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ABSTRACT

In this study we expose the serious large-scale threat of crim-
inal account hijacking and the resulting damage incurred by
users and web services. We develop a system for detecting
large-scale attacks on Twitter that identifies 14 million vic-
tims of compromise. We examine these accounts to track
how attacks spread within social networks and to determine
how criminals ultimately realize a profit from hijacked cre-
dentials. We find that compromise is a systemic threat, with
victims spanning nascent, casual, and core users. Even brief
compromises correlate with 21% of victims never returning
to Twitter after the service wrests control of a victim’s ac-
count from criminals. Infections are dominated by social
contagions—phishing and malware campaigns that spread
along the social graph. These contagions mirror informa-
tion diffusion and biological diseases, growing in virulence
with the number of neighboring infections. Based on the
severity of our findings, we argue that early outbreak detec-
tion that stems the spread of compromise in 24 hours can
spare 70% of victims.

Categories and Subject Descriptors

K.4.1 [Public Policy Issues|: Abuse and crime involving
computers
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1. INTRODUCTION

In this paper, we expose the serious large-scale threat
of criminal account hijacking and the resulting damage in-
curred by users and web services. To conduct our study,
we develop a systematic approach for detecting large-scale
attacks on Twitter that we leverage to identify victims of
compromise, track how compromise spreads within the so-
cial network, and evaluate how criminals ultimately realize
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a profit from hijacked credentials. We retrospectively apply
our detection scheme on a dataset consisting of 8.7 billion
tweets generated by 168 million Twitter users during a 10-
month period between January, 2013—October, 2013. In to-
tal, we identify 14 million users that fell victim to hijacking
in addition to nearly 5 million fraudulent accounts used to
fuel spam campaigns. While it is possible to repurpose our
detection techniques to operate in real time and to serve as
a defense, our key contribution with this research is to bring
to light the systemic risks legitimate users face on social
networks.

We find that criminals succeed in hijacking accounts
from users around the globe, irrespective of user savviness.
Nascent, casual, and core users with hundreds to thou-
sands of followers all fall victim to attacks. Even brief
compromises—we find a median duration of 1 day in our
dataset—correlate with 21% of victims never returning to
Twitter after the service wrests control of a victim’s account
from criminals. Furthermore, 57% of victims lose friends
post-compromise in response to spam the victim’s account
sends. These results illustrate that compromise is not a sim-
ple threat easily solved by password resets; instead, social
networks incur lasting damage after each attack with respect
to core success metrics such as user retention and engage-
ment.

Our results suggest that criminals rely heavily on social
contagions—phishing and malware campaigns that spread
along the Twitter social graph and exploit a user’s friends.
Of over 2,600 distinct outbreaks of compromise we identify,
88% exhibit graph connectivity between the victims. These
contagions grow in virulence with the number of neighbor-
ing victims, where a user with 20 compromised neighbors
is 10x more likely to become compromised compared to a
user with one compromised neighbor. We find that the so-
cial process driving compromise mirrors that of information
diffusion [2,5] and biological infections [21]. A direct conse-
quence is that compromise in social networks spreads much
slower compared to Internet worms [24], with only 30% of
victims emerging in the first day of a contagion’s outbreak.
This opens up the possibility for the early detection of hi-
jacking attacks, where stopping contagions in 24 hours would
spare 70% of victims.

Finally, as compromise is a financial endeavor, we exam-
ine how criminals monetize hijacked accounts. We identify
three dominant strategies: the sale of nutraceutical weight
loss supplements, fake follower (or retweet and favorite) pro-
grams, and lead-generation scams. Combined, 68% of com-
promised victims hawk these money-making schemes, ac-



counting for 69% of all spam tweets generated by hijacked
credentials. These schemes are similar to previous Twitter
spam campaigns that rely on fraudulent accounts [16, 28],
though the challenge of reaching an audience is vastly sim-
plified by account hijacking.

In summary, we frame our contributions as follows:

e We demonstrate the hijacking by criminals of more
than 13 million Twitter accounts; this threat repre-
sents one of the single largest challenges facing web
services.

We find that even when Twitter wrests control of ac-
counts from criminals, 21% of victims never return to
the service and 57% lose friends.

We show that criminals rely on phishing and malware
campaigns that exploit social connections to spread
in a similar fashion to memes and biological diseases,
making them increasingly virulent.

e We characterize how criminals ultimately profit by
spamming a victim’s followers with weight loss sup-
plements, fake follower programs, and lead generation
scams.

2. BACKGROUND AND RELATED WORK

While the prevalence of compromised users amongst
spamming accounts has been identified by a number of prior
studies, the process driving account hijacking and the dam-
age that ensues has never been explored. We provide an
overview of the potential mechanisms criminals use to hijack
accounts as well as outline previous approaches for detecting
unwarranted behavior on a victim’s account. Whenever ap-
plicable, we highlight how our research fits into the broader
context of abuse targeting social networks.

2.1 Account Hijacking Techniques

Database Dumps: Sophisticated attacks on companies are
emerging as a regular threat, where breaches have resulted
in the exposure of millions of usernames and passwords at
Adobe, LinkedIn, and Twitter [17,22,26]. When breaches
are directly linked to a social network, criminals can take
control of a victim’s account. Alternatively, break-ins at
unrelated services can still prove lucrative to criminals due
to 43% of users reusing passwords across services [§].

Password Guessing: Weak passwords face a significant
risk from brute-force guessing. For example, miscreants
launched an attack targeting GitHub from 40,000 addresses,
affecting an unknown number of victims [4]. Provided
enough time and resources, criminals can effectively mine
the credentials of multiple victims to access their accounts.

Social Contagion: Rather than target weaknesses in a web
service, criminals can target a service’s users by disseminat-
ing phishing pages and malware via social engineering like
the Koobface botnet [29] or by drive-by exploits [15]. We
refer to attacks that spread within a social network along
graph edges as a social contagion.

External Contagion: Malware and phishing attacks
spreading externally to a social network can still result in
criminals stealing a victim’s social credentials. We refer to
such attacks as an external contagion.

2.2 Detecting Hijacked Accounts

Our approach for detecting hijacked accounts builds on a
large body of prior work for characterizing spam and abuse
in social networks. In particular, we iterate on previous ap-
proaches by Gao et al. [12,13] and Grier et al. [16] for clus-
tering social network content into spam campaigns based on
text and URL features. One limitation of these approaches
is they fail to distinguish between fraudulent accounts used
solely to disseminate spam and compromised accounts ex-
hibiting symptoms of an infection. While the authors of both
works conclude that compromised accounts are responsible
for a substantial fraction of spam, this conclusion was based
purely on manual analysis, rather than devising an auto-
mated framework for detecting hijacking. Furthermore, the
authors focused their analysis on spam campaigns, omitting
any discussion of how victims were hijacked.

One existing approach for explicitly detecting hijacked
victims in social networks is COMPA [10]. This system
builds a historical model of a user’s activities such as ap-
plication usage, language, and posting frequency. When an
anomalous message appears on a victim’s account that vio-
lates the constructed usage profile, the user is considered hi-
jacked. This signal is boosted by identifying clusters of users
that all post similar content. Our approach, while similar
in that we cluster hijacked victims, makes no assumptions
on the stability of user behavior (which may change due to
travel, installing new apps, or varying engagement levels)
and does not require an historical model per account, which
is expensive to maintain at scale. Furthermore, while we be-
lieve our detection framework can be deployed as a proactive
defense, its purpose in this paper is a means for generating a
sample of hijacked victims—our primary contribution in this
work is examining the impact and spread of compromise.

3. METHODOLOGY

Our strategy for identifying the hijacked accounts in so-
cial networks consists of five components, outlined in Fig-
ure 1. Over a 10 month period we collect 61% of all tweets
containing URLs, amounting to roughly 40M tweets per
day (@). We organize these tweets into clusters (@), clas-
sifying each cluster as either a benign meme, an infection
spreading via compromised accounts, or spam campaigns
produced by fraudulent accounts (®). We then crawl the
social graph of the accounts involved in each cluster (@),
allowing us to measure the connectivity of victims and as-
sociated graph properties. Finally, we label each account
in our dataset as benign, compromised, or fraudulent (@).
The entire process uses a combination of Hadoop, Pig, and
Spark.

3.1 Data Collection

Our dataset consists of 8.7 billion tweets posted by 168
million users between January 7, 2013 through October 21,
2013. We collect tweets directly from Twitter’s stream-
ing API' using the statuses/filter method which we config-
ure to return a privileged sample of all tweets containing
URLs. Our feed does not provide a fixed sample rate; in-
stead, we receive a reduced sample size during peak strain on
network routes between our collection point and Twitter’s
APIT infrastructure, a phenomenon previously documented
by Morstatter et al [20].

"https://dev.twitter.com/docs/streaming-apis
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Figure 1: Data processing pipeline. We receive a stream of roughly 40M tweets per day, which we store into HDFS. We
then group these tweets into clusters, labeling them as memes, spam from fraudulent accounts, or infections based on whether
Twitter has since deleted or disabled the tweets or accounts. Once classified, we crawl the social graph of all accounts and
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Figure 2: Average daily sample rate throughout our col-
lection period. We receive nearly 100% of all tweets with
URLSs around midnight PST, while our sample rate drops to
roughly 40% during peak hours of network strain.

To understand how the network bottleneck impacts our
sample rate, we compare the overlap of our sample with
the statuses/sample feed (collected over the same period and
unaffected by network bottlenecks) which Twitter advertises
as a real-time truly random sample fixed at 1% of all tweets.
We find that we receive roughly 40% of all tweets with URLs
during peak hours of Twitter activity and nearly 100% of all
tweets with URLs during low periods of activity, as shown in
Figure 2. In total, we estimate we receive 61% of all tweets
with URLs averaged across all days and hours.

3.2 Identifying Tweet Clusters

We organize the billions of tweets in our dataset into clus-
ters through a combination of text, URL, and user cluster-
ing, similar to previous approaches for identifying memes
and spam clusters on Twitter [12,13,16,27,28]. Clustering
is a two step process, as shown in Figure 1 (0): we first group
all of the tweets in our dataset based on an approximation
of their content represented by a minhash [3]. We also em-
ploy a secondary clustering strategy, whereby we group any
tweets with the same URL. The clusters resulting from both
of these steps are then fed into a final phase where we merge
clusters with overlapping users, storing the final collections
of tweets and users.

3.2.1 Clustering on Similar Content

Apart from retweet chains where the provenance of a clus-
ter is explicit, identifying tweets that all discuss a similar
topic is typically a problem associated with near duplicate
detection and topic modeling. In order to measure the se-
mantic similarity between two tweets, there is a noteworthy
distinction between ezact duplicates and near duplicates [27].

Exact Duplicates are any pair of tweets where every
character is identical. Legitimate exact duplicates result
from retweet chains, users sharing news stories, and auto-
generated messages from applications, while spam exact du-
plicates appear because a single spammer posts an identical
message distributed via multiple fraudulent or compromised
accounts.

Near Duplicates are any pair of tweets with a strong
degree of content overlap (as developed below). Cosmetic
differences occur because legitimate users rephrase a story or
news item, while spammers frequently permute spam tem-
plates in order to evade rudimentary text clustering. An
example from our dataset:

ml: Aweesomeee! I made $171.50 this week so far taking a
couple of surveys. http://t.co/cwG67Tlh

m2: Awesome! I made $106.03 this week so far just filling out
a couple of surveys. http://t.co/PoHBayLz

In order to detect whether a pair of tweets are near du-
plicate, we first strip each tweet of Twitter specific nomen-
clature such as mentions (Quser) and retweets (RT Quser),
any URLs in the tweet, and any remaining non-alpha char-
acters (thus removing digits, punctuation, and whitespace).
We then compute the set of all character n-grams from the
message using a rolling window, where n is a tunable pa-
rameter. We consider two messages to be equal if their set
of n-grams M; and M; have a Jaccard similarity coefficient
greater than 7, where we calculate the Jaccard metric as:

_|Min M

T M) = 3 Oy
i J

To avoid a pairwise O(N?) comparison of billions of
tweets, we rely on minhashing to serve as an estimator for
J(M;, M;). For each element e in the set of character n-
grams M; we compute the hash H(e). We then sort the
resulting set of hashes and select the k& minimum hashes
from the ordered set, where k is a tunable parameter. The
likelihood that two near duplicate messages share the same
k hashes is proportional to the Jaccard similarity coeffi-
cient [3]. We ignore messages with fewer than k hashes, pre-
venting us from treating simple tweets such as lol http://...
as part of the same cluster.

In order to determine the optimal parameters for n and k
given our text corpus, we perform a grid search over multiple
variants of the minhash algorithm on a sample dataset of
19M tweets. We calculate the average Jaccard coefficient
for all pairs of messages with the same minhash, excluding
messages that are exact duplicates. We show our results
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Figure 3: Grid search of the relation between the Jaccard
similarity coefficient and pairs of tweets sharing the same
minhash. We search over k, the number of hashed tokens to
use, and n, the size of n-grams.

in Figure 3. We ultimately elect a minhashing algorithm
set to n = 3 and k = 7 for a Jaccard similarity threshold
of 7 = 0.8, which we find strikes the best balance between
capturing wide variants of spam templates without colliding
with benign, unrelated messages.

Given our final minhashing algorithm Hj ), we trans-
form every tweet in our corpus into a key-value pair
(H (i n)(m), tweet). We then group all tweets with the same
minhash and treat them as a single cluster. Once grouped,
we filter out any minhash clusters with fewer than a thou-
sand tweets to reduce the volume of clusters that we must
process and label. In total, this clustering approach yields
29,687 clusters.

3.2.2  Clustering on Duplicate URLs

Another canonical method for identifying the spread of
ideas or spam campaigns in social networks is by clustering
messages based on the URL they contain [13, 14, 28]. We
follow previous approaches and transform each tweet into
a key-value pair (URL, tweet), subsequently grouping all
tweets by their URL key. In the event a tweet contains
multiple URLs, we create a key-value pair for each URL,
allowing a tweet to be a member of multiple clusters. Once
grouped, we again filter out any URL clusters with fewer
than a thousand tweets. In total, this step yields 36,994
clusters.

3.2.3 Merging Clusters of Overlapping Users

In our final clustering step, we merge pairs of clusters with
overlapping sets of users. This step is necessary to combine
clusters of spam accounts that post multiple distinct mes-
sages and to merge duplicate minhash and URL clusters.
Similar to how we merge near duplicate tweets, given the
set of users for two clusters C; and Cj, we merge the two
clusters if J(C;,C;) > 7. Again, because pairwise similar-
ity is expensive to compute, we rely on minhashing the set
of users for each cluster, performing a similar grid search
to the one presented in Figure 3 to determine the optimal
parameters. We ultimately elect k = 2 for a Jaccard simi-
larity threshold of 7 = 0.5, which we determine via manual
analysis best captures evolving stockpiles of spam accounts
controlled by a single criminal without combining benign
clusters with spam campaigns or merging distinct memes.
Using these parameters, we combine clusters with the same
user minhash and afterwards filter out clusters with fewer
than two thousand distinct users. This step provides us with
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Figure 4: Scatter plot of actions taken by Twitter (and its
users) and their relation to memes, infections, and fraudu-
lent account behavior. We find that retroactive labeling of
clusters provides a powerful tool for distinguishing the three
classes of clusters.

our final set of 16,206 clusters containing 254,366,938 tweets
and 35,869,312 users.

3.3 C(lassification

In order to distinguish legitimate memes from infections
or spam produced via fraudulent accounts, we develop a
multi-class classifier based on observing retroactive actions
taken by Twitter and its users, shown in Figure 1 (@). As
discussed in Section 2, there are no existing classifiers that
both scale and accurately distinguish between compromised
and fraudulent accounts, forcing us to develop a new tech-
nique. Our classifier hinges on the observation that compro-
mised users—or Twitter acting on their behalf—frequently
delete spam tweets posted via their account upon recogniz-
ing criminals have hijacked their credentials. Similarly, as
previously observed [28], Twitter proactively suspends abu-
sive accounts that disseminate spam or form an excessive
number of relationships.

To capture both of these behaviors, we select a random
sample of a thousand tweets and a thousand users from
each cluster in our dataset and query Twitter’s users/show
and statuses/show API respectively. The response code re-
turned by Twitter allows us to label users and tweets as
valid, deleted, suspended, or now private. Due to delays in
actions, we waited until one month after the final day of
data collection (October 21, 2013) before querying the API
endpoints. To verify the power of these features, we man-
ually analyze a sample of 1,699 clusters and label each as
either a meme (1,038 samples), infection (265 samples), or
spam from fraudulent accounts (365 samples). We plot each
labeled cluster as a function of the percentage of suspended
users versus the percentage of deleted tweets, shown in Fig-
ure 4. The three non-overlapping clusters indicate that our
retroactive feature set provides a strong starting point for
segmenting the three classes of clusters.

3.3.1 Training

To determine an optimal hyperplane that separates our
three classes, we train a multi-class logistic regression using
10-fold cross validation seeded with our manually labeled
dataset of 1,699 clusters. We represent each cluster as a



feature vector that includes the ratio of sampled tweets and
users that are valid, deleted, suspended, and private. Our
feature vectors also include the fraction of tweets in each
cluster that are retweets, the average tweets in the cluster
per user, the number of distinct sources used to generate all
tweets within the cluster (e.g., web, TweetDeck, Android,
etc.), and finally the number of distinct languages appearing
in the cluster, as determined by users self-reporting their
language via their Twitter profile. Twitter embeds these
latter features within our streaming dataset, requiring us to
perform no additional API calls.

The resulting classifier has a 99.4% accuracy and a
weighted average false positive rate of 0.5%, with a bias to-
wards considering infections and fraudulent account activity
as memes when the classifier is uncertain.? The most im-
portant features from the classifier’s perspective are the ra-
tio of suspended users for detecting clusters generated from
fraudulent accounts, while the ratio of deleted tweets and
the number of distinct languages are the best features for
detecting large-scale compromise.

3.3.2 Labeling

Once trained, we apply our classifier to every cluster in our
dataset. In total, we identify 10,792 benign memes contain-
ing 129 million tweets, 2,661 infections containing 80 million
tweets, and 2,753 spam campaigns produced by fraudulent
accounts containing 43 million tweets. The relatively small
number of tweets in memes (1.4%) compared to the size of
our initial dataset is consistent with previous results by Goel
et al. [14] which found that the majority of content posted on
social networks is never re-shared. As such, our analysis is
biased towards only successful memes that reach thousands
of users as well as large-scale spam campaigns.

3.4 Graph Crawling

The penultimate step in our data pipeline fetches the so-
cial graph for all of the accounts that belong to a cluster.
While relationships in Twitter are directed, we are only in-
terested in egress pathways that allow information to flow
out from users to their followers. We enumerate these path-
ways by querying the followers/ids API endpoint for every
userid in our dataset, collecting a total of 18,860,823,344
edges. We note that Twitter prevents any access to the so-
cial graph of suspended accounts. When this occurs, we flag
the account as suspended and omit the account for graph
measurements, passing the label along to the final stage (©)
where we label individual users. As a result, we restrict our
graph analysis in Section 5 to compromised and uninfected
(legitimate) accounts.

Because we delay graph crawling until a month after we
cease collecting the tweet stream, there is a 1-11 month
period during which an account’s social graph may have
evolved. To understand any bias this introduces, we se-
lect a random sample of 100,000 users appearing in clusters
and compare changes in their follower graph over a 4 month
period. We find that a median user loses 6 of their origi-
nal followers while gaining 14 new followers (growing 17%)
during this period, adhering to previous findings that social
networks become more connected over time [18]. As such,
our post facto graph collection will overestimate the number

2We believe this is optimal as to prevent our analysis from
overestimating the number of compromised or fraudulent
accounts.

| Measurement | Value |
Meme clusters 10,792
Compromise clusters 2,661
Fraudulent account clusters 2,753
Meme participants 17,312,989
Compromised victims 13,899,907
Fraudulent accounts 4,656,416
Meme tweets 129,812,284
Spam tweets via compromised accounts 80,898,061
Spam tweets via fraudulent accounts 43,656,593

Table 1: Summary of our dataset after clustering and la-
beling.

of followers who may have been exposed to a meme or spam
tweet.

3.5 User Labeling

The final stage in our pipeline labels individual users
as benign, compromised, or fraudulent for the purposes of
account-based measurements. We derive user labels based
on each of the clusters a user participates in, selecting the
maximum label from the following cluster label ordering:

meme < infection < fraudulent

This ordering captures the possibility that compromised
users post tweets belonging to both memes as well as in-
fections, while fraudulent accounts can inject content into
popular memes, generate their own spam campaigns, or seed
infection chains. Our final user labeling approach considers
an account to be fraudulent if it is either suspended—as de-
termined by a graph API call (@)—or if it ever participates
in a cluster classified as fraudulent. Similarly, if a legitimate
user is ever compromised, when we compare uninfected users
to compromised users, we treat the user as strictly com-
promised. All said, our dataset contains 4,656,416 fraudu-
lent accounts and 13,899,907 compromised accounts. A final
summary of our dataset can be found in Table 1. We cau-
tion that these are only lower bounds and do not encompass
all possible abusive behavior on Twitter (e.g., follow and fa-
vorite spam, which will not appear in Twitter’s streaming
API; small scale spam clusters filtered by our thresholds; or
compromise campaigns propagating and monetizing solely
through direct messages).

3.6 Sampling Error

Our collection methodology introduces two forms of error.
First, when we discuss the size of clusters or their rate of
growth, we will likely underestimate their true values due to
our sampling only about 61% of all tweets with URLs. Sim-
ilarly, because sampling omits users and tweets that should
be part of a cluster, any graph-based measurements we con-
duct that treat clusters as information diffusion processes
may exhibit skew [9]. In particular, if information (such as
retweets spreading) diffuses from user ug — up — uc, if up is
omitted from our sample, we will incorrectly associate both
uq and u. as progenitors of the process as opposed to the cor-
rect observation that u. was influenced by u,. As such, we
restrict ourselves to comparing relative differences between
diffusion processes (where any errors introduced by sampling
should be consistent) rather than speaking in terms of ab-
solute values.



4. ANALYZING HIJACKED ACCOUNTS

In this section we explore which populations of users are
most vulnerable, characterize the impact of large-scale out-
breaks on the Twitter ecosystem, and examine the mecha-
nisms that criminals use to puppet compromised accounts.

4.1 Vulnerable Populations

Compromise is a systemic threat to all users, irrespec-
tive of savviness or geographic distribution. To illustrate
this point, we examine five basic metrics of users: an ac-
count’s maturity, followers, followings, tweet count, and self-
reported language. We compare each of these properties
against legitimate users participating in memes as well as
with a random sample of 500,000 users selected uniformly
throughout our collection period.

4.1.1 Maturity

We measure an account’s maturity as the time between
an account’s creation up to its first tweet appearing in our
dataset, effectively measuring how long an account exists
prior to our analysis or its first tweet. Our results, shown in
Figure 5(a), indicate that compromised accounts follow the
same age distribution as uninfected users, having existed for
a median of 1.5 years before we start logging their activ-
ity. In contrast, 50% of fraudulent accounts are less than a
month old before we begin monitoring their activity—likely
due to the heavy churn rate of fraudulent accounts due to
regular suspension by Twitter and account pre-aging per-
formed by criminals [28].

4.1.2  Followers, Followings, and Tweet Count

Twitter embeds a user’s follower count, following count,
and total statuses posted thus far inside every new tweet.
As we receive multiple tweets over time, we measure a users
follower count as the maximum value appearing in any of
our clustered tweets, repeating the process again for follow-
ings and tweets. We show our results in Figure 5(b)—(d)
respectively. We find that 50% of fraudulent accounts have
fewer than 10 followers (users who receive an account’s con-
tent) and 80% have fewer than 10 followings (users they
receive content from). In contrast, compromised users have
a median of 100 followers and 58 followings, which is slightly
fewer compared to a random sample of users. Similarly, we
find that compromised users are also less active at tweet-
ing, with 50% of compromised accounts having fewer than
200 statuses compared to other legitimate users who have
a median of 1,000 tweets. Paired with fewer followers and
followings, compromised users appear to be less emphatic
in their Twitter usage. Nevertheless, criminals are able to
hijack accounts belonging to nascent, casual, and core users.

4.1.3 Global Diversity of Compromised Users

Language barriers and the absence of attackers targeting
victims within certain geographic regions may cause local-
ized infections as opposed to systemic outbreaks. To un-
derstand whether compromised accounts are uniformly dis-
tributed throughout Twitter, we aggregate the self-reported
language of each account® and then compare the popular-
ity of languages between compromised users and a random
sample of 500,000 Twitter users who serve as a baseline for

3Geolocation data is not available on a per-user basis, so we
use language as a proxy metric for geographic distribution.

| Rank | Language | Popularity | Divergence |

1 English 64.4% 22%
2 Spanish 7.7% -45%
3 Japanese 7.2% -37%
4 Turkish 4.7% 76%
5 Indonesian 4.2% 94%
6 Arabic 2.0% -49%
7 French 1.7% -19%
8 Russian 1.6% -29%
9 Italian 1.6% 50%
10 Portuguese 1.5% -60%

Table 2: Top 10 languages spoken by compromised users,
their overall popularity, and their divergence from the ex-
pected value given Twitter’s underlying language distribu-
tion.

the language distribution of Twitter. Our results, presented
in Table 2, show that compromise is a global phenomenon.
English users are far and away the largest source of victims,
accounting for 64% of all compromised accounts. This rep-
resents a 22% increase over the general frequency of English
speakers as derived from our random sample. Turkish, In-
donesian, and Italian are the most overrepresented languages
in our ranking, while all other languages exhibit lower than
expected compromise rates.

4.2 TImpact of Compromise

Compromise is more than just a threat to users. Infections
also impact web services as a whole, degrading core metrics
such as user retention and engagement. We examine three
facets of the damage incurred by compromise: the duration
a victim loses control over their account, the likelihood a
user continues using Twitter after becoming infected, and
finally whether a user’s social connections disengage from a
victim. Our findings indicate that even brief compromises
correlate with users abandoning their Twitter account and
losing friends.

4.2.1 Compromise Duration

We measure the duration of compromise as the number
of distinct dates a user posts any tweets falling into cluster
labeled as an infection. Given that criminals may control
a victim’s account for long periods, but choose to stockpile
credentials until the time of a spam campaign, this mea-
surement is strictly a lower bound. We find that 60% of
compromises last only a single day, while 90% last fewer
than five days.

To understand how quickly users react to unwarranted
activity in their timeline, we measure the delay between a
criminal posting a spam tweet to a victim’s account and that
tweet’s deletion. We determine the fine-grained timestamps
of a tweet’s removal based on a delete events appearing in
the statuses/sample stream over a 10-month period, whereby
Twitter notifies API consumers to strike a tweet from public
display. Due to sampling, we are limited to 187,133 delete
events associated with spam tweets posted to compromised
accounts and 46,169 delete events tied to non-spam content.
We find the median reaction time of victims (or Twitter)
that delete spam tweets is under one hour, while 90% of
spam tweets are deleted within 3.5 days. In contrast, when
user’s opt to erase their participation in a meme, they do
so in a median of 5 days. This demonstrates that users (or
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Figure 5: Basic properties of fraudulent accounts, compromised accounts, users participating in memes, and a random
sample of 500,000 Twitter accounts. Compromised users are less active than other legitimate or meme users, but nevertheless

distinct from fraudulent accounts.

their friends, or Twitter) are quick at policing unwarranted
activity, minimizing the duration that criminals have access
to a victim’s account.

4.2.2 User Retention

While compromise may be brief, it strongly correlates with
whether a user returns to Twitter after an action—such as
a password reset—is taken to wrest control of the account
from criminals. To measure this effect, we fetch the latest
tweet for every compromised user two months after our col-
lection concludes, repeating the process for a random sample
of 500,000 users selected uniformly throughout our collection
period. We then measure the time between each account’s
last (possibly spam) tweet up to the current time, the results
of which we show in Figure 6. We find that only 60% of com-
promised users were active in the last 30 days compared to
83% of random users.

Given that compromised users are more casual than a ran-
dom sample of Twitter users—as explored in Section 4.1—
we refine our analysis one step further. We find that 21% of
compromised users never tweet again after we observe their
last spam tweet, compared to only 3% of random users. If we
broaden this restriction slightly, 40% of compromised users
tweet fewer than five times after their infection concludes,
compared to only 7% of random users. While we cannot
draw definitive conclusions as these results are only correla-
tions, it is possible that users abandon their accounts due to
lack of understanding of the account recovery process; not
having a valid email or phone number to send recovery codes
to; frustration with Twitter; or embarrassment.

4.2.3 Stymied Engagement

Once criminals compromise a victim’s account, they can
expose all of the victim’s followers to a range of spam and
abuse. We measure how a victim’s followers react to com-
promise, comparing the number of followers a victim has at
the onset of an infection versus their current follower count,
as determined by an API call for each victim’s latest fol-
lower count. Again, we compare this to a random sample of
500,000 Twitter users, where we measure the difference in
followers at the time the user appeared in our data collection
pipeline versus an updated count retrieved from Twitter’s
APIL.
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Figure 6: User retention of victims post-compromise com-
pared to a random sample of Twitter users. We find 40%
of compromised accounts were not active in the last month
compared to 17% of random accounts.

Our results, shown in Figure 7, indicate that 57% of com-
promised users lose followers post-compromise compared to
only 18% of random users. Again, we cannot conclusively
determine whether this is a direct result of compromise. One
alternative explanation is that compromised victims were
participants in a fake follower scheme [25], after which other
victims cleaned up their social connections upon becoming
uninfected (or voluntarily leaving the program), thus reduc-
ing the follower counts of all parties involved. Whichever
the conclusion, it is clear that compromised users have a
higher likelihood of becoming more isolated from the rest of
Twitter, stymieing their future engagement.

4.3 Controlling Hijacked Accounts

Criminals author spam tweets from hijacked accounts in
one of two ways: directly with control of a victim’s username
and password, browser, or cookie, or alternatively via an ap-
plication with a valid OAuth token (approved by either the
victim or the criminal; we cannot distinguish which). We
observe that 30% of spam tweets sent via a victim’s account
originate from the web and mobile sites where criminals re-
quire direct access. Miscreants generate the remaining 70%
of tweets through long tail of over 9,900 applications. We ex-
plore some of the most popular applications used to control
compromised accounts further in Section 6.
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compromise compared to a random sample of Twitter users.
We find 57% of compromised accounts lose relationships
compared to only 18% of random users.

In contrast, spammers operating fraudulent accounts es-
chew any requirement of installing an application, authoring
94% of spam tweets via the web and mobile sites. Users post
legitimate content on the other hand—measured in terms
of both memes as well as a random sample of tweets se-
lected uniformly throughout our collection period—65% of
the time via clients owned and operated by Twitter (e.g.,
Twitter for Android, Twitter for iOS, TweetDeck) and other
sanctioned cross-posting platforms such as Tumblr and Face-
book.

Our findings indicate that platform abuse via the API
contributes substantially to the control of compromised ac-
counts. Assuming these applications are unwittingly in-
stalled by victims (as opposed to criminals controlling their
credentials), improved API safeguards such as detecting
anomalous fluxes in application installs as well as near-
duplicate content being posted by an application can reduce
the spread of compromise.

5. SOCIAL NATURE OF COMPROMISE

A critical question in relation to account hijacking is how
criminals obtain access to a victim’s account. We find evi-
dence that infections are dominated by social contagions—
phishing and malware campaigns that propagate along the
social graph, abusing the trust that users place in their
friends. We examine how this trust influences the rapid
spread of compromise and how criminals bootstrap conta-
gions that fan out to millions of users.

5.1 Social Contagions

We measure the connectivity of infected users and
meme participants to understand whether compromise, like
memes, spreads along the social graph. Given our crawl of
the Twitter graph G(V, E), we denote a victim as a single-
ton if no edge exists between the victim and another user
infected by the same contagion (e.g., another user in the
same cluster).

We find that 88% of contagions exhibit connectivity be-
tween victims, where an average of 56% of compromised
users have at least one neighbor that is also compromised.
These contagions account for 95% of all spam tweets sent by
compromised accounts. As we discussed in Section 3.6, our
down-sampled dataset may result in users (and thus their
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Figure 8: Example of calculating the number of incom-
ing edges through which an infection could propagate for a
synthetic graph.

relationships) being omitted, leading to a higher estimate of
singleton infections. To understand this bias, we compare
the connectivity of retweeted memes, where we find 76% of
participants share an edge with a participating friend. As-
suming all retweets spread via the social graph and abide
the same sample rate as contagions, this would indicate an
average of 0.56/0.76, or 74% of compromised users share at
least one relation with another victim.

The remaining 12% of compromised clusters are composed
entirely of singleton infections. These compromises may
be tied to password guessing, database dumps, or exter-
nal contagions, as discussed in Section 2. We caution that
it may be possible for external contagions, such as those
spread through email social graphs, to reflect as though
they spread along the Twitter social graph. Similarly, nat-
ural homophily [19] in friends using the same web services
may result in database dumps exhibiting social connectivity.
As such, we cannot definitively say whether the majority of
compromise spreads within Twitter, but there is a strong
tendency for victims to be connected.

5.2 Influence of Compromised Neighbors

Neighbors connected to a user—either in real life or in
an online social network—influence that user’s decision-
making. This influence manifests in information cascades
including the adoption of online memes [1, 2,5, 23], health
and lifestyles choices [6], and the spread of biological in-
fections [21]. We observe that compromise in online social
networks abides by the same process, where users with in-
fected friends appear more likely to fall prey to malware and
phishing scams as a result of the trust they place in their
social connections.

To gauge the influence of compromised neighbors, we mea-
sure the probability p(i|k) that a user becomes infected given
they have k previously infected neighbors. Figure 8 shows
a sketch of our approach—adopted from social science tech-
niques for measuring the virulence of memes [2,7]. To start,
we label all of the vertices V' in our graph crawl G(V, E) as
either infected (grey in our example) or uninfected (white).
We treat each cascade independently, running this process
once per each cluster in our dataset. Next, we mark each
node with its infection time ¢;—the timestamp of the first
spam tweet a victim posts belonging to the contagion in
question—or oo if the node is not infected. Given a di-
rected edge E(s,d) between a source s and destination d,
we consider the source to be an influencing neighbor if s is
infected and t(; sy < t(;,qy. This metric captures whether
a neighboring infection could spread to the destination or
whether that destination was already infected. Finally, we
count the total number of influencing neighbors k for each
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Figure 9: Likelihood of a user joining a cascade given k-
neighbors already participate in the cascade. Both compro-
mise and memes spread via a social process where friends
influence a user’s decisions.

user in V' and calculate p(i|k) for all possible k. In our ex-
ample, p(ilk = 1) = 0.5, while p(i|k = 2) = 1. To analyze
all contagions at once, we calculate the average p(i|k) across
contagions, weighting each contagion equally independent of
size. To serve as a comparison, we repeat this same process
for all of the memes in our dataset.

Our results, shown in Figure 9, demonstrate that com-
promise is more effective at spreading as more of a user’s
neighbors fall victim to attacks. We find that the probabil-
ity of a victim becoming compromised increases from 0.1%
with only one neighboring infection to 1% when a user has 20
neighboring infections. This behavior is nearly identical to
memes in the early stages, indicating that compromised vic-
tims, like meme participants, are influenced by their peers.
In both cases, the influence of friends eventually tapers off
to a constant likelihood—a phenomenon previously observed
by social scientists [2,23]—but we find that compromised
peers have stronger lasting power.

Our results highlight that compromise occurs as a social
process where users in social networks are vulnerable to the
bad decision-making of their neighbors. In contrast, if large-
scale compromise was more frequently related to database
breaches effecting millions of users or password guessing,
we would expect the likelihood of a victim’s compromise
to be independent of their number of compromised peers.
Consequently, we argue that early outbreak detection in so-
cial networks is critical as it both prevents neighbors from
spreading their infection as well as restricts infections to
their nascent stage before they become 10-100 times more
effective at spreading.

5.3 Seeding Compromise Diffusions

If compromise is a social contagion, there remains a ques-
tion as to how criminals bootstrap the initial cascade effect.
We find that 35% of compromise campaigns rely on more
than 100 fake accounts to start the infection process. Of
these accounts, 25% tweet within 24 hours of the onset of
the compromise campaign. (The remaining accounts join at
a later date, presumably to re-seed new infection chains.)
Our dataset cannot elucidate how the attacker started the
remaining 65% of compromise campaigns. One hypothesis
is that criminals obtain a small number of compromised ac-
counts via targeted attacks or by directly purchasing them
from the underground, in turn compromising the victim’s
friends to start a cascade.
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Figure 11: Duration of clusters measured from the first
clustered tweet tg to the last tweet ¢,,.

5.4 Rate of Spread

To understand how rapidly contagions spread, we compare
the delay between each compromised user’s first spam tweet
t; to the onset of the contagion to, estimated as the first
tweet in the cluster. For comparison, we repeat this process
for every meme participant and fraudulent account. Our re-
sults are shown in Figure 10. We find that compromise is the
slowest process, with 30% of victims posting in the first day
compared to 44% of meme participants. Spam campaigns
reliant on fake accounts are the most condensed, with 65% of
accounts posting within a day of the campaign’s onset. The
long tail for fraudulent accounts results from fresh accounts
joining campaigns over time, with multiple campaigns be-
ing merged due to overlapping participants. Our findings
indicate that, contrary to Internet worms [24], social conta-
gions are slow moving due to the requirement that victim’s
interact with harmful content.

5.5 Campaign Duration

Despite the quick reaction time of compromised users to
unwarranted content in their feeds (discussed in Section 4.2),
contagions are nevertheless able to spread and last for mul-
tiple days. The median compromise cluster—shown in Fig-
ure 11—measured from its first tweet to to its last tweet t,,
is 9 days in duration. For comparison, memes last a median
of 5 days and spam campaigns conducted via fraudulent ac-
counts only last 1 day. The long duration of compromise
campaigns indicates that even batch jobs for detecting com-
promise contagions can reduce the number of victims im-



| Scam Type

| Contagions | Victims | Spam Tweets | Duration || API Sources | Distinct URLs |

Weight Loss Supplements 221 | 4,758,207
Gain Followers 779 | 3,704,314
Survey Leads 1 994,563

11,552,045 | 229 days 439 2,158,837
42,082,699 | 234 days 4,344 3,270,720
2,512,330 31 days 1 1,219

Table 3: Summary of the most prevalent monetization techniques spammed by criminals via compromised accounts.

pacted. If Twitter detected and remedied social contagions
within 24 hours, it would result in 70% fewer compromises.

6. MONETIZING HIJACKED ACCOUNTS

Profit is the ultimate goal of account hijacking. We ex-
plore the three dominant monetization strategies that crim-
inals rely on once they gain access to compromised creden-
tials. Table 3 shows a summary of each strategy and its
impact on Twitter. These monetization schemes are similar
to previous Twitter spam campaigns that rely on fraudulent
accounts [28], though the challenge of reaching an audience
is vastly simplified by account hijacking.

6.1 Weight Loss

Easy weight loss nutraceuticals were the most prolific
ploys that criminals used to monetize compromised ac-
counts. We identify 221 campaigns in our dataset contain-
ing roughly 4.7 million unique victims (34% of all compro-
mised accounts). Despite the short lifetime of individual
campaigns (an average of 6 days), weight loss schemes per-
sisted for 229 days—nearly the entirety of our data collection
period. We find that criminals relied on stolen credentials
to author spam tweets; miscreants composed 98% of the
advertisements for weight loss via Twitter owned and op-
erated clients where a username and password is required.
The largest single contagion in this set used 1.1 million com-
promised accounts to advertise “its been 2 weeks and i lost
20 Ibs thanks to garcinia, try it for free...”; linking to nearly
70,000 distinct URLs over a 23 day period.

Such scams generate a profit through visitors voluntar-
ily providing criminals their credit card details and subse-
quently purchasing garcinia, green coffee, acai berry, rasp-
berry ketone, or some other nutraceuticals (often advertised
with a misappropriation of the “Dr Oz” brand). Merchants
fulfilling these orders have recently come under target by the
FTC for deceptive practices [31], while graymarket advertis-
ers on Facebook have also had their ads pulled for running
afoul of advertisement rules [11]. The reliance of criminals
on compromised accounts to reach a wide audience can thus
be viewed as merely an evolution in the long battle against
weight loss scams.

6.2 Gain Followers & Retweets

Fake follower schemes where victims unwittingly (or will-
ingly) provide their credentials to criminals in return for pur-
portedly gaining more followers (or alternatively retweets)
are the second largest source of compromises on Twitter. We
identify 779 of these schemes that netted roughly 3.7 million
users (27% of all compromised accounts). Victims advertise
“easy way to get free followers...” and “iicretsiz takip¢i kazan”
(Earn free followers), with the most popular advertisements
appearing in English (47%), Turkish (22%), and Indonesian
(19%). Contrary to weight loss, 88% of spam tweets were
authored via a long tail of 4,343 OAuth applications and
the remaining 12% via the web. These applications include

Retweetlr, BestFollowers App, and a slew of throw away
OAuth credentials that criminals automatically generate to
withstand Twitter disabling their app.

Fake follower schemes both spread and generate a profit
by victims installing their application. Criminals use com-
promised accounts to advertise services such as hitp://
followrush.org/ where miscreants can buy 20,000 followers
for $40 and 5,000 retweets and 5,000 favorites for $40—all of
which are sourced from the compromised accounts. Alterna-
tive monetization strategies rely on tiered pricing between
free membership and premium membership to fake follower
rings [25]. One example of this appearing in our dataset is
PlusFollower, where free members must follow all premium
users and send a promotional tweet as frequently as every 4
hours, in return receiving an unspecified number of follow-
ers. Premium members on the other hand pay a fee (starting
at £10) to gain followers, in turn avoiding the requirement
to follow other users or advertise the service.

Fake follower rings on Twitter have persisted since 2010,
with criminals advertising both “real accounts” and fraud-
ulent accounts as the source of follows [16,25,30]. While
perhaps some victims willingly participate in these scams,
we argue that they should nevertheless be considered com-
promised. In particular, users lose control of their accounts
and have no oversight capability over the subsequent spam
advertisements, retweets, favorites, and follows that occur.
Even if victims wish to leave the service they must go
through the same mechanism to restore account control as
compromised victims. Finally, the monetization of these
participants is clearly criminal and in violation of Twitter’s
Terms of Service.

6.3 Lead Generation

The final monetization strategy we highlight is lead gener-
ation, where criminals entice victims into filling out surveys
for a nominal payment or trick victims into paying a “one-
time fee” before they can be paid for their work. We find
only one contagion relying on this approach, but it alone
consisted of nearly 1 million victims and lasted 31 days.
Criminals used hijacked credentials to tweet an automated
template loosely matching “Sweeeet!! | earned $157.18 this
week filling out a couple of surveys”, with all posts originating
from the web where a username and password is required.
Surprisingly, all of the URLs that criminals used to mone-
tize clicks lead to Facebook applications that are no longer
operational, hinting the contagion may have existed both on
Twitter and Facebook. While sleuthing through the broken
Facebook applications, we found an embedded iFrame that
linked back to at least one live site, getcashforsurveys.com,
which advertises a quick cash program through completing
surveys with an upfront enrollment fee of $74.

7. SUMMARY

Our work illuminates the threat of large-scale compromise
in social networks, and in concrete terms we identify 13 mil-



lion hijacked victims on Twitter. Our measurements capture
the underlying social component of compromise and how it
operates at scale. This includes: the human cost of 21% of
victims losing access to their account and 57% of victims be-
coming more isolated from friends; the ability of miscreants
to generate social cascades that propagate as virulently as
media sensations, with the single largest contagion infecting
1.1 million users; and the finding that user vulnerability to
compromise appears independent of user savviness.

Our results indicate that compromise is dominated by so-
cial contagions—phishing and malware campaigns that prey
on user trust—as opposed to weak passwords or lax site secu-
rity. The underlying social process that drives compromise
mirrors that of information diffusion for benign memes and
viral content. Consequently, a user with 20 compromised
neighbors is 10x more likely to become compromised com-
pared to a user with one compromised neighbor.

To combat the threat of wide-spread hijacking, we ob-
serve that in addition to better account-hijacking detection
signals, existing victims can serve as early detectors for at-
tacks. We find that a median user deletes an errant spam
tweet posted by a hijacker within one hour of its appear-
ance. If Twitter detected social contagions within 24 hours
of their outbreak via correlated deletion events (similar to
the detection scheme outlined in this paper), they could pro-
tect 70% of future potential victims. In particular, we em-
phasize that the centralized control afforded to online social
networks provides an opportunity to inoculate victims to ar-
rest the spread of contagions in a way that has never been
possible for Internet worms.
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