
A Program for Testing
IEEE Decimal–Binary Conversion

Vern Paxson
CS 279

Prof. Kahan
May 22, 1991

1 Introduction

Regardless of how accurately a computer performs floating-point operations, if
the data to operate on must be initially converted from the decimal-based repre-
sentation used by humans into the internal representation used by the machine,
then errors in that conversion will irrevocably pollute the results of subsequent
computations. Similarly, if internal numbers are not correctly converted to their
decimal equivalents for output display, again the computational results will be
tainted with error, even if all internal operations are performed exactly.

In this paper we concern ourselves with the problem of correctly converting
between decimal numbers and IEEE single and double precision values. At first
blush the conversion problem might appear simple and therefore uninteresting,
but neither is the case. Indeed, [Coo84] devotes 49 pages to a thorough treatment
of the topic. See also [Cli90] and [JW90] for discussions of correct decimal-to-
binary and binary-to-decimal conversion, respectively.

Part of the difficulty is that numbers in the input base (be it 2 or 10) can lie
extremely close to exactly half way between adjacent representable numbers in
the output base. In order to produce the closest possible representation of the
input in the output base, a conversion algorithm must distinguish these cases as to
whether they lie above, below, or exactly at half a unit in the last place (ULP) in
their output base representation. If the first, then the larger of the adjacent output
base representations should be chosen. If the second, then the smaller. If the third,
then the IEEE halfway-rounded-to-even rule should be applied.

The IEEE standard essentially only requires that the converted value be accu-
rate to within an ULP [C+84], rather than a half ULP correctly rounded, which

1

would be fully correct. However algorithms are publicly available for fully cor-
rect conversion [Gay90], and thus we are interested in developing a program for
testing whether a given conversion library is fully correct, IEEE-conformant, or
incorrect.

In the next section we outline David Hough’sTestbaseprogram for testing
decimal–binary conversion [Hou91]. In the following section we derive a modular
equation which if minimized produces especially difficult conversion inputs; those
that lie as close as possible to exactly half way between two representable outputs.
We then develop the theoretical framework for demonstrating the correctness of
two algorithms developed by Tim Peters for solving such a modular minimization
problem inO(log(N)) time. We next discussed how we extendedTestbaseto
use these algorithms for generatingstress-testing, namely testing of especially
difficult inputs. We also list a number of “worst-case” inputs for varying degrees
of decimal digit significance. In the penultimate section we present measurements
made on a number of different computer systems to evaluate the quality of their
decimal–binary conversion; the final section summarizes the results.

2 Testbase

Testbaseis a 4,800 line C program developed by David Hough of Sun
Microsystems to test binary-to-decimal and decimal-to-binary conversion for any
given number of significant decimal digits and for a wide variety of IEEE floating-
point representations.Testbasetests both conversion of E-format decimals (those
with an exponent field) and F-format (those represented solely by a string of digits
and perhaps a decimal point). In what follows, the “native conversion” refers to
the C sscanfandsprintf conversion routines provided by a system for decimal–
binary conversion.

Testbasetests the conversion of five types of inputs:

• positive and negative powers of 2;

• positive and negative powers of 10;

• random sources, where for decimal-to-binary conversion a random
source is a random decimal string, and for binary-to-decimal conversion
it is a random representable floating-point value;

2

• randomtargets, namely random representable floating-point values for decimal-
to-binary conversion and random decimal strings for binary-to-decimal con-
version; and

• random targets± half an ULP in the target representation.

Testbasedoes all internal computations using its own library of routines for
manipulating arbitrarily large integer values (bigint’s). A floating-point number is
then exactly representable as abigint “significand” times the quantity of a “base”
(either 2 or 10) raised to some integer power. Such a representation is referred
to asunpacked. Each system to be tested usingTestbasemust provide routines
to correctly convert between its native floating-point representation and theun-
packedrepresentation. This conversion entails packing or unpacking the contents
of a native floating-point value, and thus can be performed exactly1.

In the discussion that follows,decsigrefers to the number of significant deci-
mal digits being tested.

When testing decimal-to-binary conversion,Testbasegenerates its input val-
ues as follows:

• For powers of 2, anunpackedvalue is created to represent the power of
2. It is then converted exactly to the native representation, and then con-
verted (perhaps only approximately) to adecsig-digit decimal string using
the native conversion routine.

• For powers of 10 and random sources, an E- or F-formatdecsig-digit deci-
mal string is constructed directly.

• For random targets, a random floating-point number is constructed (using
random mantissa and exponent), which is then converted using the native
conversion routine to adecsig-digit decimal string.

• For random targets± half an ULP, a random floating-point number is con-
structed as above. It is then converted tounpackedformat and its half-ULP
value computed exactly. Both of these values are then converted to decimal
strings, added exactly, and the correspondingdecsigdigits kept.

Once the input has been constructed, it is converted exactly tou1, its corre-
spondingunpackedform, and also converted to binary using the native conversion

1Note that arbitrary decimal digit strings can also be converted exactly to anunpackedrepre-
sentation.

3

routine. The binary result is then unpacked exactly tou2. u1 andu2 are now ex-
actly converted to correspondingbigint’s b1 andb2 as follows. Ifu1’s exponent
is negative thenu2’s significand is scaled up byu1’s base raised to the negative
of u1’s exponent.u1’s exponent is then set to zero. Similarly,u1’s significand is
scaled up ifu2’s exponent is negative andu2’s exponent set to zero. If eitheru1

or u2 at this point still have positive exponents, their significands are scaled up
by their base raised to their exponent. At this point,b1 andb2 correspond to the
scaled significands ofu1 andu2. These values can then be compared exactly to
determine by how many half-ULP’s they differ. Asu1 was computed exactly to
begin with, the half-ULP difference is the degree to which the binary representa-
tion resulting from the native conversion differs from the true, infinitely precise
binary representation.

Testing binary-to-decimal conversion is similar. The input values are gener-
ated as follows:

• For powers of 2, anunpackedvalue is created to represent the power of 2.
It is then converted exactly to the native representation.

• For powers of 10 and random targets, an E- or F-formatdecsig-digit decimal
string is constructed and then converted to binary using the native conver-
sion.

• For random sources, a random floating-point value is constructed as de-
scribed above.

• For random targets± half an ULP, an E- or F-format decimal string is con-
structed and half a decimal ULP added. This value is then converted to
binary using the native conversion.

The input is then converted to an exactunpackedform u1 and a convertedun-
packedform u2 and the results compared in a manner analogous to that described
above.

When comparingu1 with u2 Testbaseis capable of evaluating a wide variety
of rounding-modes as well as IEEE halfway-rounded-to-even. Of relevance for
this paper are its capabilities of also evaluating rounding-to-within-one-ULP and
“biased” rounding, namely that used by VAX hardware.

A final level of testing done byTestbaseis to checkmonotonicity. The IEEE
standard requires that if an input value is increased, its converted representation
must not decrease.Testbasetests for conformance by perturbing each of its input

4

values by±1 and±2 ULP’s (in the input base) and confirming that the converted
values maintain monotonicity.

3 Difficult Conversions

While Testbasetests a rather large battery of different conversions, its reliance on
random operands is a little unsatisfying, as perhaps there are quite rare operands
that are exceptionally difficult to correctly convert.Testbasemight never generate
such an operand, and thus give an impression of correctness when such is not truly
warranted. This section develops how for any particular output range (given ex-
ponent and number of significant digits) there exist “worst-case” input values that
lie exceedingly close to exactly one half-ULP between two representable output
values.

Consider the task of converting a positive baseb1 number withd1 digits to the
closest baseb2 number withd2 digits and exponente2. The representable baseb2

numbers in this range are:

b2
e2 ≤ nb2

e2 < b2
e2+1 (1)

wheren has the formn0.n1n2 · · ·nd2−1, 0 ≤ ni < b2 for 0 < i < d2, and
0 < n0 < b2. The baseb1 numbers must therefore lie in this range. In general,
baseb1 numbers have the formmb1

e1 , wherem has the formm0.m1m2 · · ·md1−1,
0 ≤ mi < b1 for 0 < i < d1, and0 < m0 < b1. For a baseb1 number to lie in the
range given in equation 1 it must satisfy

b2
e2 ≤ mb1

e1 < b2
e2+1.

From this equation we can deriveemin andemax, the minimum and maximum
values fore1:

b2
e2 ≤ mb1

emin < b1
emin+1

e2 log b2 ≤ (emin + 1) log b1

e2 log b2

log b1 − 1
≤ emin

As emin is an integer, we subsequently have:

emin =
⌈

e2 log b2

log b1 − 1

⌉
(2)

5

Similarly, we have:

emax =
⌊
(e2 + 1) log b2

log b1

⌋
(3)

Consider now the conversion of a number of the forma = mb1
e1 , where

emin ≤ e1 ≤ emax. Sincea hasd1 significant digits we have

a = jb1
−(d1−1)

for some integerj.
The exact representation ofa in baseb2 can be expressed as a rational number

r, with 1 ≤ r < b2:

r =
jb1

e1−d1+1

b2
e2

Let r′ = rb2
d2−1. Then the constraint on the range ofr then gives

b2
(d2−1) ≤ r′ =

jb1
(e1−d1+1)

b2
(e2−d2+1)

< b2
d2

Let f1 = max(−(e1− d1 + 1), 0) andf2 = max(−(e2− d2 + 1), 0). Then we
have

r′ =
b1

(e1−d1+1+f1)b2
f2

b2
(e2−d2+1+f2)b1

f1
j

We now can writer′ as the product ofj and a fractionp/q:

r′ = j · p/q
p = b1

(e1−d1+1+f1)b2
f2

q = b2
(e2−d2+1+f2)b1

f1

wherep andq are integers.
When convertinga from baseb1 to baseb2 with d2 significant digits, only the

integer part ofr′ can be represented exactly. The fractional part is the fraction of
one unit in the last place by whicha is not exactly representable in baseb2; this
fractional part is equal to((j · p) mod q)/q.

Thus, to find a baseb1 number which is not exactly representable in baseb2

by a fractionk/q units in the last place, we must minimize in a modular sense

6

(j · p − k) mod q. In particular, if we want to find a baseb1 number withd1 sig-
nificant digits as close as possible to exactly half way between two representable
b2 numbers, we need to findj such that

(j · p− bq/2c) mod q (4)

is minimal, subject to the constraintemin ≤ e1 ≤ emax.
The corresponding baseb1 number will thus be exceptionally difficult to cor-

rect convert to baseb2, since high internal precision will be required to determine
whetherb1 is just below, just above, or exactly at half an ULP between two repre-
sentable baseb2 numbers.

We now turn to the problem of efficiently solving such a modular minimization
problem.

4 Modular Minimization with Constraints

Many of the lemmas and algorithms in this section concern the value of(a·i) mod
b for particular positive integersa, b with gcd(a, b) = 1, and another positive
integeri. We introduce the following notations:

Notation 1 Throughout this section, the variablesa andb will stand for positive
integers witha < b andgcd(a, b) = 1.

Definition 1 Givena, b, and a positive integeri, define

〈i〉 ≡ (a · i) mod b.

Lemma 1 Given a, b, and positive integersc and s, with s < b, and
〈s〉 < c ≤ b, let i be the least positive number such that

〈i〉 ≤ c− 〈s〉.

Then for any integerj such that0 < j < i, either

〈s + j〉 < 〈s〉

7

or

〈s + j〉 > c.

Proof. Clearly we have

b > 〈j〉 > c− 〈s〉. (5)

But

〈s + j〉 = (a · s + a · j) mod b

= (〈s〉+ 〈j〉) mod b. (6)

From Equation (5) we have

b + 〈s〉 > 〈s〉+ 〈j〉 > c.

If 〈s〉+ 〈j〉 ≥ b then

〈s〉 > (〈s〉+ 〈j〉) mod b

and therefore

〈s + j〉 < 〈s〉.

If c < 〈s〉+ 〈j〉 < b then

〈s + j〉 > c.

A similar proof then gives the following complementary Lemma.

Lemma 2 Given a, b, and positive integersc and s, with s < b, and
〈s〉 > c ≥ 0, let i be the least positive number such that

〈i〉 ≥ (b + c)− 〈s〉.

Then for anyj such that0 < j < i, either

〈s + j〉 > 〈s〉

8

or

〈s + j〉 < c.

Proof. Clearly we have

(b + c)− 〈s〉 > 〈j〉 > 0

b + c > 〈j〉+ 〈s〉 > 〈s〉

(〈j〉 6= 0 since0 < j < i ≤ b andgcd(a, b) = 1.) If 〈s〉+ 〈j〉 ≥ b then

c > (〈s〉+ 〈j〉) mod b

and therefore by Equation (6)

〈s + j〉 < c.

If 〈s〉+ 〈j〉 < b then again by Equation (6)

〈s + j〉 > 〈s〉

and the proof is complete.

Assuming we have a function

FirstModBelow(a, b, c) = least i such that 〈i〉 ≤ c

we now can construct an algorithm for minimizing〈s〉 over smin ≤ s ≤ smax.
This algorithm is due to Tim Peters [Pet91].

Algorithm 1 (Modmin) Givena, b, a non-negative integerc and positive integers
smin andsmax, with c < b, smin ≤ smax, produces ans subject tosmin ≤ s ≤ smax,
such that〈s〉 ≤ c and for all others′ with smin ≤ s′ ≤ smax, either〈s′〉 > c or
〈s′〉 < 〈s〉.
Step 1: Sets← smin.
Step 2: Setd← c− 〈s〉.
Step 3: If d is negative, setd ← d + b. If d is zero then minimal value iss;
terminate.
Step 4: Seti← FirstModBelow(a, b, d).

9

Step 5: By Lemma 1, s + i is now the least values′ > s such that
c − 〈s′〉 > c − 〈s〉. We have〈s′〉 = 〈s〉 + 〈i〉. If 〈i〉 < c − 〈s′〉 then we al-
ready know thats + 2i is the leasts′′ > s such thatc − 〈s′′〉 < c − 〈s〉, and we
can then repeat the process again if〈i〉 < c− 〈s′′〉. In general, we can add up tok
multiples ofi to s. Setk ← bd/〈i〉c.
Step 6: If s + ki ≤ smax then sets ← s + ki and go toStep 2. Otherwise set
k ← b(smax − s)/〈i〉c; sets← s + ki; minimal value iss; terminate.

There is an analogous algorithm (based on Lemma 2), which we omit here,
for producing ans subject tosmin ≤ s ≤ smax, such that〈s〉 ≥ c and for all other
s′ with smin ≤ s′ ≤ smax, either〈s′〉 < c or 〈s′〉 > 〈s〉.

We now turn to the problem of an algorithm for computing theFirstModBe-
low function. To do so we need to develop a fair amount of theory, much of it
based upon the convergents of the continued fraction representation ofa/b, as the
denominatorsqi of these convergents also yield especially small and large values
of 〈qi〉.

The convergents of the continued fraction representation ofa/b can be defined
as follows.

Definition 2 Givena andb, define

a−2 = a

b−2 = b

ai = bi−1

bi = ai−1 mod bi−1

wherei ≥ −1. Then define

p−2 = 0, p−1 = 1

q−2 = 1, q−1 = 0

pi =
⌊
ai−1

bi−1

⌋
pi−1 + pi−2

qi =
⌊
ai−1

bi−1

⌋
qi−1 + qi−2

wherei ≥ 0. Then theith convergentof the continued fraction representation of
a/b is pi/qi; pi is the numerator of theith convergent andqi is the denominator.

10

We state without proof the following basic property of the convergents ofa/b.

Property 1 Givena and b (conforming to the conventions given in Notation 1),
there exists a least positive integeri′ such thatbi′ = 0, and thatpi′ = a, qi′ = b.
Also, for0 < i ≤ i′, qi−1 < qi.

Throughout the remainder of this section we adopt the convention that when
any variableV is used in the context of indexing the numerator or denominator of
the convergents ofa/b, thenV is an integer and0 < V ≤ i′.

Lemma 3 Givena andb, we haveq2 ≥ 2 (and hence for2 ≤ i ≤ i′, qi ≥ 2).

Proof. By definition we have

q0 =
⌊
a−1

b−1

⌋
q−1 + q−2

= 1

q1 =
⌊
a0

b0

⌋
q0 + q−1

=
⌊

b−1

a−1 mod b−1

⌋
=

⌊
(a mod b)

b mod (a mod b)

⌋
.

But sincea < b, a mod b = a and we have

q1 =
⌊

a

b mod a

⌋
Trivially b mod a < a and henceq1 ≥ 1, and therefore by Property 1,q2 ≥ 2.

The following theorems are adopted from [NZ80]; the proofs are omitted here,
as the only changes we require are that the proofs be for a rational numberϕ
instead of an irrational numberξ. This difference does not materially alter the
proofs given by those authors.

Theorem 1 (Niven-Zuckerman 7.11)Given a rational number ϕ and
pn/qn, the convergents of its continued fraction representation, then for anyn ≥
0, ∣∣∣∣∣ϕ− pn

qn

∣∣∣∣∣ <
1

qnqn+1

11

Theorem 2 (Niven-Zuckerman 7.12)Given a rational numberϕ and its conver-
gentspn/qn, then for alln > 0,∣∣∣∣∣ϕ− pn

qn

∣∣∣∣∣ <

∣∣∣∣∣ϕ− pn−1

qn−1

∣∣∣∣∣ .

Theorem 3 (Niven-Zuckerman 7.13)Given a rational numberϕ, and its con-
vergentspn/qn, i an integer andj a positive integer, and for some integern > 0

|ϕj − i| < |ϕqn − pn|

then
j ≥ qn+1.

We now set out to use these theorems to prove results concerning how close
〈qi〉 is to 0 orb for qi the denominator of a convergent ofa/b.

It is convenient to introduce a notion of modular “distance”, analogous to ab-
solute value.

Definition 3 For positive integersa andb, define

|a|
b
≡ min(a, b− a).

We will need the following simple property of modular distance.

Property 2 For any positive integerc < b, we have

|c|
b
=

{
c, if c ≤ b/2, and
b− c if c > b/2.

Lemma 4 Given a, b, and positive integersi, pi, qi, and r, with pi/qi the ith
convergent ofa/b, and

|〈r〉|
b
< |〈qi〉|b (7)

12

then
r ≥ qi+1.

Proof. Let ε = a/b− pi/qi. We have

aqi − bpi = εbqi (8)

〈qi〉 = (εbqi) mod b.

By Theorem 1 we have|ε| < 1/(qiqi+1) < 1/qi
2, so−b < εbqi < b. If ε ≥ 0 then

(εbqi) mod b = εbqi

and if ε < 0
(εbqi) mod b = b− εbqi.

Since for anyi > 1 by Lemma 3 we haveqi ≥ 2, then by Theorem 1 and Property
2 we have fori > 0

|εbqi| < b/2. (9)

Therefore regardless of the sign ofε, we have

|εbqi|b = |εbqi|.

Now defineδ as follows:

δ =
{ 〈r〉/br, if 〈r〉 ≤ b/2, and

(b− 〈r〉)/br otherwise.
(10)

It follows that
|〈r〉|

b
= |δbr|.

Then Equation (7) gives us

|δbr| < |εbqi|
|δr| < |εqi|. (11)

Let ϕ = a/b. From Equation (10) we have

ar ≡ δbr (mod b)

13

and thus there exists some integerk such that

ar − kb = δbr

ϕr − k = δr. (12)

Also, Equation (8) gives us

ϕqi − p = εq. (13)

Combining Equations (11), (12), and (13) then gives us

|ϕr − k| < |ϕqi − p|

and thus by Theorem 3, we have

r ≥ qi+1.

Lemma 5 Given a rational numberϕ andpn/qn, the convergents of its continued
fraction representation, then for anyn ≥ 0 but less than the total number of
convergents ofϕ, pn/qn < ϕ if n is even andpn/qn > ϕ if n is odd.

Proof. This result immediately follows from Theorem 7.6 of [NZ80].

Lemma 6 Givena, b, and positive integersi and qi, with qi the denominator of
theith convergent ofa/b, then〈qi〉 ≤ b/2 if i is odd and〈qi〉 > b/2 if i is even.

Proof. Let ε = a/b− pi/qi. As before, we have

aqi − bpi = εbqi.

Supposei is odd. Then from Lemma 5 and Equation (9) we have

〈qi〉 = εbqi ≤ b/2

sinceε > 0. If i is even then instead we have

〈qi〉 = b + εbqi > b/2.

14

Lemma 7 Givena, b, an odd positive integeri, and a positive integerqi, with qi

the denominator of theith convergent ofa/b, let k = (qi+2 − qi)/qi+1. Then for
any positivej ≤ k

〈qi + jqi+1〉 < 〈qi + (j − 1)qi+1〉.

Proof. We know thatqi + (j − 1)qi+1 < qi+2 sincej ≤ k. But from Lemmas 4
and 6,〈qi+1〉 < b− 〈l〉 impliesl ≥ qi+2. Therefore we must have

〈qi+1〉 > b− 〈qi + (j − 1)qi+1〉.

We now construct the inequality

b > 〈qi+1〉 > b− 〈qi + (j − 1)qi+1〉

and then we immediately attain the desired result by adding〈qi + (j − 1)qi+1〉 to
the inequality and taking the result (modb).

Lemma 8 Givena, b, an odd positive integeri, and a positive integerqi, with qi

the denominator of theith convergent ofa/b, let k = (qi+2 − qi)/qi+1. Then for
any non-negative integerj < k, the leastl > qi+jqi+1 such that〈l〉 < 〈qi+jqi+1〉
is

l = qi + (j + 1)qi+1.

Proof. Let m be the least positive integer such that

〈m〉 ≥ b− 〈qi + jqi+1〉. (14)

We must havem ≤ qi+1, since Lemmas 4 and 6 assure us that

〈qi+1〉 ≥ b− 〈n〉

for all n < qi+2, so surelyqi+1 satisfies Equation (14). Now from the chain of
inequalities given to us by Lemma 7 we have

〈qi + jqi+1〉 < 〈qi〉

and therefore from Lemma 4 we havem ≥ qi+1, and hencem = qi+1. We then
apply the result of Lemma 1 withc = b and the proof is complete.

15

There is an analogous Lemma for eveni, whose proof we omit here.

Lemma 9 Givena, b, an even positive integeri, and a positive integerqi, with qi

the denominator of theith convergent ofa/b, let k = (qi+2 − qi)/qi+1. Then for
any non-negative integerj < k, the leastl > qi+jqi+1 such that〈l〉 > 〈qi+jqi+1〉
is

l = qi + (j + 1)qi+1.

We now are prepared to construct theFirstModBelowfunction referred to in
Algorithm 1. Again, the algorithm is due to Tim Peters [Pet91].

Algorithm 2 (FirstModBelow) Givena, b, a non-negative integerc, and a posi-
tive integers, with c < b, produces a positive integeri such that〈i〉 ≤ c and for
all positivej < i, 〈j〉 > c.

Step 1: Setn← 1.
Step 2: If 〈qn〉 > c, setn← n + 2 and repeat.
Step 3: If n = 1 then seti← qn and terminate.
Step 4: Setn ← n − 2. We then haveqn < i ≤ qn+2. Lemma 8 assures us thati
has the formqn + jqn+1, where0 < j ≤ k for k = (qn+2 − qn)/qn+1.
Step 5: Setd← 〈qn〉− c. d is now the distance that we need to cover usingj steps
of qn+1 beyondqn.
Step 6: Compute the step sizes each step ofqn+1 gives us. Recall that by Lemma
6, 〈qn+1〉 is quite large (i.e., nearb), sincen + 1 is even. Sets ← b − 〈qn+1〉.
Step 7: Setj ← dd/se.
Step 8: Seti← qn + jqn+1. Terminate.

Again, there is an analogous algorithm (using Lemma 9) for producing a posi-
tive integeri such that〈i〉 ≥ c and for all positivej < i, 〈j〉 < c, which is needed
by the analog of Algorithm 1. We omit it here.

We now turn our attention to the running-time of Algorithm 1.
Note that the only looping in Algorithm 2 occurs atStep 2. If the algorithm is

being used in the context of Algorithm 1 then we know that for each subsequent
use of Algorithm 2,c will be smaller than on the previous call. Hence we can
initialize n in Step 1to whatever its final value was on the previous call, rather
than1. Each execution of Algorithm 2 will therefore either take constant time (if
〈qn+2〉 ≤ c for the initial value ofn) or will “consume” one or more convergents,
which will not be used again during the execution of Algorithm 1. Hence the

16

total time spent executing Algorithm 2 will be at most proportional to the num-
ber of convergents ofa/b. Knuth [Knu81] proves that the maximum number of
convergents ofa/b is≈ 2.078 log b + 1.672.

Thus, over the course of an execution of Algorithm 1, ifm calls are made to
Algorithm 2, no more thanO(m) + O(log b) time will be spent executing Algo-
rithm 2.

Finally, we need to place an upper bound onm, which is done with the aid of
the following Lemma.

Lemma 10 When executing Algorithm 1, each iteration reduces the distance to
the goalc by more than a factor of 2. I.e., ifdj is the value ofd at Step 2on
iteration j of the algorithm, thendj+1 < dj/2.

Proof. Consider thei produced atStep 4of the algorithm during iterationj. It has
the property that〈i〉 ≤ dj.

Supposedj/2 < 〈i〉 ≤ dj. Thenkj ← 1 atStep 5, and we will have

dj+1 = dj mod 〈i〉 = dj − 〈i〉
< dj/2.

If on the other hand we have〈i〉 ≤ dj/2 then we have

dj+1 = dj mod 〈i〉 < 〈i〉
< dj/2.

Thus for the number of calls toFirstModBelowwe have

m ≤ log c < log b

and hence the total running time isO(log b).

5 Extending Testbase

We extendedTestbasewith “stress-testing” as follows. We added implementa-
tions of Algorithms 1 and 2, along with the necessarybigint support (primarily
bigint multiplication and division and fast algorithms for computing powers of 2
and 10), entailing about 1,600 lines of additionalC code.

17

Digits Input Bits
1 5 · 10+125 13
2 69 · 10+267 17
3 999 · 10−026 20
4 7861 · 10−034 21
5 75569 · 10−254 28
6 928609 · 10−261 30
7 9210917 · 10+080 31
8 84863171 · 10+114 34
9 653777767 · 10+273 40
10 5232604057 · 10−298 41
11 27235667517 · 10−109 45
12 653532977297 · 10−123 47
13 3142213164987 · 10−294 51
14 46202199371337 · 10−072 58
15 231010996856685 · 10−073 58
16 9324754620109615 · 10+212 61
17 78459735791271921 · 10+049 66
18 272104041512242479 · 10+200 72
19 6802601037806061975 · 10+198 72
20 20505426358836677347 · 10−221 74
21 836168422905420598437 · 10−234 76
22 4891559871276714924261 · 10+222 86

Table 1: Stress Inputs for Conversion to 53-bit Binary,< 1/2 ULP

18

Digits Input Bits
1 9 · 10−265 13
2 85 · 10−037 16
3 623 · 10+100 20
4 3571 · 10+263 24
5 81661 · 10+153 26
6 920657 · 10−023 30
7 4603285 · 10−024 30
8 87575437 · 10−309 37
9 245540327 · 10+122 42
10 6138508175 · 10+120 42
11 83356057653 · 10+193 45
12 619534293513 · 10+124 49
13 2335141086879 · 10+218 53
14 36167929443327 · 10−159 57
15 609610927149051 · 10−255 57
16 3743626360493413 · 10−165 63
17 94080055902682397 · 10−242 64
18 899810892172646163 · 10+283 69
19 7120190517612959703 · 10+120 73
20 25188282901709339043 · 10−252 73
21 308984926168550152811 · 10−052 77
22 6372891218502368041059 · 10+064 81

Table 2: Stress Inputs for Conversion to 53-bit Binary,> 1/2 ULP

To the types of test inputs listed in Section 2, we added a sixth. When doing
this sixth type of testing, we pick an exponent within the output exponent range
(for example, if testing decimal-to-binary for IEEE double precision, we would
pick an exponent in the range−1023 through1023), taking care to choose expo-
nent not previously tested. We next compute the correspondingemin andemax, as
given by Equations (2) and (3). Then for eache1 within this range we run Algo-
rithm 1 and its complement to find the inputs closest to just below and just above
a half-ULP between representable numbers in the output base.

Such stress-testing generates inputs requiring maximal internal precision for
correct conversion. Table 1 lists the most difficult decimal-to-binary conversion
inputs for 1–22 significant decimal digits. “Most difficult” means the input’s ex-

19

Digits Input Bits
1 8511030020275656 · 2−0342 63
2 5201988407066741 · 2−0824 63
3 6406892948269899 · 2+0237 62
4 8431154198732492 · 2+0072 61
5 6475049196144587 · 2+0099 64
6 8274307542972842 · 2+0726 64
7 5381065484265332 · 2−0456 64
8 6761728585499734 · 2−1057 64
9 7976538478610756 · 2+0376 67
10 5982403858958067 · 2+0377 63
11 5536995190630837 · 2+0093 63
12 7225450889282194 · 2+0710 66
13 7225450889282194 · 2+0709 64
14 8703372741147379 · 2+0117 66
15 8944262675275217 · 2−1001 63
16 7459803696087692 · 2−0707 63
17 6080469016670379 · 2−0381 62
18 8385515147034757 · 2+0721 64
19 7514216811389786 · 2−0828 64
20 8397297803260511 · 2−0345 64
21 6733459239310543 · 2+0202 63
22 8091450587292794 · 2−0473 63

Table 3: Stress Inputs for Converting 53-bit Binary to Decimal,< 1/2 ULP

20

Digits Input Bits
1 6567258882077402 · 2+952 62
2 6712731423444934 · 2+535 65
3 6712731423444934 · 2+534 63
4 5298405411573037 · 2−957 62
5 5137311167659507 · 2−144 61
6 6722280709661868 · 2+363 64
7 5344436398034927 · 2−169 61
8 8369123604277281 · 2−853 65
9 8995822108487663 · 2−780 63
10 8942832835564782 · 2−383 66
11 8942832835564782 · 2−384 64
12 8942832835564782 · 2−385 61
13 6965949469487146 · 2−249 67
14 6965949469487146 · 2−250 65
15 6965949469487146 · 2−251 63
16 7487252720986826 · 2+548 63
17 5592117679628511 · 2+164 65
18 8887055249355788 · 2+665 67
19 6994187472632449 · 2+690 64
20 8797576579012143 · 2+588 62
21 7363326733505337 · 2+272 61
22 8549497411294502 · 2−448 66

Table 4: Stress Inputs for Converting 53-bit Binary to Decimal,> 1/2 ULP

21

act representation lies very near but not quite at half an ULP between two rep-
resentable binary numbers2. The “Bits” column lists the number of bits beyond
the 53 of IEEE double precision necessary to distinguish whether the value is ex-
actly half an ULP between two representable values (in which case round-to-even
should be used) or indeed below half an ULP, in which case the value should be
rounded down in magnitude. The “Bits” value is computed aslog2 q/d, whereq
is as given in Equation (4) andd is the modular distance of the given value from
exactly one-half ULP.

The “worst” 17-digit decimal input is78, 459, 735, 791, 271, 921 · 10+049. The
first 119 bits of this number’s binary representation are:

11101110011010000000010001001110000010011000101001110
011
1111111111110 ...

Each row is 53 bits wide. We see that only if we compute this number to at
least53 + 13 = 66 bits precision beyond that available in double precision can
we determine that it does indeed lie below half an ULP rather than exactly at
half an ULP between two representable binary numbers, and therefore that its
value should be rounded down3 rather than rounded according to round-to-even.
Note that even a quadruple precision format with 64 extra bits does not suffice to
correctly discern which rounding rule should be applied.

Table 2 lists the same information for values whose excess is just above half an
ULP. Tables 3 and 4 list analogous values for converting from 53-bit IEEE binary
to decimal. The “Bits” values for conversion to decimal are all quite similar.
This is because it is the number of input digits that determines how closely one
can approach a half-ULP excess in the output, and the number of input digits is
unchanged regardless of the decimal significance.

Similar tables for 24-bit IEEE single precision and VAX 56-bit D format are
given in the Appendix. Of particular note is that there exist 9-decimal-digit values
that require 35 or more bits beyond the 24 of a single precision value to correctly
convert to binary. These stress values are therefore out of range of double pre-
cision calculation, too, and therefore an implementation cannot rely on double
precision sufficing for all single precision conversions.

2There may be other inputs that are equally “most difficult” for a given significance, but none
which are closer but still below half an ULP between.

3Actually, in this case even if the excess is exactly half an ULP it will be rounded down, due
to round-to-even.

22

System Description
dec3100 DECsystem 3100 running Ultrix V2.1 (Rev. 14)
dgay Conversion routines by David M. Gay
hpux HP 9000 model S300 running HP-UX release 7.0
rs6000 IBM RS/6000 running AIX 3.1
sgi Silicon Graphics Personal Iris 4D/35 running IRIX 3.3.2
stardent Stardent ST3000VX running 4.0 B II
sun3 Sun 3/160 running SunOS 4.1, software floating-point
sun3-68881 Sun 3/160 running SunOS 4.1, MC68881 floating-point
sun4 Sun 4/20 running SunOS 4.1
vaxunix VAX 8600 running 4.3 BSD Unix (VAX D floating-point for-

mat)
vms-D VAX 11/780 running VMS 5.4, D floating-point format
vms-F VAX 11/780 running VMS 5.4, F floating-point format
vms-G VAX 11/780 running VMS 5.4, G floating-point format

Table 5: Tested Conversion Systems

If the conversion routines correctly convert stress values such as these then we
know they utilize enough internal precision to correctly convert any value. The
conversion routines still might err, though, by not using the extra internal precision
when needed. To catch this error, we not only test the input values requiring
maximal internal precision, but also each intermediate step corresponding to the
value ofs atStep 2of Algorithm 1. Each step requires higher internal precision to
correctly convert. Algorithm 1 typically generates intermediate steps requiring 2–
3 extra bits of precision more than the previous step. In the course of running it for
all possible output exponents, each threshold of an extra bit of precision is crossed
numerous times. Thus if the conversion routines make an error in assessing when
a switch to higher internal precision is necessary, our approach will find it.

The results of running the extendedTestbaseon a number of systems are pre-
sented in the next section.

6 Measurements

We ran the extended version ofTestbaseon the 13 systems listed in Table 5.dgay
refers to freely available routines for decimal–binary conversion written by David

23

M. Gay of AT&T Bell Laboratories, described in [Gay90]. It was run on a Sili-
con Graphics machine, though presumably that had no effect on its performance.
These routines do not include single precision conversion. For all other systems,
we tested both single and double precision conversion, and for VMS we tested the
three provided single and double precisions4.

The tests were conducted as follows. On each system we tested single pre-
cision conversion for 1–12 decimal digits; for double precision, 1-22 digits were
tested5. For each decimal digit significance, we made four types of tests:

• stress-testingto check for correct rounding (within a half ULP). Algorithm
1 was run for each exponent in the floating-point range to test stress values
with an excess just below and just above half an ULP (as well as testing
the intermediate values produced during each iteration of the algorithm).
In addition, for each final pair of stress values generated, we made one
random test of each of the types listed in Section 2. These latter tests include
monotonicity testing; tests of stress values and their intermediate values do
not.

• Non-extendedTestbasetesting to check for correct rounding. Our intent was
to discover whetherstress-testinguncovered errors that would not otherwise
be detected. 1,376 regions were tested for single precision and 10,336 for
double precision. Each region involved a random test of one of the types
listed in Section 2 plus associated monotonicity testing (four adjacent values
also tested).

• stress-testingto check for conformant rounding (within one ULP). When
run in this mode, the stress values generated have an excess just below or
just above exactly representable.

• Non-extendedTestbasetesting to check for conformant rounding.

The results for tests of single-precision binary-to-decimal conversion are sum-
marized in Table 6. The first column lists the name of the system. The second

4VMS F format is identical in range to IEEE single precision, though it does not include sub-
normals and extreme values such asNAN. G format is likewise similar to IEEE double precision.
D format has a 56-bit mantissa and exponent range−127 to 127. It was the default floating-point
format on the VAX we tested; it also apparently is the only floating-point format supported by 4.3
BSD Unix running on a VAX, as noted in thevaxunixentry.

5Not all degrees of significance were tested for VAXG format due to lack of available CPU
time. The precisions tested were 1, 5, 8, 10, 12, 14, 16, 17, 18, and 22.

24

System Correct Conformant 2 ULP’s Monotonicity %f format
dec3100 0 12+ 12+ 12+ 17
hpux 10 12+ 12+ 12+ 17
rs6000 7 12+ 12+ 12+ 17
sgi 0 12+ 12+ 12+ 17
stardent 0 12+ 12+ 12+ 17
sun3 12+ 12+ 12+ 12+ all
sun3-68881 12+ 12+ 12+ 12+ all
sun4 12+ 12+ 12+ 12+ all
vaxunix 7 12+ 12+ 12+ 17
vms-F 12+ 12+ 12+ 12+ all

Table 6: Summary of Binary-to-Decimal Single Precision Conversion

through fifth columns give the maximum decimal significance for which conver-
sion was correct (within a half ULP), conformant (within one ULP), within two
ULP’s, and monotonic. A value of “12+” indicates that the system achieved the
given level of performance for all significances from 1 through 12. A value of 0
indicates the system failed to achieve the given level for a decimal significance
of 1. A boldface value indicates that onlystress-testingrevealed the failing. For
hpuxthis occurred for a minimum of 32 stress bits; forrs6000, 29 stress bits; and
for vaxunix, 31 stress bits.

The final column indicates how the system performs%f conversions. This
conversion specifies no exponent to be used in the output, only decimal digits
(perhaps with a decimal point). An entry of 17 indicates that at most 17 digits are
given, followed by enough zeroes to reach the decimal point and pad it beyond
to the requested significance. An entry ofall indicates that the system generates
all digits up to those requested beyond the decimal point (and does so correctly).
Either behavior is allowed by the IEEE standard.

The results for tests of single-precision decimal-to-binary conversion are sum-
marized in Table 7. Clearlystress-testingis invaluable for catching incorrectly
rounded results. Fordec3100, hpux, rs6000andsgi incorrect rounding occurred
at 32 stress bits; forstardent, 31 stress bits; and forvaxunixandvms-F, 34 stress
bits.

Measurements for double precision binary-to-decimal conversion are summa-
rized in Table 8. The “0/22+” entries forvms-Gindicate the failure of that system
to correctly perform%f format conversions. An example is given in Table 11

25

System Correct Conformant 2 ULP’s Monotonicity
dec3100 7 12+ 12+ 12+
hpux 7 12+ 12+ 12+
rs6000 7 12+ 12+ 12+
sgi 7 12+ 12+ 12+
stardent 8 12+ 12+ 12+
sun3 12+ 12+ 12+ 12+
sun3-68881 12+ 12+ 12+ 12+
sun4 12+ 12+ 12+ 12+
vaxunix 9 12+ 12+ 12+
vms-F 9 12+ 12+ 12+

Table 7: Summary of Decimal-to-Binary Single Precision Conversion

System Correct Conformant 2 ULP’s Monotonicity %f format
dec3100 0 17 17 22+ 17
dgay 22+ 22+ 22+ 22+ all
hpux 1 17 17 22+ 17
rs6000 0 17 17 22+ 17
sgi 0 17 17 22+ 17
stardent 0 14 15 22+ 17
sun3 22+ 22+ 22+ 22+ all
sun3-68881 22+ 22+ 22+ 22+ all
sun4 22+ 22+ 22+ 22+ all
vaxunix 0 15 16 16 17
vms-D 22+ 22+ 22+ 22+ all
vms-G 0/22+ 0/22+ 0/22+ 22+ 128

Table 8: Summary of Binary-to-Decimal Double Precision Conversion

26

System Correct Conformant 2 ULP’s Monotonicity %f format
dec3100 0 17 17 22+ 63
dgay 22+ 22+ 22+ 22+ all
hpux 1 17 (9) 22+ all
rs6000 14 (7) (7) (17) all
sgi 0 17 17 22+ 60
stardent 0 0 0 16 62
sun3 22+ 22+ 22+ 22+ all
sun3-68881 22+ 22+ 22+ 22+ all
sun4 22+ 22+ 22+ 22+ all
vaxunix 0 19 19 22+ all
vms-D 17 22+ 22+ 22+ all
vms-G 17 22+ 22+ 22+ all

Table 9: Summary of Decimal-to-Binary Double Precision Conversion

below.
vaxunixsuffers from monotonicity errors. When the values:

65725925722776214 · 255

65725925722776215 · 255

(which differ by one ULP) are converted to decimal, the results are

2.36802603674940685e+33
2.36802603674940680e+33

respectively, differing by 5 ULP’s in the wrong direction.
Finally, Table 9 summarizes tests of double precision decimal-to-binary con-

version. Values listed in parentheses indicate a failing occurring only for subnor-
mal values. For example,rs6000does not always convert 7 or more digit decimals
to their subnormal binary equivalents within one ULP, but for non-subnormal val-
ues, conversion was correct for all tested significances.

Systems with a number and not “all” in the final column have a limit on of
how many digits the decimal input can consist. Values beyond this limit result in
sscanffailures.

stardentsuffers from monotonicity errors. When the values

27

System Input Output Correct
dec3100 15000000 · 20 1e+07 2e+07
hpux 12680205 · 2−107 7.8147796833e-267.8147796834e-26
rs6000 8667859 · 256 6.2458506e+23 6.2458507e+23
sgi 15000000 · 20 1e+07 2e+07
stardent 8500000 · 20 9e+06 8e+06
vaxunix 12584953 · 2−145 2.8216441e-37 2.8216440e-37

Table 10: Sample Errors in Binary-to-Decimal Single Precision Conversions

System Input Output Correct
dec3100 5500000000000000 · 20 5e+15 6e+15
hpux 6236527588955251 · 2525 6.8e+173 6.9e+173
rs6000 5587935447692871 · 227 8e+23 7e+23
sgi 5500000000000000 · 20 5e+15 6e+15
stardent 4503599627370726 · 254 8.112963841461085e+31 8.112963841461083e+31
vaxunix 36028797018963978 · 238 9.903520314283046e+27 9.903520314283045e+27
vaxunix 48828121778774530 · 211 9.9999993402930235e+199.9999993402930237e+19
vms-G 9007195228209151 · 267 1329· · · 128.2 1329· · · 128

Table 11: Sample Errors in Binary-to-Decimal Double Precision Conversions

5.5225015152609010e+14
5.5225015152609011e+14

(which differ by one ULP) are converted to binary, the results are

8836002424417442 · 2−4

8836002424417441 · 2−4

respectively, differing by 1 ULP in the wrong direction.
Tables 10 through 13 show sample errors made by the various systems. We

omit systems that only generated errors for greater than 17 significant digits, as
this is the maximum significance required by the IEEE standard. With that con-
straint, onlystardentandvaxunixwere found to suffer grievous errors, 2 ULP’s or
larger. The other errors are all incorrect roundings close enough to be conformant.
TheVMS-Gerror of gratuitously adding “.2” to%f conversions is puzzling. We

28

System Input Output Correct
dec3100 7.038531e-26 11420670 · 2−107 11420669 · 2−107

hpux 7.038531e-26 11420670 · 2−107 11420669 · 2−107

rs6000 7.038531e-26 11420670 · 2−107 11420669 · 2−107

sgi 7.038531e-26 11420670 · 2−107 11420669 · 2−107

stardent 4.1358803e34 16704688 · 291 16704687 · 291

vaxunix 9.55610858e-6 10507053 · 2−40 10507052 · 2−40

vms-F 9.55610858e-6 10507053 · 2−40 10507052 · 2−40

Table 12: Sample Errors in Decimal-to-Binary Single Precision Conversions

System Input Output Correct
dec3100 1e+126 6653062250012736 · 2366 6653062250012735 · 2366

hpux 1e+126 6653062250012736 · 2366 6653062250012735 · 2366

rs6000 9.51206426453718e-276628941296109132 · 2−139 6628941296109133 · 2−139

sgi 1e+126 6653062250012736 · 2366 6653062250012735 · 2366

stardent 3e+97 7906648457422895 · 2271 7906648457422892 · 2271

vaxunix 9e+26 52386894822120666 · 234 52386894822120667 · 234

Table 13: Sample Errors in Decimal-to-Binary Double Precision Conversions

29

found numerous values for which the system made this error or similar ones (e.g.,
adding “.00002” for a%.5f format). In each case, the correctly converted decimal
value had no fractional part.

7 Summary

Our measurements found that only Sun Microsystems’ and David Gay’s conver-
sion routines are completely correct. In general, VAX/VMS conversion is very
good. IBM RS/6000, HP-UX 9000, SGI Iris 4D/35, and DECsystem 3100 all
provide conformant (but not fully correct) implementations. VAX 4.3 BSD Unix
loses conformance with 15 significant decimal digits and suffers from monotonic-
ity errors, a poor implementation. Stardent ST3000VX is not conformant regard-
less of decimal significance and also suffers from monotonicity errors. It is a very
poor implementation.

Stress-testingproved invaluable for uncovering incorrect single precision con-
versions. It did not, however, reveal any faults in double precision conversion that
Testbasedid not uncover independently. Asstress-testingfor double precision
values is computationally intensive, this suggests that double precision conver-
sion can be adequately tested usingTestbasealone.

30

8 Acknowledgments

This work was supported by an NSF Graduate Fellowship and by the generosity of
the Lawrence Berkeley Laboratory’s Computer Systems Engineering Department,
for which the author is grateful.

I am much indebted to David Hough of Sun Microsystems, Inc., for his aid
in understanding and modifyingTestbase, as well as for lucid explanations of the
issues underlying the testing of decimal–binary conversion. I am equally indebted
to Tim Peters of Kendall Square Research Corporation, for his invaluable help
in understanding the workings of his modular minimization algorithms and the
motivation behind them as developed in Section 3.

I wish to thank the many people who made their systems available for test-
ing: Wes Bethel, Keith Bostic, Jane Colman, Nancy Johnston, Craig Leres, Chris
Saltmarsh, Lindsay Schachinger, and Marc Teitelbaum. I also wish to thank Ed
Theil for providing the basic computational support for developing the extended
Testbase, without which this project would have been impossible.

Finally, I especially wish to thank my wife, Lindsay, for her continual patience
and support during the pursuit of this project.

All of these efforts are very much appreciated.

31

References

[C+84] W. J. Cody et al. A proposed radix- and word-length-independent stan-
dard for floating-point arithmetic.IEEE Micro, pages 86–100, August
1984.

[Cli90] William D. Clinger. How to read floating point numbers accurately.
In Proceedings of the ACM SIGPLAN ’90 Conference on Programming
Language Design and Implementation, White Plains, New York, June
1990.

[Coo84] Jerome Toby Coonen.Contributions to a Proposed Standard for Bi-
nary Floating-Point Arithmetic. PhD thesis, Department of Mathemat-
ics, University of California, Berkeley, June 1984.

[Gay90] David M. Gay. Correctly rounded binary-decimal and decimal-binary
conversions. Technical report, AT&T Bell Laboratories, November
1990. Numerical Analysis Manuscript 90-10.

[Hou91] David Hough. Testbase. Private communication, March 1991.

[JW90] Guy L. Steele Jr. and Jon L. White. How to print floating point num-
bers accurately. InProceedings of the ACM SIGPLAN ’90 Conference
on Programming Language Design and Implementation, White Plains,
New York, June 1990.

[Knu81] Donald E. Knuth.Seminumerical Algorithms. Addison–Wesley, second
edition, 1981.

[NZ80] Ivan Niven and Herbert S. Zuckerman.An Introduction to the Theory of
Numbers. John Wiley & Sons, fourth edition, 1980.

[Pet91] Tim Peters. Minimizingb*s mod c over a range of s; “the worst”
case. Internetvalidgh!numeric-interest@uunet.uu.net
electronic mailing list, April 7th 1991.

32

9 Appendix

Tables 14 through 21 give stress inputs for decimal-to-binary and binary-to-decimal
conversion for 24 and 56 bit floating-point mantissas (IEEE single precision and
VAX D format, respectively). For each type of conversion, the first table gives
stress inputs with excesses lying just below a half ULP, and the second inputs
with excesses lying just above a half ULP.

33

Digits Input Bits
1 5 · 10−20 7
2 67 · 10+14 13
3 985 · 10+15 15
4 7693 · 10−42 17
5 55895 · 10−16 25
6 996622 · 10−44 27
7 7038531 · 10−32 32
8 60419369 · 10−46 33
9 702990899 · 10−20 35
10 6930161142 · 10−48 41
11 25933168707 · 10+13 42
12 596428896559 · 10+20 45

Table 14: Stress Inputs for Conversion to 24-bit Binary,< 1/2 ULP

Digits Input Bits
1 3 · 10−23 10
2 57 · 10+18 12
3 789 · 10−35 16
4 2539 · 10−18 18
5 76173 · 10+28 22
6 887745 · 10−11 24
7 5382571 · 10−37 26
8 82381273 · 10−35 32
9 750486563 · 10−38 38
10 3752432815 · 10−39 38
11 75224575729 · 10−45 42
12 459926601011 · 10+15 46

Table 15: Stress Inputs for Conversion to 24-bit Binary,> 1/2 ULP

34

Digits Input Bits
1 12676506 · 2−102 32
2 12676506 · 2−103 29
3 15445013 · 2+086 34
4 13734123 · 2−138 32
5 12428269 · 2−130 30
6 15334037 · 2−146 31
7 11518287 · 2−041 30
8 12584953 · 2−145 31
9 15961084 · 2−125 32
10 14915817 · 2−146 31
11 10845484 · 2−102 30
12 16431059 · 2−061 29

Table 16: Stress Inputs for Converting 24-bit Binary to Decimal,< 1/2 ULP

Digits Input Bits
1 16093626 · 2+069 30
2 9983778 · 2+025 31
3 12745034 · 2+104 31
4 12706553 · 2+072 31
5 11005028 · 2+045 30
6 15059547 · 2+071 31
7 16015691 · 2−099 29
8 8667859 · 2+056 33
9 14855922 · 2−082 35
10 14855922 · 2−083 33
11 10144164 · 2−110 32
12 13248074 · 2+095 33

Table 17: Stress Inputs for Converting 24-bit Binary to Decimal,> 1/2 ULP

35

Digits Input Bits
1 7 · 10−27 9
2 37 · 10−29 10
3 743 · 10−18 16
4 7861 · 10−33 19
5 46073 · 10−30 20
6 774497 · 10−34 25
7 8184513 · 10−33 26
8 89842219 · 10−28 34
9 449211095 · 10−29 34
10 8128913627 · 10−40 38
11 87365670181 · 10−18 43
12 436828350905 · 10−19 44
13 5569902441849 · 10−49 46
14 60101945175297 · 10−32 52
15 754205928904091 · 10−51 54
16 5930988018823113 · 10−37 57
17 51417459976130695 · 10−27 62
18 826224659167966417 · 10−41 65
19 9612793100620708287 · 10−57 68
20 93219542812847969081 · 10−39 71
21 544579064588249633923 · 10−48 74
22 4985301935905831716201 · 10−48 80

Table 18: Stress Inputs for Conversion to 56-bit Binary,< 1/2 ULP

36

Digits Input Bits
1 9 · 10+26 9
2 79 · 10−8 10
3 393 · 10+26 14
4 9171 · 10−40 17
5 56257 · 10−16 26
6 281285 · 10−17 26
7 4691113 · 10−43 29
8 29994057 · 10−15 30
9 834548641 · 10−46 33
10 1058695771 · 10−47 37
11 87365670181 · 10−18 43
12 872580695561 · 10−36 43
13 6638060417081 · 10−51 47
14 88473759402752 · 10−52 50
15 412413848938563 · 10−27 54
16 5592117679628511 · 10−48 63
17 83881765194427665 · 10−50 63
18 638632866154697279 · 10−35 64
19 3624461315401357483 · 10−53 67
20 75831386216699428651 · 10−30 70
21 356645068918103229683 · 10−42 74
22 7022835002724438581513 · 10−33 77

Table 19: Stress Inputs for Conversion to 56-bit Binary,> 1/2 ULP

37

Digits Input Bits
1 50883641005312716 · 2−172 65
2 38162730753984537 · 2−170 64
3 50832789069151999 · 2−101 64
4 51822367833714164 · 2−109 62
5 66840152193508133 · 2−172 64
6 55111239245584393 · 2−138 64
7 71704866733321482 · 2−112 62
8 67160949328233173 · 2−142 61
9 53237141308040189 · 2−152 63
10 62785329394975786 · 2−112 62
11 48367680154689523 · 2−077 61
12 42552223180606797 · 2−102 62
13 63626356173011241 · 2−112 62
14 43566388595783643 · 2−099 64
15 54512669636675272 · 2−159 61
16 52306490527514614 · 2−167 67
17 52306490527514614 · 2−168 65
18 41024721590449423 · 2−089 62
19 37664020415894738 · 2−132 60
20 37549883692866294 · 2−093 62
21 69124110374399839 · 2−104 65
22 69124110374399839 · 2−105 62

Table 20: Stress Inputs for Converting 56-bit Binary to Decimal,< 1/2 ULP

38

Digits Input Bits
1 49517601571415211 · 2−094 63
2 49517601571415211 · 2−095 60
3 54390733528642804 · 2−133 63
4 71805402319113924 · 2−157 62
5 40435277969631694 · 2−179 61
6 57241991568619049 · 2−165 61
7 65224162876242886 · 2+058 65
8 70173376848895368 · 2−138 61
9 37072848117383207 · 2−099 61
10 56845051585389697 · 2−176 64
11 54791673366936431 · 2−145 64
12 66800318669106231 · 2−169 64
13 66800318669106231 · 2−170 61
14 66574323440112438 · 2−119 65
15 65645179969330963 · 2−173 62
16 61847254334681076 · 2−109 63
17 39990712921393606 · 2−145 62
18 59292318184400283 · 2−149 62
19 69116558615326153 · 2−143 65
20 69116558615326153 · 2−144 62
21 39462549494468513 · 2−152 63
22 39462549494468513 · 2−153 61

Table 21: Stress Inputs for Converting 56-bit Binary to Decimal,> 1/2 ULP

39

