
Semi-Automated Discovery
of Application Session Structure

Jayanthkumar Kannan
UC Berkeley

Berkeley, CA, USA

kjk@cs.berkeley.edu

Jaeyeon Jung
Mazu Networks

Cambridge, MA, USA

jyjung@mazunetworks.com

Vern Paxson
International Computer Science Institute and

Lawrence Berkeley National Laboratory
Berkeley, CA, USA

vern@icir.org

Can Emre Koksal
EPFL

Luasanne, Switzerland

emre.koksal@epfl.ch

ABSTRACT
While the problem of analyzing network traffic at the granularity of indi-
vidual connections has seen considerable previous work and tool develop-
ment, understanding traffic at a higher level—the structure of user-initiated
sessions comprised of groups of related connections—remains much less
explored. Some types of session structure, such as the coupling between
an FTP control connection and the data connections it spawns, have pre-
specified forms, though the specifications do not guarantee how the forms
appear in practice. Other types of sessions, such as a user reading email
with a browser, only manifest empirically. Still other sessions might exist
without us even knowing of their presence, such as a botnet zombie receiv-
ing instructions from its master and proceeding in turn to carry them out.

We present algorithms rooted in the statistics of Poisson processes that
can mine a large corpus of network connection logs to extract the apparent
structure of application sessions embedded in the connections. Our methods
are semi-automated in that we aim to present an analyst with high-quality
information (expressed as regular expressions) reflecting different possible
abstractions of an application’s session structure. We develop and test our
methods using traces from a large Internet site, finding diversity in the num-
ber of applications that manifest, their different session structures, and the
presence of abnormal behavior. Our work has applications to traffic charac-
terization and monitoring, source models for synthesizing network traffic,
and anomaly detection.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 [Computer-Communication Networks]: Network
management

General Terms
Measurement, Algorithms
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Traffic Analysis, Application Sessions, Anomaly Detection
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1. INTRODUCTION
Previous studies analyzing network traffic have extensively ex-

amined behavior at the scales of individual packets [11, 18, 28, 41]
and connections [7, 9, 25, 26, 37, 40]. At a broader scale, however,
the structure of sessions of related connections involving the same
host has seen considerably less investigation, with the main efforts
being studies of specific, individual applications such as Web client
sessions [1, 33] or FTP user sessions [29]. Yet there is great util-
ity in understanding the nature of sessions because doing so helps
provide a foundation for forming source models: descriptions of
network activity in terms of what a source is attempting to achieve
using the network, as opposed to the final result after the source’s
host software breaks this task down into individual connections that
are in turn further shaped, sometimes drastically, by network con-
ditions. The major benefit of source modeling comes from express-
ing network traffic in terms abstract enough to facilitate exploration
(via analysis or simulation) of how the network traffic needed to
support a given task might manifest under different conditions and
transport mechanisms [10].

We will use the term session to denote a group of connections
associated with a single network task, where by “task” we mean
the activity that emanates from an external event that serves as the
causal origin of the connections. Thus, a “task” in this context can
be quite abstract, such as a user deciding to process their email or
conducting an interactive login to a remote host. It will however
often be convenient or apt for us to refer to a session using the
layer-7 notion of “application” as a proxy for these abstract tasks.
For example, we will refer to an “FTP session” rather than a “user
transfering files session” because from a network trace perspective
what we directly see is an instance of a TCP port 21 connection
(associated with the FTP control channel) and perhaps subsequent
port 20 or ephemeral port connections (data transfers directed by
the control channel).

Using this terminology, we argue that little is presently available
in terms of general tools for understanding the qualitative struc-
ture of application sessions. We believe that such an understanding
is useful to researchers and administrators who may benefit from
working with higher-level abstractions of network traffic. For re-
searchers, these abstractions promise to aid with traffic character-
ization and monitoring, constructing source models for synthesiz-
ing network traffic, and anomaly detection. For administrators, the
hope is to provide them with richer information for framing net-



work policies and gaining insight into how their network is used.
Finally, we hope that the semi-automated nature of our approach
will help both types of users to keep up with the evolving and di-
verse landscape of Internet applications.

The aim of our algorithms is to mine a connection-level trace to
derive abstract descriptions of the session-structure for the different
applications present in the trace. These algorithms work in general
terms, without requiring any a priori knowledge about a particular
type of application. The procedure operates in a semi-automated
fashion: we aim to provide an analyst with high-quality information
reflecting different possible abstractions (descriptors) of an appli-
cation’s session structure. We express these descriptors as regular
expressions, or, equivalently, deterministic finite automata (DFAs),
which capture the order, type, and directionality of the connections
that comprise a session, but not their interarrival timing. The differ-
ent abstractions provided trade off economy-of-expression versus
more detailed fidelity to the observed data.

Application sessions manifesting in network traffic can have dif-
ferent basic natures. Some applications have an explicitly defined
session structure such as FTP sessions that consist of a FTP con-
trol connection followed by a number of data transfer connections.
Other sessions reflect a looser structure that arises from how end-
user software, or the end user themselves, drives network access in
order to perform a task. For example, for sessions beginning with
an SMTP connection, we find a plethora of additional activity re-
flecting the fact that transferring email can be invoked in a variety
of contexts: by mail servers (some of which initiate Ident connec-
tions back when contacted with incoming mail), by mail clients
(such as Thunderbird or Outlook, which may be configured to es-
tablish SMTP connections along with POP3/IMAP4 connections
for retrieving email), or by users (who may read their mail and
browse alongside, leading to HTTP connections). Still other ses-
sions arise from hostile activity, some of which runs counter to the
session structures exhibited by benign traffic. While we do not
aim to identify these in a comprehensive fashion, we note that our
structural inference can provide a baseline for applying anomaly
detection techniques for detecting some forms of attacks. See §6.3
and §7 for more details.

Our method for discovering session structures uses as input a
connection-level traffic trace. The method operates in two stages:
Session Extraction and Structure Abstraction.

Session Extraction is a statistical algorithm that reduces a stream
of connections down to a stream of sessions. We base it on model-
ing the temporal characteristics of session arrivals, using the impor-
tant observation that, in comparison with connections from differ-
ent (and hence independent) sessions, connections belonging to the
same session tend to occur “close” to one another. An important
limitation of our current work is that we only capture sessions be-
tween a single pair of hosts, whereas many forms of sessions (e.g.,
Web surfing) naturally include a local host’s interactions with mul-
tiple remote hosts. In the development of our approach, we note at
several points ways in which it might be generalized in this fashion.

Structure Abstraction operates on the set of sessions extracted
for a given application and attempts to infer succinct session de-
scriptors that capture (at varying levels of abstraction) the structure
of sessions typically generated by the application. We aim for this
step to provide both economy of description and insight by suggest-
ing apt abstractions. To do so, the inference framework includes a
set of generalization rules that simplify or transform the raw de-
scriptions inferred directly from a trace. We present these gener-
alized descriptors to the analyst in terms of complexity-coverage
curves: the analyst can opt for complex representations for more
precise coverage of the set of sessions empirically observed, or for

simpler, more abstract representations that may better capture “the
heart of the matter”. We found that often the curves exhibit inflec-
tion point “sweet spots” that mark qualitative transitions between
adding complexity and gaining more coverage.

We evaluated our scheme using a month’s trace collected at the
border of the Lawerence Berkeley National Laboratory, which on
average saw about 2,700,000 connections each day. We used the
first half of the trace to develop and calibrate our methods, then
applying them to infer descriptors for about 40 different applica-
tions in the second half of the trace. These include well-known
ones such as content-transfer (e.g., SMTP, FTP, HTTP), remote ac-
cess (e.g., SSH, Telnet, remote exec), database (e.g., OracleSQL,
MySQL), peer-to-peer (e.g., BitTorrent), and mapping and authen-
tication (e.g., RPC portmapper, LDAP, Kerberos). We also encoun-
tered applications little discussed in the literature: remote desktop
(e.g., Timbuktu, Groove), engineering/scientific (e.g., ProEngineer,
Legato, GridFTP), and lesser-known peer-to-peer (e.g., KCEasy).
When possible, we validated our inferences using published proto-
col specifications, but for applications whose public documentation
does not specify an overall session structure, often we could only
assess the plausibility of the inferences based on what we could
determine about the application’s operation.

The outline for the rest of the paper is as follows. We begin
with some background in §2 and discuss related work in §3. We
develop our session extraction mechanism in §4 and our structure
abstraction mechanism in §5. In §6 we present an evaluation of
these mechanisms along with some preliminary results on detecting
anomalous traffic. We cast our work in a wider perspective in §7
and conclude in §8.

2. BACKGROUND
We first frame the problem setting by specifying the inputs pro-

cessed by our algorithms and the terminology we will use in their
development.

Traffic Characteristics Inputs. Our algorithm works using
connection-level information obtained from passive network moni-
toring. While in principle our approach could work applied to mon-
itoring inside a site or within a backbone, our development has been
in the context of traces recorded at a site’s border. For every TCP
connection, the monitor records the IP addresses of the local and
remote hosts, direction (incoming/outgoing), timing information
(start time, duration), and connection status (whether successfully
established). One could generate similar information for non-TCP
flows, but to date we have evaluated our mechanism only for TCP
traffic, using traces of SYN, FIN and RST packets.

Terminology. We denote a connection C by the tuple (proto,
dir, remote-host, local-host, start-time, duration). proto specifies
the service associated with the destination port X of the connection
(e.g., FTP or HTTP), or, if X does not have a specific service asso-
ciated with it, we use “priv-X” for ports X < 1024 (usually only
available to privileged processes) and “other-X” for X ≥ 1024.
For these latter, in some contexts we will use “ephemeral” to indi-
cate that it routinely varies. dir takes the value “in” or “out” indi-
cating the connection was incoming (initiated by the remote host)
or outgoing (locally initiated). remote-host/local-host is the IP ad-
dress of the remote/local host, and start-time and duration denote
the beginning times and duration, respectively.

We define the type T (C) of a connection C as the tuple (proto,
dir). We allow some fields to be absent in our tuple notation for
connections; the value of such omitted fields will be clear from
context.

We define a session as a sequence of connections S =
(C1, C2, . . . , Cn) that have a common causal origin. In this work,



we only consider sessions that involve a single local-host and single
remote-host, so implicitly all connections involve only these two
hosts. We define the application, A(S), associated with a session
S as the type of the first connection C1, i.e., T (C1). This is imper-
fect since different applications might manifest with the same type
of initial connection, or the same application with different initial
connections, but in the absence of ground truth regarding the true
user/application sessions in a traffic stream, it strikes us as arguably
a reasonable approximation.

We say that a session S belongs to the session type ST (S) =
(T1, . . . , Tn), if for all i ≤ n, Ti = T (Ci). Thus, A(S) cat-
egorizes which application a session S belongs to, while ST (S)
captures the structure of the entire session in terms of the proto’s of
each connection and their directionality.

DFA Visualization. In our DFA visualizations (produced
by FSA utilities software [12] and Graphviz visualization soft-
ware [13]), we label the start-state as 0, and distinguish between
accepting states and non-accepting states with shading. We label
edges with the type of the corresponding connection and a direc-
tion tag, “ in” or “ out” indicating incoming/outgoing connections
respectively. Finally, we use the thickness of the edge to visually
convey how often each edge occurred in the trace.

3. RELATED WORK
The main area of previous work related to our effort consists of

studies characterizing network flows at various granularities: pack-
ets, connections, and sessions.

Early Internet traffic studies focused primarily on the dynam-
ics of individual packets in terms of comprising flows [4, 14, 15]
and with regard to correlational structure [11], especially self-
similarity [18]. Subsequent work then characterized the condi-
tions encountered by streams of packets as they traversed the In-
ternet [3, 28, 41]. These studies were accompanied by other early
ones that analyzed traffic in terms of connection properties. These
included measurements of connection characteristics as seen at dif-
ferent sites [9], dynamics seen within connections [21, 25], trans-
port behavior [27], structural contribution to self-similarity [37],
connection performance limitations [40], and numerous character-
izations of different applications (e.g., [7, 26] for older ones).

Studies of both packet and connection dynamics have contin-
ued to expand into a large body of subsequent work. However,
the literature examining application session structure in abstract
terms (that is, not simply the structure of a particular application
such as Web access or streaming audio/video) has been much more
limited. Particularly relevant for our work is Paxson and Floyd’s
characterization of the connection-level and session-level behavior
of applications [29]. This work studied the wide-area TCP arrival
processes at differing levels of granularity: packets, connections,
and sessions. The authors found that session arrivals were gen-
erally well-modeled by a Poisson process with hourly rates, even
though individual connection arrivals were not. More recently,
Nuzman et al. [24] studied the arrival characteristics of HTTP con-
nections, finding that when these connections are suitably aggre-
gated into sessions, the sessions indeed reflect a Poisson process.
These observations form the basis for our Session Extraction al-
gorithm. Characteristics of Web traffic, such as the prevalence of
pipelined and persistent HTTP connections, have been studied by
analyzing HTTP connections that correspond to requests for a sin-
gle Web page and its embedded objects [33]. Our work focuses on
higher-level patterns of connections (possibly on different ports)
exhibited by protocols, such as HTTP, and does not deal with spe-
cific application-level characteristics.

In addition, our work is similar to spirit to recent work that aims

to automatically infer application-level packet structure. Machine-
learning based techniques [19, 22] have been used to identify the
application that a particular flow belongs to without relying on port
numbers; our work is concerned with inferring the application’s
internal session structure and simply uses port numbers to iden-
tify applications. Protocol Informatics [31] uses sequence anal-
ysis techniques from bioinformatics to identify protocol fields in
unknown or poorly documented applications. RolePlayer [8] uses
byte-stream alignment algorithms, along with knowledge of a few
low-level syntactic conventions, to infer protocol formats to enable
RolePlayer to cheaply emulate the application-level behavior of a
previously seen client or server. Our work is complementary to
these efforts in that we focus on higher-level abstractions of ses-
sions, while they are geared towards more fine-grained characteri-
zations of traffic.

In abstract terms, our work is about discovering and characteriz-
ing causality in network traffic: which network activities are due to
previously seen activities. This theme has been pursued by several
lines of work in intrusion detection. First, host-based schemes have
related network traffic received by a host with subsequent code ex-
ecuted by the host [5, 6, 23]. In addition, other work has tracked
causality in network traffic in terms of an attacker moving among
a set of nodes [34], identifying which hosts have infected other
hosts [17, 38], and detecting “stepping stones” whereby attackers
relay their traffic through previously compromised machines to ob-
scure their identity while attacking other machines [2, 35, 39, 42].
Our work differs from these in that, first, we aim to discover over-
all patterns of activity rather than detect individual instances; and,
second, we do not have to contend with an adversary motivated to
thwart our analysis. As a consequence, we can tolerate a greater
degree of statistical uncertainty and decision errors. Our statis-
tical test based on a Poisson model of connection arrivals bears
resemblance to the stepping stone detection algoritm in Blum et
al. [2]. [2] presents a test based on modeling packet arrival as a
Poisson process, which is then generalized to other distributions as
well.

4. SESSION EXTRACTION
Our discovery process begins with Session Extraction: reducing

a stream of connections to a stream of application-level sessions,
where each session comprises a sequence of connections. We first
detail different types of session structures (including homogeneous
and mixed sessions), then describe how we extract homogeneous
sessions, and finally how we extract mixed sessions.

4.1 Types of Sessions
The simplest possible session structure is a lone connection by it-

self, which we term a singleton. Next in complexity comes sessions
consisting of consecutive invocations of the same application pro-
tocol, all with the same directionality, which we term homogeneous
sessions. Last in complexity for the types of sessions we tackle in
this work are sessions involving different connection types as well
as varying directionality, mixed sessions. (More complex still are
sessions involving multiple remote hosts. Extracting these remains
for future work, though we have some preliminary results indicat-
ing its likely feasibility [16].)

Different applications vary widely in the prevalence they exhibit
for each of these types of session structure. For example, the algo-
rithm we develop classifies 11% of LDAP client sessions as single-
tons and 88% as homogeneous sessions (with 1% being mixed ses-
sions); for SSH client sessions, 80% singletons vs. 18% homoge-
neous sessions; and for Grid FTP client sessions, 58% vs. 0% (with
42% being mixed sessions). For about half of the 40+ applications



we examined in our trace, simple forms of sessions dominate, while
for the rest, sessions often involve somewhat more complex struc-
ture. In addition, for some protocols (Web surfing, peer-to-peer)
many sessions involve multiple remote hosts, which our present
structure abstraction does not aim to capture. Also, as our results
later show, for applications that only rarely exhibit mixed sessions,
sometimes these are sessions of particular potential interest to an
analyst.

4.2 Extracting Homogeneous Sessions
Consider an algorithm that processes a stream of connection ar-

rivals C1, . . . in an online fashion. On observing a new connection
Ci, the algorithm must decide whether: (a) Ci is part of a current
session, or (b) Ci represents the beginning of a new session.

We first employ a simple heuristic to identify homogeneous ses-
sions that, as explained before, consist of consecutive invocations
of the same application protocol. For example, a user may in-
voke their mail client to send multiple mails in a single sitting,
leading to consecutive SMTP instantiations. The same holds for
Web browsing as reported in [24], which shows that one can cap-
ture HTTP sessions by simply considering HTTP connections less
than a time Taggreg apart as part of the same session. Their work
found Taggreg ≈ 100 secs as suitable. We generalize this aggre-
gation rule as follows. For a connection Ci, if we already have
an existing active session Sj = (Cj

1 , . . . , Cj
n) between the same

pair of hosts and involving the same protocol and direction (i.e.,
A(Sj) ≡ T (Cj

1) = T (Ci)) , and for which the most recently seen
connection of Sj , Cj

n, arrived less than Taggreg in the past from
Ci’s arrival, then we consider Ci part of Sj .

4.3 Extracting Mixed Sessions
The aggregation rule does not help for connections either in-

volving different protocols, or somewhat further apart. The for-
mer are particularly interesting, as these potentially reflect mixed
sessions. In this case we attempt to assess possible causality,
as follows. If Ci’s arrival is indeed part of an ongoing session
Sk = (Ck

1 , . . . , Ck
m), then we can consider Ci as “triggered”

(caused) by the connection Ck
1 ; Ck

1 represents the start of the ses-
sion Sk, and thus serves as a representative of the event that led to
the initiation of the session.

We base our approach on the observation that if Ci is a “trig-
gered connection”, i.e., causally related to Sk, then the arrival of
Ci is likely to be “closer” to Sk, in comparison to the case where
Ci is a “normal connection” (no causal connection to Sk). We
now proceed to develop a more formal statement of this intuition
by framing the problem in terms of hypothesis testing, and then
explain a statistical detection algorithm that has a bounded false
positive rate.

Modeling Normal Traffic. We can frame the problem of dis-
tinguishing between triggered and normal connections in terms of
hypothesis testing [32]. In this formulation, we use the arrival time
of a connection to choose between two hypotheses: the null hypoth-
esis that the connection is normal, versus the alternative hypothesis
that the connection is triggered.

Modeling the alternative hypothesis requires capturing the statis-
tical dependence of the arrival time of the triggered connection on
the arrival time of the triggering connection, but this may depend on
the semantics of the specific application session itself. Fortunately,
as we will show shortly, the null hypothesis is easier to model.
Therefore our abstraction algorithm discovers likely causality, and
hence sessions, by building a model for the arrival characteristics
of untriggered (normal) connections. We then identify connections
whose arrivals deviate from this model as triggered connections.

At the heart of our approach lies the empirical observation that
the arrival of user-initiated sessions is generally well-modeled as
a Poisson process, stationary over time scales of an hour [24, 29].
Here, user-initiated means sessions instigated by human activity
rather than machine activity with a correlational structure (such as
periodic daemons). Note that although the model of the arrival pro-
cess can be relaxed from a Poisson process to a renewal process,
the Poisson assumption makes the false positive analysis simpler
(as will be seen in Section 4.3).

To fit within this framework, we estimate rates for each type of
session using a sliding window of duration Trate = 1 hr. Our
model for session arrivals views the activity of local hosts as inde-
pendent from that of other local hosts, and, further, independent of
sessions of other types involving the same local host. We therefore
maintain separate notions of session rates for the different types of
applications in which each host participates. Finally, our defini-
tion of session type also includes directionality, accounting for the
difference in the arrival characteristics of clients and servers.

Causality Detection Algorithm. We now describe a statistical
test that identifies triggered connections by using our model of nor-
mal traffic.

Consider the arrival of two connections Ci, Cj with types de-
noted Ti, Tj . Assume that Ci is the connection at the start of an
ongoing session S1. Let us provisionally assume that Cj marks the
beginning of a new, separate session, S2. Denote the arrival rates of
these session types as λ1 and λ2. Let the interarrival time between
Ci and Cj be x. Now consider the alternative that Ci triggered Cj .
In this case, in general we presume to find x significantly lower
than the case when Ci and Cj are unrelated; we base this presump-
tion on the expectation that connections due to a common origin
will tend to come somewhat close together. Our strategy is there-
fore to estimate the probability P of observing an interarrival x for
the null hypothesis of the connections being unrelated, and to de-
duce that Ci triggered Cj , and therefore Cj belongs to S1, if P is
less than a confidence threshold α.

Let T1 and T2 be two sessions whose arrivals follow indepen-
dent Poisson processes with rates λ1 and λ2 respectively. Consider
the event of an arrival of T1 followed no later than x seconds by
an arrival of T2. We denote by P [T1, T2, x], the expected number
of such events per one unit of time. Given such a formulation, our
causality detection algorithm proceeds as follows. We first catego-
rize connections into different types; estimate rates for each of these
types; and then use these computed rates along with the threshold α

to detect triggers. More specifically, on the arrival of a connection
C (either incoming or outgoing) of type T involving a local host L,
we perform the following actions:

• Let the sessions observed at L in the previous Ttrigger sec-
onds be S1, S2, . . . , Sn, where Ttrigger is a threshold speci-
fying the maximum interval that can separate a triggered con-
nection from the most recent activity in the session. In our
study, we set Ttrigger to be 500 sec.

• If any session Si (a) has the same type as C, (b) involves the
same remote host, and (c) had a connection arrival within a
time window Taggreg of C, then we add C to the most recent
such Si, and we are done. This is the simple aggregation
heuristic discussed above.

• Estimate the rate of connection arrivals at L for each session
type within the past Trate seconds (3600 sec in our study).
We form our estimate as simply the average interarrival time
between sessions of each type, over the window size Trate.

• For 1 ≤ i ≤ n, compute P [Ti, T, xi], for xi the interval



between the arrival of Si and C. Note that at this point C

differs in type from Si.

• If P [Ti, T, xi] < α and C and Si involve the same remote
host, then add C to Si. (We conceptually defer the test for the
same remote host to this point because when expanding our
work to discover sessions involving multiple remote hosts, it
is at this point that we will modify the inference algorithm.)
Also, note that if P [Ti, T, xi] < α holds for multiple Ti,
then C is added to all such sessions Si.

• If the probability test does not identify C as belonging to any
ongoing session, then C is considered to be the first connec-
tion of a new session Sn+1.

Naturally, the performance of the above algorithm depends crit-
ically on the parameter α. Too low a value may mean we miss
certain causal links (false negatives); too high may lead to falsely
aggregating unrelated connections (false positives). The false neg-
ative rate is difficult to characterize analytically due to the lack of a
statistical model for the arrival of triggered connections, so we rely
on empirical analysis for evaluating it. Our choice for P [T1, T2, x],
however, allows us to provide a bound on false positives; see below.

False Positives. In this section, we establish an upper bound for
P [T1, T2, x], where T1 and T2 are two different types of sessions,
and then use it to upper-bound the false positive rate (i.e., the num-
ber of false positives per second) in the presence of M different
session types.

THEOREM 1. Let λ1 and λ2 be the arrival rate for sessions of
type T1 and T2. Then, P [T1, T2, x], the expected number of events
where an arrival of type T1 is followed by an arrival of type T2

within time x, is P [T1, T2, x] 6 λ1λ2x.

The proof can be found in Appendix A. Note that we also ver-
ified Theorem 1 using Monte Carlo simulations [16]. Next, we
consider the scenario where there are m > 2 types of connections.

COROLLARY 1. Let there be m types of sessions and let α be
the threshold for reporting a connection pair. Then the rate of false
positives per unit time can be upper bounded as m2α.

To prove this corollary, first note that the number of different
pairs of session types under consideration is m2 (note that a session
of a particular type can also be a “trigger” for a second session of
the same type). Thus, from Theorem 1, since α is an upper bound
on the rate of false positives for a particular ordered pair of session
types, a simple union bound gives the formula in Corollary 1.

In practice, we choose the unit of time for measuring α as an
hour and we found that α = 0.1 per hour works well. Although our
proofs of these theorems assume stationarity, our results apply even
otherwise (e.g., non-homogeneous Poisson processes), as long as
the rate estimation algorithm adapts to the changing rates. Finally,
in our experiments, we found that the number of false positives is
typically lower than the worst-case bound proved above.

4.4 Discussion
The fact that our Session Extraction approach is statistical im-

poses certain constraints on our abstraction approach. That it may
exhibit false negatives is not particularly disconcerting: since our
focus is on discovering application behavior, usually a trace will
contain several instances of a particular type of behavior, so we can
abide missing some. Our extraction need not find all instances to
be successful. Further, our Session Extraction approach may also
have false positives: for instance, the Poisson assumption used in
our statistical test may not hold, or, it may so happen that two con-
nections occur close-by in time simply by coincidence. We would
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Figure 1: The Exact DFA for FTP

not want our abstraction mechanism led astray into deducing ses-
sion descriptors that incorrectly incorporate elements induced by
false aggregations.

Our strategy is to choose α to obtain acceptable false nega-
tive performance, and to then design our abstraction mechanism
to explicitly accommodate the level of false positives this leads to
(for which the analysis in the previous section also gives a useful
bound). We assessed different candidate values of α by manually
assessing the false negatives for 4 applications (SMTP, FTP, two
Web services) present in our traces, which led us to select α = 0.1.
This setting incurs a false negative rate of less than 25% [16].

5. STRUCTURE ABSTRACTION
The Structure Abstraction process aims to derive succinct de-

scriptions for application sessions based on the set of session types
reported by Session Extraction. We discuss how we represent ses-
sion descriptions and then present our abstraction framework.

5.1 Representation of Session Descriptors
We first need to resolve “representation”: what language should

we use to abstractly describe the structure of sessions? We looked
for a good balance between expressiveness and ease of generat-
ing abstractions from complex initial descriptions, which led us to
choose regular expressions.1 This choice was supported by our pre-
vious empirical experiences when we manually attempted to derive
descriptions for different types of sessions [16]. In our discussions
and figures we will often use the DFA equivalents of particular reg-
ular expressions. We also further refine this representation by la-
beling state transitions with probabilities, similar to the Customer
Model Behavior Graphs used for characterizing workloads on web-
sites [20].

Thus, given a set ST of observed session types ST =
(ST1, ST2, . . . ), we can capture the full structural range using a
regular expression that explicitly matches the entire set. Figure 1
shows such as complete DFA for FTP (as derived from our larger
dataset). Here we have omitted the labeling because the point of the
figure is simply to convey the great complexity that the full struc-
tural range can manifest. In this case, the DFA is complex (with
28 states) due to the fact that it has to exactly capture several FTP
sessions varying in the number and the direction of data transfers.

Figure 2, on the other hand, shows a more “natural” (and
tractable) DFA that abstracts much of the original while preserving
some of its unintuitive features (the presence of HTTP transitions,

1We also experimented with using Hidden Markov Model infer-
ence techniques to abstract sessions, but found the results much
harder to intuitively understand, as well as requiring computation
that scales poorly with the size of the trace.
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for example). In the diagram, text labels are associated with the
transitions to their left. A label like http in indicates an inbound
HTTP connection. eph corresponds to an ephemeral port (one that
is both not well-known and changes from session to session). Also,
recall that the thickness of an arc indicates its relative frequency of
transition in comparison to all the other arcs in the DFA.

The goal of our structure abstraction framework is to derive such
a “natural” DFA since it yields a number of benefits over the exact
DFA:

Simplicity: The reduction in number of states and edges makes
the DFA easier to comprehend.

Generalization: The abstracted DFA can capture a more
complete set of possible structures, including some not
present in ST. For example, in Figure 2 the construct
(ftp in|ftp out) (other in|other out)∗ captures an infinite set
of session types; the “*” construct cannot occur in the exact DFA
since it is derived from a finite trace.

Highlighting Common Behavior: Some types of sessions can
exhibit quite different modes (e.g., browsing sessions), and/or in-
stances of individualized or idiosyncratic behavior (e.g., login ses-
sions that spawn many subsequent connections). By constructing
abstractions that weight commonly seen elements over rare ones,
we can highlight for the analyst tradeoffs between simplicity and
capturing rare activity.

Minimizing False Positives: Given the statistical nature of our
session extraction, the exact DFA may include false aggregations.
Abstraction can help weed these out because they will tend to ap-
pear as isolated, rare structures, similar to the last item above.

5.2 Abstraction Framework
Figure 3 shows the four steps in our abstraction framework:
Application Categorization. This semi-automatic step identi-

fies the applications in the trace and uses these to categorize the
observed session types. The remaining steps operate on a per-
application basis.

We lack ground truth for identifying the applications present in
our trace at the granularity we desire, namely notions like “user is
processing their email.” Instead, we use the service associated with
the first connection in a session as a proxy for the application type.
To do so, we extracted a list of service ports by identifying those
occurring in the trace more often than a fixed threshold, Tservice

(which we set to 5). We then manually analyzed this list to deter-
mine the associated application via either entries in an extensive
directory [30], or, in ambiguous cases, by inspecting packet pay-
loads when available. Armed with the list of types of applications,
we then categorize sessions based on the server port of the first
connection in that session.

Exact Abstraction. This step produces an exact DFA, E, that
describes the session structure of an application A based on the
complete set of session types, ST observed for A. We construct E

from the union of each of the observed session types, minimizing
the DFA using the FSA toolbox [12].

Coverage Phase. This step (detailed in §5.3) emits a sequence
of DFAs F1, F2, . . . that represent subsets of E that progressively
(and greedily) account for greater and greater coverage (fraction of
the set ST matched) as we add edges.

Generalization Phase. This step (detailed in §5.4) applies three
generalization rules to the sequence F1, F2, . . . that introduce com-
monly useful abstractions, producing a set of generalized DFAs,
G1, G2, . . . .

At the end of this process, we present to the analyst a cover-
age curve that plots the coverage of generalized DFAs against their
complexity. The analyst then uses this curve as guidance regard-
ing which DFAs to inspect in order to understand the application’s
session structure at different levels of abstraction. We discuss this
process in §5.5.

5.3 Coverage Phase
Our coverage phase aims to extract a set of DFAs that cap-

ture subsets of the observed session behavior that best trade off
simplicity-of-expression (fewest states/edges) for coverage (captur-
ing most types of observed behavior). As noted above, this helps
both with keeping rare or peculiar session instances from obscur-
ing the commonly observed patterns, and for minimizing the effects
of false positives in our extraction algorithm (since these will tend
to manifest as rare, peculiar sessions). This phase produces a se-
quence of DFAs F1, F2, . . . , Fn that “cover” the observed set ST to
increasing extents. We formulate the notion of a DFA Fi’s “cover-
age metric” with respect to a set ST as the fraction of session types
in ST accepted by Fi, weighted by the frequency with which the
type occurs. Given this definition, the following greedy algorithm
produces a sequence of DFAs with increasing coverage metric.

We first feed every session instance in ST to E, the exact DFA,
accumulating a hit count h(e) for every edge e ∈ E, i.e., the
number of traversals of e. Next, for each edge e we compute the
augmented hit count, h′(e), as

P

e’ reachable from e h(e′). The purpose
of this augmented hit count is to capture the implicit dependen-
cies among the edges in the DFA. The overall idea is to priori-
tize “upstream” edges more than “downstream” edges. We then or-
der edges by decreasing h′(e); denote this ordering by e1, e2, . . . .
Finally, we construct DFAs Fi by taking the union of all edges
e1, . . . , ei.

5.4 Generalization Phase
In this step we subject the coverage DFAs, F1, F2, . . . , to a



set of transformations to obtain a sequence of generalized DFAs,
G1, G2, . . . . We found 3 generalizations that worked well across
about 40 applications in our trace:

Prefix Rule. If we observe a session type STi = (T i
1 , . . . , T i

m)
in ST, then consider any prefix of this type also a session type for
the application. We implement this rule by marking all states of the
DFA Fi as accepting states.

Invert Direction Rule. We base this rule on the observation
that an application session is typically independent of the direction
(inbound vs. outbound) of the originating connection. For example,
if we observe STi = (ftp in, other in), then we extend the DFA
to also match STi = (ftp out, other out).

Counting Rule. If a DFA Fi matches aBc and aBnc, (for
n > 1), where a and c are individual connection types and B is a
union of one-or-more connection types (e.g., other in|other out),
then we transform Fi so that the corresponding Gi matches aB+c.
Note that in §6 we find that restricting n = 2 provides satisfactory
results.

Finally, while the order in which we apply these rules affects the
generalized DFA Gi, it can be shown that the following sequence
is idempotent: Prefix Rule, Invert Direction, Counting Rule. Thus,
we simply apply the rules in this sequence once and output the re-
sult as Gi. Note that these rules have an appealing monotonicity
property: if the sequence of DFAs F1, F2, . . . has increasing cov-
erage metrics, the sequence G1, G2, . . . retains this property.

In our experiments, we chose to apply all of these rules before
presenting the DFA to the analyst. (An alternative would be to
leave the choice of which rules to apply to the analyst.) The Pre-
fix Rule intuitively holds since any session may terminate mid-way
due to various error conditions. In our trace, we found only one
case where the Prefix Rule not hold: one mail server always orig-
inated exactly two reverse Ident connections in response to an in-
coming SMTP connection. The Invert Direction rule is sometimes
incorrect in the sense that a particular session structure visible in
sessions originated from inside (outside) may not apply for ses-
sions originated in the other direction. We however chose to apply
it since the weights included on the edges do reflect this fact to
the analyst. Also, the session structure for most applications in our
trace also conform to the Counting Rule (the mail server we alluded
to before does not conform to this rule).

5.5 Coverage Curves
A coverage curve, such as that shown in Figure 4(A), plots the

number of edges i in the generalized DFA Gi against Gi’s cover-
age metric. Note that though we obtain Fi (the basis for Gi) by
retaining exactly i edges E, Gi may have more or fewer than i

edges. This is because our generalization rules can simplify the
structure of the DFA by adding edges (Invert Direction and Count-
ing Rules) or marking certain states as final states (Prefix Rule).
Since our DFAs are always minimized at every step in the process,
performing the minimization procedure, after such a simplification
of structure, may decrease the number of edges. This phenomenon
is what leads to the non-monotone nature of the curve, as illustrated
in the dip at 8 edges in Figure 4(A).

A knee in the coverage curve marks a point where the cover-
age metric increases sharply with the addition of a few particular
edges. Such knees generally correspond to modes: points where
adding a bit more complexity to the abstraction provides a substan-
tially more comprehensive description. Such knees guide the ana-
lyst in choosing which DFAs merit scrutiny. In addition, the cover-
age curve helps the analyst deal with the problems of idiosyncratic
sessions and false aggregations. Both of these typically appear to-
wards the far right side of the coverage curve.

6. RESULTS
In this section, we describe the evaluation of our scheme using

4 weeks of traces collected at the border of the Lawrence Berkeley
National Laboratory, a site with about 8,000 hosts that on average
participated in 2,700,000 connections each day. We used the first
2 weeks for calibration and guiding the design of heuristics in our
scheme, while we present results obtained by using our calibrated
scheme over the last 2 weeks.

6.1 Parameter Settings
Session Extraction. For setting the timing parameters Taggreg ,

Ttrigger, and Trate, we were guided by [24, 29]. We verified that
for the corresponding values, for most applications the arrival pro-
cess of sessions was Poisson-like (see [16] for detailed results). A
few applications, such as ntp, violated Poisson grossly because they
are timer-based, but in general, the imprecision of our statistical
session extraction test is remedied by the way in which our struc-
ture abstraction mechanism trims rarely exhibited behavior.

We set Taggreg (used in the aggregation rule) to 100 sec. We also
experimented with a few other values (200 and 500 sec) suggested
in [24, 29], but in the range we experimented with, we found that
our final session descriptors did not vary much.

We set Ttrigger (the maximum duration between the finish time
of a session and the arrival time of a new connection) to 500 sec. In
general, for most application sessions, Ttrigger need be no greater
than 100 sec. However, a few applications like FTP and Login
sessions, sometimes had long sessions in our trace. So, we conser-
vatively set Ttrigger to be 500 sec based on duration of sessions
we observed in our trace. Note that the number of false positives
in our mechanism is upper-bounded by the parameter α (irrespec-
tive of the value of Ttrigger). Thus, despite conservatively setting
Ttrigger to 500 sec, the false positive performance is still under the
threshold α.

We set Trate (the time duration over which rate estimates are
computed) to 3,600 sec, the value over which the arrival rates were
reported to be stationary in [24, 29].

We set the threshold used in our statistical test, α, to 0.1, based
on our calibration of sessions for four applications. We first ex-
tracted, using our partial a priori knowledge of the session structure
for SMTP, FTP, and two Web services (a Web proxy service, and
an HTTP interface to a service running on 9303/tcp), all sessions
belonging to these applications in the trace. We then examined how
many of the session types implied by these legitimate sessions were
found by our session extraction test. Except for FTP, it found all of
them. For FTP, extraction generally missed long sessions consist-
ing of several data-transfer connections, but such sessions have a
very simple structure of the form (ftp) (ftp-data)*. Missing these
is not a serious concern when inferring session descriptors, since
our structure abstraction using its generalization rules can “fill in
the gaps”.

Structure Abstraction. The parameters used in structure ab-
straction are relatively easier to set. Regarding the semi-automatic
application categorization step, since our packet captures did not in-
clude the entire packet, we had to rely on port numbers to classify
connections into applications. Once this classification was done,
we looked at all applications occurring at least 5 times in the 2-
week trace (i.e., Tservice ≥ 5).

Apart from this parameter, there are two details worth noting.
In our naı̈ve implementation, the counting rule (inferring general
positive closure) is too expensive to implement for high values of
|B| (the size of the repeating unit). Since the number of states s

sometimes exceeds 100, we examined the impact of using much
smaller values. We found that simply restricting the rule to the case



of |B| = 2 allows us to correctly infer positive closure in each in-
stance where we know a priori that it makes sense. In addition,
we only feed our structure abstraction algorithm session types of
length ≤ 10—otherwise, the number of states in the DFA can ex-
plode due to the exponential growth in the number of session types
with increasing length. One example of such a long session is an
FTP session where a control connection is followed by, say, 15 data
connections. We find that omitting such sessions does not result in
any loss of information in the inferred session descriptors, since
our generalization rules can usually capture such session structures
anyway (in this case, by allowing any number of data connections).

Role of Analyst. In obtaining the results below, the role of the
analyst is to first use the coverage curve in order to select a cut-
off coverage fraction, and then peruse the appropriate DFAs corre-
sponding to that fraction. In some cases, the existence of knees in
the coverage curve makes this choice easy to make, while in others
(such as HTTP), the presence of a long tail implies that the analyst
can choose as much detail to “explore” as much of the tail as he
desires.

6.2 Empirically Observed Session Structure
We now turn to examining some of the session structures discov-

ered for the applications in our trace. For session structures that can
be verified by using protocol specifications, we found that our ses-
sion descriptions generally capture all the behavior implied by the
specification with no false positives. Unfortunately, many session
structures arise due to empirical behavior, and for those, we can
only assess their plausibility. Finally, some sessions arise for truly
anomalous reasons, such as misconfigurations or attacks. These
last will typically be few in number, and will not appear in the DFA
unless the analyst asks for very high coverage. However, they are
interesting in demonstrating the value of having a general tool that
can detect causality.

6.2.1 FTP
Figure 4 shows the coverage curve (subplot A) for FTP , and

DFAs representing some knees in this graph in subplots B-G. We
use this as our primary example of the possibilities of our session
structure discovery.

The coverage curve shows the number of edges in the general-
ized DFA Gi versus the coverage provided by Gi. We see a linear
increase until 6 edges, after which the coverage tapers off slowly
until about 100 edges (tail not shown in the figure). We now ex-
amine the various knees in this curve, showing that they usually
correspond to some feature of the underlying sessions. Note that
we describe the generalized DFAs corresponding to the knees in
this graph as ordered by the number of edges included from the
exact DFA; this does not necessarily correspond to ordering them
by the number of edges in the DFA itself, since the generalization
procedure can sometimes simplify the DFA considerably.

The first noteworthy point occurs at 2 edges. This is simply
the DFA (not shown) that captures singleton incoming and out-
going FTP sessions. The second point occurs at 4 edges (sub-
plot B), corresponding to the DFA capturing sessions with a sin-
gle data transfer connection in the same direction as the initial
control connection. Subplot C shows the next DFA of interest,
which also has 4 edges (the plot shows the highest coverage ex-
hibited by a DFA of a given number of edges; so the coverage
in the plot for 4 edges corresponds to this DFA). This captures
the pattern (ftp in|ftp out)(eph in|eph out), which allows for
sessions with a single data transfer in either direction. Subplot D
shows the next interesting DFA, with 8 edges, which also captures
incoming (outgoing) FTP sessions with a single data transfer in the

opposite direction. The DFA in Subplot E includes more edges
from the exact DFA, but has fewer actual edges due to generaliza-
tion of the structure of the DFA, capturing sessions with any num-
ber of data transfers in the same direction. The DFA in Subplot F
(10 edges) shows how HTTP connections can occur during FTP
sessions, likely due to intermingled access to Web pages with links
to FTP URLs. Finally, another knee (not particularly visible in the
coverage curve) occurs at 18 edges, as shown in subplot G. This
DFA captures sessions with any number of FTP or HTTP transfers
in either direction. This DFA has over 99% coverage, implying
that it “explains” nearly all the sessions found by session extrac-
tion, and, further, captures all the characteristics of the FTP proto-
col specification.

6.2.2 Timbuktu
Figure 5 shows the coverage curve and two pertinent DFAs for

Timbuktu [36], a Mac and Windows remote desktop application.
The coverage curve (subplot A) shows a sharp knee in the begin-
ning, gradually tapering off towards the tail. The knee corresponds
to singletons, which comprise > 90% of sessions. Although the tail
accounts for < 10% of the remaining sessions, it reveals interesting
details. Subplot B shows the DFA with 4 edges, revealing that Tim-
buktu sessions may include some browsing behavior as well. Sub-
plot C shows the DFA with 10 edges. The associated ephemeral
ports likely correspond to dynamic ports negotiated in the main
channel (which corresponds to the Timbuktu listening port). We
also see browsing behavior reflected by associated HTTP connec-
tions, and that Timbuktu connections can occur in conjunction with
the AppleTalk file sharing protocol, presumably due to users per-
forming file transfers along with remote control software. Finally,
SSH connections also occur in such sessions, suggesting that login
connections of several kinds tend to occur together.

6.2.3 HTTP
HTTP sessions come in a number of variations. By far, the most

common (≈ 99%) are singleton or aggregated sessions that reflect
successive retrieval of multiple pages from the same server, which
the coverage curve (omitted for space constraints) shows as a very
sharp knee very early on. However, there is also a long tail clearly
visible in the coverage curve, accounting for the other 1% of ses-
sions. To illustrate the useful information that may be gleaned from
this tail, Figure 6 presents the HTTP DFA with 30 edges, though
given limited space we show only half the edges, those correspond-
ing to sessions begun with an outgoing HTTP connection. We
chose this DFA simply to illustrate the variety of HTTP sessions;
it does not correspond to any obviously visible knee in the cover-
age curve. Although these sorts of DFAs in general reflect remote
tail behavior, for some particular hosts they can be quite promi-
nent (e.g., a server or a crawler). Highlighting such host-specific
behavior for an analyst is a promising area for our future work.

The figure highlights that HTTP (port 80) can occur in con-
junction with multiple connections on other ports (81, 8000, 8080,
HTTPS, FTP) typically used for Web access. Likely the presence of
ephemeral ports in the DFA also reflects this sort of linking, for ex-
ample due to services offering HTTP interfaces that include client-
side code (such as JavaScript) for retrieving additional data from
the service. Connections to a port 8765 (marked “ultraseek”) likely
reflect an Ultraseek search engine crawler (supported by our obser-
vation that the hosts exhibiting this traffic have names that suggest
indexers). We also see LDAP connections, perhaps reflecting Web
services that rely on it for authentication. Finally, we see outgoing
SSH connections. These may simply reflect a user’s “start up” rou-
tine of opening both some Web pages and logging into a commonly
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Figure 4: FTP Coverage Curve (A), DFAs: 4 edges (B), 4 edges (C), 6 edges (D), 8 edges (E), 10 edges (F), 18 edges (G)

visited remote host.
Deeper in the coverage curve, the DFAs also reflect AOL and

other connections occurring in conjunction with HTTP, perhaps re-
flecting chatting and browsing alongside, and a greater variety of
services offered via Web pages (e.g., Oracle database access and
music streaming applications that use Real Time Streaming Proto-
col and Windows Media).

Other Applications. Due to space constraints, we summarize
some of the more interesting additional application session struc-
tures that our scheme exposed in the trace, which included mail-
related applications (SMTP, IMAP4, POP3), remote access (SSH,
Exec, Rlogin, Telnet), database (ORACLE, MYSQL), bulk transfer
(Grid FTP), Windows (NetMeeting, NETBIOS), and peer-to-peer
(BitTorrent, KCEasy).

Mail-related session structures due to client-side applications
(e.g., ThunderBird or Outlook) exhibit session structures of the
form “smtp in (imap4 in | imap4ssl in | pop3 in | pop3ssl in)* ”
, reflecting the different protocol clients use to send and receive
email. We also see server-side sessions of the form “smtp in
(smtp out | ident out),” reflecting SMTP mail relays and Ident re-
verse connections.

Remote access applications typically exhibit session structures
such as “ssh in (ident out | X11 out* ),” due to reverse Ident con-
nections initiated by servers, and X11 connections initated by the
users back to their desktop X11 servers. We also see structures such
as “ssh in (ssh out | vnc in),” which exhibit a “stepping-stone”-like
structure [35, 42], though without the goal of “laundering” traffic
since the users connect back to their own originating site. Note

that, in the regular expression above, VNC stands for Virtual Net-
work Computing, a popular remote desktop protocol.

Presumably such activity reflects creating multiple login win-
dows or transferring files to supplement the login session. We also
find structures such as “ssh in (ftp in | http in),” presumably due
to user browsing behavior once logged. Finally, GridFTP is dom-
inated by sessions with a single outbound connection followed by
multiple inbound ephemeral connections (though sometimes this
all occurs in the opposite direction); services such as Oracle, SQL,
and NetMeeting exhibit session structures that include multiple
ephemeral connections alongside the primary connection on a well-
known port; and P2P applications display the session structure of
the form “app out app in*.”

6.3 Finding Attacks Using Anomaly Detection
Our experimental analysis over these traces also revealed ses-

sions exhibiting anomalous structure reflecting malicious activity.
Indeed, our original goal had been to detect network attacks by
finding sessions that deviate from established session structures.
Our hypothesis was that such deviations would reflect either un-
intended misconfigurations (a host behaving as spam relay or as
a Web proxy), scanning, or “phone home” connections associated
with compromises. Figure 7 shows an example of such an attack
(confirmed by the site). The event consists of an incoming ssh con-
nection, which compromises the host, followed by the host visiting
a Web server (presumably controlled by the attacker), an incom-
ing port 65535 connection (likely the attacker instructing the bot
software they installed on the host) and then an outbound IRC con-
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nection (presumably to a botnet).
In assessing the sessions uncovered by our extraction algorithm,

we have also found anamolous sessions caused by peer-to-peer ap-
plications disallowed by the site’s policy (and using non-standard
ports), and an instance where machine within the site acted as a
HTTP relay for Yahoo Web pages, for reasons we could not deter-
mine.

Thus, although our session extractor, being statistical, might not
catch all anomalous sessions, the sessions it does catch can be
of considerable operational interest. Unfortunately, we find that
such activity often only manifests in the upper tail of the cover-
age curve. Thus, there are usually too many strange-but-benign
sessions—plus structures (perhaps) falsely inferred due to the sta-
tistical limits of our detection algorithm—for upper-tail instances
to serve as directly “actionable” indications of attacker activity. We
do hold hope, however, that detection of peculiar sessions can serve
as input into further analysis that might use additional complemen-
tary information to derive actionable conclusions. Such informa-
tion might be, for example, history about the host (e.g., what ser-
vices it typically runs, and which remote hosts it has contacted in
the past).

7. DISCUSSION
A major utility of session descriptors is in enabling the devel-

opment of source models that can generate synthetic traffic that is
similar to real traffic at the connection-level. Our work only cap-
tures the qualitative nature of such sessions; however, with such
session descriptors in hand, one can then set about obtaining dis-
tributions for the duration of a session, number of connections in
a session, and so forth (using techniques similar to those used in
Nuzman et al. [24] for HTTP sessions). The main value of our
approach is that it requires much less a priori information about
the applications in the trace (it requires only a mapping from port
number to application, whereas previous work explicitly required a
session descriptor for the application as well).

The DFAs generated by our scheme include weights on the edges
that can be used in order to generate “characteristic” synthetic ses-
sions using the augmented hit counts we discussed in §5.3. This can
be achieved by simply simulating a “probabilistic” DFA, where we
determine the next state using weighted sampling from the various
outgoing edges, terminating the procedure when none of the outgo-
ing edges are chosen. This procedure only captures the qualitative
structure; for self-loops that allow a variable number of connec-
tions, the distribution of the number of connections needs to be
explicitly determined. We also note that since we infer our DFAs
based on the output of session extraction—whose false negative
performance may not be uniform across all types of sessions—this
may bias the hit counts, depending on the degree to which the par-
ticular application conforms with our Poisson assumptions. In such
cases, it may be possible to improve on the weights in these DFAs
by comparing synthetic output with traces.

A particularly fruitful area for near-term future work is extending
our methods to extract application sessions that involve multiple
remote hosts (per the discussion in §4.3). Our work in [16] gives
some preliminary results in this regard, finding that this extension
better captures the behavior of peer-to-peer applications, proxies
(mail and Web), and a number of other applications. For example,
proxies typically demonstrate the characteristic session structure
of an incoming connection from one remote host followed by an
outgoing connection on the same port to another remote host.

More broadly, we hope that our session extraction and structure
abstraction tools comprise a useful addition to the toolbox of ad-
ministrators and researchers. Our session extraction approach can

be thought of as inferring “hidden causality” in network connec-
tions; it identifies causally related connections by exploiting the ob-
servation that they typically occur closer to each other in practice
compared to causally unrelated connections. This observation is
the basis of our statistical test, which is by no means a bullet-proof
causality test, in that it has non-negligible false negative ratio (and
in the adversarial input case, an adversary simply needs to ensure
that this connections are far apart enough in time to evade our test).
However, its false positive ratio is bounded (as shown in §4.3), and
thus most of the inferred sessions are indeed casually related con-
nections. Furthermore, in cases such as worm propagation, where
(if we extend the model to include multiple remote hosts) we can
relate outgoing infection attempts to the initial infection connec-
tion, the scale of the number of connections originated by the host
and the speed of the post-compromise activity may prove readily
and quickly detectable by our session extraction mechanism.

8. CONCLUSION
In this work we have demonstrated a statistical technique to ex-

tract application sessions from a connection-level trace of network
activity, and shown how to deduce descriptors that can be used by
an analyst to capture the qualitative structure of such sessions. Our
results demonstrate that a simple Poisson-based statistical tech-
nique, combined with a greedy approach for inferring DFA de-
scriptors, works well over many of the applications in our trace.
The results were, in some ways, surprising to us in terms of the
various ways in which a particular application’s structure manifests
in our traces, and it is for this reason the validation of our results is
still incomplete. Sessions reflecting protocol specifications are rel-
atively easy to validate (although even this is hard for closed-source
applications), while others reflecting user behavior (or) server-side
configuration (or) client-side configuration are considerably more
difficult to validate purely from in-network data.

In the future, we aim to evaluate and validate our methods over
more applications; extend our approach to the case where a lo-
cal host interacts during a session with multiple remote hosts; and
devise mechanisms to collate descriptors for closely-related pro-
tocols. More broadly, the fact that our methods offer a general
“causality” tool that can detect some forms of anomalous sessions
also holds promise for detecting a variety of network attacks.
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APPENDIX

A. DERIVATION OF THE FALSE POSI-
TIVE RATE

In this section we prove Theorem 1 in two steps: First, we con-
sider the case of a single Poisson process with rate λ, and compute
the probability that it has two arrivals within x time units of each



other in the time interval [0, τ ]. Then, we generalize this to the
scenario where there are two independent Poisson processes with
different rates.

LEMMA 1. Let {Xi, i > 1} be the interarrival times of the
Poisson process {N(t), t > 0} with an arrival rate λ. Then, for
some τ > 0

Pr[Xi < x for some i 6 N(τ )] 6 λ
2
τx. (1)

PROOF. Conditional on N(τ ) = n, for any given i 6 n we can
write

Pr[Xi > x|N(τ ) = n] =
“

τ − x

τ

”n

=
“

1 −
x

τ

”n

.

This holds since the conditional distribution for arrival epochs fol-
lows the order statistics for a joint uniform distribution of n random
variables [32]. Therefore

Pr[Xi < x|N(τ ) = n] = 1 −
“

1 −
x

τ

”n

(2)

6 1 −
“

1 − n
x

τ

”

=
nx

τ
, (3)

where (3) follows since the higher order terms in the Binomial ex-
pansion satisfy

 

n

2

!

“x

τ

”2

−

 

n

3

!

“x

τ

”3

+ · · · > 0.

Since the time for the first arrival is identically distributed with the
ith interarrival time,

Pr[Xi < x|N(τ ) = N ] ≤ N
x

τ
, for 1 ≤ i ≤ N − 1

Next, let us look at the probability that there exists such an inter-
arrival time within all n arrivals.

Pr[Xi < x for some i ≤ N(τ )|N(τ ) = n]

= Pr

2

4

[

i6n

{Xi < x|N(τ ) = n}

3

5

6
X

i6n

Pr [Xi < x|N(τ ) = n] (4)

= (n − 1)n
x

τ
, (5)

where (4) follows from the union bound.
Finally, using (5) we find a bound for the unconditional proba-

bility that there exists an interarrival of size smaller than x in the
entire window of τ seconds, where for some i ≤ N(τ ),

Pr[Xi < x] =
x

τ
(E[N(τ )])2 = λ

2
τx (6)

where (6) follows since the variance of a Poisson random variable
is equal to its mean. Note that the bound we find becomes tight if
the average interarrival time is large compared to x, i.e., λx � 1.
In this regime, the probability that two or more occurrences of such
interarrivals is highly unlikely. Thus, the higher order terms in the
binomial expansion are negligible and the union bound is tight.

We now generalize the previous lemma to the case when there
are two types of sessions, T1 and T2, seen at a given local host.

LEMMA 2. Let {N1(t), t > 0} and {N2(t), t > 0} be
two independent Poisson processes with rates λ1 and λ2 respec-
tively. Let P [N1(τ ), N2(τ ), x] be the probability that an arrival in
N1(t), t 6 τ is followed by an arrival of N2(t), t 6 τ within x

time units. Then,

P [N1(τ ),N2(τ ), x] 6 λ1λ2τx. (7)

PROOF. Consider the combined process consisting of arrivals
from both N1 and N2. Since this aggregate process is Poisson with
rate (λ1 + λ2), the probability that an interarrival of less than x

occurs is upper bounded by (λ1 + λ2)
2τx by Lemma 1. Among

such pairs we need to count those for which the first arrival belongs
to N1 and the second arrival belongs to N2. From the independence
of the two processes,

P [N1(τ ),N2(τ ), x] 6 (λ1 + λ2)
2
τx ·

λ1

λ1 + λ2

·
λ2

λ1 + λ2

= λ1λ2τx. (8)

Note that Theorem 1 is a direct consequence of Lemma 2. We
simply plug τ = 1 since we deal with the rate of false positives,
i.e., number of false positives per time unit. This is the basis for the
statistical test in our session extraction approach.


