Enhancing Byte-Level
Network Intrusion Detection Signatures with Context

Robin Sommer
TU Minchen
Germany

sommer@in.tum.de

ABSTRACT

Many network intrusion detection systems (NIDS) use bytgiee-
ces as signatures to detect malicious activity. While béiigiply
efficient, they tend to suffer from a high false-positiveeratWe
develop the concept aontextual signatureas an improvement of
string-based signature-matching. Rather than matchiad fikings
in isolation, we augment the matching process with additicon-
text. When designing an efficient signature engine for thBNI
Bro, we provide low-level context by using regular expressifor
matching, and high-level context by taking advantage ofgsbe
mantic information made available by Bro’s protocol aniyend
scripting language. Therewith, we greatly enhance theasiga’s
expressiveness and hence the ability to reduce false yssitiWe
present several examples such as matching requests wiiasrep
using knowledge of the environment, defining dependencees b
tween signatures to model step-wise attacks, and recognezi-
ploit scans.

To leverage existing efforts, we convert the comprehensige
nature set of the popular freeware NIDS Snort into Bro’s leaug.
While this does not provide us with improved signatures bglft
we reap an established base to build upon. Consequentiywake e
ate our work by comparing to Snort, discussing in the prosess
eral general problems of comparing different NIDSs.

Categories and Subject DescriptorsC.2.0 [Computer-Communi-
cation Networks]: GeneralSecurity and protectian

General Terms: Performance, Security.

Keywords: Bro, Network Intrusion Detection, Pattern Matching,
Security, Signatures, Snort, Evaluation

1. INTRODUCTION

Several different approaches are employed in attemptidgtect
computer attacksAnomaly-basedystems derive (usually in an au-
tomated fashion) a notion of “normal” system behavior, agmbrt
divergences from this profile, an approach premised on ttiemo
that attacks tend to look different in some fashion fromtietite
computer useMisuse detectiosystems look for particular, explicit
indications of attacksHost-basedDSs inspect audit logs for this
while network-basedDSs, or NIDSs, inspect the network traffic).

Permission to make digital or hard copies of all or part o tiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS'03,0ctober 27-30, 2003, Washington, DC, USA.

Copyright 2003 ACM 1-58113-738-9/03/001055.00.

Vern Paxson
International Computer Science Institute and
Lawrence Berkeley National Laboratory
Berkeley, CA, USA

vern@icir.org

In this paper, we concentrate on one popular form of misuse de
tection, network-basesignature matchingn which the system in-
spects network traffic for matches against exact, precideseribed
patterns. While NIDSs use different abstractions for degjrsuch
patterns, most of the time the tesignaturerefers to raw byte se-
guences. Typically, a site deploys a NIDS where it can sesgarkt
traffic between the trusted hosts it protects and the utlestterior
world, and the signature-matching NIDS inspects the pggsack-
ets for these sequences. It generates an alert as soon esuhesTs
one. Most commercial NIDSs follow this approach [19], arsbal
the most well-known freeware NIDS, Snort [29]. As an example
to detect the buffer overflow described @AN-2002-0392 [9],
Snort’s signature #1808 looks for the byte patter€0505289-
E150515250B83B000000CD80 [2] in Web requests. Keeping
in mind that there are more general forms of signatures used i
trusion detection as well—some of which we briefly discusi?in-
in this paper we adopt this common use of the teigmature

Signature-matching in this sense has several appealiqgepro
ties. First, the underlying conceptual notion is simpleisieasy
to explain what the matcher is looking for and why, and what so
of total coverage it provides. Second, because of this simpl
signatures can be easy to share, and to accumulate into“krge
tack libraries.” Third, for some signatures, the matchiag be
quite tight: a match indicates with high confidence that an attack
occurred.

On the other hand, signature-matching also has signifioant |
itations. In general, especially when using tight sigredurthe
matcher has no capability to detect attacks other than thmse
which it has explicit signatures; the matcher will in getheam-
pletely miss novel attacks, which, unfortunately, congino be de-
veloped at a brisk pace. In addition, often signatures arénrfact
“tight.” For example, the Snort signature #1042 to deteatgrloit
of CVE-2000-0778 [9] searches forTranslate: F " in Web
requests; but it turns out that this header is regularly byezkrtain
applications. Loose signatures immediately raise the npagblem
of false positivesalerts that in fact do not reflect an actual attack.
A second form of false positive, which signature matchdwewise
often fail to address, is that ddiled attacks Since at many sites
attacks occur at nearly-continuous rates, failed attackoften of
little interest. At a minimum, it is important to distinghi®etween
them and successful attacks.

A key point here is that the problem of false positives can po-
tentially be greatly reduced if the matcher has additi@mositextat
its disposal: either additional particulars regarding eéRact activ-
ity and its semantics, in order to weed out false positives tu
overly general “loose” signatures; or the additional infiation of
how the attacked system responded to the attack, which ioftin
cates whether the attack succeeded.

In this paper, we develop the conceptamtextual signatures
in which the traditional form of string-based signature chatg is
augmented by incorporating additional context on diffelerels
when evaluating the signatures. First of all, we design amgle-
ment an efficient pattern matcher similar in spirit to tramtial sig-
nature enginesised in other NIDS. But already on this low-level
we enable the use of additional context (dyproviding full regu-
lar expressions instead of fixed strings, &idgiving the signature
engine a notion of full connection state, which allows it tore-
late multiple interdependent matches in both directions ofser
session. Then, if the signature engine reports the matchsaf-a
nature, we use this event as #tart of a decision process, instead
of an alert by itself as is done by most signature-matchin 4.
Again, we use additional context to judge whether somethlag-
worthy has indeed occurred. This time the context is located
higher-level, containing our knowledge about the netwbidt tve
have either explicitly defined or already learned duringratien.

lated connections into higher-level “sessions”) to getiegaalerts
(e.g., viasyslog or invoking programs for a reactive response.

More generally, a Bro policy script can implement signaisinde
matching—for example, inspecting the URIs in Web requehts,
MIME-encoded contents of email (which the event engine fivit
unpack), the user names and keystrokes in login sessiortegor
filenames in FTP sessions—but at a higher semantic levelakan
just individual packets or generic TCP byte streams.

Bro's layered approach is very powerful as it allows a widege
of different applications. But it has a significant shortéom
while, as discussed above, the policy script is capable dbpa-
ing traditional signature-matching, doing so can be custree for
large sets of signatures, because each signature has tadéd a®
part of a script function. This is in contrast to the conclewi-level
languages used by most traditional signature-based systerad-
dition, if the signatures are matched sequentially, therotferhead
of the matching can become prohibitive. Finally, a great d¢a

In §3.5, we will show several examples to demonstrate how thecommunity effort is already expended on developing andediss

concept of contextual signatures can help to eliminate robgte
limitations of traditional signatures discussed above. Wilesee
that regular expressions, interdependent signaturesraovdedge
about the particular environment have significant potétdieeduce
the false positive rate and to identify failed attack attesnpFor

example, we can consider the server's response to an attack a

the set of software it is actually running—italnerability profile—

to decide whether an attack has succeeded. In additiortingea
sighature matches as events rather than alerts enablesnalyae
them on a meta-level as well, which we demonstrate by idgngf
exploit scangscanning multiple hosts for a known vulnerability).

Instrumenting signatures to consider additional contestto be
performed manually. For each signature, we need to deternwliat
context might actually help to increase its performance il&\this
is tedious for large sets of already-existing signatureis, mot an
extra problem when developing new ones, as such signataxes h
to be similarly adjusted to the specifics of particular dtsaanyway.
Contextual signatures serve as a building block for inéngathe
expressivess of signatures; not as a stand-alone solution.

We implemented the concept of contextual signatures in
framework already provided by the freeware NIDS Bro [25].
contrast to most NIDSs, Bro is fundamentally neither an aadgm
based system nor a signature-based system. It is instetitibpar
into aprotocol analysis componeand apolicy script component
The former feeds the latter via generating a streareveitsthat
reflect different types of activity detected by the protoaohly-
sis; consequently, the analyzer is also referred to ag\tkat en-

nating packet-based and byte-stream-based signaturesex&o-
ple, the 1.9.0 release of Snort comes with a library of 1,746
tures [2]. It would be a major advantage if we could leverdmgse
efforts by incorporating such libraries.

Therefore, one motivation for this work is to combine Broéxft
bility with the capabilities of other NIDSs by implementiagigna-
ture engine. But in contrast to traditional systems, whisé their
signature matcher more or less on its own, we tightly integita
into Bro’s architecture in order to provide contextual sigmes. As
discussed above, there are two main levels on which we use add
tional context for signature matching. First, at a detaiatl, we
extend the expressiveness of signatures. Although by&pattern
matching is a central part of NIDSs, most only allow signesuto
be expressed in terms of fixed strings. Bro, on the other halnd,
ready provides regular expressions for use in policy ssrgotd we
use them for signatures as well. The expressiveness of stiehins
provides us with an immediate way to expressitactic context
For example, with regular expressions it is easy to explessio-
tion “string XYZbut only if preceded at some point earlier by string

theABC'. An important point to keep in mind regarding regular exgpre
In sion matching is that, once we have fully constructed thecheat

which is expressed as a Deterministic Finite Automaton (pE#e
matching can be done i@(n) time for n characters in the input,
and alsd(n) time. (That is, the matching always takes time linear
in the size of the input, regardless of the specifics of thatip@he
“parallel Boyer-Moore” approaches that have been explaratie
literature for fast matching of multiple fixed strings for@®n[12, 8]

gine For example, when the analyzer sees the establishment ofave a wide range of running times—potentially sublineat,ibut

a TCP connection, it generatesannection _established
event; when it sees an HTTP request it generhtgs _request
and for the corresponding rephytp _reply ;and when the event
engine’s heuristics determine that a user has successiuthenti-
cated during a Telnet or Rlogin session, it generkigm _suc-
cess (likewise, each failed attempt results ihogin _failure
event).

Bro’s event engine ipolicy-neutral it does not consider any
particular events as reflecting trouble. It simply makesehents
available to the policy script interpreter. The interpreteen ex-
ecutes scripts written in Bro’s custom scripting languagender

also potentially superlinear in. So, depending on the particulars
of the strings we want to match and the input against which ave d
the matching, regular expressions might prove fundamgntedre
efficient, or might not; we need empirical evaluations tced@ine
the relative performance in practice. In addition, the tamasion of
a regular expression matcher requires time potentiallpeaptial
in the length of the expression, clearly prohibitive, a pairwhich
we return in§3.1.

Second, on a higher level, we use Bro’s rich contextual $tate
implement our improvements to plain matching describedv@bo
Making use of Bro’s architecture, our engine sends eventheo

to define the response to the stream of events. Because the lapolicy layer. There, the policy script can use all of Bro'sealdy

guage includes rich data types, persistent state, andsaftcésers
and external programs, the response can incorporate adgraladf
context in addition to the event itself. The script’s reawtio a par-
ticular event can range from updating arbitrary state (f@neple,
tracking types of activity by address or address pair, onpirtg re-

existing mechanisms to decide how to react. We show sewvachl s
examples irg3.5.

Due to Snort’s large user base, it enjoys a comprehensive and

up-to-date set of signatures. Therefore, although foriibxi we
have designed a custom signature language for Bro, we make us

of the Snort libraries via a conversion program. This progtakes
an unmodified Snort configuration and creates a correspgiitio
signature set. Of course, by just using the same signatui&®ias
in Snort, we are not able to improve the resulting alerts imgeof

statistical limits, arguing in particular that the falderan rate is the
limiting factor for the performance of an IDS.

Most string-based NIDSs use their own signature language, a
are therefore incompatible. But since most languages @eem-

quality. But even if we do not accompany them with additional mon subset, it is generally possible to convert the sigeataf one

context, they immediately give us a baseline of already lyide
deployed signatures. Consequently, Snort serves us asrameé.

Throughout the paper we compare with Snort both in terms afqu
ity and performance. But while doing so, we encounteredragve

system into the syntax of another. ArachNIDS [1], for exampl
generates signatures dynamically for different systensedban a
common database, and [32] presents a conversion of Snod-sig
tures into STAT's language, although it does not comparetioe

general problems for evaluating and comparing NIDSs. We be-systems in terms of performance. We take a similar appraaudh,

lieve these arise independently of our work with Bro and §raord

therefore describe them in some detail. Keeping thesedtiits

in mind, we then evaluate the performance of our signatugimen
and find that it performs well.

§2 briefly summarizes related work. B3 we present the main
design ideas behind implementing contextual signaturegular
expressions, integration into Bro’s architecture, sonficdities
with using Snort signatures, and examples of the power oBte

convert Snort’s set into Bro’s new signature language.

For evaluation of the new signature engine, we take Snort as a
reference. But while comparing Bro and Snort, we have encoun
tered several difficulties which we discuss§ih. They are part of
the general question of how to evaluate NIDSs. One of the most
comprehensive evaluations is presented in [21, 22], wRig f-
fers a critique of the methodology used in these studied.fittther
extends the evaluation method by providing a user-frieadlyiron-

signature language. B4 we discuss general problems of evaluating ment on the one hand, and new characterizations of attaffic tra

NIDSs, and then compare Bro’s signature matching with 3nag
summarizes our conclusions.

2. RELATED WORK

[4] gives an introduction to intrusion detection in genedsfin-
ing basic concepts and terminology.

In the context of signature-based network intrusion deiect
previous work has focussed on efficiently matching hundefds
fixed strings in parallel: [12] and [8] both present implernagions
of set-wise pattern matching for Snort [29]. For Bro’s sigma en-
gine, we make use of regular expressions [18]. They give ts bo
flexibility and efficiency. [17] presents a method to incremadly
build the underlying DFA, which we can use to avoid the poteiyt
enormous memory and computation required to generate the co
plete DFA for thousands of sighatures. An extended form il
expressions has been used in intrusion detection for dgfisen
guences of events [30], but to our knowledge no NIDS uses the
for actually matching multiple byte patterns against thelqed of
packets.

In this paper, we concentrate on signature-based NIDSt &nor
one of the most-widely deployed systems and relies heavilitso
signature set. Also, most of the commercial NIDSs are signat
based [19], although there are systems that use more pdwerfu
cepts to express signatures than just specifying byte rpatte
NFR [28], for example, uses a flexible language caNe@ode to
declare its signatures. In this sense, Bro already proedphisti-
cated signatures by means of its policy language. But thieo§oar
work is to combine the advantages of a traditional dedicpédtirn
matcher with the power of an additional layer abstractimgrfthe
raw network traffic. IDS like STAT [35] or Emerald [26] are neor

on the other hand. More recently, [10] evaluates severahoam
cial systems, emphasizing the view of an analyst who resdhe
alerts, finding that these systems ignore relevant infdonatbout
the context of the alerts. [15] discusses developing a breadhfor
NIDSs, measuring their capacity with a representativditrafix.
(Note, in§4.2 we discuss our experiences with the difficulty of find-
ing “representative” traces.)

3. CONTEXTUAL SIGNATURES

The heart of Bro’s contextual signatures is a signaturerengde-
signed with three main goals in min@) expressive powefji) the
ability to improve alert quality by utilizing Bro’s contexal state,
and (iii) enabling the reuse of existing signature sets. We discuss
each in turn. Afterwards, we present our experiences withrt3n
signature set, and finally show examples which demonstpik-a
cations for the described concepts.

m

3.1 Regular Expressions

A traditional signature usually contains a sequence ofdiftat
are representative of a specific attack. If this sequenceusd
in the payload of a packet, this is an indicator of a possiltle a
tack. Therefore, the matcher is a central part of any sigediased
NIDS. While many NIDSs only allow fixed strings as search pat-
terns, we argue for the utility of usimggular expressionsRegular
expressions provide several significant advantages: firsy, are
far more flexible than fixed strings. Their expressivenessrhade
them a well-known tool in many applications, and their poargses
in part from providing additional syntactic context with
which to sharpen textual searches. In particular, charatasses,
union, optional elements, and closures prove very usefudgeci-

general in scope than purely network-based systems. They co fying attack signatures, as we seg8b5.1.

tain misuse-detection components as well, but their sigeatare
defined at a higher level. The STAT framework abstracts from |
level details by using transitions on a set of states as sigem A
component called NetSTAT [36] defines such state transifi@sed
on observed network-traffic. Emerald, on the other handizes
P-BEST [20], a production-based expert system to definelatta
based on a set of facts and rules. Due to their general scofie, b
systems use a great deal of context to detect intrusionshéuother

Surprisingly, given their power, regular expressions can b
matched very efficiently. This is done by compiling the espre
sions into DFAs whose terminating states indicate whettmeaizh
is found. A sequence ot bytes can therefore be matched with
O(n) operations, and each operation is simply an array lookup—
highly efficient.

The total number of patterns contained in the signature fset o
a NIDSs can be quite large. Snort’s set, for example, costain

hand, our aim is to complement the most common form of signa-1,715 distinct signatures, of which 1,273 are enabled baudef

ture matching—Ilow-level string matching—with context,itetstill
keeping its efficiency.

Matching these individually is very expensive. However, figed
strings, there are algorithms for matching sets of stririgaika-

The huge number of generated alerts is one of the most imporneously. Consequently, while Snort's default engine watitks it-

tant problems of NIDS (see, for example, [23]). [3] discssseme

eratively, there has been recent work to replace it with &vigse”

matcher [8, 12}. On the other hand, regular expressions give us set-

wise matching for free: by using the union operator on thévidel
ual patterns, we get a new regular expression which effegtoom-
bines all of them. The result is a single DFA that again ne2(s)
operations to match against afbyte sequence. Only slight modifi-
cations have been necessary to extend the interface of @ready-
existing regular expression matcher to explicitly allowgping of
expressions.

Given the expressiveness and efficiency of regular exmmessi
there is still a reason why a NIDS might avoid using them: the
underlying DFA can grow very large. Fully compiling a reguéx-
pression into a DFA leads potentially to an exponential neind§
DFA states, depending on the particulars of the patterris (1@n-
sidering the very complex regular expression built by coning
all individual patterns, this straight-forward approaduld easily
be intractable. Our experience with building DFAs for regux-
pressions matching many hundreds of signatures showshikast
indeed the case. However, it turns out that in practice ibissible
to avoid the state/time explosion, as follows.

Instead of pre-computing the DFA, we build the DFA “on-the-
fly” during the actual matching [17]. Each time the DFA neeals t
transit into a state that is not already constructed, we coenfhe
new state and record it for future reuse. This way, we onlyesto
DFA states that are actually needed. An important obsenvasi
that forn new input characters, we will build at mastnew states.
Furthermore, we find in practic€4.3) that for normal traffic the
growth ismuchless than linear.

However, there is still a concern that given inauspicioaffit—
which may actually be artificially crafted by an attacker-e-gtate
construction may eventually consume more memory than we hav
available. Therefore, we also implemented a memory-baibde\
state cache Configured with a maximum number of DFA states,
it expires old states on a least-recently-used basis. Irs¢heel,
when we mention “Bro with a limited state cache,” we are néfigr
to such a bounded set of states (which is a configuration o
our version of Bro), using the default bound of 10,000 states

Another important point is that it's not necessary to coratzfi
patterns contained in the signature set in®raleregular expres-
sion. Most signatures contain additional constraints lfkaddress
ranges or port numbers that restrict their applicabilite &ubset of
the whole traffic. Based on these constraints, we can buddpgr
of signatures that match the same kind of traffic. By coltegcbnly
those patterns into a common regular expression for magchia
group, we are able to reduce the size of the resulting DFA-dras
tically. As we show in§4, this gives us a very powerful pattern
matcher still efficient enough to cope with high-volumeficaf

3.2 Improving Alert Quality by Using Context

Though pattern matching is a central part of any signataset
NIDSs, as we discussed above there is potentially greatyuitil
incorporating more context in the system’s analysis piaogéner-
ating an alert, to ensure that there is indeed somethingatathy
occurring. We can considerably increase the quality ots|lerhile
simultaneously reducing their quantity, by utilizing krledge
about the current state of the network. Bro is an excellenit far
this as it already keeps a lot of easily accessible state.

The new signature engine is designed to fit nicely into Brays |
ered architecture as an adjunct to the protocol analysist exe

gine (see Figure 1). We have implemented a custom language fo

defining signatures. It is mostly a superset of other, sinéa-

The code of [12] is already contained in the Snort distrifmtbut
not compiled-in by default. This is perhaps due to some suuts,
some of which we encountered during our testing as well.

Figure 1: Integrating the signature engine (adapted from [5])

Policy script | [Real-time notification
L 2

Policy Layer

Event Control | | Signature Control }Evem stream
i v

Signature

Signatures -+ + "
2 Engine

Event Engine

Packet filter | l Filtered packet stream

Packet capture

| Packet stream
Network

guages, and we describe it in more detaf3n3. A new component
placed within Bro’s middle layer matches these signatugesnst
the packet stream. Whenever it finds a match, it inserts a nent e
into the event stream. The policy layer can then decide howe-to
act. Additionally, we can pass information from the poliayér
back into the signature engine to control its operation. ghature
can specify a script function to call whenever a particuignature
matches. This function can then consult additional cordext in-
dicate whether the corresponding event should indeed herageal.
We show an example of this later §8.5.4.

In general, Bro's analyzers follow the communication betwe
two endpoints and extract protocol-specific informatioar &xam-
ple, theHTTP analyzer is able to extract URIs requested by Web
clients (which includes performing general preprocessinch as
expanding hex escapes) and the status code and items sé&nt bac
by servers in reply, whereas tidP analyzer follows the applica-
tion dialog, matching FTP commands and arguments (sucheas th
names of accessed files) with their corresponding repliésar(@,
this protocol-specific analysis provides significantly maontext
than does a simple view of the total payload as an undiffertaat
byte stream.

The signature engine can take advantage of this additional i
formation by incorporating semantic-level signature rhatg. For
example, the signatures can include the notion of matchiagnat
HTTPURIs; the URIs to be matched are provided by BidETP
analyzer. Having developed this mechanism for interfatiegsig-
nature engine with th&lTTP analyzer, it is now straight forward
to extend it to other analyzers and semantic elements ((hdee
timed how long it took to add and debug interfaces FdP and
Finger , and the two totalled only 20 minutes).

Central to Bro’s architecture is its connection managerni&ath
network packet is associated with exactly one connectitis fo-
tion of connections allows several powerful extensionsaditional
signatures. First of all, Bro reassembles the payloadrstdal CP
connections. Therefore, we can perform all pattern magchimthe
actual stream (in contrast to individual packets). Whilet$has a
preprocessor for TCP session reassembling, it does so bgigom
ing several packets into a larger “virtual” packet. Thiskgds then
passed on to the pattern matcher. Because the resultingsanal
remains packet-based, it still suffers from discretizatwoblems
introduced by focusing on packets, such as missing bytecsegs
that cross packet boundaries. (See a related discussi@]infithe
problem of matching strings in TCP traffic in the face of pbksi
intruderevasion[27].)

In Bro, a signature match does not necessarily correspoad to
alert; as with other events, that decision is left to thegyoticript.
Hence, it makes sense to remember which signatures havaedatc
for a particular connection so far. Given this informatidns then
possible to specify dependencies between signaturessigedture

A only matches if signatur® has already matched,” or “if a host
matches more thaiV signatures of typ€’, then generate an alert.”
This way, we can for example describe multiple steps of aclitt
In addition, Bro notes in which direction of a connection etigalar
signature has matched, which gives us the notioreqtiest/reply

types of attributes{i) conditionsand (ii) actions The conditions
definewhenthe signature matches, while the actions decteinat
to doin the case of a match. Conditions can be further divided into
four types:header content dependengyandcontext

Header conditions limit the applicability of the signattwex sub-

signatures we can associate a client request with the correspondingset of traffic that contains matching packet headers. For, TG

server reply. A typical use is to differentiate between sgstul and
unsuccessful attacks. We show an exampkSi5.3.

More generally, the policy script layer can associate eahjt
kinds of data with a connection or with one of its endpointfisT
means that any information we can deduce from any of Bro'sroth
components can be used to improve the quality of alerts. Wiode
strate the power of this approach§8.5.2.

Keeping per-connection state for signature matching adyur
raises the question state managemenat some point in time we
have to reclaim state from older connections to preventysgem
from exhausting the available memory. But again we can &er
the work already being done by Bro. Independently of ouraign
tures, it already performs a sophisticated connectiorking using
various timeouts to expire connections. By attaching th&chiag
state to the already-existing per-connection state, warasbat the
sighature engine works economically even with large nusiloér
connections.

3.3 Signature Language
Any signature-based NIDS needs a language for actuallyidgfin

match is performed only for the first packet of a connectioor F
other protocols, it is done on each individual packet. Inegah
header conditions are defined by usirtgadump -like [33] syntax
(for exampletcp[2:2] == 80 matchesT CPtraffic with desti-
nation port 80). While this is very flexible, for convenieritere
are also some short-cuts (edst-port == 80).

Content conditions are defined by regular expressions. mgai
we differentiate two kinds of conditions here: first, the mgsion
may be declared with thpayload statement, in which case it is
matched against the raw packet payload (reassembled whglie a
cable). Alternatively, it may be prefixed with an analyzpedific
label, in which case the expression is matched against ttaeada
extracted by the corresponding analyzer. For exampleHfREP
analyzer decodes requested URIs. I8tp /(etc\/(passwd
|shadow)/ matches any request containing eitb&r/passwd
or etc/shadow

Signature conditions define dependencies between sigsatur
We have implementetkquires-signature , which specifies
another signature that has to match on the same connectson fir
andrequires-reverse-signature , which additionally re-

signatures. For Bro, we had to choose between using an glreadquires the match to happen for the other direction of the ection.
existing language and implementing a new one. We have d&cide Both conditions can be negated to match only if another sigaa
to create a new language for two reasons. First, it gives ug mo doesnot match.

flexibility. We can more easily integrate the new conceptcdbed

Finally, context conditions allow us to pass the match degis

in §3.1 ands3.2. Second, for making use of existing signature sets,on to various components of Bro. They are only evaluatedlif al

itis easier to write a converter in some high-level scrigtenguage
than to implement it within Bro itself.

Snort’s signatures are comprehensive, free and frequemptly
dated. Therefore, we are particularly interested in cdmgthem
into our signature language. We have written a correspgnéip
thon script that takes an arbitrary Snort configuration auighwts
signatures in Bro's syntax. Figure 2 shows an example of such
conversion.

Figure 2: Example of signature conversion

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80
(msg:"WEB-ATTACKS conf/httpd.conf attempt";
nocase; sid:1373; flow:to_server,established;
content:"conf/httpd.conf"; [...])

(a) Snort
signature sid-1373 {

ip-proto == tcp
dst-ip == a.b.0.0/16,c.d.e.0/24
dst-port == 80

The payload below is actually generated in a

case-insensitive format, which we omit here

for clarity.

payload /.*confVhttpd\.conf/

tcp-state established,originator

event "WEB-ATTACKS conf/httpd.conf attempt"
1%

(b) Bro
It turns out to be rather difficult to implement a completesgar
for Snort's language. As far as we have been able to deteriitine
syntax and semantics are not fully documented, and in faenof
only defined by the source code. In addition, due to diffenetet-
nals of Bro and Snort, it is sometimes not possible to keepxhet
semantics of the signatures. We return to this poirgdir2.

other conditions have already matched. For example, we inave
plemented dcp-state condition that poses restrictions on the
current state of th& CP connection, an@val , which calls an ar-
bitrary script policy function.

If all conditions are met, the actions associated with aatigre
are executedevent inserts asignature _match event into the
event stream, with the value of the event including the gigea
identifier, corresponding connection, and other conteke policy
layer can then analyze the signature match.

3.4 Snort’s Signature Set

Snort comes with a large set of signatures, with 1,273 edable
by default [2]. Unfortunately, the default configuratiomrts out to
generate a lot of false positives. In addition, many aleetsiig to
failed exploit attempts executed by attackers who scanar&sifor
vulnerable hosts. As noted above, these are general pretdém
signature-based systems.

The process of selectively disabling signatures that arepyui-
cable to the local environment, or “tuning,” takes time, \exige
and experience. With respect to Snort, a particular prolitetnat
many of its signatures are too general. For example, Srsigi'a-
ture #1560:

alert tcp $EXTERNAL_NET any
-> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC /doc/ access";
uricontent:"/doc/"; flow:to_server,established,;
nocase; sid:1560; [...])

searches for the strinfdoc/ within URIs of HTTP requests.
While this signature is indeed associated with a particuldmer-
ability (CVE-1999-0678 [9]), it only makes sense to use it if you
have detailed knowledge about your site (for example, thexietis

As the example in Figure 2 shows, our signatures are defined byho valid document whose path contains the stfaar/). Other-
means of an identifier and a set of attributes. There are twio ma wise, the probability of a signature match reflecting a fakem

is much higher than that it indicates an attacker exploiingold
vulnerability.

Another problem with Snort’s default set is the presencevef-o
lapping signatures for the same exploit. For example, sigaa
#1536, #1537, #1455, and #1456 (the latter is disabled tyuttef
all search forCVE-2000-0432 , but their patterns differ in the
amount of detail. In addition, the vulnerability IDs given$nort’s
signatures are not always correct. For example, signaé tef-
erenceCVE-1999-0172 and Bugtraq [6] ID #1187. But the lat-
ter corresponds t@VE-2000-0411 .

As already noted, we cannot expect to avoid these limitation
of Snort’s signatures by just using them semantically urifreztliin
Bro. For example, although we convert the Snort’s fixed gfrinto
Bro’s regular expressions, naturally they still repredixetd sets of
characters. Only manual editing would give us the additippaver
of regular expressions. We give an example for such an ingsrov
ment in§3.5.1.

3.5 The Power of Bro Signatures

3.5.2 Vulnerability Profiles

Most exploits are aimed at particular software, and usuaily
some versions of the software are actually vulnerable. rGive
the overwhelming number of alerts a signature-matchingNtan
generate, we may well take the view that the only attackstefést
are those that actually have a chance of succeeding. Ifxémple,
anllS exploit is tried on a Web server runnidgache , one may
not even care. [23] proposes to prioritize alerts basedisrkihd of
vulnerability information. We call the set of software vierss that
a host is running itsulnerability profile We have implemented this
concept in Bro. By protocol analysis, it collects the prafitd hosts
on the network, using version/implementation informatibat the
analyzer observes. Signatures can then be restrictedttirceer-
sions of particular software.

As a proof of principle, we have implemented vulnerabilitpp
files for HTTP servers (which usually characterize themselves via
theServer header), and foBSHclients and servers (which iden-
tify their specific versions in the clear during the initiabofocol
handshake). We intend to extend the software identificatiather

In this section, we show several examples to convey the powerprotocols.

provided by our signatures. First, we demonstrate how taneefi
more “tight” signatures by using regular expressions. Thea
show how to identify failed attack attempts by considerimg et of
software a particular server is runnning (we call thisvittnerabil-

We aim in future work to extend the notion of developing a pro-
file beyond just using protocol analysis. We gaassively finger-
print hosts to determine their operating system version infammat
by observing specific idiosyncrasies of the header fieldsarnraffic

ity profileand incorporate some ideas from [22] here) as well as thethey generate, similar to the probing techniques desciibfi8], or

response of the server. We next demonstrate modelling ackatt
multiple steps to avoid false positives, and finally show liowse
alert-counting for identifyingexploit scans We note that none of
the presented examples are supported by Snort withoutdirten
its core significantly (e.g. by writing new plug-ins).

3.5.1 Using Regular Expressions

Regular expressions allow far more flexibility than fixedrgys.
Figure 3(a) shows a Snort signature foWE-1999-0172 that
generates a large number of false positives at SaarlancLditiy's
border router. (Seé4.1 for a description of the university.) Fig-
ure 3(b) shows a corresponding Bro signature that uses daregu
expression to identify the exploit more reliabVE-1999-0172
describes a vulnerability of thiermmail CGI script. If an at-
tacker constructs a string of the form.; <shell-cmds> "

(a| instead of the works as well), and passes it on as argument ONd Signaturegmdexe-success

of therecipient CGI parameter, vulnerable formmails will ex-
ecute the included shell commands. Because CGI parameters c
be given in arbitrary order, the Snort signature has to ralyden-
tifying the formmail access by its own. But by using a regular
expression, we can explicitly define that tteeipient parame-
ter has to contain a particular character.

Figure 3: Two signatures for CVE-1999-0172

alert tcp any any -> a.b.0.0/16 80
(msg:"WEB-CGI formmail access";
uricontent:"/formmail";
flow:to_server,established;
nocase; sid:884; [...])

(a) Snort using a fixed string
signature formmail-cve-1999-0172 {

ip-proto == tcp
dst-ip == a.b.0.0/16
dst-port = 80

Again, actually expressed in a
case-insensitive manner.

http /.*formmail.*\?.*recipient=["&]*[;|)/
event "formmail shell command"

(b) Bro using a regular expression

we can separately or in addition emplagtivetechniques to explic-
itly map the properties of the site’s hosts and servers [Biijally,
in addition to automated techniques, we can implement agonfi
ration mechanism for manually entering vulnerability Jiesfi

3.5.3 Request/Reply Signatures

Further pursuing the idea to avoid alerts for failed attatkmapts,
we can define signatures that take into account both directiba
connection. Figure 4 shows an example. In operational use, w
see a lot of attempts to expld@VE-2001-0333 to execute the
Windows command interpretemd.exe . For a failed attempt, the
server typically answers with4acxz HTTPreply code, indicating an
error? To ignore these failed attempts, we first define one signature
http-error , that recognizes such replies. Then we define a sec-
, that matches only ifmd.exe
is contained in the requested URI (case-insensitive) aad¢hver
doesnot reply with an error. It's not possible to define this kind of
signature in Snort, as it lacks the notion of associating lolitec-
tions of a connection.

Figure 4: Request/reply signature

signature cmdexe-success {
ip-proto == tcp
dst-port == 80
http /.*[cC][mM][dD]\.[eE][xX][eE]/
event "WEB-IIS cmd.exe success"
requires-signature-opposite ! http-error
tcp-state established

signature http-error {

ip-proto == tcp

src-port == 80

payload /*HTTPV1\.. *4[0-9][0-9])/
event "HTTP error reply"
tcp-state established

}

2There are other reply codes that reflect additional typesrofs
too, which we omit for clarity.

3.5.4 Attacks with Multiple Steps

4. EVALUATION

An example of an attack executed in two steps is the infection Our approach for evaluating the effectiveness of the sigeatn-

by the Apache/mod _ssl worm [7] (also known asSlapper),

gine is to compare it to Snort in terms of run-time performeaand

released in September 2002. The worm first probes a target fogenerated alerts, using semantically equivalent sigaagets. We

its potential vulnerability by sending a simptéT TP request and
inspecting the response. It turns out that the request dssenin
fact in violation of theHTTP1.1 standard [11] (because it does not

note that we do not evaluate the concept of conceptual siggwby
itself. Instead, as a first step, we validate that our impleaten
is capable of acting as an effective substitute for the madely

include aHost header), and this idiosyncracy provides a somewhatdeployed NIDS even when we do not use any of the advanced fea-

“tight” signature for detecting 8lapper probe.

If the server identifies itself adpache, the worm then tries
to exploit anOpenSSL vulnerability onTCP port 443. Figure 5
shows two signatures that only report an alert if these steps
performed for a destination that runs a vulneraBlgenSSL ver-
sion. The first signatureslapper-probe , checks the payload
for the illegal request. If found, the script functi@ _vulnera-
ble _to _slapper (omitted here due to limited space, see [2]) is
called. Using the vulnerability profile described aboves thinc-
tion evaluates to true if the destination is known to Apache
as well as a vulnerabl®penSSL version® If so, the signature
matches (depending on the configuration this may or may not ge
erate an alert by itself). The header conditions of the st:cigr
nature,slapper-exploit , match for anySSL connection into
the specified network. For each, the signature calls thptdormc-
tion has _slapper _probed . This function generates a signa-
ture match ifslapper-probe has already matched for the same
source/destination pair. Thus, Bro alerts if the comboratf prob-
ing for a vulnerable server, plus a potential follow-on expbf the
vulnerability, has been seen.

Figure 5: Signature for Apache/ nod_ssl worm

signature slapper-probe {

ip-proto == tcp

dst-ip == x.y.0.0/16 # sent to local net

dst-port == 80

payload /*GET \/ HTTPV1\.1\x0d\x0a\x0d\x0a/

eval is_vulnerable_to_slapper # call policy fct.

event "Vulner. host possibly probed by Slapper"

}
signature slapper-exploit {
ip-proto == tcp
dst-ip == x.y.0.0/16
dst-port == 443 # 443/tcp = SSL/TLS
eval has_slapper_probed # test: already probed?
event "Slapper tried to exploit vulnerable host"

}

3.5.5 Exploit Scanning

Often attackers do not target a particular system on therlete
but probe a large number of hosts for vulnerabilitiesploit scan-
ning). Such a scan can be executed eithamizontally(several hosts
are probed for a particular exploityertically (one host is probed
for several exploits), or both. While, by their own, most bése
probes are usually low-priority failed attempts, the sdaalf is an
important event. By simply counting the number signatusstsl
per source address (horizontal) or per source/destinpaan(ver-
tical), Bro can readily identify such scans. We have impletae
this with a policy script which generates alerts like:

a.b.c.d triggered 10 signatures on host e.f.g.h

i.j.k.I triggered signature sid-1287 on 100 hosts
m.n.o.p triggered signature worm-probe on 500 hosts
g.r.s.t triggered 5 signatures on host u.v.x.y

3Note that it could instead implement a more conservativecyol
and return trueinlessthe destination is known to not run a vulner-
able version of OpenSSL/Apache.

tures it provides. Building further on this base by thordygvalu-
ating the actual power of contextual signatures when depl@mp-
erationally is part of our ongoing work.

During our comparision of Bro and Snort, we found several pe-
culiarities that we believe are of more general interest.r @u
sults stress that the performance of a NIDS can be very sensit
to semantics, configuration, input, and even underlyinglare.
Therefore, after discussing our test data, we delve intgetiresome
detail. Keeping these limitations in mind, we then asseseterall
performance of the Bro sighature engine.

4.1 TestData

For our testing, we use two traces:

USB- Ful I A 30-minute trace collected at Saarland University,
Germany USB-Full), consisting of all traffic (including
packet contents) except for three high-volume peer-to-pee
applications (to reduce the volume). The university ha8®,5
internal hosts, and the trace was gathered on its 155 Mbps
access link to the Internet. The trace totals 9.8 GB, 15.3M
packets, and 220K connections. 35% of the trace packets be-
long toHTTPon port 80, 19% to eDonkey on port 4662, and
4% tossh on port 22, with other individual ports being less
common than these three (and the high-volume peer-to-peer
that was removed).

LBL- Web A two-hour trace of HTTP client-side traffic, including
packet contents, gathered at the Lawrence Berkeley Nationa
Laboratory (LBL), Berkeley, USALBL-Web). The labora-
tory has 13,000 internal hosts, and the trace was gathered on
its Gbps access link to the Internet. The trace totals 667MB,
5.5M packets, and 596K connections.

Unless stated otherwise, we performed all measurements on
550MHz Pentium-3 systems containing ample memory (512MB or
more). For both Snort and Bro’s signature engine, we usedt'Sno
default signature set. We disabled Snort’s “experimersel’of sig-
natures as some of the latest signatures use new optionh atgc
not yet implemented in our conversion program. In additive,
disabled Snort signature #52BAD TRAFFIC data in TCP
SYN packet . Due to Bro matching stream-wise instead of packet-
wise, it generates thousands of false positives. We didtissn
§4.2. In total, 1,118 signatures are enabled. They contdifi71,
distinct patterns and cover 89 different service ports. @0%e
signatures covedTTPtraffic. ForLBL-Web, only these were acti-
vated.

For Snort, we enabled the preprocessors for IP defragni@mtat
TCPstream reassembling on its default ports, and HTTP decoding
For Bro, we have turned ohCP reassembling for the same ports
(even if otherwise Bro would not reassemble them because ofon
the usual event handlers indicated interest in traffic foséhports),
enabled its memory-saving configuration@foad reduce-
memory”), and used annactivity _timeout of 30 seconds
(in correspondence with Snort’'s default session timedivg.con-
figured both systems to consider all packets contained itraices.

We used the version 1.9 branch of Snort, and version 0.8atmf B

4.2 Difficulties of Evaluating NIDSs

The evaluation of a NIDS is a challenging undertaking, bath i
terms of assessing attack recognition and in terms of deggssr-
formance. Several efforts to develop objective measures baeen
made in the past (e.g., [21, 22, 15]), while others stresgliffie
culties with such approaches [24]. During our evaluation, em-
countered several additional problems that we discuss Nehéle
these arose in the specific context of comparing Snort angtBeo
applicability is more general.

When comparing two NIDSs, differing internal semantics can
present a major problem. Even if both systems basicallyoparf
the same task—capturing network packets, rebuilding @alylde-
coding protocols—that task is sufficiently complex thasiaimost
inevitable that the systems will do it somewhat differentiyhen
coupled with the need to evaluate a NIDS ovédarge traffic trace
(millions of packets), which presents ample opportunitytfe dif-
fering semantics to manifest, the result is that underatgnthe
significance of the disagreement between the two systemsrcan
tail significant manual effort.

One example is the particular way in whi€iCP streams are re-
assembled. Due to state-holding time-outs, ambiguities {27,
16] and [25] for discussion of how these occur for benignaaasn
practice) and non-analyzed packets (which can be causeddigip
filter drops, or by internal sanity checks), TCP stream a@atywill
generally wind up with slightly differing answers for correases.

Snort, for example, uses a preprocessor that collects aemofib
packets belonging to the same session until certain thidslaoe
reached and then combines them into “virtual” packets. Eiseaf
Snort is not aware of the reassembling and still only seekeps.c
Bro, on the other hand, has an intrinsic notion of a data strea
It collects as much payload as needed to correctly recaidine

memory? And even if we do, how to arrange that both expire the
same old data? The hooks to do so simply aren’t there.

The result of these differences is differing views of the samat-
work data. If one NIDS reports an alert while the other does no
it may take a surprisingly large amount of effort to tell winione
of them is indeed correct. More fundamentally, this depeonls
the definition of “correct,” as generally both are corredthivi their
own semantics. From a user’s point of the view, this leadsftere
ent alerts even when both systems seem to use the same signatu
From an evaluator’s point of view, we have(ip grit our teeth and
be ready to spend substantial effort in tracking down thé caase
when validating the output of one tool versus another, @nde
very careful in how we frame our assessment of the differgroe
cause there is to some degree a fundamental problem of “corgpa
apples and oranges”.

The same applies for measuring performance in terms of effi-
ciency. If two systems do different things, it is hard to camg
them fairly. Again, theHTTPanalyzers of Snort and Bro illustrate
this well. While Snort only extracts the first URI from eaclcket,

Bro decodes the fuHTTPsession, including tracking multiple re-
quests and replies (which entails processing the numerays im
which HTTP delimits data entities, including “multipart ME”
and “chunking”). Similarly, Bro provides much more infortitan
at various other points than the corresponding parts oftSnor

But there are still more factors that influence performaroen
if one system seems to be significantly faster than anothisrcan
change by modifying the input or even the underlying har@war
One of our main observations along these lines is that th®mper
mance of NIDSs can depend heavily on the particular inpaetra
On a Pentium-3 system, Snort needs 440 CPU seconds for tlee tra
LBL-Web (see Figure 6). This only decreases by 6% when us-

next in-sequence chunk of a stream and passes these dates chuning the set-wise pattern matcher of [12]. In addition, weisked

on as soon as it is able to. The analyzers are aware of thenfatct t @ Small modification to Snort that, compared to the origiret v
they get their data chunk-wise, and track their state aaiossks. ~ Sion, speeds it up by factor &6 for this particular trace. (The
They arenotaware of the underlying packetization that lead to those Modification is an enhancement to the set-wise matcher: rige o

chunks. While Bro’s approach allows true stream-wise dignes,
it also means that the signature engine loses the notionamkégt
size”: packets and session payload are decoupled for m@&sbéf
analyzers. However, Snort's signature format includes g ofa
specifying the packet size. Our signature engine must fakaru
equivalent by using the size of the first matched payload klioin
each connection, which can lead to differing results.

Another example of differing semantics comes from the bighav
of protocol analyzers. Even when two NIDS both decode theesam
protocol, they will differ in the level-of-detail and theimterpreta-
tion of protocol corner cases and violations (which, as eet
above, are in fact seen in non-attack traffic [25]). For eXatpoth
Bro and Snort extract URIs frotATTP sessions, but they do not
interpret them equally in all situations. Character encgsliwithin
URIs are sometimes decoded differently, and neither cositafull
Unicode decoder. The anti-IDS tool Whisker [37] can actjivet-
ploit these kinds of deficiencies. Similarly, Bro decodgsepined
HTTP sessions; Snort does not (it only processes the firstiu&l
series of pipelined HTTP requests).

Usually, the details of a NIDS can be controlled by a number of

options. But frequently for a Bro option there is no equinl®nort

inal implementation first performs a set-wise search foohthe

possible strings, caching the results, and then iteratesigh the
lists of signatures, looking up for each in turn whether astigular
strings were matched. Our modification uses the result obéte
wise match to identify potential matching signatures diyei€ the

corresponding list is large, avoiding the iteration.)

Figure 6: Run-times on different hardware

Run-times on Web trace

Snort
Snort-[FV01]
Snort-Modified
Bro w/o DFA cache
Bro w/ DFA cache

400
|

ZENRUEN|

300
|

Seconds

200
|

100
|

Pentium-3, 512Mhz Pentium-4, 1.5Ghz
Using the tracé&JSB-Full , however, the improvement realized
by our modified set-wise matcher for Snort is only a factot .Gf

option, and vice versa. For example, the amount of memorgt Use Eyen more surprisingly, on a trace from another environrtene-

limit is reached, old data is expired aggressively. BroeseBolely
on time-outs. Options like these often involve time-memmage-

offs. The more memory we have, the more we can spend for Snort’

reassembler, and the larger we can make Bro’s time-outsh@®ut
to choose the values, so that both will utilize the same amofin

original version of Snort iswice as fasts the set-wise implemen-
tation of [12] (148 CPU secs vs. 311 CPU secs), while our match
version lies in between (291 CPU secs). While the reasonairem
to be discovered in Snort’s internals, this demonstrateslifficulty

of finding representative traffic as proposed, for exampl§l 5].

Furthermore, relative performance does not only dependhent to. This makes it difficult to compare the matches. We account
input but even on the underlying hardware. As describedalibe for these difference by comparing connections for whicheast
original Snort needs 440 CPU secondslfBL-Web on a Pentium- ~ one match is generated by either system. Wi8B-Full , we get
3 based system. Using exactly the same configuration and inpu2,065 matches by Bro in total on 1,313 connections. Snodrtep
on a Pentium-4 based system (1.5GHz), it actually takes 29 CP 4,147 alerts. When counting each alert only once per commect
secondsnore But now the difference between stock Snort and our Snort produces 1,320 on 1,305 connectidrithere are 1,296 con-

modified version is a factor of 5.8! On the same system, Brois r
time decrease$rom 280 to 156 CPU seconds.

Without detailed hardware-level analysis, we can only guesy
Snort suffers from the upgrade. To do so, wevalgrind ’s [34]
cache simulation on Snort. For the second-level data cédiemws
a miss-rate of roughly 10%. The corresponding value for Bitme-
low 1%. While we do not know ifalgrind s values are airtight,
they could at least be the start of an explanation. We havadhea
other anecdotal comments that the Pentium-4 performs poddy
for applications with lots of cache-misses. On the otherdhdny
building Bro’s regular expression matcher incrementall/a side
effect the DFA tables will wind up having memory locality tha
somewhat reflects the dynamic patterns of the state accedsel
will tend to decrease cache misses.

4.3 Performance Evaluation

We now present measurements of the performance of the Bro sig

nature engine compared with Snort, keeping in mind the diffies
described above. Figure 7 shows run-times on trace subfseifs o
ferent length for th&JSB-Full trace. We show CPU times for the
original implementation of Snort, for Snort using [12] ¢ually no
difference in performance), for Snort modified by us as dbedrin

the previous section, for Bro with a limited DFA state cadg] for
Bro without a limited DFA state cache. We see that our modified
Snort runs 18% faster than the original one, while the caebe-
Bro takes about the same amount of time. Bro with a limitetesta
cache needs roughly a factora® more time.

We might think that the discrepancy between Bro operatirth wi
a limited DFA state cache and it operating with unlimited DétaAte
memory is due to it having to spend considerable time recdimgpu
states previously expired from the limited cache. This, éwen,
turns out not to be the case. Additional experiments witbmrsally
infinite cache sizes indicate that the performance deciisakee to
the additional overhead of maintaining the cache.

While this looks like a significant impact, we note that it i3t n
clear whether the space savings of a cache is in fact needpeia-
tional use. For this trace, only 2,669 DFA states had to bepciea,
totaling roughly 10MB. When running Bro operationally foday
at the university’s gateway, the number of states rapidiylus$ to
about 2,500 in the first hour, but then from that point on ofdyy/
rises to a bit over 4,000 by the end of the day.

A remaining question, however, is whether an attacker corde
ate traffic specifically tailored to enlarge the DFAs (a “stholding”

attack on the IDS), perhaps by sending a stream of packets thasignature #1287WEB-IIS scripts access

nearly trigger each of the different patterns. Additionegearch
is needed to further evaluate this threat.

Comparing forUSB-Full the alerts generated by Snort to the
signature matches reported by Bro, all in all we find very good

nections for which both generate at least one alert, and Y1ibf9
which Bro (Snort) reports a match but not Snort (Bro).

Looking at individual signatures, we see that Bro misses 10
matches of Snort. 5 of them are caused by Snort ID #1WBR-
IIS fpcount access). The corresponding connections con-
tain several requests, but an idle time larger than the dkfire
activity _timeout of 30 seconds. Therefore, Bro flushes the
state before it can encounter the match which would hapgen la
in the session. On the other hand, Bro reports 41 signatutehes
for connections for which Snort does not report anything. 087
them are Web signatures. The discrepancy is due to diffarémt
stream semantics. Bro and Snort have slightly differenndifns
of when a session is established. In addition, the semaiftes-d
ences between stream-wise and packet-wise matching gé&stirs
84.2 cause some of the additional alerts.

Figure 7: Run-time comparison on 550MHz Pentium-3

Runtime for USB-Full on Pentium-3

§ | .a
3 —e— Bro w/o state cache
° --B8- Bro w/ state cache
@ - | ¥ Snort .
" ~ -x-- Snort [FV01] pa
2 o Snort patched L %
s 9 | - e
o o .
o o -
8 o - X,//“
o s &
o — . e
i/
o | g
T T T T T T T
0 5 10 15 20 25 30

Trace length (mins)

We have done similar measurements viBL-Web. Due to lim-
ited space, we omit the corresponding plot here. While tigrad
Snort takes 440 CPU seconds for the trace, Bro without (\aitimy-
ited state cache needs 280 (328) CPU seconds, and Snort & mod
fied by us needs only 164 CPU seconds. While this suggests room
for improvement in some of Bro’s internal data structuresy’®
matcher still compares quite well to the typical Snort camnfégion.

For this trace, Bro (Snort) reports 2,764 (2,049) matchéstal.
If we count Snort’s alerts only once per connection, theeelad72
of them. There are 1,395 connections for which both repdeaat
one alert. For 133 (69) connections, Bro (Snort) reports &chma
but Snort (Bro) does not. Again, looking at individual sigmas,
Bro misses 73 of Snort's alerts. 25 of them are matches oftSnor
). These are all
caused by the same host. The reason is packets missing feom th
trace, which, due to a lack of in-order sequencing, prevest CP
stream from being reassembled by Bro. Another 19 are dug+o si
nature #1287¢odeRed v2 root.exe access). The ones of

agreement. The main difference is the way they report a matchthese we inspected further were due to premature serveresets,

By design, Bro reports all matching signatures, but eachoe
once per connection. This is similar to the approach sugdest
in [10]. Snort, on the other hand, reports the first matchiigg s
nature for each packet, independently of the connectiorldrys

4This latter figure corresponds to about 35,000 packets pensie
though we strongly argue that measuring performance in BRS r
implies undue generality, since, as developed above, #afigs of
the packets make a great difference in the results.

which Bro correctly identifies as the end of the correspogdion-
nections, while Snort keeps matching on the traffic stilhigesend
by the client. Bro reports 186 signature matches for conmesfor
which Snort does not report a match at all. 68 of these coromect
simultaneously trigger three signatures (#1002, #111238%L 46

SMost of the duplicates arlCMP Destination Unreach-
able messages. Using Bro's terminology, we define I&IMP
packets between two hosts as belonging to one “connection.”

are due to simultaneous matches of signatures #1087 an®#124
Looking at some of them, one reasorB¥Npackets missing from
the trace. Their absence leads to different interpretatadrestab-
lished sessions by Snort and Bro, and therefore to diffenaches.

5. CONCLUSIONS

In this work, we develop the general notion adntextual sig-
naturesas an improvement on the traditional form of string-based
signature-matching used by NIDS. Rather than matching fixed
strings in isolation, contextual signatures augment thiehireg pro-
cess with both low-level context, by using regular exp@ssifor
matching rather than simply fixed strings, and high-leveitert,
by taking advantage of the rich, additional semantic cantexde
available by Bro’s protocol analysis and scripting languag

By tightly integrating the new signature engine into Broemet-
based architecture, we achieve several major improvenomis
other signature-based NIDSs such as Snort, which frequeunft
fer from generating a huge number of alerts. By interpreting
signature-match only as an event, rather than as an alets&l, i
we are able to leverage Bro’s context and state-managenegit-m
anisms to improve the quality of alerts. We showed severaiex
ples of the power of this approach: matching requests withea®
recognizing exploit scans, making use of vulnerabilty pesfiand
defining dependencies between signatures to model attzatisian
multiple connections. In addition, by converting the fresbailable
signature set of Snort into Bro's language, we are able ta lpion
existing community efforts.

As a baseline, we evaluated our signature engine using 8gort
a reference, comparing the two systems in terms of bothime-t
performance and generated alerts using the signature deved
at [2]. But in the process of doing so, we encountered segera
eral problems when comparing NIDSs: differing internal aatits,
incompatible tuning options, the difficulty of devising [resenta-
tive” input, and extreme sensitivity to hardware particsldrhe last
two are particularly challenging, because there ara paori indi-
cations when comparing performance on one particular taacke
hardware platform that we might obtain very different résuking
a different trace or hardware platform. Thus, we must esergreat
caution in interpreting comparisons between NIDSs.

Based on this work, we are now in the process of deployingsBro’
contextual signatures operationally in several educatjarsearch
and commercial enviroments.

Finally, we have integrated our work into version 0.8 of the B
distribution, freely available at [5].

6. ACKNOWLEDGMENTS

We would like to thank the Lawrence Berkeley National Labora
tory (LBL), Berkeley, USA; the National Energy Researche®ei
tific Computing Center (NERSC), Berkeley, USA; and the Samt|
University, Germany. We are in debt to Anja Feldmann for mgki
this work possible. Finally, we would like to thank the anomus
reviewers for their valuable suggestions.

7. REFERENCES

[1] arachNIDS http://whitehats.com/ids/

[2] Web archive of versions of software and signatures usekis paper.
http://www.net.in.tum.de/robin/ccs03

[3] S. Axelsson. The base-rate fallacy and the d|ff|cultymfu3|on detection.

ACM Transactions on Information and System Secu8it$):186—205, August

2000.

R. G. Bacelntrusion DetectionMacmillan Technical Publishing,

Indianapolis, IN, USA, 2000.

[5] Bro: A System for Detecting Network Intruders in Reahkig.

http://www.icir.org/vern/bro-info.html .

[4

6]
[
8l

[0
(0]

(11]
(12]
(23]

(14]

(18]

(16]

(17]

(18]
[19]

[20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]
(32]
(33]
[34]
(35]
(36]

(37]

Bugtrag.http://www.securityfocus.com/bid/1187

CERT Advisory CA-2002-27 Apache/maskl Worm.
http://www.cert.org/advisories/CA-2002-27.html

C. J. Cait, S. Staniford, and J. McAlerney. Towards FaBtgtern Matchlng for
Intrusion Detection or Exceeding the Speed of SnorPiioc. 2nd DARPA
Information Survivability Conference and Expositidone 2001.

Common Vulnerabilities and Exposuréstp://www.cve.mitre.org

H. Debar and B. Morin. Evaluation of the Diagnostic Chifiies of
Commercial Intrusion Detection SystemsAroc. Recent Advances in
Intrusion Detectionnumber 2516 in Lecture Notes in Computer Science.
Springer-Verlag, 2002.

R. F. et. al. Hypertext transfer protocol — http/1.1gRest for Comments 2616,
June 1999.

M. Fisk and G. Varghese. Fast Content-Based Packet ligrfdr Intrusion
Detection. Technical Report CS2001-0670, UC San Diego, R0

Fyodor. Remote OS detection via TCP/IP Stack Fingertfg. Phrack
Magazine 8(54), 1998.

J. Haines, L. Rossey, R. Lippmann, and R. Cunnighanertting the 1999
Evaluation. InProc. 2nd DARPA Information Survivability Conference and
Exposition June 2001.

M. Hall and K. Wiley. Capacity Verification for High SpdéNetwork Intrusion
Detection Systems. IRroc. Recent Advances in Intrusion Detectinonmber
2516 in Lecture Notes in Computer Science. Springer-Ve2ag2.

M. Handley, C. Kreibich, and V. Paxson. Network intrusidetection: Evasion,
traffic normalization, and end-to-end protocol semantic®roc. 10th
USENIX Security Symposiyivashington, D.C., August 2001.

J. Heering, P. Klint, and J. Rekers. Incremental geti@raf lexical scanners.
ACM Transactions on Programming Languages and SystemsLASP
14(4):490-520, 1992.

J. E. Hopcroft and J. D. Ulimarntroduction to Automata Theory, Languages,
and ComputationAddison Wesley, 1979.

K. Jackson. Intrusion detection system product surVeghnical Report
LA-UR-99-3883, Los Alamos National Laboratory, June 1999.

U. Lindgvist and P. A. Porras. Detecting computer anivoek misuse through
the production-based expert system toolset (P-BESTRrde. IEEE
Symposium on Security and PrivatiyEE Computer Society Press, May 1999.
R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K.kendall, S. E.
Webster, and M. A. Zissman. Results of the 1998 DARPA Offlitteision
Detection Evaluation. IiProc. Recent Advances in Intrusion Detecti®@99.
R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and Ks Dihe 1999
DARPA off-line intrusion detection evaluatioGomputer Networks
34(4):579-595, October 2000.

R. Lippmann, S. Webster, and D. Stetson. The Effect eftifying
Vulnerabilities and Patching Software on the Utility of Metk Intrusion
Detection. InProc. Recent Advances in Intrusion Detectinamber 2516 in
Lecture Notes in Computer Science. Springer-Verlag, 2002.

J. McHugh. Testing Intrusion detection systems: Aigué of the 1998 and
1999 DARPA intrusion detection system evaluations as peed by Lincoln
Laboratory ACM Transactions on Information and System Security
3(4):262—-294, November 2000.

V. Paxson. Bro: A system for detecting network intrugler real-time.
Computer Network31(23-24):2435-2463, 1999.

P. A. Porras and P. G. Neumann. EMERALD: Event monigemabling
responses to anomalous live disturbancedldtional Information Systems
Security Conferencaltimore, MD, October 1997.

T. H. Ptacek and T. N. Newsham. Insertion, evasion, ardad of service:
Eluding network intrusion detection. Technical reportc@e Networks, Inc.,
January 1998.

M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewjéz Lambeth, and
E. Wall. Implementing a generalized tool for network moriitg. In Proc. 11th
Systems Administration Conference (LISF997.

M. Roesch. Snort: Lightweight intrusion detection fatworks. InProc. 13th
Systems Administration Conference (LIS#gges 229-238. USENIX
Association, November 1999.

R. Sekar and P. Uppuluri. Synthesizing fast intrusicevpntion/detection
systems from high-level specifications.Rmoc. 8th USENIX Security
SymposiumUSENIX Association, August 1999.

U. Shankar and V. Paxson. Active Mapping: Resisting SlIBvasion Without
Altering Traffic. InProc. IEEE Symposium on Security and Priva2§03.
Steven T. Eckmann. Translating Snort rules to STATLnse®s. InProc.
Recent Advances in Intrusion Detecti@ctober 2001.

tcpdump . http://www.tcpdump.org

Valgrind. http://developer.kde.org/"seward;j

G. Vigna, S. Eckmann, and R. Kemmerer. The STAT Tooléun Proc. 1st
DARPA Information Survivability Conference and Expositidilton Head,
South Carolina, January 2000. IEEE Computer Society Press.

G. Vigna and R. A. Kemmerer. Netstat: A network-basdclision detection
systemJournal of Computer Security (1):37-71, 1999.
Whisker.http://www.wiretrip.net/rfp

