
Proceedings on Privacy Enhancing Technologies ; 2016 (2):100–114

Sakshi Jain*, Mobin Javed, and Vern Paxson

Towards Mining Latent Client Identifiers from
Network Traffic
Abstract: Websites extensively track users via identifiers that
uniquely map to client machines or user accounts. Although
such tracking has desirable properties like enabling personal-
ization and website analytics, it also raises serious concerns
about online user privacy, and can potentially enable illicit
surveillance by adversaries who broadly monitor network traf-
fic.
In this work we seek to understand the possibilities of la-
tent identifiers appearing in user traffic in forms beyond
those already well-known and studied, such as browser and
Flash cookies. We develop a methodology for processing
large network traces to semi-automatically discover identi-
fiers sent by clients that distinguish users/devices/browsers,
such as usernames, cookies, custom user agents, and IMEI
numbers. We address the challenges of scaling such discov-
ery up to enterprise-sized data by devising multistage filter-
ing and streaming algorithms. The resulting methodology re-
flects trade-offs between reducing the ultimate analysis burden
and the risk of missing potential identifier strings. We analyze
15 days of data from a site with several hundred users and
capture dozens of latent identifiers, primarily in HTTP request
components, but also in non-HTTP protocols.

Keywords: privacy, client identifiers, mining network traffic,
tracking

DOI 10.1515/popets-2016-0007
Received 2015-08-31; revised 2015-11-19; accepted 2015-12-02.

1 Introduction

Websites extensively track users in order to provide person-
alization and to gather analytics on website usage. In addi-
tion, third-party services aggregate information across web-
sites, selling off the resulting user profiles to advertising com-
panies, purportedly to provide users with better targeted ads.
This massive tracking raises serious concerns regarding online

*Corresponding Author: Sakshi Jain: [UC Berkeley, LinkedIn], E-
mail: sjain2@linkedin.com
Mobin Javed: UC Berkeley, E-mail: mobin@cs.berkeley.edu
Vern Paxson: [UC Berkeley, ICSI], E-mail: vern@cs.berkeley.edu

user privacy because users lack transparency into how their
information is gathered, used, and abused.

While the privacy community readily recognizes the
wide-spread prevalence of traditional first and third-party web
tracking, and has over the time developed safeguards in re-
sponse, websites in turn have adopted more surreptitious
mechanisms. For example, canvas fingerprinting uses render-
ing differences to fingerprint browsers, and ever-cookies track
users even when traditional cookies have been deleted [25]. It
remains an open question as to what other kinds of tracking in-
formation user devices transmit to various servers around the
world, unbeknownst to the users.

Tracking information presents a privacy threat not only
from the entities with whom users overtly share this infor-
mation, but also from adversaries who possesses the capabil-
ity to broadly tap network traffic from various vantage points.
For example, recent leaks have revealed that the NSA indeed
draws upon tracking information sent over networks for con-
ducting large-scale surveillance [1, 5]. In the context of such
adversaries, any persistent, uniquely identifying transmission
by a user becomes relevant, whether or not it is actually de-
signed to serve as a tracking identifier.

In this work we consider the problem of discovering
hitherto unrecognized (“latent”) identifiers—either actual, or
potential—by looking for them directly in network traffic. We
develop algorithms to discover unique pieces of information
sent by network devices. Our work enables the identification
of previously unidentified tracking mechanisms: new identi-
fiers either currently in use, or potentially exploitable by those
seeking to better track users.

Our main contribution is a methodology to aid in the dis-
covery of latent client identifiers.1 We base our approach on
identifying repeated occurrences of strings observed emanat-
ing from only a single network device. To do so efficiently
enough to facilitate mining large volumes of network traffic
(TBs), we draw upon two key ideas: (i) multistage filtering
and (ii) extensive use of streaming algorithms. Our methodol-
ogy is semi-automated since an analyst must then examine the
potential identifiers, along with the context in which they ap-
pear, to make a final determination regarding their nature and
properties.

1 Our code is available here: https://github.com/sakshi-jain/mining-
identifiers.

https://github.com/sakshi-jain/mining-identifiers
https://github.com/sakshi-jain/mining-identifiers

Towards Mining Latent Client Identifiers from Network Traffic 101

A novel feature of our approach is that it identifies various
kinds of identifiers independently of the associated tracking
mechanism used (if any), as opposed to prior studies that focus
their analysis on particular types of tracking [9, 10, 16, 17,
22, 23, 23, 26, 27]. We demonstrate the effectiveness of our
methodology by employing it to find numerous identifiers sent
in HTTP headers, URL parameters, and payloads, as well as
in non-HTTP messages, such as usernames in MSN and IRC
messages. We also find a number of device-specific identifiers
sent for mobile devices, both by the OS and by advertising
APIs used by various apps.

The ability to extensively mine for identifiers enables fur-
ther research into novel tracking mechanisms by revealing a
set of domains and the corresponding network requests to
which clients send identifiers. One can then analyze these sites
using host-based instrumentation approaches [9, 10, 15, 19] to
determine the tracking mechanisms they use. Our contribution
also enables future work on studying the magnitude of privacy
threats posed by entities who can tap network traffic and chain
the various kinds of identifiers they observe to fingerprint users
and build profiles of their activity.

We organize the paper as follows. We begin with related
work in § 2. We define what we mean by “identifiers” in § 3.
§ 4 details the characteristics of the dataset we use in devel-
oping and evaluating our methodology. § 5 outlines a naive
approach for detecting identifier strings and examines the as-
sociated challenges. In § 6, we provide an overview of the vari-
ous components of our methodology, and in § 7 we present our
multistage filtering pipeline along with its implementation. We
present the results of our analysis in § 8 and summarize in § 9.

2 Related Work

The literature relevant to our work lies in three domains:
(1) the design of tracking mechanisms, (2) detecting identifiers
and information leakage, and (3) extracting strings of interest
from network traffic.

Design of tracking mechanisms
The first category of work focuses on design of various
browser or device tracking techniques. Some studies on de-
vice fingerprinting leverage packet-level information to cap-
ture subtle differences in host software systems [4, 6, 8]
or hardware devices [20]. Eckersley showed that on aver-
age, a browser’s version and configuration information, such
as screen resolution, plugins and system fonts, contains at
least 18.8 bits of uniquely identifying information [13]. Other
works study the installation order of browser plug-ins [24] or

application level IDs [29] for tracking web clients. In [30], au-
thors compare the effectiveness of host tracking using a variety
of identifiers like user agent, IP prefix, cookie ID. Their study
shows that servers can still track 88% of returning users even if
the users clear cookies or use private browsing. In a study, Kr-
ishnamurthy et al. show that third-parties can link Online So-
cial Networks (OSN) identity to tracking cookies, from users’
activities both within and outside the OSN sites [22]. Acar
et al. specifically study three persistent tracking mechanisms:
canvas fingerprinting, “evercookies”, and cookie-syncing [9].
They show that 5.5% of the top 100K Alexa sites use finger-
printing scripts.

Detecting Identifiers and Information Leakage
A large body of work studies the leakage of private informa-
tion and the prevalence of persistent identifiers on the Web,
such as fingerprinting and evercookies. Most of these efforts
use a combination of techniques. In this section, we broadly
classify such efforts based on their methodology into (i) HTTP
traffic analysis, (ii) instrumentated execution, and (iii) applica-
tion code analysis.

HTTP traffic analysis: Works in this category study vari-
ous tracking mechanisms or privacy leaks by analyzing HTTP
logs of emulated user traffic. Krishnamurthy et al. showed
that the penetration of top-10 third-party servers tracking user-
viewing habits across a large set of popular websites grew
from 40% in Oct 2005 to 70% in Sep 2008 [23]. They based
their study on emulating user browsing activity and examin-
ing the leakage of unique identifiers (e.g., OSN usernames) in
Referer, request URI, or Cookie fields in HTTP requests
sent to third-party websites. Eubank et al. examined the mo-
bile tracking landscape. They crawled the top 500 Alexa web-
sites using a mobile measurement platform, capturing first-
and third-party cookies. Their data showed that mobile and
desktop ecosystems share substantially similar top third-party
domains [17] with very limited mobile-specific ad networks.
Englehardt et al. study the magnitude of privacy threats posed
by adversaries who can passively eavesdrop on network traf-
fic [16]. They cluster HTTP traffic by linking unique sub-
strings of third party cookies and show that such an adversary
can reconstruct about 62–73% of a user’s browsing history.
Other studies highlight the privacy implications of cookie-
matching protocols in use by ad exchanges [23, 27].

Instrumented execution: These approaches to analyzing
tracking involve instrumenting browsers or OS’s to capture
leaked tracking information.

Browser instrumentation: In [10], the authors develop
FPDetective, a framework for the detection and analysis of
web-based fingerprints. They base their approach on detecting
font probing, and use a combination of Javascript event instru-

Towards Mining Latent Client Identifiers from Network Traffic 102

mentation and source code analysis of Flash objects (extracted
from network traffic) towards this end. To identify fingerprint-
ers from this data, they use heuristics such as querying at least
n fonts. Acar et al. study the prevalence of canvas finger-
printing, evercookies, and cookie-syncing [9]. To detect can-
vas fingerprinting scripts, they instrument function calls that
browsers use to render images, query pixel data, and send this
data to the server. They also automate detection of “respawn-
ing” to study evercookies. They first use a set of heuristics
to extract “identifying elements" from various storage vec-
tors and then check if sites respawn the identifiers on a revisit
from a clean-state browser seeded only with Flash cookies of
the previous crawl. Their heuristics do not comprehensively
catch identifiers; rather, they seek to use conservative rules to
achieve low false positive rates.

Mobile OS instrumentation: Prior work has examined the
leakage of sensitive information and phone-specific identifiers
from mobile phones using host-based instrumentation. Taint-
Droid tracks the leakage of sensitive information by third-
party apps [15]. They base their analysis on a predefined list
of “sensitive information” consisting of sensor data (location,
camera, microphone), phone data (messages, contacts), and
device identifiers (IMEI and IMSI). They found that two-thirds
of apps in their study send sensitive data suspiciously, such as
transmitting device identifiers and geo-location to advertising
servers. Han et al. undertook a real-world study of the tracking
of 20 participants for three weeks as they used instrumented
Android devices [19]. The study found persistent identifiers
sent to advertising and analytics servers.

Application code analysis: Other work focuses on ana-
lyzing key code elements in order to understand the nature of
tracking data as well as tracking mechanisms.

Egele et al. studied privacy leaks in iOS using static anal-
ysis of 1,400 apps [14]. Like the other work in this domain,
they draw upon predefined list of sensitive information, which
they extracted by studying the app Spyphone. Their work reit-
erates the findings of previous studies in this domain that de-
vices send IDs to various advertising and analytics servers, and
in addition finds examples of surreptitious transmission of ad-
dress book, browser history, and photo gallery data. Achara
et al. study the RATP app for Paris subway using a combina-
tion of static and dynamic analysis techniques [11]. They find
that in addition to device identifiers, the RATP app transmits a
list of apps running on the smartphone to third parties target-
ing mobile audiences. In [26], the authors analyze the code of
three major browser-fingerprinting code providers: Bluecava,
Iovation, and Threatmetrix, and identify a number of surrepti-
tious fingerprinting mechanisms in use by the companies.

A common feature across all the identifier-detecting tech-
niques discussed above is that they look for a predefined set
of interesting information, such as, cookies, PII, and function

calls. Given the reliance on predefined notions of sensitive in-
formation, these detection techniques can miss latent identi-
fiers sent via unconventional channels or structured in a hith-
erto unrecognized fashion. Our methodology can potentially
identify such otherwise overlooked identifiers given we fo-
cus on pinpointing client-unique data (strings) irrespective of
the application protocol or tracking mechanism that employs
them. One such example that we find (and discuss in Section 8)
is that of device identifiers sent in connections to Apple’s Push
Notification (APN) service. We believe that none of the exist-
ing techniques have the capability to detect identifiers that are
sent by an OS itself since most mobile OS instrumentation
work focuses on detecting PII or sensitive information sent by
apps only.

Pattern Recognition on Network Traffic
Other literature mines interesting contents out of network traf-
fic using pattern recognition. Singh et al. built EarlyBird, a
prototype for automated extraction of worm signatures from
network traffic based on highly prevalent strings repeatedly
sent between a multitude of hosts [28]. Their work develops
counting algorithms to sift through network contents for such
strings. Honeycomb employs pattern matching to discover new
NIDs signatures by looking for the longest common subse-
quence of strings found in messages involving honeypots [21].
We tackle a somewhat different problem: identifying unique
strings sent over a network by a given client.

3 Defining Identifiers

The term tracking describes the practice by which sites collect
information about a user’s activity across one or more sites. In
this context, by identifier we refer to a piece of unique infor-
mation that recurs in repeated visits from a given client to the
server. Many identifiers do not determine the human user, but
a client machine or browser instance.

In our work, we consider the manifestation of identifiers
as seen from a network vantage point. Consequently, we treat
potential2 identifiers as repeating strings observed in traffic
sent by only one machine/device in the network. This network-
view approach can fail to capture some true identifiers be-
cause: (i) the string does not repeat, i.e., only appears a single
time for a user during the observation period, (ii) the identifier
is user-specific rather than device-specific, and hence repeats

2 Note, we use potential because this definition does not exclusively char-
acterize identifiers.

Towards Mining Latent Client Identifiers from Network Traffic 103

across multiple devices (belonging to the same user), or (iii)
we lack sufficient visibility due to use of encryption.

Further, in this work we seek to find identifiers that per-
sist. The longer an identifier continues to uniquely correspond
to a machine, the greater its power to track users. In general,
there is no a priori correct amount of time to require candidate
identifiers to span. The value used will trade off opportunities
to observe multiple instances of the identifier (which may oc-
cur only far apart in time) versus the amount of network traffic
available to mine using our methodology. For our present pur-
poses, we chose to only consider identifiers seen over multiple
days.

4 Data

For our analysis, we use fifteen days of raw network traces
captured at the border router of an enterprise network. The net-
work contains 512 unique IP addresses, with four IP addresses
corresponding to NATs.

We use the DHCP and NAT logs to resolve individual de-
vices behind the four NATs. DHCP logs provide a mapping
between MAC address and private IP address while NAT logs
provide a mapping between private and public connection tu-
ples. Using these two logs, for a given timestamp we can map
public source IP address and source port to a MAC address
behind the NAT. After mapping, we find 290 unique MAC
addresses behind the four NATs. In total, there are 790 (500
non-NAT + 290 behind NAT) distinct devices in our dataset.

For simplicity, we consider each non-NAT IP address and
each unique MAC address behind the NATs as a separate user
for our analysis, even though the same individual user can own
a desktop with a fixed public IP address and a laptop connected
to a NAT, thereby occupying two users instead of one in our
user list.

Our dataset totals 3.5 TB, with an average volume of
4.4 GB per user and 274 MB per user per day.

Size of network traces 3.5 TB
NAT records 4.53M
DHCP records 15.8K
Total days 15

Network
Unique IP addresses 512
NAT addresses 4
Unique MAC addresses behind NAT 290
Addresses outside NAT 500
Total users 790
Users with non-zero contents 786

Table 1. Summary of dataset

Ethical Considerations: The data comes from a site that
collects network traffic, consent for which is included in their
user agreement. Since the raw network traces contain poten-
tially sensitive information, we provide our research code to
site personnel who run it locally on the traces. The code dis-
tills data down to a set of candidate identifier strings that we
analyze. The IRB we work with classified our study as not hu-
man subjects research, as it is does not involve interacting or
intervening with individuals; rather, we measure the behavior
of devices.

5 Key Challenges

In principle, detecting strings that are unique and persistent in
network traffic is quite straightforward. In this section, we dis-
cuss a naive algorithm and highlight the key challenges associ-
ated with it, thereby motivating the need to develop a more so-
phisticated approach. We then discuss the general approaches
that we use to address the challenges.

Algorithm 1: Naive approach for finding unique strings
Input: user1, user2, ...usern, where useri is a list of

strings for user i

Output: a list of unique strings for each user
1 INITIALIZE string_count to dictionary of form

{str: list of users}
2 for each user i do
3 for each string str in useri do
4 ADD useri to the list string_count[str]
5 end
6 end
7 for each str in string_count do
8 DELETE str if count of users for str > 1
9 end

10 for each user i do
11 OUTPUT useri ∩ strings in string_count

12 end

5.1 Naive Approach

Algorithm 1 shows the pseudo code for obtaining the set of
unique strings for each user in a network. The algorithm works
as follows: for each user i, distill their contents from the net-
work traffic and extract substrings of all possible lengths into a
list useri. Initialize a global table string_count, which main-

Towards Mining Latent Client Identifiers from Network Traffic 104

tains a list of unique users for which each substring occurred.
Scan through the list of substrings for each user and popu-
late the entry in table string_count appropriately. Once the
contents of all the users have been processed, delete the sub-
strings from the table for which the count of unique users was
greater than one. This leaves us with a global list of just those
substrings for which we found exactly one user. In order to
associate these substrings to the desired user, we output the
intersection of a respective user’s strings with the strings left
in the table string_count. This step ensures the uniqueness
property per user.

In order to now restrict the substrings per user to those
that persist across a certain time window (say across days), use
the same naive approach, except now, instead of maintaining
a global dictionary of strings and their associated list of users,
maintain a dictionary of strings and a list of time periods dur-
ing which they occurred. As mentioned above, for our present
work we restrict ourselves to identifiers that manfiest across
multiple days. From here on, for convenience we discuss iden-
tifying the “days” associated with a given string, rather than
the more general notion of “time periods”.

Once we apply the persistence check, this approach leaves
us with the candidate identifier strings for each user.

5.2 Challenges

The approach described above clearly achieves our objective
of weeding out the strings that are not unique or persistent
across a certain time window. However, in its current form,
Algorithm 1 is far from practical, both in terms of time and
space requirements. Here, we go over the key challenges posed
by this approach.

Scaling. The naive algorithm extracts substrings of all
possible lengths from each user’s network traffic. Although
this is ideal for finding all identifier strings, the mem-
ory requirement for storing all possible substrings is about
O(

∑
i L2

i), where Li is the total number of bytes in the net-
work trace of user i. This clearly does not scale well for the
problem at hand, where we are dealing with terabytes of data.

Validation. Since the naive algorithm is based only on
the properties of uniqueness and persistence, it can result in a
large number of false positives: strings that are not identifiers
but marked as candidate identifiers by the algorithm. It can
exhibit false positives due to:

(i) Server connections unique to a user: If a user regularly
establishes connections with a server S to which no other user
in the network connects, then with high probability any con-
tent sent to and from this server would be unique to the user,
and the naive algorithm would wrongly mark it as a potential
identifier.

(ii) Server content unique to a user: Consider a scenario in
which a user connects to a server T , to which other users in the
network also connect, but the user repeatedly visits a unique
webpage. (For example, a song on a popular online radio sta-
tion). Any content from this web page will appear unique to
the user, leading us to wrongly mark it as a potential identifier.

(iii) Encrypted traffic: For correctly implemented encryp-
tion, any strings seen repeatedly in encrypted traffic will arise
only due to chance.

For our approach, validating the output of the algorithm
is a manual process; an analyst must make a decision whether
each output string truly represents an identifier. Consequently,
a high false positive rate will lead to a heavy burden on the
analyst.

5.3 More efficient approaches

To tackle the above challenges, we employ three techniques.
First, we introduce the use of sliding windows to reduce the
storage requirements for tracking strings, at the cost of po-
tentially missing some latent identifiers. Second, we structure
the search for unique strings using multistage filtering, which
aims to winnow down the required processing using simple
rules that in general should not forgo many opportunities to
discover identifiers. Finally, we implement most of the stages
in our analysis pipeline via streaming algorithms, which help
reduce the required memory footprint even when running on
large volumes of strings.

Sliding Windows. We note that instead of extracting sub-
strings of all possible lengths, we can process the data by us-
ing sliding windows of a fixed length k. By choosing a sliding
window of fixed length, we reduce the total size of substrings
from quadratic to linear in the size of the input trace. We can
then later reconstruct full identifier strings of length greater
than k from the respective sliding windows by storing associ-
ated metadata. However, we will necessarily lose all identifier
strings of length less than k, and can also potentially lose some
identifier strings of length greater than k, since the substrings
of length k of a longer identifier are not necessarily unique.

Multistage Filtering. The idea behind multistage filtering
is to progressively remove any content that has a low probabil-
ity of enabling us to discover latent identifiers, and then to ap-
ply the constraints of uniqueness and persistence to the smaller
set of remaining data. At each stage, we consider trade-offs
between computation gain coupled with the reduced false pos-
itive rates obtained by using the filter on one hand, versus lost
opportunities to discover true identifiers on the other. This ap-
proach of progressively winnowing down the input stream not
only makes our approach more scalable but also reduces the
overhead of manual analysis for validation.

Towards Mining Latent Client Identifiers from Network Traffic 105

Fig. 1. Architecture diagram for our data processing pipeline.

Streaming Algorithms. We develop streaming algo-
rithms that can efficiently perform filtering with more modest
memory requirements than naive counting algorithms. Stream-
ing algorithms typically make only one pass over the data, us-
ing memory much smaller than the total input size, and thus
prove particularly advantageous when the entire dataset can-
not fit in memory.

That said, we note that one stage of our processing
pipeline requires sorting, which cannot be done in a stream-
ing fashion. We discuss steps we take to streamline the sorting
stage in the next section.

6 Architecture Overview

We base our approach on a series of processing and filtering
stages. Figure 1 shows the entire pipeline schematically. In this
section, we give an overview of the different stages, and dis-
cuss the kind of data and metadata retained as the data moves
through the pipeline.

Preprocessing: We use the network traffic analysis tool
Bro [3] to extract TCP payloads from the network traces. This
step produces content files along with metadata on the cor-
responding connection for each user. Each content file corre-
sponds to the stream of TCP payload data for that connection.

Connection-based Filtering: We use the metadata
associated with each connection, i.e., information con-
tained in the four-tuple 〈sourceIP, sourcePort, destinationIP,
destinationPort〉, to either filter it out or feed it to the next step.
We discuss the details of connection-based filters in § 7.1.

1 10 100 1000 10000

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Frequency of strings

E
C
D
F

k=4
k=8
k=16
k=32
k=64

Fig. 2. Log-linear plot of distribution of count of unique strings vs. their
frequency of occurrence in one user’s trace

Slicing: Of the connections that remain, we slice the data
into sliding windows of k bytes, which we refer to as “strings"
here onwards. For filtering in subsequent stages and to rebuild
the original context from the sliding windows for eventual
analysis, we associate some metadata with each instance of
a string. Each element in a user’s list of strings looks like 〈str,
D, P, B〉, where str is the value of the string, D is the day it oc-
curred on, P is the path to corresponding content file and B is
the byte offset. This stage generates a stream of k-byte strings
and the associated metadata for each user.

Towards Mining Latent Client Identifiers from Network Traffic 106

Choosing k: k sets the size of the string fragments that
we use for processing data. We use repeated instances of such
fragments for filtering. A smaller k is better from the per-
spective of memory requirements, but results in larger false
negatives. For example, consider k = 4, an interesting iden-
tifier which takes values “Michael” and “Michelangelo” for
two different users would be filtered out due to repetition
of “Mich”. A large k value, on the other hand can result in
both false negatives (missing out identifiers of length < k)
and higher false positives. For example, if k = 20, then
“ref=google.com&uid2=” and “ref=google.com&uid3=” sent
by two machines would be falsely marked as two unique iden-
tifiers by our flow. In order to capture the trade-off between
possibly interesting identifiers lost and memory consumption,
we computed sliding windows of various lengths on a sam-
ple user trace. Figure 2 shows a CDF of the count of distinct
strings (hence potential identifier strings) vs. their frequency
for the values of k in the set {4, 8, 16, 32, 64}. From the fig-
ure, the number of distinct strings, hence the sample space for
all processing, does not change much going from k = 64 to
k = 8 while giving a large reduction in total data size. Hence,
we choose k = 8 as the size of sliding window that can serve
well for tracking identifer strings.

Bucketing and Sorting: Before processing these streams
further, we sort the list of strings for each user. We reduce the
memory requirements and O(n log n) running time for doing
so by partitioning the strings into 256 different buckets based
on the ASCII encoding of their first character. For example,
we place all strings starting with “A" in bucket number 65.
(The actual structure for doing so is a directory in the file sys-
tem with 256 subdirectories.) Since in string-based filtering,
whether we filter out a string or forward it to the analysis stage
solely depends on the various statistics corresponding to the
particular string, bucketing does not interfere with the process-
ing. The output at this stage is a folder structure with 256 buck-
ets each containing n files, n being the number of users. Each
file contains all strings of that user starting with a particular
character. Sorting is the only non-streaming component in the
pipeline. The memory footprint of our algorithms mainly de-
pends on how efficiently we can sort each of these files. Note
that since we perform sorting for each user and each bucket
separately, the processing remains tractable as the number of
users increases, the bottleneck being the user with the most
content.

String-based Filtering: The next step, string-based fil-
tering, ensures uniqueness and persistence of the remaining
strings. To efficiently filter, we use streaming algorithms, de-
veloping algorithms for removing both non-persistent strings
and strings common across users. Note that although stream-
ing algorithms help us reduce the memory consumed by our
methodology, the disk storage space required for subsequent

Filter Name Median IQR

Encrypted traffic 1.0 314.5

Server-originated traffic 2.0 1.3

Unique server data 1.2 160.0

Table 2. Filtering strengths of connection-based filters.

processing steps increases. We discuss the details of our string-
based filtering algorithms in § 7.2.

Context-building & Analysis: The output of these steps
is a set of candidate identifier strings for each user. We ana-
lyze these candidates manually for validation. To assist manual
analysis, we use the associated metadata to rebuild the original
strings from their sliding windows. This facilitates the valida-
tion process by providing the context in which the string ap-
peared in the original trace—for example, whether it occurred
in part of a URL or Cookie. We discuss the context building
stage and analysis in § 8.

7 Multistage Filtering

In this section we describe the connection-based and string-
based filtering stages. We discuss what each filter achieves and
the trade-offs we considered when selecting it. Figure 3 shows
a schematic diagram summarizing the various filters.

We measure each filter’s efficacy in terms of data reduc-
tion by computing its filtering strength, which we define for a
user as the ratio of filtered TCP payload versus total size of in-
put TCP payload. Note that our input data contains externally
initiated connections to servers inside the network as well as
machines which are not actively used by users. The volumes
associated with different systems varies widely. To robustly
characterize the typical range of values we observe, we de-
scribe the overall filtering strength in terms of the median and
interquartile range (IQR) of individual user filtering strengths.
Note that each filter’s strength depends on which filters ran
previous to it. For uniformity, we provide the standalone fil-
tering strength of each filter. If N is the total size of raw con-
tent files, the standalone filtering strength is N divided by the
size of the output when we apply the filter under consideration
directly to the raw content files, with no other preceding filters.

7.1 Connection-based Filtering

This stage performs filtering based on the properties of a con-
nection, identified by the four-tuple 〈sourceIP, sourcePort, des-
tinationIP, destinationPort〉. We remove three kinds of content

ref=google.com&uid2=
ref=google.com&uid3=

Towards Mining Latent Client Identifiers from Network Traffic 107

Fig. 3. The connection-based and string-based filters as they appear in the processing pipeline. Each filter is annotated with (median | interquartile
range) values

from our analysis: (i) encrypted connections, (ii) data sent by
servers to clients, and (iii) connections to servers visited by
only a single user. Table 2 gives the filtering strength provided
by each of these filters.

(i) Remove encrypted connections. We identify en-
crypted connections as those with a server port of 22 (SSH)
or 443 (HTTPS). As discussed earlier, with properly imple-
mented encryption, a content-based technique like ours should
not be able to locate any recurring identifiers in such payload.
Note however that this filter also foregoes discovering poten-
tial latent identifiers sent in plain text as a part of the encryp-
tion protocol itself, such as in TLS handshakes.

The overall filtering strength of encryption-based filter
is given by the interquartile range of ≈ 314.5 and median
of 1.0, implying that at least half of the users did not have
SSH/HTTPS traffic.

(ii) Remove server-originated bytestream. We remove
all responder bytestreams, i.e., all data sent by servers to
clients. While some client identifiers can in fact originate
in traffic sent by servers (such as HTTP cookies), removing
server-side traffic should not cost us opportunities to find these
identifiers since they should also recur in client-side traffic. In
addition, client-originated data is usually significantly smaller
in volume than server-originated data, providing a significant
filtering gain.

The filtering strength of the server-based filter has a me-
dian per-user value of 2.0, with an IQR of about 1.34. The
value is much lower than we expected since there are multiple
connections made to servers within the network from outside

and these servers act as individual users in our dataset. The av-
erage of individual user filtering strength is however 24.7 and
maximum value attained is 4,674.

(iii) Remove unique server connections. If only a sin-
gle user in the network connects to a particular server, then
we filter out all of the connections between the user and that
server. Unlike the previous two filters, which we can apply in-
dependently to each user, this stage depends not only on the
connections of the user under consideration, but also on the
connections made by other users in the network. For simplic-
ity, we identify each server by its IP address rather than its do-
main name. By doing so, it is possible that two users access the
same domain using different server IP addresses which would
lead us to mark each access as unique, and thereby wrongly
filter out the content from the domain for both the users.

This filter provides a major reduction in the false positive
rate. Any content unique to the server (e.g., specific URLs or
web page content) would almost surely be marked wrongly by
our methodology as a candidate identifier for the correspond-
ing user. Similarly to the previous filter, we do potentially lose
the opportunity to discover some latent identifiers.

The filtering strength of this filter largely depends on the
connections made by the other users in the network. For net-
works with many users, the number of unique servers per user
should diminish compared to networks with fewer users. For
our data, the overall filtering strength of this filter is given by
the interquartile range of about 160 and a median of 1.2.

Towards Mining Latent Client Identifiers from Network Traffic 108

Filter Name Median IQR

Non-persistent strings 3.3 2.2

Common strings 62.0 -

Table 3. Filtering strengths of string-based filters.

7.2 String-Based Filtering

In this stage, we perform filtering based on the properties of
individual strings in client traces. Recall that the input to this
stage is a list of k-byte strings and associated metadata, gener-
ated using the slicing component (per § 6) on the connections
left after the connection-based filtering stage. We apply two
filters in this stage: (i) remove non-persistent strings, and (ii)
remove strings common across users, corresponding to the two
conditions of persistence and uniqueness as required by our
definition of identifiers. Table 3 provides the filtering strength
statistics of each of these filters, computed over the set of users
who had non-zero bytes at the beginning of this filtering step
(345 out of 790).

(i) Remove non-persistent strings. This stage weeds out
all strings that do not repeat over multiple time windows. The
bigger the time window, the stronger is the identifier in terms
of its tracking power. In our present work, we use 1 day for
our time window. Thus, we only retain strings observed on at
least 2 different days. We can apply this filtering stage inde-
pendently to each user’s list of strings, since the persistence
condition is independent of the presence of other users in the
network.

Note that in this stage we automatically filter out any
string that occurs only once in a user’s trace. This might mean
losing some true identifiers that happen to appear only once
in our dataset due to its limited size. We accept this trade-off,
however, since without multiple occurrences we cannot vali-
date whether the string is in fact an identifier.

The interquartile range for the filtering strength of this
stage is 2.2, with a median of 3.3 and an average of 1.5.

Algorithm: Algorithm 2 provides pseudocode for the
streaming algorithm for this filter. Input data is read as a stream
of [str, day] tuples. Since we sort the input according to str,
information about all the days the string manifested appears
adjacent to each other in the stream, making it possible to pro-
cess the data in a streaming fashion. To decide whether to filter
out a given string, the algorithm maintains information about
the string value (curr_str), day (curr_day) and its start in-
dex (start_index) from the first time the string appeared in
the stream. As the stream proceeds, either the same string will
reappear on the same or different days, or a new string will
appear. If before the new string appears, no day other than
curr_day was observed for string curr_str, we know that

the curr_str did not appear on multiple days, and hence the
algorithm filters it out. Otherwise, the algorithm prints it to
the output filtered stream. Note that the output stream remains
sorted on string value due to the sorted input stream and the
streaming nature of the algorithm.

At any point in time, Algorithm 2 maintains only a con-
stant number of variables and 2 cursors to the streams in the
memory. Since the memory consumption is independent of the
size of the input stream, this algorithm is easy to scale for
much larger data sets.

Algorithm 2: Removing non-persistent strings per user
Input: stream u : {u1, u2,... } is for one user where

ui = is [str, day] tuple. Stream u is sorted on str
Output: stream o : {o1, o2,... } of filtered objects,

where oi = [str, day]
1 curr_str← u1[str]
2 curr_day← u1[day]
3 curr_index, start_index← 1
4 curr_interesting← False
5 while not at end of stream u do
6 READ next object into ui

7 INCREMENT curr_index by 1
8 if ui[str] 6= curr_str then
9 if curr_interesting is True then

10 PrintToOutputStream(start_index,
curr_index− 1)

11 end
12 curr_str← ui[str]
13 curr_day← ui[day]
14 start_index← curr_index

15 curr_interesting← False
16 else
17 if curr_interesting is True then
18 go to next iteration
19 end
20 if ui[day] 6= curr_day then
21 SET curr_interesting to True
22 end
23 end
24 end
25 if curr_interesting is True then
26 PrintToOutputStream(start_index, curr_index)
27 end

(ii) Remove strings common across users. In this stage,
we filter out any strings that are observed across multiple
users. This filter follows from our definition that identifiers
must be unique to a user. Note that in this stage, we also fil-

Towards Mining Latent Client Identifiers from Network Traffic 109

ter out strings which are true identifiers but appear in traces
from two different users due to a single individual using mul-
tiple devices. For example, we would filter out a username on
a site that is accessed by a user on their phone as well as lap-
top. However, if there exists at least one user in the network
who accesses the same site using only a single device, our
methodology will capture the identifier. Thus, in this stage, we
might lose a few user-specific identifiers but we do not lose
any device-specific identifiers.

The median filtering strength for this filter is 62.0, with
an average of 26.7. The 25th percentile is 16, while the 75th
percentile is∞, indicating that this step filtered out all of the
bytes of at least 25% of users.

Algorithm: Algorithm 3 provides pseudocode for the
streaming algorithm for identifying unique strings for each
user. The input to this stage is n streams, u1, u2, ..., un, where
n corresponds to the number of users, and each stream ui is
the output of the previous persistence filtering stage for user i.
Since information about the day associated with each string is
not relevant for this stage, we represent an object of a stream
simply by the string value str. Each input stream ui (output
stream from persistence filter) to this stage is sorted on the
ASCII encoding of str. The algorithm maintains a list of cur-
sors curr_strs to the current str in each stream ui. We also
maintain a separate list of cursors to the output stream of each
user, o1, o2, ..., on, to which to print elements that survive
the filtering. At every stage, the algorithm generates a list of
streams, min_streams, which point to the smallest string (in
terms of the ASCII collating sequence) in curr_strs. If this
list contains more than one stream, the algorithm filters out
the given string and proceeds to the next string. If, on the other
hand, min_streams list contains only a single stream, say ui,
then the smallest string was unique to the stream ui, and we
copy all occurrences of the to oi and load the next string in ui

into curr_strs.
At every point in time, Algorithm 3 maintains in mem-

ory only 2n cursors, n to input and n to output streams and a
constant amount of storage for variables.

8 Analysis

In this section we analyze the results produced by applying
our methodology to our 15-day dataset. We begin by sketching
the general approach we take to the analysis. We then discuss
filtering steps used for the manual assessment stage to reduce
the analyst burden, followed by summarizing what the process
ultimately discovered.

Algorithm 3: Removing common strings
Input: streams u1, u2, ..., un where each stream ui is,

for each user i, a list of objects {ui,1, ui,2, ...}
of form ui,j = [str] where str is the value of
sliding window. Each stream ui is sorted on str.

Output: streams o1, o2, ..., on. Each
oi = {oi,1, oi,2,... } is a stream of candidate
identifiers for user i

1 INITIALIZE curr_strs = [u1,1, u2,1, .., un,1]
2 while not at end of all streams do
3 min_string← SmallestString(curr_strs)
4 INITIALIZE min_streams to empty list []
5 for i going from 1 to n do
6 if curr_strs[i] = min_string then
7 APPEND i to min_streams

8 end
9 end

10 if |min_streams| = 1 then
11 PrintToOutputStream(oi), where

min_streams = {i}
12 end
13 for i ∈ min_streams do
14 READ next object ui,j from stream ui

15 SET curr_strs[i] to ui,j

16 end
17 end

8.1 Facilitating Manual Analysis

Our processing pipeline produces candidate identifiers: those
that in the context of the analyzed trace appear to potentially
function as unique identifiers. However, assessing the actual
nature of the candidates requires manual assessment, since the
determination requires considering additional context beyond
that which our algorithms can incorporate. This includes the
semantics of the protocol elements in which the candidate is
embedded (for example, whether and where it appeared in a
URL). Because of the need for this manual stage, we term our
methodology as semi-automated, rather than automated.

We can, however, automate some of the development of
the surrounding context to facilitate the manual assessment.
To create a data format consumable by an analyst, we use the
byte-offset metadata that we recorded for each candidate iden-
tifier string in order to (1) expand the k-byte string to the full
size of the identifier, and (2) provide additional bytes before
and after the full identifier to aid in determining its usage.

For the first step, we note that if we have an m-byte full
identifier (m ≥ k), then our algorithms will most likely flag
each of its k-byte substrings as candidate identifiers. (It may

Towards Mining Latent Client Identifiers from Network Traffic 110

5 10 15

0
.0

0
.4

0
.8

Number of days

E
C

D
F

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Unfiltered
Cookies and URL path identifiers filtered

Fig. 4. Empirical CDF of persistence of reconstructed identifiers over
days, after the context-building stage.

filter out some of them due to happenstance matches between
them and strings sent by other clients, per Algorithm 3.) Thus,
by merging adjacent or overlapping candidate identifiers, we
can produce full reconstructed identifiers in a fashion that is
robust to the absence of a few k-byte substrings, as long as the
candidates include some degree of overlap or adjacency.

Given the reconstructed identifiers, we then produce one
context file for each user. At this point in the development
of our work, we focus on analyzing potential identifiers in
ASCII-oriented traffic, since this is much easier for an an-
alyst to deal with. Accordingly, each entry in a context file
corresponds to a line (i.e., delineated by newlines) from the
original content file, with the reconstructed identifier string(s)
highlighted.

For our manual assessment of the candidates, we then use
this context (and any online resources we can find relating to
the terms appearing in the line) to determine whether the can-
didate identifier reflects a false positive or a true identifier. If
the latter, then we assess how the string is used for tracking,
i.e., whether it is account-, device-, or browser-specific.

8.2 Analysis Dataset Characterization

Of the 790 users in our dataset, 244 produced at least one iden-
tifier string in the final output. The context files at this stage
totaled 815 MB (about 0.08% of the original dataset): 1.4M
context lines with a total of 5.9M candidate identifier strings.

While this represents a major reduction in volume, the an-
alyst still faces an intractable task in assessing each candidate
individually. We thus perform additional filtering based on the
characteristics and context of the reconstructed candidate iden-
tifiers to further reduce the analysis burden.

First, we note that a very large proportion of our candi-
date identifiers appear to indeed reflect correct discoveries—as
they appear in HTTP Cookie headers—but also uninteresting
findings given that these do not constitute “latent” identifiers,
as they are well-known. While it is encouraging to see that our

Total number of identifiers 5,945,993
HTTP
Cookie header 50.38%
URL parameters 20.41%
URL path 13.16%
User-Agent header 0.94%
Other headers and payloads 11.36%

Non-HTTP 3.73%

Table 4. Major categories of contexts for candidate identifiers

methodology locates these, they do not merit further investi-
gation on the part of the analyst.

Along these lines, we can categorize the different general
contexts in which the candidate identifiers appear, per Table 4.
Cookie predominates, with HTTP URLs making up another
large portion, and User-Agent being the second most pop-
ular HTTP header. We also find candidate identifiers manifest-
ing in non-HTTP packets.

We also consider the degree of persistence manifested by
the reconstructed identifiers, per the distribution shown in Fig-
ure 4. 45% of the reconstructed identifiers in fact lose the per-
sistence property of their constituent k-byte substrings. While
our processing pipeline assured that the substrings necessar-
ily manifested in at least two separate days, the reconstructed
identifier itself often does not. This arises because the sub-
strings might not necessarily repeat in an adjacent or over-
lapping fashion with one another during the separate days.
Consider an example from our data: our algorithm recon-
structs the 8-character sliding windows of the string “first-
open-streets-event” to “first-open-streets-event/” in the con-
text of a Referer header (i.e., this was the value at the end
of a Referer URL), but to “first-open-streets-event/; __j” in
the context of a Cookie header. Only the longer one happens
to repeat over multiple days.

8.3 Candidate Identifier Filtering

Given the above considerations, to aid the manual analysis
phase we apply three additional filters:
– Cookie filter: Remove all instances of candidate identifier

strings that appear in HTTP Cookie headers. Note that
we also remove instances of such identifiers occurring in
other contexts, since these are unlikely to prove interest-
ing given we have already identified the usage within the
well-known context of cookies.

– URL Path filter: Remove identifier strings that appear in
the path component of URLs in HTTP requests. The ra-
tionale behind this filter is that it is relatively unlikely

Towards Mining Latent Client Identifiers from Network Traffic 111

that servers use specific paths in the site’s directory struc-
ture to serve as identifiers, but we find that strings oc-
curring in URL paths significantly increase our rate of
false candidates, due to users visiting webpages that be-
come reloaded across multiple days. As an example, our
methodology marked as a candidate identifier the string
“tropical-tasting-heel”, occurring in the path component
of the URL http://www.modcloth.com/shop/shoes-heels/
tropical-tasting-heel. The filter removes this sort of can-
didate.

– Persistence filter: Remove identifier strings that appear on
only 1 or 2 days. We chose a threshold of at least 3 days
based on a preliminary investigation that found that many
of the identifiers appearing on only one or two days rep-
resent false positives (for example, fragments of URLs in
browser reloads), and on the basis that the more interest-
ing and powerful identifiers will manifest more often in
15 days of network traffic.

Applying these three filters sequentially reduces the analyst
work in terms of context lines by 33% after the first filter, 63%
after the second, and 85% after the application of all three.

8.4 Results

Focusing our analysis on the set of identifiers that repeat across
at least three days, and do not occur in Cookie headers or
URL paths reduces our original 5.9M candidate identifiers to
a set of 12.3K that we need to validate via manual analysis.

The volume becomes tractable, as follows. We conducted
our manual assessment using an iterative process. Upon in-
specting a candidate (reconstructed) identifier, along with
making our assessment regarding its significance, we devised
a rule that would match other instances of the same type of
identifier. We applied the rule to tag and remove those from re-
quiring further assessment. All in all, for our dataset we wound
up devising 47 such rules, enabling us to manually consider all
of the different classes of candidate identifiers in this set.

Clients sent the candidate identifiers to a total of 1,322
different servers, with 661 each in the HTTP and non-HTTP
category.3 Analytics and advertising companies heavily dom-
inate the HTTP domains, and 71% of these domains share a
candidate identifier with at least one other domain. We found
that in majority of cases, what is shared is not a true identifier,
but instead a fragment of a URL embedded in the tracking do-

3 For HTTP, we used the registered domain of the HTTP Host header
field. For non-HTTP, we used the server IP address to which the identifier
was sent.

mains (such as a Google Analytics inclusion). This scenario
represents the major remaining source of false positives in our
dataset. (Note that the URL path filter did not remove these
candidates because the URL fragments appear in the parame-
ters of other URLs, not in their path.)

Table 5 provides a sample of the identifiers we found, the
associated domain, the context in which they appeared, and
their category. We now discuss each of the different types.

8.4.1 HTTP identifiers

Application-specific: The first category is identifiers
sent by applications other than browsers. For example,
Skype sends a user identifier uhash in a URL of the for-
mat http://ui.skype.com/ui/2/2.1.0.81/

en/getlatestversion?ver=2.1.0.81&uhash=

<uhash>. The parameter uhash is a hash of the user ID, their
password, and a salt, and remains constant for a given Skype
user [12]. uhash can very well act as an identifier for a user;
a monitor who observes the same value from two different
clients/networks can infer that it reflects the same user on
both.

Another example in this category is a Dropbox user_id
sent as a URL parameter. We discovered that since the Drop-
box application regularly syncs with its server, it sends out this
identifier—surprisingly, every minute—without requiring any
user action.

Mobile devices: Our methodology enabled us to discover
that the Apple weather app sends IMEI and IMSI numbers in
POST requests to iphone-wu.apple.com. We can recog-
nize these as such, because the parameter name in the con-
text clearly names them as IMEI and IMSI; the value also
matches the expected format for these identifiers. Other apps
also send a number of device identifiers, such as phone make,
advertising ID,4 SHA1 hashes of serial number, MAC ad-
dress, and UDID (unique device identifier) across various
domains, such as s.amazon-adsystem.com, jupiter.apads.com
and ads.mp.mydas.mobi. The iOS and Android mobile SDKs
provide access to these identifiers.

Cross-domain: We also found instances of tracking in-
formation sent to multiple domains under the same as well
as different parameter names. One identifier was sent to
18 distinct hosts as part of both URLs and cookies: for
example, to ib.adnxs.com, sync.adap.tv, sync.mathtag.com,
360yield.com and rlcdn.com as a part of URL with parame-
ter names code, uid, mt_exuid, external_user_id

4 A randomly generated, resettable unique identifer, per http://goo.gl/
P8rPoI and http://goo.gl/HBo99J.

http://www.modcloth.com/shop/shoes-heels/tropical-tasting-heel
http://www.modcloth.com/shop/shoes-heels/tropical-tasting-heel
s.amazon-adsystem.com
jupiter.apads.com
ads.mp.mydas.mobi
ib.adnxs.com
sync.adap.tv
sync.mathtag.com
360yield.com
rlcdn.com
http://goo.gl/P8rPoI
http://goo.gl/P8rPoI
http://goo.gl/HBo99J

Towards Mining Latent Client Identifiers from Network Traffic 112

Domain Identifier Name Context Category

ui.skype.com uhash URL parameter account-specific

dropbox.com user_id URL parameter account-specific

symantec.com useragent user agent browser-specific

courier.push.apple.com AppleiPhoneDevice Non-HTTP: TCP payload device-specific

microsoft.com USR Non-HTTP: MSN ping message account-specific

freenode.net USER,NICK Non-HTTP: IRC Channel account-specific

jupiter.apads.com deviceid HTTP POST payload device-specific

s.amazon-adsystem.com sha1_mac,adId,sha1_serial,sha1_udid URL parameter mobile device-specific

ads.mp.mydas.mobi mmdid,mm_mmdid URL parameter mobile device-specific

iphone-wu.apple.com
imei URL parameter

mobile device-specific
imsi HTTP header: X-Client-ID

safebrowsing.clients.google.com wrkey

URL parameter third-party domain

tags.bluekai.com a_id,id

potentially browser-specific

addthis.com uid

l.collective-media.net id

idsync.rlcdn.com id

p.acxiom-online.com id,uid

e.nexac.com id

Table 5. A sample of the identifiers captured by our methodology.

and partner_uid, respectively. Another identifier sent as
a URL parameter to multiple hosts is google_gid, which is a
Google user ID corresponding to a user’s Google cookie [18].
Google sends this identifier to ad bidders who then use the
identifier to synchronize their cookies corresponding to this
user [27]. While we observe many instances of cross-domain
identifiers in our dataset, we find google_gid particularly in-
teresting as it provides insight into the cookie-syncing used in
the ad ecosystem.

Other: We identified a few other candidates for
which we were unable to conclusively determine
whether they can be used as true identifiers. For ex-
ample, we identified a parameter called wrkey sent
to safebrowsing.clients.google.com in a URL of the
format /safebrowsing/downloads?client=

navclient-auto-ffox&appver=24.3.0&pver=

2.2&wrkey=<wrkey>. According to Google’s docu-
mentation, a browser wishing to receive an integrity
MAC protecting responses from the Safe Browsing
server first requests a wrkey (wrapped key) from the
server, and transmits it in subsequent requests [7]. Sim-
ilarly, Symantec sends a random-looking User-Agent

in its communication (for example, User-Agent:

LmIpWZ1/EyabGJVmgz1sozkFjAUcO/OUgAAAAA).
We did not find any documentation confirming that this is
unique to a client, but our analysis did find multiple unique
and persistent Symantec User-Agents in our dataset.

Total number of non-HTTP identifiers 1,320
Total number of distinct ports seen 30
Ports
2121 FTP Proxy 32%

53 Domain Name System (DNS) 22%
5223 Apple Push Notification Service 21%
5222 XMPP client connection 7%
6667 Internet Relay Chat (IRC) 7%

Table 6. Top five ports for non-HTTP identifiers.

8.4.2 Non-HTTP identifiers

Candidate non-HTTP identifiers constitute 11% of the fully
filtered dataset. Table 6 shows the distribution of non-HTTP
identifiers over the top five ports. Port 2121 is used for secure
file transfers, and port 5222 by instant-messaging applications
like iChat, Google Talk, and Jabber. Since the candidate iden-
tifiers and the surrounding context for these are not human-
readable, without significant additional investigation we were
unable to determine whether the information sent to these ports
indeed represent true identifiers. The identifiers sent to port 53
result from two servers in the dataset involved in DNS zone
transfers, and thus reflect false positives.

Device identifiers sent by iOS/OSX: We found instances
of device identifiers sent on port 5223. Apple devices use this
port to maintain a persistent connection with Apple’s Push No-

ui.skype.com
uhash
dropbox.com
user_id
symantec.com
user agent
courier.push.apple.com
Apple iPhone Device
microsoft.com
USR
freenode.net
USER, NICK
jupiter.apads.com
deviceid
s.amazon-adsystem.com
sha1_mac, adId, sha1_serial, sha1_udid
ads.mp.mydas.mobi
mmdid, mm_mmdid
iphone-wu.apple.com
imei
imsi
safebrowsing.clients.google.com
wrkey
tags.bluekai.com
a_id, id
addthis.com
uid
l.collective-media.net
id
idsync.rlcdn.com
id
p.acxiom-online.com
id, uid
e.nexac.com
id
safebrowsing.clients.google.com

Towards Mining Latent Client Identifiers from Network Traffic 113

tification (APN) service, through which they receive push no-
tifications for installed apps. An app-provider sends to an APN
server the push notification along with the device token of the
recipient device. The APN server in turn forwards the notifi-
cation to the device, identifiying it via the device token [2].
This device token is an opaque device identifier, which the
APN service gives to the device when it first connects. The
device sends this token (in clear text) to the APN server on
every connection, and to each app-provider upon app instal-
lation. This identifier enabled us to identify 68 clients in our
dataset as Apple devices. The devices sent their device token
to a total of 407 IP addresses in two networks belonging to
Apple (17.172.232/24, 17.149/16).

User-specific identifiers: We also found non-HTTP iden-
tifiers sent in IRC and MSN messenger ping messages. For
example, we observed MSN messenger sending the string
“USR 3 SSO I uname@hotmail.com" to microsoft.com
with the email address of the user as the identifier. Similarly,
the IRC messenger sends messages of the format: USER user-
name * irc.freenode.net :purple and NICK nick
to freenode.net, where username is the username of the cor-
responding user and NICK is the nickname used by the user
for communication.

9 Summary

Websites widely track users using identifiers to gather analyt-
ics on their browsing activity and to provide personalized web
content. Such massive tracking raises serious concerns around
user privacy due to lack of public knowledge about how this
information is gathered and used. In addition, network eaves-
droppers can use the presence of such identifiers—even those
not specifically designed to facilitate tracking—to surveil user
activity. While the security community is well-versed in the
workings of conventional tracking mechanisms, it remains an
open question regarding to what extent other, hitherto unrec-
ognized mechanisms exist, either potential or actual, that can
be used to track users or their devices.

As a step towards facilitating the discovery of such latent
identifiers, we develop an application-independent methodol-
ogy to semi-automatically locate identifier strings by trawl-
ing through raw network traffic. Doing so requires overcoming
key scaling challenges, which we address using multistage fil-
tering and streaming algorithms. We analyze fifteen days of
raw traces from an enterprise network with a few hundred
users and find numerous first and third-party identifiers sent
in HTTP headers, URL parameters, and payloads, including
in non-HTTP messages such as device IDs sent by iPhones in
messages to Apple. Our methodology holds promise for help-

ing researchers develop further insight into tracking informa-
tion being sent to servers around the world, unbeknownst to
users.

Acknowledgments

Our special thanks to David Wagner for discussions on various
aspects of this work.

This work was supported by the Intel Science and Tech-
nology Center for Secure Computing, the U.S. Army Research
Office under MURI grant W911NF-09-1-0553, and by the
National Science Foundation under grant CNS-1237265. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References

[1] Angry Birds and leaky phone apps targeted by NSA and
GCHQ for user data. http://tinyurl.com/nfnd79z. Online. Sep,
2015.

[2] Apple Push Notification Service. http://tinyurl.com/qebsrfy.
Online. Sep, 2015.

[3] Bro. https://www.bro.org/. Online. Sep, 2015.
[4] Nmap Free Security Scanner. http://nmap.org. Online. Sep,

2015.
[5] NSA uses Google cookies to pinpoint targets for hacking.

http://tinyurl.com/oshq22e. Online. Sep, 2015.
[6] p0f. http://lcamtuf.coredump.cx/p0f.shtml. Online. Sep, 2015.
[7] Safe Browsing API. https://developers.google.com/safe-

browsing/developers_guide_v2.
[8] Xprobe. http://sourceforge.net/projects/xprobe/. Online. Sep,

2015.
[9] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,

and C. Diaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
2014.

[10] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. Fpdetective: Dusting the web for
fingerprinters. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security, 2013.

[11] J. P. Achara, J. Lefruit, V. Roca, and C. Castelluccia. Detect-
ing privacy leaks in the RATP app: How we proceeded and
what we found. Journal of Computer Virology and Hacking
Techniques, 10(4):229–238, 2014.

[12] C. M. Arranz. IP Telephony: Peer-to-peer versus SIP. MS
Thesis, KTH, 2005.

[13] P. Eckersley. How unique is your web browser? In Pro-
ceedings of the 10th International Conference on Privacy
Enhancing Technologies, 2010.

[14] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting
privacy leaks in ios applications. In Proceedings of the Net-

microsoft.com
freenode.net
http://tinyurl.com/nfnd79z
http://tinyurl.com/qebsrfy
https://www.bro.org/
http://nmap.org
http://tinyurl.com/oshq22e
http://lcamtuf.coredump.cx/p0f.shtml
https://developers.google.com/safe-browsing/developers_guide_v2
https://developers.google.com/safe-browsing/developers_guide_v2
http://sourceforge.net/projects/xprobe/

Towards Mining Latent Client Identifiers from Network Traffic 114

work and Distributed System Security Symposium, NDSS,
2011.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, 2010.

[16] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten. Cookies that give
you away: The surveillance implications of web tracking. In
Proceedings of the 24th World Wide Web Conference, 2015.

[17] C. Eubank, M. Melara, D. Perez-Botero, and A. Narayanan.
Shining the floodlights on mobile web tracking — a privacy
survey. In Proceedings of Web 2.0 Security and Privacy
(W2SP), 2013.

[18] Google. Google’s Cookie Matching Protocol. https:
//developers.google.com/ad-exchange/rtb/cookie-guide.
Online. Sep, 2015.

[19] S. Han, J. Jung, and D. Wetherall. A study of third-party
tracking by mobile apps in the wild. Technical Report, UW-
CSE-12-03-01, 2012.

[20] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device
fingerprinting. Dependable and Secure Computing, IEEE
Transactions on, 2(2):93–108, 2005.

[21] C. Kreibich and J. Crowcroft. Honeycomb: Creating intrusion
detection signatures using honeypots. SIGCOMM Comput.
Commun. Rev., 34(1):51–56, 2004.

[22] B. Krishnamurthy and C. E. Wills. On the leakage of per-
sonally identifiable information via online social networks.
In Proceedings of the 2nd ACM Workshop on Online Social
Networks, 2009.

[23] B. Krishnamurthy and C. E. Wills. Privacy diffusion on the
web: a longitudinal perspective. In Proceedings of the 18th
World Wide Web Conference, 2009.

[24] J. R. Mayer. Any person... a pamphleteer: Internet anonymity
in the age of web 2.0. Undergraduate Senior Thesis, Prince-
ton University, 2009.

[25] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. In Proceedings of Web 2.0 Security and
Privacy, 2012.

[26] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
2013.

[27] L. Olejnik, T. Minh-Dung, C. Castelluccia, et al. Selling off
privacy at auction. In Proceedings of Network and Distributed
System Security Symposium, 2014.

[28] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation,
2004.

[29] Y. Xie, F. Yu, and M. Abadi. De-anonymizing the internet
using unreliable ids. In Proceedings of the ACM SIGCOMM
Conference on Data Communication, 2009.

[30] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host finger-
printing and tracking on the web: Privacy and security impli-
cations. In Proceedings of Network and Distributed System
Security Symposium, 2012.

https://developers.google.com/ad-exchange/rtb/cookie-guide
https://developers.google.com/ad-exchange/rtb/cookie-guide

	Towards Mining Latent Client Identifiers from Network Traffic
	1 Introduction
	2 Related Work
	3 Defining Identifiers
	4 Data
	5 Key Challenges
	5.1 Naive Approach
	5.2 Challenges
	5.3 More efficient approaches

	6 Architecture Overview
	7 Multistage Filtering
	7.1 Connection-based Filtering
	7.2 String-Based Filtering

	8 Analysis
	8.1 Facilitating Manual Analysis
	8.2 Analysis Dataset Characterization
	8.3 Candidate Identifier Filtering
	8.4 Results
	8.4.1 HTTP identifiers
	8.4.2 Non-HTTP identifiers

	9 Summary

