host belongs to the list of hosts belonging to tterial network being mon-
itored (a user-configurable parameter); it is omitted focronflows whose granularity
includes both an internal and an external host.

Finally, we note that we can extend this sort of analysisgiariditional macroflow
attributes, such as packet symmetry [14] or the ratio of mbisegments to data seg-
ments. Due to limited space, we defer discussion of thesElfo [

5.3 Backdoor Detection

Another example of analysis enabled by the Secondary Patlr isnplementation of
previous work on using packet filters to efficiently detectkmoors [26]. That work
defines a backdoor as an application not running on its stdndell-known port, and
proposes two different mechanisms to detect these.

The first mechanism consists of looking for indications aéractive traffic by an-
alyzing the timing characteristics of small (less than 2t&byf payload) packets. This
approach comes from the intuition that interactive conpastwill manifest by the
presence of short keystrokes (large proportion of smalke@ caused by human re-
sponses (frequent delays between consecutive small gacket

The second mechanism consists of extracting signatureamityplar protocols
(SSH, FTP, Gnutella, etc.) and looking for instances oféh&s ports other than the
protocol’s usual one.

We implemented both approaches in Bro using our Seconddty rRechanism.
Doing so is quite simple, and provides an operational cdipabf considerable value
for integrating into Bro’s mainstream analysis.

Keystroke-based Backdoor DetectionBro already includes an implementation of the
“generic algorithm” for detecting interactive backdodrscreating an implementation
based on the Secondary Path, our goals were increasedfeageression and perfor-
mance.

See [11] for details regarding our implementation. We wvedlifits correctness by
comparing its results with that of the original detector. s evaluation tracecp-
1, had almost no backdoor-like interactive traffic (just soi@. Instant Messenger),



16

we checked how well each detector performed for discovehingrace’s well-known
interactive connections, namely SSH traffic. (The site mgér allows Telnet or Rlogin
traffic over the Internet.) We did so by removing 22/tcp frdra list of well-known ports
where the detector does not carry any processing. We alséohadjust the original
algorithm’s notion of “small” packet upwards from 20 bytes30 bytes due to how
SSH pads packets with small payloads.

|Approach [Run Timg

Main Path, no analyzers 890 se¢
Main Path-based generic backdoor analyzer | +406 se
Main Path, SP-based generic backdoor analyzer289 se
SP-based generic backdoor analyzer, no Main |[Pa284 se¢

O

Table 4. Performance of Generic Backdoor Detector, Main Path vsoigtary Path

We measured four different configurations on tbo-1trace, as shown in Table 4.
The extra time incurred by the original detector is 406 sdspmwhile the extra time
incurred by the SP-based version is 289 seconds.

Signature-Based Backdoor Detection We also implemented the signature-based
backdoor detectors developed in [26], except we discattiedRtogin and Telnet ones
because we have found from subsequent experience (rurtréndetectors 24x7 for
several years at LBNL) they are too broad. For examplé&prl, 50 K packets match
the Rlogin signature, and 92 match the Telnet one.

Again, we gain both ease-of-implementation and perforradncusing the Sec-
ondary Path. Regarding the former, Figure 5 shows full cateaf Secondary Path
implementation to detect SSH backdoors.

|Approach | time]
Main Path, no analyzers 890 se¢
Main Path-based backdoor analyzer +769 se¢

Main Path, Secondary Path-based backdoor anq réd sec
Secondary Path-based backdoor analyzer only | 327 se¢

Table 5. Performance of Signature-Based Backdoor Detector

Regarding the latter, we ran four experiments usingttipel trace, for which Ta-
ble 5 shows the corresponding performance. The extra cosiedaby the original,
Bro-event-based backdoor detector implementation is 2691s comparison, the Sec-
ondary Path implementation (which is basically severatgseof the form depicted in
Figure 5) adds only 174 sec. The final row shows that the aanlyy itself requires



17

more time than just the 174 sec, since it must also read theeduery large) traffic
stream into user memory prior to filtering it, which for thér¢hrow has already been
done by the Main Path.

# The fol |l owi ng gobbl edygook comes from Zhang' s paper:
const ssh_sig_filter ="

tep[(tep[12] >>2):4] = 0x5353482D and

(tep[((tcp[12] >>2)+4):2] = 0x312e or tcp[((tcp[12]>>2)+4):2] = 0x322e)";

# Don't report backdoors seen on these ports.
const ignore_ssh_backdoor_ports = { 22/tcp, 2222/tcp } &redef;

event backdoor _ssh_sig(filter: string, pkt: pkt_hdr)
{

# Discard traffic using well-known ports.
if ( ["ssh-sig", pkt$tcp$sport] in ignore_ssh_backdoor_ports ||
["ssh-sig", pkt$tcp$dport] in ignore_ssh_backdoor_ports )
return;

print fnt("% SSH backdoor seen, %:% -> %: %", network_time(),
pkt $i p$src, pkt$tcpSsport, pkt$i p$dst, pkt$tcpSdport);
}

# Associ ate the event handler with the filter.
redef secondary filters += { [ssh_sig_filter] = backdoor_ssh_sig };

Figure 5. SSH Backdoor Detector Example

We might also consider coupling this detector with BPF stalbdes (Section 3.2)
to activate the Main Path when a backdoor uses a protocottibatlIDS knows how
to analyze. For example, if the analyzer detects an SSH ctioneon a non-standard
port, it could add a new entry to a BPF table that capturesgiad@r particular connec-
tions, and label the traffic accordingly so that the Main Retbws it must use its SSH
analyzer to process traffic from that connection. A signiftazhallenge with doing so,
however, is the race condition in changing the filter’'s ofera and the NIDS's appli-
cation analyzer missing the beginning of the connectiomdDaent work by Dreger et
al pursues this functionality using a different approadh [4

Finally, we have explored extending this approach furtbeintplement the P2P
Traffic Profiling scheme proposed by Karagiannis et al [18f 8.1] for discussion.

6 Conclusions

We have described the Secondary Path, an alternate paiet-€ channel for sup-
plementing the analysis performed by a network intrusiclect®n system. The Sec-



18

ondary Path supports analyzers oriented towards analymitngdual, isolated packets,
rather than stateful, connection-oriented analysis.

The power of the Secondary Path depends critically on theness of packet cap-
ture that we can use it to express. To this end, we presentetheaments to the stan-
dard BPF packet-capture framework [16] to support randanp$iag, and retention of
state between packets (similar in spirit to that of xPF [B2)l in response to user-level
control.

Our implementation within the Bro intrusion detection gystexhibits good per-
formance, with a rule-of-thumb being that the Secondary laes not significantly
impair Bro’s overall performance provided that we keep tbkime of traffic captured
with it below 1% of the total traffic stream.

We illustrated the additional power that Secondary Patltgssing provides with
three examples: disambiguating the size of large TCP caimmsg finding dominant
traffic elements (“heavy hitters”), and integrating intcoBirevious work on detecting
backdoors [26]. While none of these by itself constitute&ilier application,” the va-
riety of types of analysis they aid in addressing bodes weelttfe additional flexibility
that we gain using Secondary Path processing.

7 Acknowledgments

This work was made possible by the U.S. National Science dation grant STI-
0334088, for which we are grateful.

References

1. B. H. Bloom. Space/time trade-offs in hash coding witlowadible errors Communications
of the ACM 13(7):422-426, 1970.

2. J.L. Carter and M.N Wegman. Universal classes of hashifinx InJournal of Computer
and Systems Scien¢e®lume 18, Apr 1979.

3. S. Crosby and D. Wallach. Denial of service via algorithoomplexity attacks. IProceed-
ings of the 12th USENIX Security Symposipages 29—-44, Aug 2003.

4. H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommernddyic application-layer
protocol analysis for network intrusion detection. Tecahreport, in submission, 2006.

5. H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Opeatiexperiences with high-
volume network intrusion detection. Proceedings of CC2004.

6. N. Duffield, C. Lund, and M. Thorup. Properties and preadicbf flow statistics from sam-
pled packet streams. IRroceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurementpages 159-171. ACM Press, 2002.

7. N. Duffield, C. Lund, and M. Thorup. Estimating flow distitions from sampled flow statis-
tics. InProceedings of the 2003 Conference on Applications, Tdobi®s, Architectures,
and Protocols for Computer Communicatiopages 325-336. ACM Press, 2003.

8. C.Estan, S. Savage, and G. Varghese. Automaticallyrinégpatterns of resource consump-
tion in network traffic. InProceedings of the 2003 Conference on Applications, Tdobi®s,
Architectures, and Protocols for Computer Communicatigrages 137-148. ACM Press,
2003.



9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

19

C. Estan and G. Varghese. New directions in traffic measemé and accounting. IRro-
ceedings of the 2002 Conference on Applications, Techiespgrchitectures, and Protocols
for Computer Communicationpages 323—336. ACM Press, 2002.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. MasinferLeach, and T. Berners-Lee. RFC
2616: Hypertext transfer protocol — HTTP/1.1, June 199atust INFORMATIONAL.

J.M. GonzaleZfficient Filtering Support for High-Speed Network IntrisiDetection PhD
thesis, University of California, Berkeley, 2005.

S. loannidis, K. Anagnostakis, J. loannidis, and A. Keytls. xpf: packet filtering for
lowcost network monitoring. IfProceedings of the IEEE Workshop on High-Performance
Switching and Routing (HPSR)ages 121-126, 2002.

T. Karagiannis, A. Broido, M. Faloutsos, and K.C. Claffyansport layer identification of
p2p traffic. InIMC '04: Proceedings of the 4th ACM SIGCOMM conference oerimt
measuremenpages 121-134, 2004.

C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. terallsing packet symmetry to
curtail malicious traffic. IProceedings of the Fourth Workshop on Hot Topics in Networks
(HotNets-1V) (to appear)ACM SIGCOMM, 2005.

W. Lee, J.B.D. Cabrera, A. Thomas, N. Balwalli, S. Salajad Y. Zhang. Performance
adaptation in real-time intrusion detection systemsSRA&iD, pages 252-273, 2002.

S. McCanne and V. Jacobson. The BSD packet filter: A nelitacture for user-level packet
capture. INUSENIX Wintey pages 259-270, 1993.

S. K. Park and K. W. Miller. Random number generatorsdgates are hard to findCom-
munications of the ACIVB1(10):1192-1201, 1988.

V. Paxson. Bro: A system for detecting network intrudereeal-time. Proceedings of the
7th USENIX Security Symposiufr998.

T. H. Ptacek and T. N. Newsham. Insertion, evasion, an@bef service: Eluding network
intrusion detection. Technical report, Secure Networnks,, ICalgary, Alberta, Canada, 1998.

R. Rivest. RFC 1321: The MD5 message-digest algorithpnil A992. Status: INFORMA-
TIONAL.

M. Roesch. Snort: Lightweight intrusion detection fetworks. InProceedings of the 13th
USENIX Conference on System Administratimages 229—-238. USENIX Association, 1999.

B. Schneier.Applied Cryptography: Protocols, Algorithms, and Souraed€ in C John
Wiley & Sons, Inc., New York, NY, USA, 1995.

C. Shannon, D. Moore, and K. C. Claffy. Beyond folklorébs®rvations on fragmented
traffic. IEEE/ACM Transactions on Networking0(6):709-720, 2002.

J. van der Merwe, R. Caceres, Y. Chu, and C. Sreenan. mmdumool for monitoring
internet multimedia traffic. ' SIGCOMM Computer Communications Reviesume 30,
pages 48-59, 2000.

M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss. Efftqgpacket demultiplexing for
multiple endpoints and large messagesUBENIX Winterpages 153-165, 1994.

Y. Zhang and V. Paxson. Detecting backdoorsPioceedings of the 9th USENIX Security
Symposiumpages 157-170, August 2000.



