
Detecting Stepping Stones

Yin Zhang and Vern Paxson�

Abstract

One widely-used technique by which network attackers attain

anonymity and complicate their apprehension is by employ-

ing stepping stones: they launch attacks not from their own

computer but from intermediary hosts that they previously

compromised. We develop an efficient algorithm for detect-

ing stepping stones by monitoring a site’s Internet access

link. The algorithm is based on the distinctive characteristics

(packet size, timing) of interactive traffic, and not on connec-

tion contents, and hence can be used to find stepping stones

even when the traffic is encrypted. We evaluate the algorithm

on large Internet access traces and find that it performs quite

well. However, the success of the algorithm is tempered by

the discovery that large sites have many users who routinely

traverse stepping stones for a variety of legitimate reasons.

Hence, stepping-stone detection also requires a significant

policy component for separating allowable stepping-stone

pairs from surreptitious access.

1 Introduction

A major problem with apprehending Internet attackers is the

ease with which attackers can hide their identity. Conse-

quently, attackers run little risk of detection. One widely-used

technique for attaining anonymity is for an attacker to use

stepping stones: launching attacks not from their own com-

puter but from intermediary hosts that they previously com-

promised. Intruders often assemble a collection of accounts

on compromised hosts, and then when conducting a new at-

tack they log-in through a series of these hosts before finally

assaulting the target. Since stepping stones are generally het-

erogeneous, diversely-administered hosts, it is very difficult

to trace an attack back through them to its actual origin.

There are a number of benefits to detecting stepping stones:

to flag suspicious activity; to maintain logs in case a break-

in is subsequently detected as having come from the local

site; to detect inside attackers laundering their connections

through external hosts; to enforce policies regarding transit

traffic; and to detect insecure combinations of legitimate con-

nections, such as a clear-text Telnet session that exposes an

SSH passphrase.

�Y. Zhang is with the Computer Science Department, Cornell University,

Ithaca, NY. Email: yzhang@cs.cornell.edu. V. Paxson is with the AT&T

Center for Internet Research at ICSI, at the International Computer Science

Institute in Berkeley, CA, and with the Lawrence Berkeley National Labora-

tory. Email: vern@aciri.org. This paper appears in the Proceedings of the 9th

USENIX Security Symposium, Denver, Colorado, August 2000.

The problem of detecting stepping stones was first ad-

dressed in a ground-breaking paper by Staniford-Chen and

Heberlein [SH95]. To our knowledge, other than that work,

the topic has gone unaddressed in the literature. In this pa-

per, we endeavor to systematically analyze the stepping stone

detection problem and devise accurate and efficient detection

algorithms. While, as with most forms of intrusion detection,

with enough diligence attackers can generally evade detection

[PN98], our ideal goal is to make it painfully difficult for them

to do so.

The rest of the paper is organized as follows. We first ex-

amine the different tradeoffs that come up when designing

a stepping stone algorithm (x 3). We then in x 4 develop a

timing-based algorithm that works surprisingly well, per the

evaluation in x 5, and also evaluate two cheap context-based

techniques. We conclude in x 6 with some of the remaining

challenges: in particular, the need for rich monitoring poli-

cies, given our discovery that legitimate stepping stones are

in fact very common; and the possibility of detecting non-

interactive relays and slaves.

2 Terminology and Notation

We begin with terminology. When a person (or a program)

logs into one computer, from there logs into another, and per-

haps a number still more, we refer to the sequence of logins

as a connection chain [SH95]. Any intermediate host on a

connection chain is called a stepping stone. We call a pair of

network connections a stepping stone connection pair if both

connections are part of a connection chain.

Sometimes we will differentiate between flow and connec-

tion. A bidirectional connection consists of two unidirec-

tional flows. We term the series of flows along each direction

of a connection chain a flow chain.

We use the following additional notation:

� h

1

$ h

2

: a bi-directional network connection between

h

1

and h

2

. We also use C

1

, C
2

, ... to denote network

connections.

� h

1

! h

2

: a unidirectional flow from h

1

to h

2

.

� �

stepping

is a binary relation defined over all connec-

tions as follows: C
1

�

stepping

C

2

if and only if C
1

and

C

2

form a stepping stone connection pair.

1



3 Design Space

In this section we discuss the tradeoffs of different high-

level design considerations when devising algorithms to de-

tect stepping stones. Some of the choices relate to the follow-

ing observation about stepping-stone detection: intuitively,

the difference between a stepping stone connection pair and a

randomly picked pair of connections is that the connections in

the stepping stone pair are much more likely to have some cor-

related traffic characteristics. Hence, a general approach for

detecting stepping stones is to identify traffic characteristics

that are invariant or at least highly correlated across stepping

stone connection pairs, but not so for arbitrary pairs of con-

nection. Some potential candidates for such invariants are the

connection contents, inter-packet spacing, ON/OFF patterns

of activity, traffic volume or rate, or specific combinations of

these. We examine these as they arise in the subsequent dis-

cussion.

3.1 Whether to analyze connection contents

A natural approach for stepping-stone detection is to exam-

ine the contents of different connections to find those that are

highly similar. Such an approach is adopted in [SH95] and

proves effective. Considerable care must be taken, though,

because we will not find a perfect match between two step-

ping stone connections. They may differ due to translations

of characters such as escape sequences, or the varying pres-

ence of Telnet options [PR83b].

In addition, suppose we are monitoring connections

h

1

$ h

2

and h

2

$ h

3

, where h

2

is the stepping stone the

attacker is using to access h
3

from h

1

. If we adopt a notion

of “binning” in order to group activity into different time re-

gions (for example to compute character frequencies as done

in [SH95]) then due to the lag between activity on h

1

$ h

2

and activity on h

2

$ h

3

, the contents falling into each bin

will match imperfectly. Furthermore, if the attacker is con-

currently attacking h
4

via h
2

, then the traffic on h
1

$ h

2

will

be a mixture of that from h

2

$ h

3

and that from h

2

$ h

4

,

and neither of the latter connections’ contents will show up

exactly in h

1

$ h

2

.

These considerations complicate content-based detection

techniques. A more fundamental limitation is that content-

based techniques cannot, unfortunately, work when the con-

tent is encrypted, such as due to use of SecureShell (SSH;

[YKSRL99]).

The goal of our work was to see how far we could get in

detecting stepping stones without relying on packet contents,

because by doing so we can potentially attain algorithms that

are more robust. Not relying on packet contents also yields

a potentially major performance advantage, which is that we

then do not need to capture entire packet contents with the

packet filter, but only packet headers, considerably reducing

the packet capture load. However, we also devised two cheap

content-based techniques for purposes of comparison (x 5.3),

neither of which is robust, but both of which have the virtue

of being very simple.

3.2 Direct vs. indirect stepping stones

Suppose h
1

; h

2

; h

3

is a connection chain. The direct stepping

stone detection problem is to detect that h
2

is a stepping stone

if we are observing network traffic that includes the packets

belonging to h

1

$ h

2

and h

2

$ h

3

. If, however, the con-

nection chain is h
1

; h

2

; : : : ; h

3

; h

4

, then the indirect stepping

stone detection problem is to detect that connections h
1

$ h

2

and h
3

$ h

4

form a stepping stone pair, given that we can ob-

serve their traffic but not the traffic belonging to h
2

: : : h

3

(and

hence there is no obvious connection between h

2

and h
3

).

Detecting direct stepping stones can be simpler than detect-

ing indirect ones because for direct ones we can often greatly

reduce the number of candidates for connection pairs. On the

other hand, it is much easier for attackers to elude direct step-

ping stone detection by simply introducing an additional hop

in the stepping stone chain. Furthermore, if we can detect in-

direct stepping stones then we will have a considerably more

flexible and robust algorithm, one which can, for example, be

applied to traffic traces gathered at different places (see be-

low).

In this paper we focus on the more general problem of de-

tecting indirect stepping stones.

3.3 Real-time detection vs. off-line analysis

We would like to be able to detect stepping stones in real-time,

so we can respond to their detection before the activity com-

pletes. Another advantage of real-time detection is that we

don’t have to store the data for all of the traffic, which can be

voluminous. For instance, a day’s worth of interactive traffic

(Telnet/Rlogin) at the University of California in Berkeley on

average comprises about 1 GB of storage for 20,000 connec-

tions.

Algorithms that only work using off-line analysis are still

valuable, however, for situations in which retrospective de-

tection is needed, such as when an attacked site contacts the

site from which they were immediately attacked. This latter

site could then consult its traffic logs and run an off-line step-

ping stone detection algorithm to determine from where the

attacker came into their own site to launch the attack.

Since real-time algorithms generally can also be applied to

off-line analysis, we focus here on the former.

3.4 Passive monitoring vs. active perturbation

Another design question is whether the monitor can only per-

form passive monitoring or if it can actively inject perturbing

traffic to the network. Passive monitoring has the advantage

that it doesn’t generate additional traffic, and consequently

can’t disturb the normal operation of the network. On the

other hand, an active monitor can be more powerful in de-

tecting stepping stones: after the monitor finds a stepping-

stone candidate, it could perturb one connection in the pair

2



by inducing loss or delay, and then look to see whether the

perturbation is echoed in the other connection. If so, then the

connections are very likely correlated.

Here we focus on passive monitoring, both because of its

operational simplicity, and because if we can detect stepping

stones using only passive techniques, then we will have a

more broadly applicable algorithm, one that works without

requiring the ability to manipulate incidental traffic.

3.5 Single vs. multiple measurement points

Tracing traffic at multiple points could potentially provide

more information about traffic characteristics. On the other

hand, doing so complicates the problem of comparing the traf-

fic traces, as now we must account for varying network delays

and clock synchronization. In this paper, we confine ourselves

to the single measurement point case, with our usual presump-

tion being that that measurement point is on the access link

between a site and the rest of the Internet.

3.6 Filtering

An important factor for the success of some forms of real-

time stepping-stone detection is filtering. The more traffic that

can be discarded on a per-packet basis due to patterns in the

TCP/IP headers, the better, as this can greatly reduce the pro-

cessing load on the monitor.

However, there is clearly a tradeoff between reduced sys-

tem load and lost information. First, if a monitor detects sus-

picious activity in a filtered stream, often the filtering has re-

moved sufficient accompanying context that it becomes quite

difficult determining if the activity is indeed an attack. In ad-

dition, the existence of filtering criteria makes it easier for the

attackers to evade detection by manipulating their traffic so

that it no longer matches the filtering criteria. For example,

an evasion against filtering based on packet size (see below)

is to use a Telnet client modified to send a large number of

do-nothing Telnet options along with each keystroke or line

of input.

The main likely filtering criteria for stepping-stone detec-

tion is packet size. Keystroke packets are quite small. Even

when entire lines of input are transferred using “line mode”

[Bo90], packet payloads tend to be much smaller than those

used for bulk-transfer protocols. Therefore, by filtering pack-

ets to only capture small packets, the monitor can significantly

reduce its packet capture load (for example, by weeding out

heavy bulk-transfer SSH sessions while keeping interactive

ones).

3.7 Minimizing state for connection pairs

Since potentially there can be a large number of active con-

nections seen by the monitor, it is often infeasible to keep

stepping-stone state for all possible pairs of connections due

to the N2 memory requirements. Therefore we need mecha-

nisms that allow us to only keep state for a small subset of the

possible connection pairs.

One approach is to limit our analysis to only detecting di-

rect stepping stones, but for the reasons discussed in x 3.2

above, this is unappealing. There are, however, other mecha-

nisms that work well:

� Remove connection pairs sharing the same port on the

same host. If h
1

$ h

2

and h

2

$ h

3

both use port p on

host h
2

, then most likely the two connections are merely

using the same server on h

2

, rather than h

1

accessing a

server on h

2

and then from that server running a client

on h

2

to access a server on h

3

. Removing such connec-

tion pairs is particularly helpful when there are a large

number of connections connecting to the same popular

server—without such filtering, when k connections con-

nect to the same server, we need to keep state for
k(k�1)

2

connection pairs!

Note that this mechanism is worth applying even if we

also test for directionality (see below), because when the

monitor analyzes already-existing connections, their di-

rectionality is not necessarily apparent.

� Remove connection pairs with inconsistent directions.

Depending on the topology of the network monitoring

point, we may be able to classify connections as “in-

bound” or “outbound.” If so, then we can eliminate as

connection pair candidates any pairs for which both con-

nections are in the same direction. While these connec-

tions may in fact form a chain, if the monitoring location

is a chokepoint, meaning the sole path into or out of the

site, then in this case there will be another connection in

the opposite direction with which we can pair either of

these two connections. However, if the site has multiple

ingress/egress points, then we can only safely apply such

filtering if all such points are monitored and the monitors

coordinate with one another.

� Remove connection pairs with inconsistent timing. If

two connections are a stepping stone pair, then the “up-

stream” (closer to the attacker) connection should en-

compass the downstream connection: that is, it should

start first and end last. Accordingly, we can remove from

our analysis any connection pairs for which the connec-

tion that started earlier also terminates earlier.

Note that there are two risks with this filtering. First, it

may be that the upstream connection terminates slightly

sooner than the downstream connection, because of de-

tails of how the different TCP shutdown handshakes oc-

cur. Second, this filtering may open up the monitor to

evasion by an attacker who can force their upstream con-

nection to terminate while leaving the downstream con-

nection running.

3



3.8 Traffic patterns

We can coarsely classify network traffic as either exhibiting

ON/OFF activity, or running fairly continuously. For the for-

mer, we can potentially exploit the traffic’s timing structure

(whether the ON/OFF patterns of two connections are simi-

lar). For the latter, we can potentially exploit traffic volume

information (whether two connections flow at similar rates).

In addition, even for continuous traffic, if the communication

is reliable, any delays resulting from waiting to detect loss and

retransmit may impose enough of an ON/OFF pattern on the

traffic that we can again look for timing similarities between

connections.

In this paper, we focus on traffic exhibiting ON/OFF pat-

terns, as that is characteristic of interactive traffic, which ar-

guably constitutes the most interesting class of stepping-stone

activity.

3.9 Accuracy

As with intrusion detection in general, we face the prob-

lem of false positives (non-stepping-stone connections erro-

neously flagged as stepping stones) and false negatives (step-

ping stones the monitor fails to detect). The former can make

the detection algorithm unusable, because it becomes impos-

sible (or at least too tedious) to examine all of the alerts man-

ually, and attackers can exploit the latter to evade the monitor.

In practice, the problem of comparing connections look-

ing for similarities can be complicated by clock synchroniza-

tion (if comparing measurements made by different monitors),

propagation delays (the lag between traffic showing up on one

connection and then appearing on the other), packet loss and

retransmission, and packetization variations. Moreover, an in-

truder can intentionally inject noise in an attempt to evade the

monitor. Therefore, the detection mechanism must be highly

robust if it is to avoid excessive false negatives.

3.10 Responsiveness

Another important design parameter is the responsiveness of

the detection algorithm. That is, after a stepping-stone con-

nection starts, how long does it take for the monitor to de-

tect it? Clearly, it is desirable to detect stepping stones as

quickly as possible, to enable taking additional actions such

as recording related traffic or shutting down the connection.

However, in many cases waiting longer allows the monitor to

gather more information and consequently it can detect step-

ping stones more accurately, resulting in a tradeoff of respon-

siveness versus accuracy.

Another consideration related to responsiveness concerns

the system resources consumed by the detection algorithm. If

we want to detect stepping stones quickly, then we must take

care not to require more resources than the monitor can devote

to detection over a short time period. On the other hand, if off-

line analysis is sufficient, then we can use potentially more

resource-intensive algorithms.

3.11 Open vs. evasive attackers

In general, intrusion detection becomes much more difficult

when the attacker actively attempts to evade detection by the

monitor [PN98, Pa98]. The difference between the two can

come down to the utility of relying on heuristics rather than

airtight algorithms: heuristics might work well for “open”

(non-evasive) attackers, but completely fail in the face of an

actively evasive attacker.

While ideally any detection algorithms we develop would

be resistant to evasive attackers, ensuring such robustness can

sometimes be exceedingly difficult, and we proceed here on

the assumption that there is utility in “raising the bar” even

when a detection algorithm can be defeated by a sufficiently

aggressive attacker. In particular, for timing-based algorithms

such as those we develop, we would like it to be the case that

the only way to defeat the algorithm is for an attacker to have

to introduce large delays in their interactive sessions, so that

their inconvenience is maximized. We assess our algorithm’s

resistance to evasion in x 4.4.

4 A Timing-Based Algorithm

In this section we develop a stepping-stone detection algo-

rithm that works by correlating different connections based

solely on timing information. As discussed in the previous

section, our design is motivated in high-level terms by the ba-

sic approach of identifying invariants. Moreover, the algo-

rithm leverages the particulars of how interactive traffic be-

haves. This leads to an algorithm that is very effective for

detecting interactive traffic (see evaluation in x 5), and should

work well for detecting other forms of traffic that exhibit clear

ON/OFF patterns.

4.1 ON/OFF periods

We begin by defining ON and OFF periods. When there is

no data traffic on a flow for more than Tidle seconds, the

connection is considered to be in an OFF period. We con-

sider a packet as containing data only if it carries new (non-

retransmitted, non-keepalive) data in its TCP payload. When

a packet with non-empty payload then appears, the flow ends

its OFF period and begins an ON period, which lasts until the

flow again goes data-idle for Tidle seconds.

The motivation for considering traffic as structured into ON

and OFF periods comes from the strikingly distinct distribu-

tion of the spacing between user keystrokes. Studies of In-

ternet traffic have found that keystroke interarrivals are very

well described by a Pareto distribution with fixed parameters

[DJCME92, PF95]. The parameters are such that the distribu-

tion exhibits infinite variance, which in practical terms means

a very wide range of values. In particular, large values are not

uncommon: about 25% of keystroke packets come 500 msec

or more apart, and 15% come 1 sec or more apart (1.6% come

10 sec or more apart). Thus, interactive traffic will often have

significant OFF times. We can then exploit the tendency of

4



machine-driven, non-interactive traffic to send packets back-

to-back, with a very short interval between them, to discrimi-

nate non-interactive traffic from interactive.

4.2 Timing correlation when OFF periods end

The strategy underlying the algorithm is to correlate connec-

tions based on coincidences in when connection OFF periods

end, or, equivalently, when ON periods begin.

Intuitively, given two connections C

1

and C

2

, if

C

1

�

stepping

C

2

, it is very likely that C
1

and C

2

often leave

OFF periods at similar times—the user presses a keystroke

and it is sent along first C
1

and then shortly alongC
2

, or a pro-

gram they have executed finishes running and produces output

or they receive a new shell prompt (in which case the activity

ripples from C

2

to C

1

).

The inverse is also likely to be true. That is, if C
1

and C

2

often leave OFF periods at similar times, then it is likely that

C

1

�

stepping

C

2

, because there are not many other mecha-

nisms that can lead to such coincidences. (We discuss two

such mechanisms in x 5.7: periodic traffic with slightly differ-

ent periods, and broadcast messages.)

By quantifying similar and often, we transform the above

strategy into the following detection criteria:

1. We consider two OFF periods correlated if their ending

times differ by � �, where � is a control parameter.

2. For two connections C
1

and C

2

, let OFF
1

and OFF
2

be

the number of OFF periods in each, and OFF
1;2

be the

number of these which are correlated. We then consider

C

1

and C

2

a stepping stone connection pair if:

OFF
1;2

min(OFF
1

;OFF
2

)

� 
;

where 
 is a control parameter, which we set to 0.3.

A benefit of this approach is that the work is done only af-

ter significant idle periods. For busy, non-idle connections

(far and away the bulk of traffic), we do nothing other than

note that they are still not idle. Related to this, we need con-

sider only a small number of possible connection pairs at any

given time, because we can ignore both those that are active

and those that are idle; we need only look at those that have

transitioned from idle to active, and that can’t happen very of-

ten because it first requires the connection to be inactive for a

significant period of time. Consequently, the algorithm does

not require much state to track stepping-stone pair candidates.

Because of the very wide range of keystroke interarrival

times, the algorithm is not very sensitive to the choice of

Tidle. In our current implementation, we set Tidle = 0:5 sec.

In x 5.6 we briefly discuss the effects of using other values.

Finally, because we only consider correlations of when ON

periods begin, rather than when they end, we are more robust

to differences in throughput capacities. For two connections

C

1

�

stepping

C

2

, if C
1

’s throughput capacity is significantly

smaller than C

2

’s, then an ON period on C

2

may end sooner

than on C

1

(where the echo of the same data takes longer to

finish transferring); but regardless of this effect, ON periods

will start at nearly the same time.

4.3 Refinements

The scheme outlined above is appealing because of its sim-

plicity, but it requires some refinements to improve its accu-

racy. The first of these is to exploit timing casuality, based on

the following observation: if two flows F
1

and F

2

are on the

same flow chain, then their timing correlation should have a

consistent ordering. If we once observe that F
1

ends its OFF

period before F
2

, then it should be true that F
1

always ends

its OFF period before F
2

. Confining our analysis in this way

weeds out many false pairs.

To further improve the accuracy of the algorithm, we use

the number of consecutive coincidences in determining the

frequency of coincidences, because we expect consecutive co-

incidences to be more likely for true stepping stones than for

accidentally coinciding connections. More specifically, in ad-

dition to the test in x 4.2, to consider two connections C
1

and

C

2

a stepping stone connection pair we require:

OFF�
1;2

� mincsc and
OFF�

1;2

min(OFF
1

;OFF
2

)

� 


0

;

where OFF�
1;2

is the number of consecutive coincidences,

OFF
1

and OFF
2

are as before, and mincsc and 


0 are new

control parameters. We initially used only the first of these

refinements, requiring either mincsc = 2 or mincsc = 4 con-

secutive coincidences, for direct or indirect stepping stones,

respectively. This in general works very well, but we added

the second requirement when we found that very long-lived

connections could sometimes eventually generate consecutive

coincidences just by chance. These can be eliminated by very

low 


0 thresholds; we use 


0

= 2% and 


0

= 4% for direct

and indirect stepping stones, respectively.

4.4 Resistance to evasion

Since the heart of the timing algorithm is correlating idle pe-

riods in two different connections, an attacker can attempt to

thwart the algorithm by avoiding introducing any idle times to

correlate; introducing spurious idle times on one of the con-

nections not reflected in the other connection; or stretching

out the latency lag between the two connections to exceed �.

To avoid connection idle times, it will likely not suffice

for the attacker to simply resolve to type quickly. Given

Tidle = 0:5 sec (x 5.6), it just takes a slight pause to think,

or delay by the server in generating responses to commands,

to introduce an idle time.

A mechanical means such as establishing a steady stream

of traffic on one of the connections but not on the other seems

like a better tactic. If the intermediary and either upstream

or downstream hosts run custom software, then doing so is

easy, though this somewhat complicates the attacker’s use of

5



the intermediary, as now they must install a custom server on

it. Another approach would be to use a mechanism already

existing in the protocol between the upstream host and the

intermediary to exchange traffic that the intermediary won’t

propagate to the downstream host; for example, an on-going

series of Telnet option negotiations. However, as particular in-

stances of such techniques become known, they may serve as

easily-recognized signatures for stepping stone connections

instead.

Even given the transmission of a steady stream of traffic,

idle times might still appear, either accidentally, due to packet

loss and retransmission lulls, or purposefully, by a site intro-

ducing occasional 500 msec delays into its interactive traffic

to see whether a delay shows up in a connection besides the

one deliberately perturbed. Such delays might prove difficult

for an attacker to mask.

The attacker might instead attempt to introduce a large

number of idle times on one connection but not on the other,

so as to push the ratio of idle time coincidences below 
. This

will also require running custom software on the intermediary,

and, indeed, this approach and the previous one are in some

sense the same, aiming to undermine the basis of the timing

analysis. The natural counter to this evasion tactic is to lower


, though this of course will require steps to limit or tolerate

the ensuing additional false positives. It might also be possi-

ble to detect unusually large numbers of idle periods, though

we have not characterized the patterns of multiple idle periods

to assess the feasibility of doing so.

Another approach an attacker might take is to pick an in-

termediary for which the latency lag between the two connec-

tions is larger than �, which we set to 80 msec in x 5.6. Doing

so simply by exploiting the latency between the monitoring

point and the intermediary is not likely to work well, as for

most sites the latency between an internal host and a moni-

toring point will generally be well below 40 msec; however,

if an internal host connected via a very slow link (such as a

modem) is available, then that may serve. Another approach

would be to run a customized server or client on the interme-

diary that explicitly inserts the lag of 80 msec. This approach

appears a significant concern for the algorithm, and may re-

quire use of much larger values of �, so as to render the delay

highly inconvenient for the attacker (80 msec is hardly notice-

able, much less inconvenient). This is a natural area for future

work.

5 Performance Evaluation

In x 4 we developed a timing-based algorithm for stepping

stone detection. We have implemented the algorithm in Bro,

a real-time intrusion detection system [Pa98]. In this section,

we evaluate its performance (in terms of false positives and

false negatives) on traces of wide-area Internet traffic recorded

at the DMZ access link between the global Internet and two

large institutions, the Lawrence Berkeley National Laboratory

(LBNL) and the University of California at Berkeley (UCB).

5.1 Traces used

We ran the timing-based algorithm on numerous Internet

traces to evaluate its performance. Due to space limitations,

here we confine our discussion to the results for two traces:

� lbnl-telnet.trace (120 MB, 1.5M packets,

3,831 connections): one day’s worth of Telnet and

Rlogin traffic collected at LBNL. (The traffic is more

than 90% Telnet.)

� ucb-telnet.trace (390 MB, 5M packets,

7,319 connections): 5.5 hours’ worth of Telnet and

Rlogin traffic collected at UCB during the afternoon

busy period.

The performance of the algorithm on other traces is com-

parable.

5.2 Brute force content-based algorithm

To accurately evaluate the algorithms, we first devised an off-

line algorithm using brute-force content matching.

The principle behind the algorithm is that, for stepping

stones, each line typed by the user is often echoed verba-

tim across the two connections (when the content is not en-

crypted). Therefore, by looking at lines in common, we can

find connections with similar content. With additional manual

inspection, we can identify the stepping stones.

The algorithm works as follows:

1. Extract the aggregate Telnet and Rlogin output

(computer-side response), for all of the sessions in the

trace, into a file.

2. For each different line in the output, count how many

times it occurred (this is just sort | uniq -c in Unix).

3. Throw away all lines except those appearing exactly

twice. The idea is that these are good candidates for step-

ping stones, in that they are lines unique to either one or

at most two connections.

4. Find the connection(s) in which each of these lines ap-

pears. This is done by first building a single file list-

ing every unique line in every connection along with the

name of the connection, and then doing a database join

operation between the lines in that file and those in the

list remaining after the previous step.

If a line appears in just one connection, throw the line

away.

5. Count up how many of the only-seen-twice lines each

pair of connections has in common (using the Unix join

utility).

6. Connection pairs with 5 or more only-seen-twice lines in

common are now candidates for being stepping stones.

6



7. Of those, discard the pair if both connections are in the

same direction (both into the site or both out of the site).

8. Of the remainder, visually inspect them to see whether

they are indeed stepping stones. Most are; a few are

correlated due to common activities such as reading the

same mail message or news article.

Clearly the methodology is not airtight, and it fails com-

pletely for encrypted traffic. But it provides a good baseline

assessment of the presence of clear-text stepping stones, and

detects them in a completely different way than the timing al-

gorithm does, so it is suitable for calibration and performance

evaluation.

For large traces, the requirement of 5 or more lines allows

us to significantly reduce the number of connection pairs that

we need to visually inspect in the end. This appears to be

necessary in order to make the brute-force content matching

feasible.

For small- to medium-sized traces, we also inspect the ones

with 2, 3, or 4 lines in common. Sometimes we did indeed

find stepping stones that were missed if we required 5 lines

in common. But in most cases, these stepping stones were

exceedingly short in terms of bytes transferred.

5.3 Simple content-based algorithms

For purposes of comparison, we devised two simple content-

based algorithms. Both are based on the notion that if we can

find text in an interactive login C
1

unique to that login, then if

that text also occurs in C

2

, then we have strong evidence that

C

1

and C

2

are related.

The problem then is to find such instances of unique text.

Clearly, virtually all login sessions are unique in some fash-

ion, but the difficulty is to cheaply detect exactly how.

Our first scheme relies on the fact that some Telnet clients

propagate the X-Windows DISPLAY environment variable

[Al94] so that remote X commands can locate the user’s X dis-

play server. The value of DISPLAY should therefore be

unique, because it globally identifies a particular instance of

hardware.

We modified Bro to associate with each active Telnet

session the value of DISPLAY propagated by the Telnet

environment option (if any), and to flag any session that

propagates the same value as an already existing session.

We find, however, that this method has little power. It

turns out that DISPLAY is only rarely propagated in Tel-

net sessions, and, in addition, non-unique values (such

as hostnames not fully qualified, or, worse, strings like

“localhost.localdomain:0.0”) are propagated.1

Our second scheme works considerably better. The obser-

vation is that often when a new interactive session begins, the

login dialog includes a status line like:

1However, we have successfully used DISPLAY propagation to backtrace

attackers, so recording it certainly has some utility.

Last login: Fri Jun 18 12:56:58

from hostx.y.z.com

The combination of the timestamp (which of course changes

with each new login session) and the previous-access host

(even if truncated, as occurs with some systems) leads to this

line being frequently unique.

We modified Bro to search for the following regular expres-

sion in text sent from the server to the client:

/ˆ([Ll]ast +(successful)? *login)/ |

/ˆLast interactive login/

We found one frequent instance of false positives. Some in-

stances of the Finger service [Zi91] report such a “last login”

as part of the user information they return. Thus, whenever

two concurrent interactive sessions happened to finger the

same user, they would be marked as a stepping stone pair.

We were able to filter such instances out with a cheap test,

however: it turns out that the Finger servers also terminate the

status line with ASCII-1 (“control-A”).

We refer to this scheme as “login tag”, and compare its per-

formance with that of the timing algorithm below. It works

remarkably well considering its simplicity. Of course, it is not

very robust, and fails completely for a large class of systems

that do not generate status lines like the above, though perhaps

for those a similar line can be found.

5.4 Accuracy

We first evaluate the accuracy of the algorithms in terms

of their false negative ratio and false positive ratio. For

lbnl-telnet.trace, we identified 23 stepping stone

connection pairs among a total of 3,831 connections using

the brute-force content matching as described above. (We in-

spected all connections with 2 or more lines in common, so

23 should be a very accurate estimation of the number of step-

ping stones.) One stepping stone is indirect (x 3.2), the others

were direct.

The timing-based detection algorithm reports 21 stepping

stones, with no false positives and 2 false negatives. Both

false negatives are quite short: one lasts for 15 seconds and

the other lasts for 34 seconds.

For ucb-telnet.trace, due to the large volume of the

data, for the brute-force technique we only inspected connec-

tions with 5 or more lines in common. We identified 47 step-

ping stones. In contrast, the timing-based algorithm detects

74 stepping stones. 5 out of the 47 stepping stones we iden-

tified using brute-force were missed by the timing algorithm.

Among the 5 false negatives, 3 are very short either in terms of

duration (less than 12 seconds) or in terms of the bytes typed

(in one connection, the user logs in and immediately exits).

We discuss the additional 32 stepping stones detected by the

timing-based algorithm, but not by the brute-force technique,

below.

To further assess performance, we ran both the

“display” and the “login tag” schemes (x 5.3) on

7



ucb-telnet.trace. The “display” scheme reported

3 stepping stones, including one missed by the timing-based

algorithm. “login tag” reported 20 stepping stones (plus

one false positive, not further discussed here). Of these 20,

the timing-based algorithm only missed one, which was

exceedingly short—all the user did during the downstream

session was to type exit to terminate the session. (This is

also the stepping stone that was detected by the “display”

algorithm but not by the timing algorithm.)

In summary, the timing-based algorithm has a low false

negative ratio. To make sure that this does not come at the

cost of a high false positive ratio, we visually inspected the

additional 32 stepping stones reported by the timing-based al-

gorithm for ucb-telnet.trace to see which were false

positives.

It turns out that all of them were actual stepping stones.

For example, there were a couple of stepping stones that used

ytalk, a chat program. These fooled the brute-force content

matching algorithm due to a lot of cursor motions. Another

stepping stone fooled the content-matching approach because

retransmitted data showed up in one of the transcripts but not

the other.

Thus, we find that the timing-based algorithm is highly ac-

curate in terms of both false positive ratio and false negative

ratio, and works considerably better than the brute-force algo-

rithm that we initially expected would be highly accurate.

5.5 Efficiency

The timing-based algorithm is fairly efficient. Under the

current parameter settings, on a 400MHz Pentium II ma-

chine running FreeBSD 3.3, it takes 69 real-time sec-

onds for lbnl-telnet.trace, and about 24 minutes for

ucb-telnet.trace. The former clearly suffices for real-

time detection. The latter, for a 5.5 hour trace, reflects about

10% of the CPU, and would appear likewise to suffice. Note

that the relationship between the running time on the two

traces is not linear in the number of packets or connections

in the trace, because what instead matters is the number of

concurrent connections, as these are what lead to overlapping

ON/OFF periods that require further evaluation.

5.6 Impact of different control parameters

The proper choice of the control parameters is important for

both the accuracy and the efficiency of the algorithm. We

based the current choice of parameters on extensive experi-

ments with various traffic traces, which we summarize in this

section. With these settings, the algorithm performs very well

in terms of both accuracy and speed across a wide range of

network scenarios.

To assess the impact of the different control parameters, we

systematically explored the portions of the parameter space

on ucb-telnet.trace. Table 1 summarizes the different

parameter settings we considered. Note that we keep the de-

fault settings for Tidle and 


0 when exploring the parameter

Parameter Values

Tidle (sec) 0.5

� (msec) 20, 40, 80, 120, 160


 15%, 30%, 45%

mincsc 1, 2, 4, 8, 12, 16




0 2% for direct stepping stones;

4% for indirect stepping stones

Table 1: Settings for different control parameters.

space, which we did to keep the size of the parameter space

tractable. We chose to not vary these two parameters in par-

ticular because based on extensive experiments with various

traffic traces, we have found that:

� The algorithm is fairly insensitive to the choice of

Tidle. This is largely because, as noted in x 4.1, human

keystroke interarrivals are well described by a Pareto

distribution with fixed parameters. The Pareto distribu-

tion has a distinctive “heavy-tail” property, i.e., pretty

much no matter what value we choose for Tidle, we still

have an appreciable number of keystrokes to work with.

However, the larger the Tidle, the more likely that we

will miss short stepping stones. The current choice of

0.5 sec is a reasonable compromise between exceeding

most round-trip times (RTTs), yet maintaining respon-

siveness to short-lived connections.

� Although the current choices of 
0 thresholds are very

low, they suffice to eliminate those very long-lived con-

nections that eventually generate consecutive coinci-

dences just by chance, which is the only purpose for in-

troducing 
0.

Finally, an important point is that the goal for this assess-

ment is determining the best parameters to use for an unaware

attacker. If the attacker actively attempts to evade detection,

then as noted in x 4.4 alternative parameters may be required

even though they work less well in general. The important

problem of assessing how to optimize the algorithm for this

latter environment remains for future work.

We ran the detection algorithm on ucb-telnet.trace

for each of the 75 possible combinations of the control pa-

rameters and assessed the number of false positives and false

negatives. For brevity, we only report the complete results for


 = 30%, and briefly summarize the results for 
 = 15% and


 = 45%.

Table 2 gives the results for detecting direct stepping stones

when 
 = 30%. We make four observations. First, the num-

ber of false positives is close to 0 for all combinations of

� and mincsc except for mincsc = 1, which clearly is too

lax. Second, the number of false negatives is minimized when

mincsc = 2, which is the default setting in the algorithm.

Third, the choice of � has little impact on the accuracy of the

algorithm. Finally, the results for 
 = 15% and 
 = 45% (not

8



FP/FN (
=30%)

mincsc
� (msec) 1 2 4 8 12 16

20 1/8 0/8 0/10 0/17 0/21 0/26

40 1/6 0/7 0/10 0/17 0/21 0/25

80 4/5 0/7 0/9 0/16 0/20 0/24

120 12/5 0/7 0/9 0/15 0/19 0/24

160 20/5 0/7 0/9 0/14 0/19 0/24

Table 2: Number of false positives (FP) and false negatives

(FN) for detecting direct stepping stones when 
 = 30%.

shown) are highly similar to those for 
 = 30%, which means

the algorithm is insensitive to the choice of 
.

We should also note two additional considerations regard-

ing �. First, it is sometimes necessary to use a relatively large

�, especially when the latency is high (for example, for con-

nections that go through transcontinental or satellite links).

High latency often means large variation in the delay, which

can distort the keystroke timing characteristics. One possi-

ble solution to this problem would be to choose different �’s

based on the RTT of a connection. This would also help

with the latency-lag evasion technique discussed in x 4.4. But

such adaptation complicates the algorithm, because estimat-

ing RTT based on measurements in the middle of a network

path can be subtle, so we have left it for future study.

Second, large �’s also mean we must maintain state for

more concurrent connection pairs, which can eat up mem-

ory and CPU cycles. Similarly, having a smaller Tidle means

that we need to update state for connections more frequently,

which in turn increases CPU consumption. To illustrate these

effects, we increased � from 80 msec to 200 msec and re-

duced Tidle from 0.5 sec to 0.3 sec. After this change, the

time required to process lbnl-telnet.trace increases

to 155 sec, more than double the 69 sec required with the cur-

rent settings.

FP/FN (
=30%)

mincsc
� (msec) 1 2 4 8 12 16

20 162/0 5/0 0/0 0/2 0/5 0/6

40 683/0 19/0 0/0 0/2 0/4 0/6

80 2,486/0 134/0 0/0 0/1 0/3 0/5

120 5,633/0 431/0 12/0 3/1 3/3 2/5

160 10,131/0 995/0 28/0 7/1 4/3 2/5

Table 3: Number of false positives (FP) and false negatives

(FN) for detecting indirect stepping stones when 
 = 30%.

Table 3 summarizes the results for detecting indirect step-

ping stones when 
 = 30%. From the table it is evident that

both the number of false positives and the number of false

negatives are minimized when mincsc = 4 and � � 80 msec.

A smaller mincsc or a larger � can significantly increase the

number of false positives, while a larger mincsc can lead to

more false negatives. When 
 = 45%, the number of false

positives is in general smaller, but the optimal combination of

mincsc and � remains the same. When 
 = 15%, the number

of false positives increases 150–300%, and for � = 80 msec

and mincsc = 4, increases from 0 false positives to 7.

These findings show that the current settings of the parame-

ters are fairly optimal, at least for the ucb-telnet.trace,

and that there is considerable room for varying the parameters

in response to certain evasion threats (x 4.4). We also note that

there is no particular need to use the same values of Tidle, �,

and 
 for both direct and indirect stepping stones, other than

simplicity, and there may be room for some further perfor-

mance improvement by allowing them to be specific to the

type of stepping stone, just as for mincsc and 


0.

5.7 Failures

In this section we summarize the common scenarios that can

cause the timing-based algorithm to fail. Some of these fail-

ures have already been solved in the current algorithm, but it

is beneficial to discuss them, because they illustrate some of

the subtleties involved in stepping stone detection.

� Excessively short stepping stones. In many cases, the

timing-based algorithm missed a stepping stone simply

because the connections were exceedingly short. In some

cases, the “display” and “login tag” schemes are still able

to catch these because both of them key off of text sent

very early during a login session.

On the other hand, often attackers can’t do very much

during such short stepping stones, so failing to detect

them is not quite as serious as failing to detect longer-

lived stepping stones.

� Message broadcast applications such as the Unix talk and

wall utilities. Such utilities can cause correlations be-

tween flows because they cause the same text to be trans-

mitted on multiple connections. However, these correla-

tions will be of the form h

1

! h

2

, h
1

! h

3

; that is, the

connection endpoint that breaks the idle period will be

the same for both flows (h
1

, in this case), whereas for a

true stepping stone h
1

! h

2

! h

3

the endpoint break-

ing the idle period will differ (first h
1

, then h

2

). This

observation led to the directionality criterion in x 3.7.

� Correlations due to phase drift in periodic traffic. Con-

sider two connections C
1

and C

2

that transmit data with

periodicities P
1

and P

2

. If the periodicities are exactly

the same, then the ON/OFF periods of the connections

will remain exactly the same distance apart (equal to the

phase offset for the periodicities). If, however, P
1

is

slightly different from P

2

, then the offset between the

ON/OFF periods of the two will drift in phase, and occa-

sionally the two will overlap. Such overlaps appear to be

correlations, but actually are due to the periods being in

fact uncorrelated, and hence able to drift with respect to

one another.

9



This phenomenon is not idle speculation (see also [FJ94]

for discussion of how it can lead to self-synchronization

in coupled systems). For example, one of our traces in-

cludes two remote Telnet sessions to the same machine

at the same time (involving different user IDs, but clearly

the same user). The sessions had a period of overlap

during which both sessions were running pine to check

mail. For some reason, the pine display began periodi-

cally sending data in small chunks, with about a second

between each chunk. These transmissions were initially

out of sync, but sometimes sync’d up fairly closely. Be-

fore we added the rule on consecutive coincidences (pa-

rameters mincsc and 


0, discussed in x 4.3), these ses-

sions had been reported as a stepping stone, because the

ratio of coincidences was high enough. After we refined

the algorithm, such spurious stepping stones went away

(the rule on directionality discussed in the previous item

would have also happened to succeed in eliminating this

particular case).

� Large latency and its variation. As mentioned above,

when a connection has a very high latency or large delay

variation, we need to increase the value of � (and, accord-

ingly, 
, mincsc, and 


0) in order to detect it. We have

not yet modified the algorithm to do so because of com-

plications in efficiently estimating a connection’s RTT.

5.8 Experience with operational use

We initially expected that detecting a stepping stone would

mean that with high probability we had found an intruder at-

tempting to disguise their location. As the figures above on the

frequency of detecting stepping stones indicate, this expecta-

tion was woefully optimistic. In fact, we find that wide-area

Internet traffic abounds with stepping stones, virtually all of

them legitimate.

For example, UCB’s wide area traffic includes more than

100 stepping stones each day. These fall into a number of cat-

egories. Some are external users who wish to access particular

machines that apparently trust internal UCB hosts but do not

trust arbitrary external hosts. Some appear to reflect habitual

patterns of use, such as “to get to a new host, type rlogin to the

current host,” in which it is not infrequent to observe a step-

ping stone using a remote host to access a nearby local host,

or even the same local host.2 Some are simply bizarre, such as

one user who regularly logs in from UCB to a site in Asia and

then returns from the Asian site back to UCB, incurring hun-

dreds of msecs of latency (and thwarting our default choice of

�, per the above discussion). Other possible legitimate uses

that we haven’t happened to specifically identify are gaining

anonymity for purposes other than attacks, or running partic-

ular client software provided by the intermediary but not by

the upstream host.

2Inspection of some of these connections confirms that these are not inside

attackers attempting to hide their location.

Clearly, operational use will require development of refined

Bro policy scripts to codify patterns corresponding to legiti-

mate stepping stones, allowing the monitor to then alert only

on those stepping stones at odds with the policies. But even

given these hurdles, we find the utility of the algorithm clear

and compelling.

Finally, we note that the detection capability has already

yielded an unanticipated security bonus. Since the timing al-

gorithm is indifferent to connection contents, it can readily

detect stepping stones in which the upstream connection is

made using a clear-text protocol such as Telnet or Rlogin, but

the downstream connection uses a secure, encrypted protocol

such as SSH. Whenever we detect such stepping stones, it is

highly probable that the user typed their SSH passphrase or

password in the clear over the first connection in the chain,

thus undermining the security of the SSH connection. Indeed,

after beginning to run the timing algorithm to look for this pat-

tern, we rapidly found instances of such use, and confirmed

that for each the passphrase was indeed typed in the clear.

At LBNL, running the timing algorithm looking for such ex-

posures is now part of the operational security policy, and,

unfortunately, it continues to alert numerous times each day

(and we have traced at least one break-in to a passphrase ex-

posed in this manner at another site). Efforts are being made

to educate the users about the nature of this risk.

6 Concluding remarks

Internet attackers often mask their identity by launching at-

tacks not from their own computer, but from an intermediary

host that they previously compromised, i.e., a stepping stone.

By leveraging the distinct properties of interactive network

traffic (smaller packet sizes, longer idle periods than machine-

generated traffic), we have devised a stepping-stone detection

algorithm based on correlating the timing of the ON/OFF pe-

riods of different connections. The algorithm runs on a site’s

Internet access link. It proves highly accurate, and has the ma-

jor advantage of ignoring the data contents of the connections,

which means both that it works for encrypted traffic such as

SSH, and that the packet capture load is greatly diminished

since the packet filter need only record packet headers.

While the algorithm works very well, a major stumbling

block we failed to anticipate is the large number of legiti-

mate stepping stones that users routinely traverse for a vari-

ety of reasons. One large site (the University of California at

Berkeley) has more than 100 such stepping stones each day.

Accordingly, the next step for our work is to undertake op-

erating the algorithm as part of a site’s production security

monitoring, which we anticipate will require refined security

policies addressing the many legitimate stepping stones. But

even given these hurdles, we find the utility of the algorithm

clear and compelling.

Finally, a natural extension to this work is to attempt to like-

wise detect non-interactive stepping stones, such as relays, in

which traffic such as Internet Relay Chat [OR93] is looped

10



through a site, and slaves, in which incoming traffic triggers

outgoing traffic (which is not relayed), such as used by some

forms of distributed denial-of-service tools [CE99]. These

forms of stepping stones have different coincidence patterns

than the interactive ones addressed by our algorithm, but a

preliminary assessment indicates they may be amenable to de-

tection on the basis of observing a local host that has long

been idle suddenly becoming active outbound, just after it has

accepted an inbound connection.

7 Acknowledgments

We would like to thank Stuart Staniford-Chen and Felix Wu

for thought-provoking discussions, and in particular for the

notion of deliberately introducing delay (x 4.4); Ken Lindahl

and Cliff Frost for their greatly appreciated help with gain-

ing research access to UCB’s traffic; and Mark Handley, Tara

Whalen, and the anonymous reviewers for their feedback on

the work and its presentation.

References

[Al94] S. Alexander, “Telnet Environment Option,”

RFC 1572, DDN Network Information Center, Jan. 1994.

[Bo90] D. Borman, “Telnet Linemode Option,” RFC 1184,

Network Information Center, SRI International, Menlo

Park, CA, Oct. 1990.

[CE99] Computer Emergency Response Team, “Denial-of-

Service Tools,” CERT Advisory CA-99-17, Dec. 1999.

[DJCME92] P. Danzig, S. Jamin, R. Cáceres, D. Mitzel, and

D. Estrin, “An Empirical Workload Model for Driving

Wide-area TCP/IP Network Simulations,” Internetwork-

ing: Research and Experience, 3(1), pp. 1-26, 1992.

[FJ94] S. Floyd, and V. Jacobson, “The Synchronization of

Periodic Routing Messages,” IEEE/ACM Transactions on

Networking, 2(2), p. 122–136, April 1994.

[OR93] J. Oikarinen and D. Reed, “Internet Relay Chat Pro-

tocol,” RFC 1459, Network Information Center, DDN Net-

work Information Center, May 1993.

[PF95] V. Paxson and S. Floyd, “Wide-Area Traffic: The

Failure of Poisson Modeling,” IEEE/ACM Transactions on

Networking, 3(3), pp. 226-244, June 1995.

[Pa98] V. Paxson, “Bro: A System for Detecting Network In-

truders in Real-Time,” Proc. USENIX Security Symposium,

Jan. 1998.

[PR83b] J. Postel and J. Reynolds, “Telnet Option Specifica-

tions,” RFC 855, Network Information Center, SRI Inter-

national, Menlo Park, CA, May 1983.

[PN98] T. Ptacek and T. Newsham, “Insertion, Evasion, and

Denial of Service: Eluding Network Intrusion Detection,”

Secure Networks, Inc., http://www.aciri.org/vern/Ptacek-

Newsham-Evasion-98.ps, Jan. 1998.

[SH95] S. Staniford-Chen and L.T. Heberlein, “Holding In-

truders Accountable on the Internet.” Proc. IEEE Sympo-

sium on Security and Privacy, Oakland, CA, May 1995,

pp. 39–49.

[YKSRL99] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne,

and S. Lehtinen, “SSH Transport Layer Protocol,” Internet

Draft, draft-ietf-secsh-transport-06.txt, June 1999.

[Zi91] D. Zimmerman, “The Finger User Information Proto-

col,” RFC 1288, Network Information Center, SRI Interna-

tional, Menlo Park, CA, Dec. 1991.

11


