The Shunt: An FPGA-Based Accelerator
for Network Intrusion Prevention

Nicholas Weaver
International Computer
Science Institute
1947 Center Street #600
Berkeley, CA, 94704

nweaver@icsi.berkeley.edu

ABSTRACT

The sophistication and complexity of analysis performedtdsy
day’s network intrusion prevention systems (IPSs) bengféatly
from implementation using general-purpose CPUs. Yet tfope
mance of such CPUs increasingly lags behind that necessprg-
cess today’s high-rate traffic streams. A key observatiomgver,

is that much of the traffic comprising a high-volume stream, ca
after some initial analysis, be qualified as “likely unimsting.”

To this end, we have developed an in-line, FPGA-based IPS ac-
celerator, theShunf using the NetFPGA2 platform. The Shunt
functions as the forwarding device used by the IPS; it alawe p
cesses the bulk of the traffic, offloading the memory bus aad le
ing the CPU free to inspect the subset of the traffic deemedayes
for security analysis. To do so, the Shunt maintains sevargé
state tables indexed by packet header fields, including@P/Tags,
source and destination IP addresses, and connection tdplesa-
bles yield decision values the element makes on a packptblget
basis: forward the packet, drop it, or divert it through tR&| By
manipulating table entries, the IPS can specify the traffidshes
to examine, directly block malicious traffic, and “cut thghi traf-
fic streams once it has had an opportunity to “vet” them, alhon
fine-grained basis. We base our design on a novel series loésac
with a “fail safe” miss policy, coupled to a host PC to handbthb
cache management and higher level IPS analysis. The design r
quires only 2 MB of SRAM for its extensive caches, and can sup-
port four Gbps Ethernets on a single Virtex 2 Pro 30.

Categories and Subject Descriptors

C.2.5 [Computer-Communication Networks]: Local Networks:
Ethernet

General Terms
Security

Permission to make digital or hard copies of all or part of tvork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

FPGA’'07,February 18-20, 2007, Monterey, California, USA.
Copyright 2007 ACM 1-59593-292-5/07/000255.00.

Vern Paxson
International Computer
Science Institute
1947 Center Street #600
Berkeley, CA, 94704

vern@icir.org

Jose M Gonzalez
International Computer
Science Institute
1947 Center Street #600
Berkeley, CA, 94704

chema@icsi.berkeley.edu

Keywords

FPGA, Intrusion Detection, Hardware Acceleration, NIC

1. INTRODUCTION

Stateful, in-depth, in-line traffic analysis for intrusidetection
and prevention is growing increasingly more difficult as tiza
rates of modern networks rise. One point in the design sparce f
high-performance network analysis—pursued by a numbesof ¢
mercial products—is the use of sophisticated custom halviror
very high-speed processing, such systems often cast tine @mal-
ysis process in ASICs.

In this work we pursue a different architectural approanint-
ing, which marries a conceptually quite simple hardware device
with an Intrusion Prevention System (IPS) running on comityod
PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to rétaimn-
paralleled flexibility that running the main IPS analysisairfull
general-computing environment provides.

The Shunting architecture uses a simple in-line hardwagze el
ment that maintains several large state tables indexed tkepa
header fields, including IP/TCP flags, source and destimdfo
addresses, and connection tuples. The tables yield deoisie
ues the element makes on a packet-by-packet basis: forlvard t
packet, drop it, or divert (“shunt”) ithroughthe IPS (the default).
By manipulating table entries, the IPS can, on a fine-gralizesis:

(i) specify the traffic it wishes to examingi) directly block mali-
cious traffic, andiii) “cut through” traffic streams once it has had
an opportunity to “vet” them, ofiv) skip over large items within a
stream before proceeding to further analyze it.

The efficacy of this approach depends on the degree to whéch th
IPS can “shed load” by identifying large-volume subsetsraffic
that it can safely skip. Opportunities for these arise, f@reple,
due to encrypted SSH and SSL sessions, for which the IPS ¢gn on
usefully analyze the initial negotiation process, or HTEBsions
that transfer large items such as images or movies. Whila suc
flows make up only a small proportion of the connections seem o
network link, in many environments they make up a large foact
of the bytes, due to the widely documented “heavy-tailedura
of network traffic [11, 12, 6, 23, 22, 5].

Reference [7] presents the overall architecture and eweiiin
detail. In this paper we focus on our subsequent efforts sigde
and implement an FPGA-based realization of Shunting. The de
vice can operate in-line on a network link, facilitate swittased
LAN monitoring, or as a load balancer for a clusterized Isitbn
Detection System (IDS).

We implemented the Shunt on top of the NetFPGA2 [19] re-

search and education platform. This platform contains &bps
Ethernets, two 2 MB SRAMSs, and a Virtex 2 Pro 30 FPGA, all lo-
cated on a single PCI card which fits inside a standard host. We
began by modifying an existing design, a 4-port Ethernet &t
used only one of the SRAMs as a buffer, to creRMET, a frame-
work for in-place packet manipulation and routing. The RNET
framework provides a shim between each receiving MAC and the
main controller. Each shim buffers one packet at a time, @md c
manipulate the packet before routing it to any output MAGoathe
host.

We then built the Shunt using the RNET infrastructure. The de
sign centers around two primary caches: a connection cathe o
216 entries and an IP address cache2df entries. The connec-
tion cache uses multi-location associativity, a varianaafesign
by Song et al [16], where two separate hash functions are tosed
provide two different possible locations for each entryattow the

complete with a host DMA interface and an Ethernet drivere Th
NetFPGA tools include a configuration downloader whichwao
the NetFPGA to be reconfigured, a driver for the NetFPGA board
and an API to peek and poke both status registers and the two on
board SRAMs.

There has been considerable hardware designed for intrdsio
tection. Several projects have implemented partial or detap
regular-expression based rulesets [17, 18], or portion3 @P
stream reassembly?], while a large number of commercial in-
trusion detection and prevention systems claim to use leelac-
celeration. In particular, [17] also takes a preprocesppraach,
but it only implements the static ruleset (more details 4} [to
filter out uninteresting communication, without the dyneyper
connection control we provide. Likewise, a related projettof-
floads Snort processing by implementing a static set of inlése
FPGA.

host to move entries to free up space. The IP address cache is a The most closely related work to ours is SPANIDS [15].

multilocationpermutationcache: rather than using a conventional
tag/index structure, we use a 32-bit block cypher to endtyptiP
address to create the tag and index, which can result in a 50% s
ings in memory by allowing part of the tag to be implicitly std.

For both these caches, we encode an action (shunt, sample, fo
ward, or drop) and a priority. Additional rules also encode a
tions and priorities based on fixed-header fields. The hamlwa
selects the highest priority match, or, if no match, defadtshunt-
ing the packet to the host. Additionally, the rules for cartians
can have an optional record that specifies an alternatendésti
MAC, VLAN, and/or output port to which connections should be
forwarded, and an alternate rule that applies if the TCP esgcpi
number is within a specified range (to skip over items with@PT
streams).

The resulting design requires 21,200 4-LUTs for logic,
2,770 LUTS for routethrough (87% of the available resouyrcasd
135 out of 136 available BlockRams. It requires only 41 cycle
to make a decision when unloaded (and no more than 101 cycles
when fully loaded), running at 62.5 MHz. Packets that passctly
through the hardware path see only:$ of additional network la-
tency.

We begin in Section 2 with a survey of related work and a dis-
cussion of the NetFPGA board. Section 3 discussefRNETad-
dition to the NetFPGA firmware, designed as a general platfor
network processing. Section 4 discusses our overall haedea
chitecture and how this architecture realizes our desaskist We
then in Section 5 present multi-location associativityjchhallows
us to more efficiently utilize our caches. Section 6 discsigxas-
mutation caches, a space-saving technique we employ fdiPthe
address cache that doubles the available capacity wheoiatssg
small values with 32-hit keys.

Section 7 details the actual implementation used for thex@hu
caches and general operation. We evaluate the Shunt iro8&ti
with present conclusions in Section 9.

2. RELATED WORK

The NetFPGA version 2 [19] was developed by McKeown et
al as a platform for both research and network experimemtati
consists of a single Virtex 2 Pro (V2Pro 30, speedgrade 5)A&PG
two 2 MB (512Kx36) SRAMSs, a quad-port Gbps Phy, on a PCI
card, with the PCl interface implemented in a Spartan Il FPGA

Additionally, the NetFPGA platform has three significargqes
of code associated with itUNET, CNET, and assorted software
tools. UNET is a generic design for student projects. It i8S
of a single Ethernet MAC and associated control logic, iditig
memory interfaces. CNET implements a quad port Ethernet NIC

SPANIDS is a front-end load balancer for parallel intrusitex
tection applications, which uses a series of hash functiorde-
termine which analyzer should receive a packet. The SPANIDS
load balancer receives packets on a single Gbps Ethernette®

the destination MAC address based on a series of hash fasgtio
and outputs the packet. SPANIDS uses four small hash tables o
4,096 entries to determine where to route the packet, wibelia-
bles implemented in on-chip SRAM. Unlike the Shunt, SPANIDS
can't precisely route individual connections, only hasisdd ag-
gregates of connections to balance flows and prevent hetspot

3. RNET

Although the NetFPGA platform is designed for easy extehsib
ity as part of class projects, the design framework for ghasjects,
UNET, was not suitable for our purposes. The UNET design only
activates a single Ethernet and, more importantly, lack&\n-
terface to the host. Instead, we began with the NetFREBIET
design, which implements a 4 port Ethernet NIC, completdn wit
DMA packet transfer and a Linux driver, as the starting péamt
our work.

We wished to create a general framework for packet proagssin
not just an application-specific instance. We observed rfeaty
network processing tasks have the following propertiesks are
read in from an Ethernet, perhaps modified in-place (suchasgs
ing MAC addresses and IP TTLs, or decrypting payload data), a
then written out to an appropriate MAC or forwarded to thethos
for further analysis. This analysis may also need some nediyp-
sized shared memory, and an easy interface to the host ipére o
ations required for a packet are more complex than what tre: ha
ware can support.

3.1 Shim Layer

To do so, we created a smatimmodule that fits between each
receiving MAC and the memory arbiter that processes paclests
tined for the host. The purpose of the shim is to read in a packe
from the MAC (on a 32-bit, 62.5 MHz bus) into a buffer, process
the packet with user-specified logic, and then forward trekeito
its appropriate destination(s). The shim must wait for th@ter
to complete the transaction if the packet is forwarded tohibet,
but once the shim begins writing the packet to the output MACs
begins reading the next packet. This can allow the shim toabpe
near or at Gbps rates if the packets don't need to be redif¢cte
the host.

In addition to the shim, we needed to modify other portions of
the design. In order to prevent contention, we gave each MAC
send path 4 additional FIFOs, for a total of five. These FIF@s a

MAC Group 0 Shim 0

: Packet ‘—|]
— i > Buffer Router H— -
> MemCtl
Header ™
) <—I FIFO i‘ Extract Decision [*
~ <—| FIFO i= N
) . :FIFO - MACI..3 i ™
] FIFO [*1 Shim 1.3 ¥
] <— FIFO -
~-4—

Figure 1: The RNET structure. Items in gray are carried over from the CNET infrastructure unchanged.

served in a round-robin fashion. As a result, the RNET fraorew
implements a full 5x5 crossbar, with the 5x4 crossbar to titput
MACs having independent buffers for each path.

Finally, the memory controller for the second SRAM was mod-
ified to provide 5 read and write ports. Each shim is given a sin
gle pipelined read and write port to this shared 256Kx36 SRAM
Again, these requests are also serviced in a round-robhiofas
and the memory controller is pipelined for greater throughp

The resulting framework (Figure 1) can then be used to imple-
ment a large class of packet processors. As the packet isrezad
the MAC, at 2 Gbps, the headers are extracted and the packet wr
ten into a BlockRAM buffer. Once the packet is fully read inya
user logic can modify the packet in place and decide where the
packet should be routed. The biggest limitation on RNETetdas
designs is that effectively all BlockRAMs are used in thet&fr2
Pro 30, mostly because of the 20 BlockRAMs required simply
for the output buffers for the MAC output crossbar and theeoth
4 BlockRAMs for the packet buffer in the shim, which are on top
of the already significant buffering used in the base CNETotles

3.2 Click Interface

One other addition was an interface to allow the Click [9]tevu
framework to access NetFPGA resources. Click is a C++ frame-
work for writing software routers and software packet pssieg
elements that run on Linux.

For packets being passed to and from the host, using the CNET
driver, Click treats the NetFPGA like any other Ethernethveiach
port having a unique Ethernet name. Click can read and wpite a
proximately 20K packets/sec through this interface.

To access control information, including both NetFPGA istat
registers and the shared SRAM memory, a simple interfaceis p
vided that allows Click elements to write and read state efaff-
chip SRAMs. In particular, the 2 MB shared SRAM can be both
read and written by programs written in Click to facilitaanemu-
nication with the shims, without needing to modify or addista
registers contained in the CNET infrastructure.

4. THE SHUNT'S ARCHITECTURE

The Shunt is designed to accelerate three separate-btgdéh-
trusion detection tasks: in-line operation (necessanyirftsusion
prevention), LAN operation, and IDS load balancing. We hdee
signed the Shunt to perform in all these environments ussigge
common hardware design.

The key to the Shunt's operation is its ability to act as a pro-
grammable, priority-based filter. For each packet receitbd
Shunt examines the layer 3 and layer 4 headers, including the
source IP address, the destination IP address, and theatmmg-
tuple (source IP, destination IP, IP protocol, source ort desti-
nation port), to find the appropriate 2-bit action (forwahnd packet
onward; drop the packet; forward the packet and also samitiie w
a specified probability; or divert the packet to the host fotter
examination). Each matching rule also has a 3-bit priosglues
0 to 7), with the highest matching rule being selected, anebd 3
sample schedule if the selected action is sample.

The header examination uses a set of static rules. Non-IP
packets will always be shunted (diverted) to the host. Likew
packets which are IP fragments (which can be used for evasive
purposes), contain IP options, or are TCP connection de&limi
(SYNs, SYN/ACKs, FINs, or RSTs) are shunted to the host with
medium priority.

In contrast, both the connection rules and IP rules are pro-
grammable. The Shunt looks up the source IP address, thralest
tion IP address, and the connection 5-tuple. The IP addi@agd
just involves finding a matching action and priority. Conti@t
lookup, however, can also involve an optional record stoned
separate table. This optional record can specify a diffedesti-
nation for the packet, both in terms of MAC address and VLAN
tag and can also specify an alternate action if the pack€R Je-
guence number is within a specified range.

The goal of the alternate record’s sequence skipping isablen
the IPS to skip over a predefined “less interesting” rangeaffi¢.

For example, in an HTTP stream, a large embedded image is of
little interest to most IPSs. By using the header to deteentiire
length of the image, the sequence-skipping can be used &thav
Shunt directly forward the image, while ensuring that thbssu
quent traffic will still be directed to the host for detailexbenina-

tion.

4.1 In-line Border Operation

One mode of operation for the Shunt is to deploy it (and an-asso
ciated IPS) in-line at a site’s border, to protect the sivetfexternal
threats by filtering all traffic on the wide area network (WAINK
or links. In this mode, we operate the Shunt with two network
ports, one for the LAN side and another for the WAN side. As a
single NetFPGA board can process two Gbps Ethernet ports, ou
implementation can support such operation for IPS operatioa

Gbps Internet access link.

For such a deployment, the Shunt's role is to act as a front end
filter for an IPS running on the Shunt’'s host. When the IPSreete
mines that a particular connection doesn't significantlyesi from
deeper inspection, it will place farward rule for this connection.
Any subsequent traffic will be directly routed from the infither-
net to the output, without loading the host PC that perfoimedPS
analysis. Likewise, if the IPS detects that an external isdsthav-
ing offensive in some way (attacking internal hosts, orrafténg
to disrupt the IPS itself with stressful traffic), it can iiiste a high-
priority drop rule for traffic coming from this IP address.

4.2 In-Line LAN Operation

For LAN operation, the Shunt's role is to isolate and control
traffic passing between a large group of hosts, either fordpS
eration [20, 21] or to implement LAN-based policy contro).[Bs
such,all traffic on the local network must pass through the Shunt
before proceeding to the destination.

There are two options for LAN traffic management: direct rout
ing and VLAN rewriting. In direct routing, every host or gmof
hosts is on a separate Shunt port. In this context, the ctipnec
table’s optional record for each destination will specifyvthich
output port a connection should be routed.

For VLAN rewriting, every host is on its own unique VLAN, us-
ing untagged switch ports, with the Shunt on one or more VLAN
trunks that can read and write every 802.1(q) VLAN on the cwit
with tagged packets. For VLAN rewriting, the optional retor
specifies the destination VLAN. Any packet which is forwatde
will have its VLAN tag rewritten and then be reinjected bantoi
the same port, where the switch will route the packet to itsida-
tion. This, naturally, requires switches which both supmirANs
and maintain per-VLAN MAC caches.

One limitation for these LAN operations is that forward aper
tions can only be encoded in the connection table’s optida, fimt
in the IP address table. As such, the IP address table idieéfsc
limited to simply blocking offensive sites, not whitelisgj traffic
from trusted hosts.

4.3 Passive IDS Load Balancer

A final deployment we are pursuing is as a load balancer for a
cluster-based IDS deployment. In this role, we feed four pGb
tap ports into a switch, with each data feed on a unique VLAN.
The Shunt receives traffic from four ports on the switch, weitich
port configured with a VLAN trunk. Each port provides access
to one of the tap feeds, and can also transmit to different M6A
corresponding to the different nodes of the IDS cluster.

In this mode, the Shunt’s PC host acts as a load balancer and
manager, putting in appropriaferward rules for all active connec-
tions. Doing so requires the PC to install rules on a per-eotion
basis, but allows significantly greater flexibility thantgtaules:
the load balancer can, on request, also drop connectioas, t@
node failures, or redirect connections to different anagon de-
mand. Since the present configuration does not include tig ID
nodes reinjecting traffic, the Shunt does not operate i-land
thus does not support intrusion prevention; however, tipeagth
could be readily extended to do so.

5. MULTILOCATION ASSOCIATIVITY

Traditionally, higher associativity caches will have nipli lo-
cations at the same index. Thus, if the cache is 2-way ass@gia
and Dy, D1, and D all hash to the same index, only two entries
can actually be stored. In a multilocation associativitgheg mul-
tiple hash functions are used rather than one, and the vadyebm

100%

_—

90%

80%

70%

60%

Direct Mapped
— 2-way assoc
— 2-loc assoc
= 2-loc assoc + search

50%

40%

30%

20%

10%

0%

0% 100% 200%

Desired Percentage Occupancy

300% 400%

Figure 2: The fraction of the cache actually filled as a functbn
of the number of inserts attempted for four different strategies:
Direct mapped, 2-way associative, 2-location associativend 2-
location associative with a small search to move entries. Hse
results are for 100 runs each with a 64K entry cache.

at the index specified by any hash function. This design, umxa
it is a cache rather than a complete hash table (and therafore
chained buckets) is a simplification of the Fast Hash Taldpgsed
by Song et al [16], which was itself based on Bloom filters [12].
is also similar to the skewed-associativity cach ¢xcept that it
uses multiple hash functions within a single block rathanth dif-
ferent hash function for each different block in the cache.

In a multilocation cache, we use the multiple hash functimns
specify multiple locations where an element might resider &
2-way multilocation cache, we use two different hash fuordi
and the data could be at either location. Unlike with a Blodm fi
ter, however, we check the hashed locations to see whetheath
is actually present at the location. If not, it is a cache miBsis
multilocation design allows the cache to be significantlyefally
populated: ifDg, D; and D> map to the same location with one
hash function, it is highly unlikely that they map to the sdoa-
tion for the second hash function.

Additionally, when the cache evictions are rare (often tasec
when reads are much more common than insertions), and the cac
is managed by a sophisticated processor, entries can belmdye
conducting a partial or complete depth-first-search, ticheanan-
ager can help ensure that the cache is completely full, dagitoit
simpler process to the pointer balancing in Song et al's Hash
Table design.

Figure 2 shows how location associativity can help bettiéizat
the cache. As can be clearly seen, when the cache is onlyylight
occupied, the choice of associativity has little effect.t Ba the
number of entries exceeds the size of the cache, the maltitoc
associativity helps considerably. Adding the search djmeram-
proves things even more.

We modeled this cache architecture using a small simuledor,
ducting 100 runs for each parameter selected. For Figuree2, w
used a 64K-entry cache. In particular, when 64K elements are
hashed and inserted into the direct mapped cache (desiced oc
pation equals 100% of cache size), on average only 41,000 ele
ments can actually reside in the cache. Changing to a two-way
associative design allows 47,600 elements to be actuadlyech A
two-location associative cache, however, allows 49,8@hehts.

If a small, depth-5 search is used to find an appropriate eviign
there is a conflict, now 54,800 elements can be stored, ubing t

exact same amount of memory. Thus going with multiway associ
tivity and a small search to find valid configurations can ftasla
15% increase in cache utilization.

There are three disadvantages to this style of cache cothpare
with a conventional cache. The firstis that it requires midthash
functions instead of a single function. This is simply bessa-
way location associativity requires N hash functions (oriffécent
keys to the same keyed hash function). In general, this sestu-
ally low.

The second disadvantage is that if a search is employednit ca
be costly as the cache fills up. Instead of simply checkihtpca-
tions to determine where to insert, a small search of dépthill
require checkingk x N locations. Thus, some tradeoff will need
to be determined where to halt the search and just evict aendigl
instead.

The biggest concern is that & location cache requires access-
ing N differentmemory locations. If the cache is stored in SRAM,
and the entry size is equal to or greater than the word siz®, th
is not an issue. However, for DRAM-based caches, or any mem-
ory system which fetches large groups of words at a timetimca
associative caches may not be effective.

6. PERMUTATION CACHES

One of the keys to the Shunt's design is efficient caches. With
only a 2 MB working memory, we needed to develop efficient
caches to maximize the hit rate while minimizing the working
memory. In particular, for the IP address cache, we usedia var
ant on the permutation cache we first described in our AC-TRW
paper [10], which allows us to double the capacity of thisheac

A permutation cache is particularly well suited to assdega
small amount of data (such as an 8-bit source action and an 8-b
destination action) to 32-bit keys. Rather than splittimg key into
an index and tag, a permutation cache first encrypts the kag us
a block cypher where the block size is the same as the caohe’s k
size. Since a block cypher is really a permutation, this gut@es
that each key will map to a unique value. Additionally, byngsi
a cypher with a random cryptographic key, the permutatioans
domized and therefore can'’t be predicted by an attackeidiagp
the attack by Crosby and Wallach [4].

The resulting 32-bit value is then split into an index and teith
the index used to find the proper location and the tag verifieelhw
fetching the associated value, just like a conventionaheads a
result, an encryption cache for 32-bit keys witl{ locations only
needs 16 bits of tag per entry, rather than the 32 bits redjifir@
hash was used instead of a permutation.

We extended the permutation cache to support multilocatsn
sociativity by using different cryptographic keys. Insteaf just
storing the tag, an additional ID number is used to specifictvh
cryptographic key was used for this entry. With 2 cryptogiiap
keys, this then becomes a 2-way multilocation associatioeyp-
tion cache. If two values encrypt to the same location with en-
cryption key, they will, with very high probability, map tofférent
locations when the other encryption key is used, giving adoen
for cache layout, as we discussed in Section 5.

6.1 Keyed Permutation

Due to the usage model in a permutation cache, we don't need
a cryptographically strong block cypher, just an efficietick
cypher-like keyed permutation, one that requires only allsma
amount of FPGA resources and can be computed in one or two
clock cycles. Additionally, we need a 32-bit block cyphehile

Keyed Permutation Function

Input: Din[31:0], K[63:0]

Output: Dout[31:0]
B0 <= (SBoxA(Din[7 : 0])>>>2) + K[7: 0]
Bl <= (SBoxA(Din[15: 8])>>>3) + K[15: 8]
B2 <= (SBoxA(Din[23:16])>>>4) + K[23:16]
B3 <= (SBoxA(Din[31:24])>>>5) + K[31:24]
CO <= B0 ~ (Bl>>>1) ~ (B2>>>2) ~ K[39:32]
Cl <= Bl ~ (B2>>>4) ~ (B3>>>5) ~ K[47:40]
C2 <= B2 ~ (B3>>>7) ~ (CO>>>1) ~ K[55:48]
C3 <= B3 ~ (C0>>>3) ~ (Cl>>>4) ~ K[63:56]
DO <= SBoxC(CO0)
D1 <= SBoxC(Cl)
D2 <= SBoxC(C2)
D3 <= SboxC(C3)
EO0 <= DO ~ (D1>>>1) ~ (D2>>>5) ~ (D3>>>2)
El <= D1 ~ (D2>>>2) ~ (D3>>>6) ~ (E0>>>3)
E2 <= D2 ~ (D3>>>3) ~ (E0>>>7) ~ (El1>>>4)
E3 <= D3 *~ (E0>>>4) ~ (El1>>>1) ~ (E2>>>5)

Dout [31:0] <= {E3, E2, E1l, EO}

SBoxA-> Apply Serpent SBox0 to upper 4 bits
Serpent SBoxl to lower 4 bits

SBoxC-> Apply Serpent SBox2 to upper 4 bits
Serpent SBox3 to lower 4 bits

Figure 3: The pseudo-code for our keyed permutation (a sim-
plified block cypher).

most block cyphers operate on 64- or 128-bit blotksVe also
desire a 64-bit cryptographic key, which allows a large amai
entropy to be injected into the permutation.

To this end, we committed a classic cryptographic sin anéldev
oped our own 32-bit keyed permutation specifically for us82n
bit permutation caches. Our goal was to have a single routtd wi
a reasonable amount of mixing that can be efficiently impletext
on a 4-LUT based fabric as an S/P (Substitution/Permutatietz
work. Accordingly, the primitives we used are 4-bit S-bogeam
the Serpent [1] block cypher), byte addition, fixed rotatiand 4-
input XOR.

The input first passes through the initial S-boxes. The tiesul
output bytes are rotated and bytewise added to the first 82tiihe
key. The resulting word is then is passed through bytewitsion
and 4-input XORs, with each XOR combining 3 bytes of data with
1 byte of key. Finally, the data passes through one more roéind
S-boxes, and then a series of 4-input XORs and rotationsir&ig)
shows the complete pseudocode.

Although we never actually need to decrypt data for our appli
cation, the decryption process is effectively the oppasitine en-
cryption process, with inverted operations in reverseidecryp-
tion requires exactly the same resources as encryptionywanttl
be necessary for any application that needs to examine tire en
contents of a permutation cache, rather than just looking spe-
cific entry.

Finally, our design is optimized for hashing IP addresseshis
case, it is acceptable if the lower bits of the output are sdtigh
quality as the upper bits, as it is the upper bits that we ugbeas
index for looking up entries. As a result, for both the conapion

1The RCS5 [13] and RC6 [14] cyphers can be parameterized down
to a 32-bit block, but they are not efficient in this applicatidue

to their multiround structure, choice of primitives incing 16-bit
variable rotations, and complex key schedule.

End
Address
OxXOFFFF
Ox1FFFF
0x3FFFF
Ox7FFFF

Start
Address
0x00000
0x10000
0x20000
0x40000

Purpose

A4

Status Registers, Keys, Misc /(]
IP Address Cache&'™® entries
Optional Record2™ entries
Connection Cach&'® entries

Table 1: The memory allocation used in the NetFPGA Shunt

of the C and E words, the feedback loop causes the upper loytes t
be more affected by all input data and key bits.

6.2 FPGA Implementation

This design is very efficient when targeting an FPGA. All step
require only 32 LUTs each. Thus with two S-box steps (64 LUTS)
the initial key addition (32 LUTSs), the key-dependent mgin
(32 LUTSs), and the key independent mixing (32 LUTSs), theltota
cypher only requires 160 LUTs. Given a registered input amlg o
a single pipeline register on the output, this cypher rutiseatarget
62.5 MHz clock cycle on our Virtex 2 Pro FPGA, without needing
placement directives.

7. SHUNT CACHES

For the actual implementation of the Shunt, we need to fit all
the caches into the single 512Kx36 (2 MB) second SRAM on the
NetFPGA board. Table 1 summarizes our memory allocation. We
reserved the locations 0x0000 to OXOFFFF (the fitStaddresses)
for miscellaneous 1/0O, including status registers, demgygnfor-
mation, and the two permutation keys that are written by tiet.h

The IP address cache use¥ addresses from 0x10000 to
0 OX1FFFF. We implemented the address cache as a 2-location a
sociative permutation cache. WitH® addresses and 2 keys, the
first 16 bits are used to store the tag, one bit for the key IDit8 b
for the SRC IP address record, 8 bits for the DST IP record, and
3 bits of the entry are unused. Looking up a packet in the |PPesdd
cache requires checking four locations, two for the SRCrcband
two for the DST record.

The connection cache us@s® addresses, from 0x40000 to
0 Ox7FFFF. This cache is 2-location associative, using eyed
permutation as the basis for the hash function and the same tw
keys as used for the address cache. Each record in the cmmect
cache is 4 words, so the cache contailfsentries. The entry con-
tains both of the IP addresses (64 bits), both port numberbits),
the IP protocol number (8 bits), and an 8-bit action field. Add-
ally, we include two 16-bit pointers, for an optional recdiedd for
each direction of the connection.

Finally, the optional records u€e” addresses, from 0x20000 to
O0x3FFFF. These records contain a 48-bit optional MAC addres
to overwrite the destination MAC, a 16-bit optional VLAN tag
and a 2-bit alternate destination port designation. Alséhéelds
also have an associated bit that specifies if the alternatendéon
(MAC, VLAN, and/or Ethernet port) should be used. Finallyet
optional record contains a 32-bit TCP sequence number aad-an
sociated 8-bit action. If the packet is a TCP packet, and dcket’s
sequence number is less than the recorded sequence numetay, t
ternate action field is used instead of the connection cacwtion
field. This allows us to implement the functionality of skipg
over part of a TCP byte stream.

We pipeline the memory access when a packet is received in or-

used to specify the two 64-bit encryption keys used for bo#per-
mutation cache for IP address lookup and the hash functicofo
nection lookup. Then the two possible connection entrytiona

(4 words each) are fetched. Then the 4 words for the IP address
cache. At this point, the state machine may pause to ensairthth
connection entries are properly loaded, before fetchiegitivords
pointed to by the optional record. Thus, processing a paeket
quires fetching 20 words from 8 contiguous locations in mgmo

7.1 The Packet Processing Procedure

When a packet is received, the entire packet is first read into
the Shim’s BlockRAM buffer. As the packet is received, the ap
propriate fields (including IP header, TCP header, and Béter
header) are captured and stored in registers. Once thetpacke
completely read in, the IP address cache, connection cactue,
alternate record are looked up. For each cache that matittees,
appropriate action field is used, or, if there is no matchdefault
action ofshuntis selected.

Additionally, the fixed rules are examined. Non-IP packets a
always shunted to the host. IP packets with IP options set are
shunted with priority 4, as are TCP SYNs, FINs, and RSTs. Only
the highest matching action is selected, with the resulpiacket
either being shunted to the host, dropped, forwarded to #se d
tination, or sampled with a copy going both to the host and the
destination.

Finally, if the connection cache entry has an alternatercte@nd
the alternate record specifies that the MAC or VLAN tag should
be overwritten, we do so in place before the packet is foragrd
Because this overwriting uses the same memory interfaae tose
write the packet to the BlockRAM, we need to wait for the packe
to be completely received before this can occur.

7.2 Priority Inversion and Cache Manage-
ment

The caches are always managed by the host, never the Shunt
hardware. The Shunt hardware only reads the caches, tordeéer
the appropriate action. It is up to the host to manage theegach
including both setting entries (when the policy requiresnth or
evicting entries when space is required.

An important feature is that an evicted cache entry is safe. |
there is no entry, the packet is alwasfsuntedto the host. Thus if
only one rule applies, it is always sound for the host to etfiat
entry if space is needed in the cache.

However, if a high priority entry and a low priority entry ex-
ist for the same connection (such as a low priodtgp associated
with an offensive IP address but a high priorigyward for an al-
lowed connection), and the high priority entry is evictdg Shunt
will compute the wrong action. To address this, we imposehen t
host the responsibility to not create conditions where sugimi-
ority inversion can occur. If an evicted entry would lead ticls a
situation, the host must identify this possibility and eithlso evict
the low-priority rule (to remove the inversion) or selectitiedent
entry to evict.

8. EVALUATION

We evaluated the Shunt’s hardware in several contextsjdimal
the hardware utilization, latency required to process ptckoth
through a hardware-only and a hardware/software path viditd
testing, and the cycles required to make a decision.

The complete Shunt implementation currently requires
21,200 LUTs, or 77% utilization of the Virtex 2 Pro 30
FPGA's available resources. Another 2,770 LUTs are used

der to improve memory access time. We first access the 4 wordsfor routethrough, with a total LUT utilization of 87%. 95% tife

Packet [s [Dsiip [Proto | Fiags | sport| DPor|
ixed Rules
| L & | | Fixed Rul
IP Cache Connection Cache
Tag & Src Dst Low High Proto Low High Low High Low High
KeyIDy y Actn j Actn 1P 1P Port y Port § Optny Optny ActnjActn
o Selected
N v g Action:
o % g- (Forward,
: : > Q é Shunt,
N e Sample,
17b BIER 32b 32b 8b [16b [16b [1db [16b |8 [8b |" or Drop)
L
) Option Table
Action Entry Format: New New New Seq Seq
Action (2b) [Sample Rate (3b)[Priority (3b) MAC 4 VLAN 4 Out 4 # 4 Actn
0__.
°
o
(]
49b 17b | 3b | 32b | 8b

Figure 4: The packet processing operation used by the Shunt

slices are occupied. The Shunt also uses 135 out of 136 bleila
BlockRAMs. We believe that we can save 3,000 LUTs by
removing several redundant keyed permutation instaotiatin
each shim and instead multiplexing a single implementatitime
Shunt meets the target clock rate of 62.5 MHz.

To measure the overall latency incurred by the Shunt, we con-

If the packet is destined for the host, the Shim will have tat wa
until the arbiter reads the packet into the host packet bboféore
receiving the next packet. Additionally, since the hoseifece is
only 32b, 33 MHz, itis obviously insufficient to support f@bps
line rates. But if the packet is destined solely for anothiiebnet,
it can begin reading the next packet. Since the interface tiee

nected two systems, each to their own Gbps switch, and then MAC is 2 Gbps, and the interframe gap is 20 bytes, the Shunt can

bridged the switches either with a cable, with the Shunt set t
forward all packets (hardware-only path), or with the Shiamt
warding all packets to the Click test harness, which reisjec
the packets (hardware-plus-software-interface path)ngdJsinux
“ping -f -c 10000", the direct connection averaged an RTT
of 176 usec. The hardware-only path took 183ec, and the hard-
ware+software path 344sec. Thus, packets forwarded by the
Shunt incur an additional 5+8sec of latency,which is essentially
negligible.

We tested the Shunt’s ability to process large data rateg usi
perf [8] in the DETER testbed]. Using a single sending host and
a receiving host on the other side, each Shunt port proveabbap
of receiving and processing data at 480 Mbps. This figurel@be
a full Gbps because of a bug we discovered in the input FIFO tha
causes a lockup condition when attempting higher data.rétés
ditionally, one other bug we found prevents the reading ofext
VLAN-tagged packets by the device, but works fine for untagge
packets.

The Shim itself is capable of processing packets at full Giogs
rate, but only for reasonably sized packets400 bytes in the worst
case under maximum load) which are not directed to the host PC
It requires 41 cycles from when a packet is completely rezkin
the BlockRAM buffer to when it can be read out, when the board
is lightly loaded. During heavy load, memory contention Idou
increase this by, at most, 60 clock cycles, resulting in aimam
decision time of 101 clock cycles.

2This figure is half of the observed increase in RTT, since thé R
reflects the Shunt forwarding both the original ping packet s

reply.

maintain full line rate for forwarded packets if the averggeket
size is over 80 bytes. Since the minimum Ethernet packetisize
64 bytes, the Shunt can’t quite keep up with a full rate streém
minimum sized packets, but can process a stream of sligkidy o
minimum size at full rate. In practice the Shunt’s throughwill

be limited by the fraction of packets which are shunted orgad)
not by its ability to forward packets which don't involve thest.

9. CONCLUSIONS

We have developed the Shunt, an FPGA-based accelerator for
intrusion prevention systems based on the NetFPGA ar¢hic
The Shunt’s design is based on the RNET design we developed, a
modified version of the NetFPGA CNET design which is optirdize
for developing network processing applications.

The Shunt uses a novel cache structure to track addresses and
connections of interest. It uses a 2-location associatahe for
connections, and a 2-location associative permutatiohecdor
tracking addresses. The permutation cache allows twiceasy m
IP address entries to be stored in the same memory. We alsb dev
oped a new block cypher specifically for FPGA-based perrimutat
caches, which can be realized in 160 LUTs, while the multitoc
tion associativity allows the cache to be more effectiveiyzed by
the software host. Additionally, the caches are “safe”hveiache
misses resulting in packets being shunted to the host.

As aresult, the Shunt can utilize a very small amount of mgmor
a single 2 MB (512Kx32) SRAM to maintain its caches, and is im-
plemented on a relatively small (Virtex 2 Pro 30) FPGA. Thergh
is also fast, requiring 41 cycles to make a decision whertliigh
loaded (and a maximum of 101 cycles when fully utilized). For

packets handled entirely in hardware, additional latesayniy 5—
6 us, nearly unmeasurable for network traffic.

10.
This work was sponsored by the US Department of Energy, Of-

ACKNOWLEDGMENTS

fice of Science; the National Science Foundation under gignt-

0334088 and NRT-0335290; and by donations from Xilinx, for

which we are grateful.
The evolution of the shunting architecture benefited gydedim
discussions with Scott Campbell, Eli Dart, Stephen Lau,Rwobin

Sommer. Our thanks to Weidong Cui and Christian Kreibich for

volunteering to have their daily network traffic “live belihour
prototype shunting software for testing purposes. Finallywish

to acknowledge valuable assistance from the NetFPGA team at
Stanford University, lead by Nick McKeown and Greg Watson.
The NetFPGA program is sponsored by NSF grant EIA-0305729

as well as contributions from Xilinx.

11.

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

REFERENCES
R. Anderson, E. Biham, and L. Knudsen. Serpent: A

proposal for the advanced encryption standard.

Burton Bloom. Space/time trade-offs in hash coding with
allowable errorsCACM, July 1970.

Martin Casado, Tal Garfinkel, Aditya Akella, Michale
Freedman, Dan Boneh, and Nick McKeown. SANE: A
protection architecture for enterprise networksUsenix
Security 2006.

Scott Crosby and Dan Wallach. Denial of Service via
Algorithmic Complexity Attacks. IrProceedings of the 12th
USENIX Security SymposiutdSENIX, August 2003.

M. Crovella. Performance evaluation with heavy tailed
distributions. INJSSPP '01: Revised Papers from the 7th
International Workshop on Job Scheduling Strategies for
Parallel Processingpages 1-10, London, UK, 2001.
Springer-Verlag.

M. Crovella and A. Bestavros. Self-Similarity in Worldidé
Web Traffic: Evidence and Possible Causeioceedings
of SIGMETRICS’96: The ACM International Conference on
Measurement and Modeling of Computer Systems.
Philadelphia, Pennsylvania, May 1996. Also, in Perforneanc
evaluation review, May 1996, 24(1):160-169.

J.M. GonzalezEfficient Filtering Support for High-Speed
Network Intrusion DetectiarPhD thesis, University of
California, Berkeley, 2005.

National laboroatory for applied network research,
distributed applications support team, iperf, the tcp/udp
bandwidth measurement tool.
http://dast.nlanr.net/projects/iperf/.

R. Morris, E. Kohler, J. Jannotti, and M. Frans Kaashoek.
The click modular router. IBymposium on Operating
Systems Principlepages 217-231, 1999.

Nicholas Weaver and Stuart Staniford and Vern Paxsery V
fast containment of scanning worms.18th USENIX
Security SymposiundSENIX, August 2004.

V. Paxson. Empirically derived analytic models of wideea
TCP connectiondEEE/ACM Transactions on Networking
2(4):316-336, 1994.

V. Paxson and S. Floyd. Wide area traffic: The failure of
poisson modeling EEE/ACM Transactions on Networking
3(3):226-244, 1995.

Ronald L. Rivest. The RC5 encryption algorithm, from dr
dobb’s journal, january, 1995, 1996.

[14] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L.
Yin. The RC6 block cipher.

[15] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland.
SPANIDS: A scalable network intrusion detection
loadbalancer, 2005.

[16] Haoyu Song, Sarang Dharmapurikar, Jonathan Turndr, an
John Lockwood. Fast hash table lookup using extended
bloom filter: An aid to network processings. 8 iGCOMM
2005.

[17] Haoyu Song, Todd Sproull, Mike Attig, and John Lockwood
Snort offloader: A reconfigurable hardware nids filter.

[18] loannis Sourdis and Dionisios Pnevmatikatos. Fast,
large-scale string match for a 10 gbps fpga-based network
intrusion detection system.

[19] Greg Watson, Nick McKeown, and Martin Casado. Netfpga:
A tool for network research and education.2md workshop
on Architectural Research using FPGA Platforms (WARFP)
2006.

[20] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern
Paxson. Worms verses perimiters: The case for hard lans, in
submission.

[21] Nicholas Weaver, Vern Paxson, and Robin Sommer. Work in
progress: Bro-LAN pervasive network inspection and contr
ol for lan traffic, 2006.

[22] W. Wilinger, V. Paxson, and M. Taqqu. Self-similaritych

heavy tails: Structural modeling of network traffic. In

R. Adler, R. Feldman, and M. Taqqu, editofsPractical

Guide To Heavy Tails: Statistical Techniques and

TechniquesBirkhauser, 1998.

W. Willinger, M. Tagqu, R. Sherman, and D. Wilson.

Self-similarity through high-variability: Statisticahalysis

of Ethernet LAN traffic at the source levéEEE/ACM

Transactions on Networking:71-86, 1997.

(23]

