A Program for Testing
IEEE Decimal-Binary Conversion

Vern Paxson
CS 279
Prof. Kahan
May 22, 1991

1 Introduction

Regardless of how accurately a computer performs floating-point operations, if
the data to operate on must be initially converted from the decimal-based repre-
sentation used by humans into the internal representation used by the machine,
then errors in that conversion will irrevocably pollute the results of subsequent
computations. Similarly, if internal numbers are not correctly converted to their
decimal equivalents for output display, again the computational results will be
tainted with error, even if all internal operations are performed exactly.

In this paper we concern ourselves with the problem of correctly converting
between decimal numbers and IEEE single and double precision values. At first
blush the conversion problem might appear simple and therefore uninteresting,
but neither is the case. Indeed, [Co084] devotes 49 pages to a thorough treatment
of the topic. See also [CIli90] and [JW90] for discussions of correct decimal-to-
binary and binary-to-decimal conversion, respectively.

Part of the difficulty is that numbers in the input base (be it 2 or 10) can lie
extremely close to exactly half way between adjacent representable numbers in
the output base. In order to produce the closest possible representation of the
input in the output base, a conversion algorithm must distinguish these cases as to
whether they lie above, below, or exactly at half a unit in the last place (ULP) in
their output base representation. If the first, then the larger of the adjacent output
base representations should be chosen. If the second, then the smaller. If the third,
then the IEEE halfway-rounded-to-even rule should be applied.

The IEEE standard essentially only requires that the converted value be accu-
rate to within an ULP [C84], rather than a half ULP correctly rounded, which

1

would be fully correct. However algorithms are publicly available for fully cor-
rect conversion [Gay90], and thus we are interested in developing a program for
testing whether a given conversion library is fully correct, IEEE-conformant, or
incorrect.

In the next section we outline David Houghlestbaserogram for testing
decimal-binary conversion [Hou91]. In the following section we derive a modular
equation which if minimized produces especially difficult conversion inputs; those
that lie as close as possible to exactly half way between two representable outputs.
We then develop the theoretical framework for demonstrating the correctness of
two algorithms developed by Tim Peters for solving such a modular minimization
problem inO(log(V)) time. We next discussed how we extendegtbasdo
use these algorithms for generatisgess-testingnamely testing of especially
difficult inputs. We also list a number of “worst-case” inputs for varying degrees
of decimal digit significance. In the penultimate section we present measurements
made on a number of different computer systems to evaluate the quality of their
decimal-binary conversion; the final section summarizes the results.

2 Testbase

Testbaseis a 4,800 lineC program developed by David Hough of Sun
Microsystems to test binary-to-decimal and decimal-to-binary conversion for any
given number of significant decimal digits and for a wide variety of IEEE floating-
point representationgestbaseests both conversion of E-format decimals (those
with an exponent field) and F-format (those represented solely by a string of digits
and perhaps a decimal point). In what follows, the “native conversion” refers to
the C sscanfandsprintf conversion routines provided by a system for decimal—
binary conversion.

Testbaséests the conversion of five types of inputs:

e positive and negative powers of 2;
e positive and negative powers of 10;

e random sources where for decimal-to-binary conversion a random
source is a random decimal string, and for binary-to-decimal conversion
it is a random representable floating-point value;

e randontargets namely random representable floating-point values for decimal-
to-binary conversion and random decimal strings for binary-to-decimal con-
version; and

e random targets- half an ULP in the target representation.

Testbasealoes all internal computations using its own library of routines for
manipulating arbitrarily large integer valudsdint’s). A floating-point number is
then exactly representable abigint “significand” times the quantity of a “base”
(either 2 or 10) raised to some integer power. Such a representation is referred
to asunpacked Each system to be tested usihgstbasanust provide routines
to correctly convert between its native floating-point representation andrthe
packedrepresentation. This conversion entails packing or unpacking the contents
of a native floating-point value, and thus can be performed exactly

In the discussion that followslecsigrefers to the number of significant deci-
mal digits being tested.

When testing decimal-to-binary conversidrestbasayenerates its input val-
ues as follows:

e For powers of 2, aunpackedvalue is created to represent the power of
2. It is then converted exactly to the native representation, and then con-
verted (perhaps only approximately) talacsigdigit decimal string using
the native conversion routine.

e For powers of 10 and random sources, an E- or F-foheasigdigit deci-
mal string is constructed directly.

e For random targets, a random floating-point number is constructed (using
random mantissa and exponent), which is then converted using the native
conversion routine to decsigdigit decimal string.

e For random targets half an ULP, a random floating-point number is con-
structed as above. It is then converteditipackedormat and its half-ULP
value computed exactly. Both of these values are then converted to decimal
strings, added exactly, and the correspondiagsigdigits kept.

Once the input has been constructed, it is converted exactly, ti's corre-
spondingunpackedorm, and also converted to binary using the native conversion

INote that arbitrary decimal digit strings can also be converted exactly tmpackedepre-
sentation.

routine. The binary result is then unpacked exactly4ou; andu, are now ex-
actly converted to correspondifgint's b; andb, as follows. Ifu;’s exponent
is negative then,’s significand is scaled up by;’s base raised to the negative
of u;’s exponent.u;’s exponent is then set to zero. Similarly,’s significand is
scaled up ifus’s exponent is negative angd’s exponent set to zero. If eithes
or uy at this point still have positive exponents, their significands are scaled up
by their base raised to their exponent. At this pobatandb, correspond to the
scaled significands af; andu,. These values can then be compared exactly to
determine by how many half-ULP’s they differ. As was computed exactly to
begin with, the half-ULP difference is the degree to which the binary representa-
tion resulting from the native conversion differs from the true, infinitely precise
binary representation.

Testing binary-to-decimal conversion is similar. The input values are gener-
ated as follows:

e For powers of 2, amnpackedvalue is created to represent the power of 2.
It is then converted exactly to the native representation.

e For powers of 10 and random targets, an E- or F-foraeasigdigit decimal
string is constructed and then converted to binary using the native conver-
sion.

e For random sources, a random floating-point value is constructed as de-
scribed above.

e Forrandom targets half an ULP, an E- or F-format decimal string is con-
structed and half a decimal ULP added. This value is then converted to
binary using the native conversion.

The input is then converted to an exacdpackedorm «; and a convertedn-
packedform u; and the results compared in a manner analogous to that described
above.

When comparing:; with u, Testbases capable of evaluating a wide variety
of rounding-modes as well as IEEE halfway-rounded-to-even. Of relevance for
this paper are its capabilities of also evaluating rounding-to-within-one-ULP and
“biased” rounding, namely that used by VAX hardware.

A final level of testing done byestbases to checkmonotonicity The IEEE
standard requires that if an input value is increased, its converted representation
must not decreasdestbaseests for conformance by perturbing each of its input

values by+1 and+2 ULP’s (in the input base) and confirming that the converted
values maintain monotonicity.

3 Difficult Conversions

While Testbaséests a rather large battery of different conversions, its reliance on
random operands is a little unsatisfying, as perhaps there are quite rare operands
that are exceptionally difficult to correctly convefestbasenight never generate
such an operand, and thus give an impression of correctness when such is not truly
warranted. This section develops how for any particular output range (given ex-
ponent and number of significant digits) there exist “worst-case” input values that
lie exceedingly close to exactly one half-ULP between two representable output
values.

Consider the task of converting a positive basaumber withd; digits to the
closest basé, number withd, digits and exponent;. The representable basge
numbers in this range are:

6262 < aneQ < b262+1 (l)

wheren has the formng.ning - -ng,—1, 0 < n; < by for 0 < i < dy, and

0 < ng < bs. The basé; numbers must therefore lie in this range. In general,
baseb; numbers have the formb, ', wherem has the formmgy.myms - - - mgy, 1,
0<m; <b for0<i<d,and0 < mg < b;. For a basé, number to lie in the
range given in equation 1 it must satisfy

by < mby ' < byt

From this equation we can deri¢g;, ande,,.,, the minimum and maximum
values fore;:

by

€9 IOg b2

mblemin < blemin+1

(emin + 1) 10g bl

IAINA

()] IOg b2

IA

€min

loghy — 1
As e, IS @n integer, we subsequently have:

es log by w)

= {logbl -1

5

Similarly, we have:

(e + 1) log sz 3)

emaxr = { og by

Consider now the conversion of a number of the farm= mb;“*, where
emin < €1 < emax. Sincea hasd; significant digits we have

a = jbli(dlil)

for some integey.

The exact representation @in baseb, can be expressed as a rational number
r,With1 <r < by:

jblel_dl+1

r o= by

Letr = rby®~!. Then the constraint on the rangerchen gives

1 (e1—di+1)
(da=1) — 4 _ JD
b\ < = 7b2(e2_d2+1)

< b2d2

Let fl = max(—(61 —d; + 1), 0) andfg = max(—(ez —dy + 1), O) Then we
have
b1(61—d1+1+f1)b2f2 .

/
T =

b2(62*d2+1+f2)b1f1 J

We now can write”’ as the product of and a fractiorp/q:

r' = j-p/q
— bl(el—d1+1+f1)b2f2

g = b2(62*d2+1+f2)b1f1

wherep andq are integers.

When converting: from baseb; to baseh, with d, significant digits, only the
integer part of’ can be represented exactly. The fractional part is the fraction of
one unit in the last place by whichis not exactly representable in bdse this
fractional part is equal t¢(j - p) mod ¢)/q.

Thus, to find a bas& number which is not exactly representable in base
by a fractionk/q units in the last place, we must minimize in a modular sense

6

(7 - p — k) mod q. In particular, if we want to find a bage number withd; sig-
nificant digits as close as possible to exactly half way between two representable
b, numbers, we need to findsuch that

(j-p—[g/2]) mod g (4)

is minimal, subject to the constraiat;, < e; < €pax-

The corresponding bage number will thus be exceptionally difficult to cor-
rect convert to bask, since high internal precision will be required to determine
whetherb;, is just below, just above, or exactly at half an ULP between two repre-
sentable bas& numbers.

We now turn to the problem of efficiently solving such a modular minimization
problem.

4 Modular Minimization with Constraints
Many of the lemmas and algorithms in this section concern the vallie 9fmod
b for particular positive integers, b with ged(a,b) = 1, and another positive

integeri. We introduce the following notations:

Notation 1 Throughout this section, the variablesand b will stand for positive
integers witha < b andged(a, b) = 1.

Definition 1 Givena, b, and a positive integer, define

(i) = (a 1) mod b.

Lemma 1l Given a, b, and positive integers: and s, with s < b, and
(s) < ¢ < b, letibe the least positive number such that

(1) <c—(s).

Then for any integey such that) < j < ¢, either

(s+7) < (9

or

(s+7) > c

Proof. Clearly we have
b> (j) >c—(s). (5)
But

(s+j) = (a-s+a-j)modb
= ({s) + (5)) mod b. (6)

From Equation (5) we have
b+ (s) > (s) + (j) > c.
If (s) + (j) > bthen
(s) > ({s) + (j)) mod b
and therefore
(s +7) < (s).
If ¢ < (s) + (j) < bthen

(s+j) >c.

A similar proof then gives the following complementary Lemma.

Lemma 2 Given a, b, and positive integers: and s, with s < b, and
(s) > c >0, letibe the least positive number such that

(i) = (b+c) = (s).

Then for anyj such that) < j < ¢, either

(s+7) > (s)

or

(s+7) < c

Proof. Clearly we have

b+c)—(s) > (j) > 0
b+c > (j)+(s) > (s)

((4) # 0since0 < j < i < bandged(a,b) = 1.) If (s) + (j) > bthen
¢ > ((s) + (j)) mod b
and therefore by Equation (6)
(s+7) <c
If (s) + (j) < bthen again by Equation (6)
(s +7) > (s)

and the proof is complete.

Assuming we have a function
FirstModBelowa, b, ¢) = least i such that (i) < ¢

we now can construct an algorithm for minimizirg) over sy < s < Spax-
This algorithm is due to Tim Peters [Pet91].

Algorithm 1 (Modmin) Givena, b, a non-negative integerand positive integers
Smin @NA Spax, With e < b, spin < Smax, Produces am subject tos,,i, < s < Spax,

such that(s) < ¢ and for all others’ with s.,;, < s' < spax, €ither(s’) > cor
(s") < (s)-

Step 1 Sets < spyin-

Step 2 Setd «— ¢ — (s).

Step 3 If d is negative, setl <— d + b. If d is zero then minimal value is;
terminate.

Step 4 Seti «— FirstModBelowa, b, d).

9

Step 5 By Lemma 1,s + i is now the least values’ > s such that
c—(s') > c—(s). We have(s’) = (s) + (i). If (i) < ¢ — (¢) then we al-
ready know thak + 2i is the least” > s such that — (s”) < ¢ — (s), and we
can then repeat the process agaifi)if< ¢ — (s”). In general, we can add up ko
multiples ofi to s. Setk «— [d/(i)].

Step 6 If s + ki < snax then sets — s + ki and go toStep 2 Otherwise set
k — | (Smax —)/ (i)]; sets < s + ki; minimal value iss; terminate.

There is an analogous algorithm (based on Lemma 2), which we omit here,
for producing ars subject t0s,;, < s < Smax, Such that's) > ¢ and for all other
s With $pin < 8" < Spax, €ither(s’) < cor (s') > (s).

We now turn to the problem of an algorithm for computing FiestModBe-
low function. To do so we need to develop a fair amount of theory, much of it
based upon the convergents of the continued fraction representatigh, e the
denominatorg; of these convergents also yield especially small and large values
of (g;).

The convergents of the continued fraction representatiariiofan be defined
as follows.

Definition 2 Givena andb, define

a_p = a
by =D

ai = b

bi = a;—; modb;_;

where; > —1. Then define

p—2 = 0,p1=1

g2 = l,g1=0
a;—1

pi = {b in1+pi2
i—1
Qi—1

g = {b J%1+q@'2
i—1

wherei > 0. Then theith convergenof the continued fraction representation of
a/bis p;/q;; p; is the numerator of théth convergent ang; is the denominator.

10

We state without proof the following basic property of the convergenig lof

Property 1 Givena andb (conforming to the conventions given in Notation 1),
there exists a least positive integésuch thath;, = 0, and thatp;, = a, ¢z = b.
Also, for0 < i <7, ¢;_1 < ¢;.

Throughout the remainder of this section we adopt the convention that when
any variable) is used in the context of indexing the numerator or denominator of
the convergents af /b, thenV is an integer and < V <7'.

Lemma 3 Givena andb, we havey, > 2 (and hence foR < i < 7i’, ¢; > 2).

Proof. By definition we have

a_
qo = bJQ—1+Q—2
Lb_1
= 1
Qo
@ = bJCI0+Q1
L by

But sincea < b, a mod b = a¢ and we have

= |rmoe)
= b mod a

Trivially b mod a < a and hence; > 1, and therefore by Property 45 > 2.

The following theorems are adopted from [NZ80]; the proofs are omitted here,
as the only changes we require are that the proofs be for a rational nymber
instead of an irrational numbe&r This difference does not materially alter the
proofs given by those authors.

Theorem 1 (Niven-Zuckerman 7.11)Given a rational number ¢ and
n/qn, the convergents of its continued fraction representation, then fonany
0,

1

qngn+1

<

(p_i

’ Dn
Gn

11

Theorem 2 (Niven-Zuckerman 7.12) Given a rational numbep and its conver-
gentsp,,/q,, then for alln > 0,

Pn—1
qn—1

(p_i
4n

' Pa| |,

Theorem 3 (Niven-Zuckerman 7.13)Given a rational numbet, and its con-
vergent,,/q,, ¢ an integer andj a positive integer, and for some integer> 0

g —i| < |ogn — Pl
then

J 2 Qny1

We now set out to use these theorems to prove results concerning how close
(g;) is to 0 orb for ¢; the denominator of a convergentofb.

It is convenient to introduce a notion of modular “distance”, analogous to ab-
solute value.

Definition 3 For positive integers andb, define

la|, = min(a,b— a).

We will need the following simple property of modular distance.

Property 2 For any positive integet < b, we have

] _{c, if c <0/2, and
D= \b—c ife>b/2.

Lemma 4 Givena, b, and positive integers, p;, ¢;, andr, with p;/q; the ith
convergent of./b, and

[, < Kaa)l, (7)

12

then
T2 it

Proof. Lete = a/b — p;/q;. We have

aq; —bp; = ebg; (8)
(@) = (ebg;) mod b.

By Theorem 1 we havg| < 1/(¢igi+1) < 1/¢;%, S0—b < ebg; < b. If € > 0 then
(ebg;) mod b = ebg;

andife <0
(ebg;) mod b = b — €bg;.

Since for anyi > 1 by Lemma 3 we have; > 2, then by Theorem 1 and Property
2 we have for > 0

|ebg;| < b/2.)
Therefore regardless of the signefve have

= lebgil.

,

|€bq@'
Now definej as follows:

(r)/br, if (r) <b/2, and
0= { (b— (r))/br otherwise. (10)

It follows that

[(r)], = [0br].
Then Equation (7) gives us
|obr| < |ebg;]
|or] < leqi]- (11)

Let o = a/b. From Equation (10) we have

ar = dbr (mod b)

13

and thus there exists some integesuch that

ar — kb = dbr
or—k = or (12)
Also, Equation (8) gives us
©q;i —p = €q. (13)

Combining Equations (11), (12), and (13) then gives us
or — k| < |egq; — pl
and thus by Theorem 3, we have

T2 Qig1-

Lemma 5 Given arational numbep andp, /q,, the convergents of its continued
fraction representation, then for any > 0 but less than the total number of
convergents op, p,/q, < ¢ if nis even ang,/q, > ¢ if nis odd.

Proof. This result immediately follows from Theorem 7.6 of [NZ80].

Lemma 6 Givena, b, and positive integers and ¢;, with ¢; the denominator of
theith convergent of/b, then(q;) < b/2if i is odd and(g;) > b/2 if i is even.

Proof. Lete = a/b — p;/q;. As before, we have
aq; — bp; = €bg;.

Suppose is odd. Then from Lemma 5 and Equation (9) we have
(¢i) = €bgi < b/2

sincee > 0. If 7 is even then instead we have

(i) = b+ ebg; > b/2.

14

Lemma 7 Givena, b, an odd positive integetr, and a positive integey;, with ¢;
the denominator of thé&h convergent of./b, letk = (gi12 — ¢i)/qi+1- Then for
any positivej < k

(i + Jgiv1) <@+ (= Dgit1)-

Proof. We know thaty; + (j — 1)gi+1 < givo Sincej < k. But from Lemmas 4
and 6,(¢g;11) < b— (l) impliesl > ¢;,». Therefore we must have

(Gir1) > b—(qi+ (j — Daiv)-
We now construct the inequality
b > (git1) > b— (g + (5 — 1)git+1)

and then we immediately attain the desired result by ad@ing (j — 1)g;.1) to
the inequality and taking the result (méd

Lemma 8 Givena, b, an odd positive integer, and a positive integey;, with g;
the denominator of thé&h convergent of/b, letk = (gi+2 — ¢i)/qi+1- Then for
any non-negative integer< k, the least > ¢;+jg;1 suchthatl) < (¢;+jqi11)
is

l=q¢;+ (J+1)gis1-

Proof. Letm be the least positive integer such that
(m) >b— (g + jgi+1). (14)
We must haven < ¢;,, since Lemmas 4 and 6 assure us that
(Gig1) = b—(n)

for all n < ¢;.2, SO surelyg;, satisfies Equation (14). Now from the chain of
inequalities given to us by Lemma 7 we have

(@ + 70iv1) < (@)

and therefore from Lemma 4 we have > ¢;,;, and hencen = ¢;,,. We then
apply the result of Lemma 1 with= b and the proof is complete.

15

There is an analogous Lemma for eviewhose proof we omit here.

Lemma 9 Givena, b, an even positive integeéy and a positive integey;, with g;
the denominator of thé&h convergent of./b, letk = (gi12 — ¢:)/qi+1- Then for
any non-negative integer< k, the least > ¢;+jg; 1 suchthatl) > (¢;+jqi11)
IS

l=¢qi+ (j+ 1)1

We now are prepared to construct thestModBelowfunction referred to in
Algorithm 1. Again, the algorithm is due to Tim Peters [Pet91].

Algorithm 2 (FirstModBelow) Givena, b, a non-negative integet, and a posi-
tive integers, with ¢ < b, produces a positive integérsuch that(:) < ¢ and for
all positivej < i, (j) > c.

Step 1 Setn «— 1.

Step 2 If (¢,,) > ¢, setn < n + 2 and repeat.

Step 3If n = 1 then set < ¢, and terminate.

Step 4 Setn «— n — 2. We then have,, < i < ¢,,2. Lemma 8 assures us that
has the formy,, + jg,.1, where0 < j < kfork = (¢us2 — Gn)/Gns1-

Step 5 Setd < (¢,) — c. dis now the distance that we need to cover ugisteps
of ¢,,.1 beyondy,.

Step 6 Compute the step sizeeach step of,,.; gives us. Recall that by Lemma
6, (gn+1) is quite large (i.e., nedy), sincen + 1 iseven. Set «— b — (g,11)-
Step 7 Setj «— [d/s].

Step 8 Seti «— g, + jg,+1. Terminate.

Again, there is an analogous algorithm (using Lemma 9) for producing a posi-
tive integeri such that(i) > ¢ and for all positivej < i, (j) < ¢, which is needed
by the analog of Algorithm 1. We omit it here.

We now turn our attention to the running-time of Algorithm 1.

Note that the only looping in Algorithm 2 occurs@tep 2 If the algorithm is
being used in the context of Algorithm 1 then we know that for each subsequent
use of Algorithm 2,c will be smaller than on the previous call. Hence we can
initialize n in Step 1to whatever its final value was on the previous call, rather
thanl. Each execution of Algorithm 2 will therefore either take constant time (if
(gn12) < cfor the initial value ofn) or will “consume” one or more convergents,
which will not be used again during the execution of Algorithm 1. Hence the

16

total time spent executing Algorithm 2 will be at most proportional to the num-
ber of convergents af /b. Knuth [Knu81] proves that the maximum number of
convergents o /b is ~ 2.078log b + 1.672.

Thus, over the course of an execution of Algorithm Lpifcalls are made to
Algorithm 2, no more thai®(m) + O(log b) time will be spent executing Algo-
rithm 2.

Finally, we need to place an upper boundrenwhich is done with the aid of
the following Lemma.

Lemma 10 When executing Algorithm 1, each iteration reduces the distance to
the goalc by more than a factor of 2. l.e., if; is the value old at Step 2on
iteration j of the algorithm, ther; ., < d;/2.

Proof. Consider the produced aStep 4of the algorithm during iteratiop. It has
the property thafi) < d,.
Supposel; /2 < (i) < d;. Thenk; — 1 atStep 5and we will have

djt1 =djmod (i) = d;j— (i)
< d;/2.

If on the other hand we havg) < d,/2 then we have
dj+1 = dj mod <Z> < <Z>
< dj/2.
Thus for the number of calls teirstModBelowwe have
m < logc < logb

and hence the total running timeGglog b).

5 Extending Testbase

We extendedlestbasewith “stress-testing” as follows. We added implementa-
tions of Algorithms 1 and 2, along with the necesshigint support (primarily
bigint multiplication and division and fast algorithms for computing powers of 2
and 10), entailing about 1,600 lines of additio@atode.

17

Digits Input | Bits
1 5-107125 | 13
2 69 - 107267 | 17
3 999 - 107926 | 20
4 7861 -1079 | 21
5 75569 - 10724 | 28
6 928609 - 10721 | 30
7 9210917 - 10+%80 | 31
8 84863171 - 10T | 34
9 653777767 - 107273 | 40
10 5232604057 - 10729 | 41
11 27235667517 - 107199 | 45
12 653532977297 - 107123 | 47
13 3142213164987 - 10729 | 51
14 46202199371337 - 107°72 | 58
15 231010996856685 - 1077 | 58
16 9324754620109615 - 10212 | 61
17 78459735791271921 - 10740 | 66
18 272104041512242479 - 107200 | 72
19 6802601037806061975 - 107198 | 72
20 20505426358836677347 - 10722 | 74
21 836168422905420598437 - 107234 | 76
22 | 4891559871276714924261 - 1072*2 | 86

Table 1: Stress Inputs for Conversion to 53-bit Binatyl /2 ULP

18

Digits Input | Bits
1 9.107%% | 13
2 85-107%7 | 16
3 623 - 101100 | 20
4 3571107263 | 24
5 81661 - 10+1%3 | 26
6 920657 - 10792 | 30
7 4603285 - 107924 | 30
8 87575437 -1073% | 37
9 245540327 - 107122 | 42
10 6138508175 - 101120 | 42
11 83356057653 - 107193 | 45
12 619534293513 - 10+124 | 49
13 2335141086879 - 10*+2*® | 53
14 36167929443327 - 10~1%? | 57
15 609610927149051 - 1025 | 57
16 3743626360493413 - 10716 | 63
17 94080055902682397 - 107242 | 64
18 899810892172646163 - 107283 | 69
19 7120190517612959703 - 10+120 | 73
20 25188282901709339043 - 10-2°2 | 73
21 308984926168550152811 - 10792 | 77
22 6372891218502368041059 - 101964 | 81

Table 2: Stress Inputs for Conversion to 53-bit Binaryl /2 ULP

To the types of test inputs listed in Section 2, we added a sixth. When doing
this sixth type of testing, we pick an exponent within the output exponent range
(for example, if testing decimal-to-binary for IEEE double precision, we would
pick an exponent in the rangel023 through1023), taking care to choose expo-
nent not previously tested. We next compute the correspongin@ande,,.., as
given by Equations (2) and (3). Then for eaghwithin this range we run Algo-
rithm 1 and its complement to find the inputs closest to just below and just above
a half-ULP between representable numbers in the output base.

Such stress-testing generates inputs requiring maximal internal precision for
correct conversion. Table 1 lists the most difficult decimal-to-binary conversion
inputs for 1-22 significant decimal digits. “Most difficult” means the input’s ex-

19

Digits Input | Bits
8511030020275656 - 279342 | 63
5201988407066741 - 279821 | 63
6406892948269899 - 210237 | 62
8431154198732492 - 210072 | 61
6475049196144587 - 20099 | 64
8274307542972842 - 210726 | 64
5381065484265332 - 279456 | 64
6761728585499734 - 271057 | 64
7976538478610756 - 219376 | 67
10 | 5982403858958067 - 279377 | 63
11 | 5536995190630837 - 21909 | 63
12 7225450889282194 - 210710 | 66
13 | 7225450889282194 - 210799 | 64
14 | 8703372741147379 - 27917 | 66
15 | 8944262675275217 - 271001 | 63
16 | 7459803696087692 - 279707 | 63
17 | 6080469016670379 - 279381 | 62
18 | 8385515147034757 - 279721 | 64
19 | 7514216811389786 - 2792 | 64
20 | 8397297803260511 - 279345 | 64
21 | 6733459239310543 - 210202 | 63
22 | 8091450587292794 - 279473 | 63

©Coo~NOOUIThWNPE

Table 3: Stress Inputs for Converting 53-bit Binary to Decimral,/2 ULP

20

Digits Input | Bits
6567258882077402 - 292 | 62
6712731423444934 - 2753 | 65
6712731423444934 - 2753 | 63
5298405411573037 - 2797 | 62
5137311167659507 - 27144 | 61
6722280709661868 - 21363 | 64
5344436398034927 - 27169 | 61
8369123604277281 - 27853 | 65
8995822108487663 - 2= | 63
10 | 8942832835564782 - 27383 | 66
11 | 8942832835564782 - 27384 | 64
12 | 8942832835564782 - 2738 | 61
13 | 6965949469487146 - 27219 | 67
14 | 6965949469487146 - 272 | 65
15 | 6965949469487146 - 2-2°1 | 63
16 | 7487252720986826 - 21518 | 63
17 5592117679628511 - 2+164 | 65
18 | 8887055249355788 - 21665 | 67
19 | 6994187472632449 - 2759 | 64
20 | 8797576579012143 - 27588 | 62
21 | 7363326733505337 - 2727 | 61
22 8549497411294502 - 2748 | 66

oo ~NOOOUITh WNPE

Table 4: Stress Inputs for Converting 53-bit Binary to Decimal,/2 ULP

21

act representation lies very near but not quite at half an ULP between two rep-
resentable binary numbérsThe “Bits” column lists the number of bits beyond
the 53 of IEEE double precision necessary to distinguish whether the value is ex-
actly half an ULP between two representable values (in which case round-to-even
should be used) or indeed below half an ULP, in which case the value should be
rounded down in magnitude. The “Bits” value is computedoas ¢/d, whereq
is as given in Equation (4) andis the modular distance of the given value from
exactly one-half ULP.

The “worst” 17-digit decimal input i§8, 459, 735, 791,271,921 - 10749, The
first 119 bits of this number’s binary representation are:

11101110011010000000010001001110000010011000101001110
011
1111111111110 ...

Each row is 53 bits wide. We see that only if we compute this number to at
least53 + 13 = 66 bits precision beyond that available in double precision can
we determine that it does indeed lie below half an ULP rather than exactly at
half an ULP between two representable binary numbers, and therefore that its
value should be rounded doWwrather than rounded according to round-to-even.
Note that even a quadruple precision format with 64 extra bits does not suffice to
correctly discern which rounding rule should be applied.

Table 2 lists the same information for values whose excess is just above half an
ULP. Tables 3 and 4 list analogous values for converting from 53-bit IEEE binary
to decimal. The “Bits” values for conversion to decimal are all quite similar.
This is because it is the number of input digits that determines how closely one
can approach a half-ULP excess in the output, and the number of input digits is
unchanged regardless of the decimal significance.

Similar tables for 24-bit IEEE single precision and VAX 56-bit D format are
given in the Appendix. Of particular note is that there exist 9-decimal-digit values
that require 35 or more bits beyond the 24 of a single precision value to correctly
convert to binary. These stress values are therefore out of range of double pre-
cision calculation, too, and therefore an implementation cannot rely on double
precision sufficing for all single precision conversions.

2There may be other inputs that are equally “most difficult” for a given significance, but none
which are closer but still below half an ULP between.

3Actually, in this case even if the excess is exactly half an ULP it will be rounded down, due
to round-to-even.

22

System Description

dec3100 DECsystem 3100 running Ultrix V2.1 (Rev. 14)

dgay Conversion routines by David M. Gay

hpux HP 9000 model S300 running HP-UX release 7.0

rs6000 IBM RS/6000 running AIX 3.1

sgi Silicon Graphics Personal Iris 4D/35 running IRIX 3.3.2

stardent Stardent ST3000VX running 4.0 B Il

sun3 Sun 3/160 running SunOS 4.1, software floating-point

sun3-68881 Sun 3/160 running SunOS 4.1, MC68881 floating-point

sun4 Sun 4/20 running SunOS 4.1

vaxunix VAX 8600 running 4.3 BSD Unix (VAX D floating-point for;
mat)

vms-D VAX 11/780 running VMS 5.4, D floating-point format

vms-F VAX 11/780 running VMS 5.4, F floating-point format

vms-G VAX 11/780 running VMS 5.4, G floating-point format

Table 5: Tested Conversion Systems

If the conversion routines correctly convert stress values such as these then we
know they utilize enough internal precision to correctly convert any value. The
conversion routines still might err, though, by not using the extra internal precision
when needed. To catch this error, we not only test the input values requiring
maximal internal precision, but also each intermediate step corresponding to the
value ofs at Step 2of Algorithm 1. Each step requires higher internal precision to
correctly convert. Algorithm 1 typically generates intermediate steps requiring 2—
3 extra bits of precision more than the previous step. In the course of running it for
all possible output exponents, each threshold of an extra bit of precision is crossed
numerous times. Thus if the conversion routines make an error in assessing when
a switch to higher internal precision is necessary, our approach will find it.

The results of running the extend@dstbasen a number of systems are pre-
sented in the next section.

6 Measurements

We ran the extended version téstbas®n the 13 systems listed in Tabledgay
refers to freely available routines for decimal—binary conversion written by David

23

M. Gay of AT&T Bell Laboratories, described in [Gay90]. It was run on a Sili-
con Graphics machine, though presumably that had no effect on its performance.
These routines do not include single precision conversion. For all other systems,
we tested both single and double precision conversion, and for VMS we tested the
three provided single and double precisibns

The tests were conducted as follows. On each system we tested single pre-
cision conversion for 1-12 decimal digits; for double precision, 1-22 digits were
tested. For each decimal digit significance, we made four types of tests:

e stress-testingo check for correct rounding (within a half ULP). Algorithm

1 was run for each exponent in the floating-point range to test stress values
with an excess just below and just above half an ULP (as well as testing
the intermediate values produced during each iteration of the algorithm).
In addition, for each final pair of stress values generated, we made one
random test of each of the types listed in Section 2. These latter tests include
monotonicity testing; tests of stress values and their intermediate values do
not.

¢ Non-extendedestbas¢esting to check for correct rounding. Our intent was
to discover whethestress-testingncovered errors that would not otherwise
be detected. 1,376 regions were tested for single precision and 10,336 for
double precision. Each region involved a random test of one of the types
listed in Section 2 plus associated monotonicity testing (four adjacent values
also tested).

e stress-testindo check for conformant rounding (within one ULP). When
run in this mode, the stress values generated have an excess just below or
just above exactly representable.

¢ Non-extendedestbasdesting to check for conformant rounding.

The results for tests of single-precision binary-to-decimal conversion are sum-
marized in Table 6. The first column lists the name of the system. The second

4VMS F format is identical in range to IEEE single precision, though it does not include sub-
normals and extreme values suchN#SN. G format is likewise similar to IEEE double precision.
D format has a 56-bit mantissa and exponent rang27 to 127. It was the default floating-point
format on the VAX we tested; it also apparently is the only floating-point format supported by 4.3
BSD Unix running on a VAX, as noted in thexunixentry.

SNot all degrees of significance were tested for Vi&GFormat due to lack of available CPU
time. The precisions tested were 1, 5, 8, 10, 12, 14, 16, 17, 18, and 22.

24

System Correct| Conformant| 2 ULP’s | Monotonicity | %f format
dec3100 0 12+ 12+ 12+ 17
hpux 10 12+ 12+ 12+ 17
rs6000 7 12+ 12+ 12+ 17
sqi 0 12+ 12+ 12+ 17
stardent 0 12+ 12+ 12+ 17
sun3 12+ 12+ 12+ 12+ all
sun3-68881 12+ 12+ 12+ 12+ all
sun4 12+ 12+ 12+ 12+ all
vaxunix 7 12+ 12+ 12+ 17
vms-F 12+ 12+ 12+ 12+ all

Table 6: Summary of Binary-to-Decimal Single Precision Conversion

through fifth columns give the maximum decimal significance for which conver-
sion was correct (within a half ULP), conformant (within one ULP), within two
ULP’s, and monotonic. A value of “12+” indicates that the system achieved the
given level of performance for all significances from 1 through 12. A value of 0
indicates the system failed to achieve the given level for a decimal significance
of 1. A boldface value indicates that ordyress-testingevealed the failing. For
hpuxthis occurred for a minimum of 32 stress bits; fe600Q 29 stress bits; and

for vaxunix 31 stress bits.

The final column indicates how the system perfof¥sk conversions. This
conversion specifies no exponent to be used in the output, only decimal digits
(perhaps with a decimal point). An entry of 17 indicates that at most 17 digits are
given, followed by enough zeroes to reach the decimal point and pad it beyond
to the requested significance. An entryadifindicates that the system generates
all digits up to those requested beyond the decimal point (and does so correctly).
Either behavior is allowed by the IEEE standard.

The results for tests of single-precision decimal-to-binary conversion are sum-
marized in Table 7. Clearlgtress-testings invaluable for catching incorrectly
rounded results. Fatec3100, hpux, rs600éndsgiincorrect rounding occurred
at 32 stress bits; fastardent 31 stress bits; and faraxunixandvms-F, 34 stress
bits.

Measurements for double precision binary-to-decimal conversion are summa-
rized in Table 8. The “0/22+” entries fems-Gindicate the failure of that system
to correctly perform%f format conversions. An example is given in Table 11

25

System Correct| Conformant| 2 ULP’s | Monotonicity
dec3100 7 12+ 12+ 12+
hpux 7 12+ 12+ 12+
rs6000 7 12+ 12+ 12+
sgi 7 12+ 12+ 12+
stardent 8 12+ 12+ 12+
sun3 12+ 12+ 12+ 12+
sun3-68881 12+ 12+ 12+ 12+
sun4 12+ 12+ 12+ 12+
vaxunix 9 12+ 12+ 12+
vms-F 9 12+ 12+ 12+

Table 7: Summary of Decimal-to-Binary Single Precision Conversion

System Correct| Conformant| 2 ULP’s | Monotonicity | %f format
dec3100 0 17 17 22+ 17
dgay 22+ 22+ 22+ 22+ all
hpux 1 17 17 22+ 17
rs6000 0 17 17 22+ 17
sqi 0 17 17 22+ 17
stardent 0 14 15 22+ 17
sun3 22+ 22+ 22+ 22+ all
sun3-68881 22+ 22+ 22+ 22+ all
sun4 22+ 22+ 22+ 22+ all
vaxunix 0 15 16 16 17
vms-D 22+ 22+ 22+ 22+ all
vms-G 0/22+ 0/22+ 0/22+ 22+ 128

Table 8: Summary of Binary-to-Decimal Double Precision Conversion

26

System Correct| Conformant| 2 ULP’s | Monotonicity | %f format
dec3100 0 17 17 22+ 63
dgay 22+ 22+ 22+ 22+ all
hpux 1 17 (9) 22+ all
rs6000 14 (7 (7) a7 all
sqi 0 17 17 22+ 60
stardent 0 0 0 16 62
sun3 22+ 22+ 22+ 22+ all
sun3-68881 22+ 22+ 22+ 22+ all
sun4 22+ 22+ 22+ 22+ all
vaxunix 0 19 19 22+ all
vms-D 17 22+ 22+ 22+ all
vms-G 17 22+ 22+ 22+ all

Table 9: Summary of Decimal-to-Binary Double Precision Conversion

below.
vaxunixsuffers from monotonicity errors. When the values:

65725925722776214 - 2%°
65725925722776215 - 2°°

(which differ by one ULP) are converted to decimal, the results are

2.36802603674940685e+33
2.36802603674940680e+33

respectively, differing by 5 ULP’s in the wrong direction.

Finally, Table 9 summarizes tests of double precision decimal-to-binary con-
version. Values listed in parentheses indicate a failing occurring only for subnor-
mal values. For examples6000does not always convert 7 or more digit decimals
to their subnormal binary equivalents within one ULP, but for non-subnormal val-
ues, conversion was correct for all tested significances.

Systems with a number and not “all” in the final column have a limit on of
how many digits the decimal input can consist. Values beyond this limit result in
sscanffailures.

stardentsuffers from monotonicity errors. When the values

27

System | Input Output Correct

dec3100| 15000000 - 2° le+07 2e+07

hpux 12680205 - 27197 | 7.8147796833e-267.8147796834e-2¢
rs6000 | 8667859 - 2°6 6.2458506e+23 6.2458507e+23
sqi 15000000 - 29 1le+07 2e+07

stardent | 8500000 - 2° 9e+06 8e+06

vaxunix | 12584953 - 27145 | 2.8216441e-37 | 2.8216440e-37

OJ

Table 10: Sample Errors in Binary-to-Decimal Single Precision Conversions

System | Input Output Correct

dec3100] 5500000000000000 - 2° 5e+15 6e+15

hpux 6236527588955251 - 2°%° | 6.8e+173 6.9e+173

rs6000 | 5587935447692871 - 227 | 8e+23 7e+23

sgi 5500000000000000 - 2° 5e+15 6e+15

stardent | 4503599627370726 - 2°¢ | 8.112963841461085e+31 8.112963841461083e+31
vaxunix | 36028797018963978 - 238 | 9.903520314283046e+27 9.903520314283045e+27
vaxunix | 48828121778774530 - 211 | 9.9999993402930235e+1%9.9999993402930237e+1
vms-G | 9007195228209151 - 267 | 1329.--128.2 1329...128

Table 11: Sample Errors in Binary-to-Decimal Double Precision Conversions

5.5225015152609010e+14
5.5225015152609011e+14

(which differ by one ULP) are converted to binary, the results are

8836002424417442 - 274
8836002424417441 - 274

respectively, differing by 1 ULP in the wrong direction.

Tables 10 through 13 show sample errors made by the various systems. We
omit systems that only generated errors for greater than 17 significant digits, as
this is the maximum significance required by the IEEE standard. With that con-
straint, onlystardentandvaxunixwere found to suffer grievous errors, 2 ULP’s or
larger. The other errors are all incorrect roundings close enough to be conformant.
The VMS-Gerror of gratuitously adding “.2” t86f conversions is puzzling. We

28

7

9

System

Input

Output

Correct

dec3100
hpux
rs6000
sQi
stardent
vaxunix
vms-F

7.038531e-26
7.038531e-26
7.038531e-26
7.038531e-26
4.1358803e34
9.55610858e-4
9.55610858e-4

11420670 -
11420670 -
11420670 -
11420670 -
16704688 -
» 10507053 -
» 10507053 -

2—107
2—107
2—107
27107

11420669 -
11420669 -
11420669 -
11420669 -
16704687 -
10507052 -
10507052 -

2—107
2—107
2—107
27107

Table 12: Sample Errors in Decimal-to-Binary Single Precision Conversions

System | Input Output Correct

dec3100 le+126 6653062250012736 - 23 | 6653062250012735 - 2366
hpux le+126 6653062250012736 - 230 | 6653062250012735 - 2366
rs6000 | 9.51206426453718e-276628941296109132 - 27139 | 6628941296109133 - 27139
sgi le+126 6653062250012736 - 2366 | 6653062250012735 - 2366
stardent| 3e+97 7906648457422895 - 2271 | 7906648457422892 - 2271
vaxunix | 9e+26 52386894822120666 - 23 | 52386894822120667 - 234

Table 13: Sample Errors in Decimal-to-Binary Double Precision Conversions

29

found numerous values for which the system made this error or similar ones (e.g.,
adding “.00002" for &6.5f format). In each case, the correctly converted decimal
value had no fractional part.

7/ Summary

Our measurements found that only Sun Microsystems’ and David Gay’s conver-
sion routines are completely correct. In general, VAX/VMS conversion is very
good. IBM RS/6000, HP-UX 9000, SGI Iris 4D/35, and DECsystem 3100 all
provide conformant (but not fully correct) implementations. VAX 4.3 BSD Unix
loses conformance with 15 significant decimal digits and suffers from monotonic-
ity errors, a poor implementation. Stardent ST3000VX is not conformant regard-
less of decimal significance and also suffers from monotonicity errors. Itis a very
poor implementation.

Stress-testingroved invaluable for uncovering incorrect single precision con-
versions. It did not, however, reveal any faults in double precision conversion that
Testbasealid not uncover independently. Asdress-testindor double precision
values is computationally intensive, this suggests that double precision conver-
sion can be adequately tested usiegtbasalone.

30

8 Acknowledgments

This work was supported by an NSF Graduate Fellowship and by the generosity of
the Lawrence Berkeley Laboratory’s Computer Systems Engineering Department,
for which the author is grateful.

| am much indebted to David Hough of Sun Microsystems, Inc., for his aid
in understanding and modifyinfestbaseas well as for lucid explanations of the
issues underlying the testing of decimal—binary conversion. | am equally indebted
to Tim Peters of Kendall Square Research Corporation, for his invaluable help
in understanding the workings of his modular minimization algorithms and the
motivation behind them as developed in Section 3.

| wish to thank the many people who made their systems available for test-
ing: Wes Bethel, Keith Bostic, Jane Colman, Nancy Johnston, Craig Leres, Chris
Saltmarsh, Lindsay Schachinger, and Marc Teitelbaum. | also wish to thank Ed
Thell for providing the basic computational support for developing the extended
Testbasgwithout which this project would have been impossible.

Finally, | especially wish to thank my wife, Lindsay, for her continual patience
and support during the pursuit of this project.

All of these efforts are very much appreciated.

31

References

[CT84] W.J. Cody et al. A proposed radix- and word-length-independent stan-
dard for floating-point arithmeticlEEE Micro, pages 86—-100, August
1984.

[Cli90] William D. Clinger. How to read floating point numbers accurately.
In Proceedings of the ACM SIGPLAN '90 Conference on Programming
Language Design and Implementation, White Plains, New, Yarke
1990.

[Coo84] Jerome Toby CoonenContributions to a Proposed Standard for Bi-
nary Floating-Point Arithmetic PhD thesis, Department of Mathemat-
ics, University of California, Berkeley, June 1984.

[Gay90] David M. Gay. Correctly rounded binary-decimal and decimal-binary
conversions. Technical report, AT&T Bell Laboratories, November
1990. Numerical Analysis Manuscript 90-10.

[Hou91] David Hough. Testbase. Private communication, March 1991.

[JW90] Guy L. Steele Jr. and Jon L. White. How to print floating point num-
bers accurately. IProceedings of the ACM SIGPLAN '90 Conference
on Programming Language Design and Implementation, White Plains,
New York June 1990.

[Knu81] Donald E. KnuthSeminumerical AlgorithmsAddison—Wesley, second
edition, 1981.

[NZ80] Ivan Niven and Herbert S. Zuckermafin Introduction to the Theory of
Numbers John Wiley & Sons, fourth edition, 1980.

[Pet91] Tim Peters. Minimizindg*s mod c over a range of s; “the worst”
case. Internevalidgh!numeric-interest@uunet.uu.net
electronic mailing list, April 7th 1991.

32

9 Appendix

Tables 14 through 21 give stress inputs for decimal-to-binary and binary-to-decimal
conversion for 24 and 56 bit floating-point mantissas (IEEE single precision and
VAX D format, respectively). For each type of conversion, the first table gives
stress inputs with excesses lying just below a half ULP, and the second inputs
with excesses lying just above a half ULP.

33

Digits Input | Bits
1 5-1072Y | 7
2 6710714 | 13
3 985-10"15 | 15
4 7693 -107%2 | 17
5 55895 - 10716 | 25
6 996622 - 10~4 | 27
7 7038531 - 10732 | 32
8 60419369 - 10746 | 33
9 702990899 - 10720 | 35
10 6930161142 - 1078 | 41
11 25933168707 - 10713 | 42
12 | 596428896559 - 10720 | 45

Table 14: Stress Inputs for Conversion to 24-bit Binaryi, /2 ULP

Digits Input | Bits
1 3-107% | 10
2 57-10T1% | 12
3 789-1073%° | 16
4 2539-107® | 18
5 76173 - 1072 | 22
6 887745- 10711 | 24
7 5382571 - 10737 | 26
8 82381273 -1073° | 32
9 750486563 - 10738 | 38
10 3752432815 - 1073 | 38
11 75224575729 - 1074 | 42
12 | 459926601011 - 10*1° | 46

34

Table 15: Stress Inputs for Conversion to 24-bit Binary, /2 ULP

Digits Input | Bits
1 12676506 - 27102 | 32
2 12676506 - 27103 | 29
3 15445013 - 27086 | 34
4 13734123 - 27138 | 32
5 12428269 - 27139 | 30
6 15334037 - 2746 | 31
7 11518287 -27%41 | 30
8 12584953 - 27145 | 31
9 15961084 - 2712 | 32
10 14915817 -2716 | 31
11 | 10845484 -27192 | 30
12 16431059 - 2791 | 29

Table 16: Stress Inputs for Converting 24-bit

Binary to Decirral,/2 ULP

Digits Input | Bits
1 16093626 - 2799 | 30
2 9983778 - 270%5 | 31
3 12745034 - 27104 | 31
4 12706553 - 27072 | 31
5 11005028 - 27945 | 30
6 15059547 - 27071 | 31
7 16015691 - 27999 | 29
8 8667859 - 219°6 | 33
9 14855922 - 27982 | 35
10 14855922 - 27983 | 33
11 10144164 - 2719 | 32
12 13248074 - 2709 | 33

Table 17: Stress Inputs for Converting 24-bit Binary to Decimal,/2 ULP

35

Digits Input | Bits
1 7-10727 | 9
2 37-107% | 10
3 743107 | 16
4 7861 -10723 | 19
5 46073 -1073° | 20
6 7744971073 | 25
7 8184513 -1073% | 26
8 89842219 - 10728 | 34
9 449211095 - 1072 | 34
10 8128913627 - 10740 | 38
11 87365670181 - 10718 | 43
12 436828350905 - 1071 | 44
13 5569902441849 - 10~%° | 46
14 60101945175297 - 10732 | 52
15 754205928904091 - 1075 | 54
16 5930988018823113 - 10737 | 57
17 51417459976130695 - 10727 | 62
18 826224659167966417 - 10~ | 65
19 9612793100620708287 - 10~°7 | 68
20 93219542812847969081 - 1073 | 71
21 544579064588249633923 - 10718 | 74
22 | 4985301935905831716201 - 10~*% | 80

Table 18:

Stress Inputs for Conversion to 56-bit Binary, /2 ULP

36

Digits Input | Bits
1 9-107%6 | 9
2 79-107% | 10
3 393-10%2%6 | 14
4 9171-10740 | 17
5 56257 - 10716 | 26
6 281285 - 10717 | 26
7 4691113 -107% | 29
8 29994057 - 10~ | 30
9 834548641 - 10746 | 33
10 1058695771 - 10747 | 37
11 87365670181 - 10718 | 43
12 872580695561 - 1073¢ | 43
13 6638060417081 - 10751 | 47
14 88473759402752 - 10752 | 50
15 412413848938563 - 10727 | 54
16 5592117679628511 - 10~*% | 63
17 83881765194427665 - 10~°° | 63
18 638632866154697279 - 1073 | 64
19 3624461315401357483 - 107°3 | 67
20 75831386216699428651 - 10730 | 70
21 356645068918103229683 - 10742 | 74
22 | 7022835002724438581513 - 10733 | 77

Table 19: Stress Inputs for Conversion to 56-bit Binaryi /2 ULP

37

Digits Input | Bits
1 50883641005312716 - 27172 | 65
2 38162730753984537 - 27170 | 64
3 50832789069151999 - 27101 | 64
4 51822367833714164 - 27199 | 62
5 66840152193508133 - 2717 | 64
6
7
8
9

55111239245584393 - 27138 | 64
71704866733321482 - 2112 | 62
67160949328233173 - 2142 | 61
53237141308040189 - 27152 | 63
10 | 62785329394975786 - 2112 | 62
11 | 48367680154689523 - 2977 | 61
12 | 42552223180606797 - 2102 | 62
13 | 63626356173011241 - 212 | 62
14 | 43566388595783643 - 27999 | 64
15 | 54512669636675272 - 2199 | 61
16 | 52306490527514614 - 27167 | 67
17 | 52306490527514614 - 27168 | 65
18 | 41024721590449423 - 27989 | 62
19 | 37664020415894738 - 2132 | 60
20 | 37549883692866294 - 2799 | 62
21 | 69124110374399839 - 2104 | 65
22 | 69124110374399839 - 27105 | 62

Table 20: Stress Inputs for Converting 56-bit Binary to Decimal,/2 ULP

38

Digits Input | Bits
1 49517601571415211 - 27994 | 63
2 49517601571415211 - 27995 | 60
3 54390733528642804 - 27133 | 63
4 71805402319113924 - 2157 | 62
5 40435277969631694 - 2717 | 61
6
7
8
9

57241991568619049 - 219 | 61
65224162876242886 - 270 | 65
70173376848895368 - 27138 | 61
37072848117383207 - 2799 | 61
10 | 56845051585389697 - 27176 | 64
11 | 54791673366936431 - 27145 | 64
12 | 66800318669106231 - 27169 | 64
13 | 66800318669106231 - 27170 | 61
14 | 66574323440112438 - 2719 | 65
15 | 65645179969330963 - 2717 | 62
16 | 61847254334681076 -271% | 63
17 | 39990712921393606 - 27145 | 62
18 | 59292318184400283 - 27119 | 62
19 | 69116558615326153 - 27143 | 65
20 | 69116558615326153 - 27144 | 62
21 | 39462549494468513 - 27152 | 63
22 | 39462549494468513 - 27153 | 61

Table 21: Stress Inputs for Converting 56-bit Binary to Decimal,/2 ULP

39

