
VAST: A Unified Platform for Interactive Network Forensics

Matthias Vallentin
vallentin@icir.org

UC Berkeley

Vern Paxson
vern@icir.org

UC Berkeley / ICSI

Robin Sommer
robin@icir.org

ICSI / LBNL

Abstract
Network forensics and incident response play a vital role in
site operations, but for large networks can pose daunting dif-
ficulties to cope with the ever-growing volume of activity and
resulting logs. On the one hand, logging sources can generate
tens of thousands of events per second, which a system support-
ing comprehensive forensics must somehow continually ingest.
On the other hand, operators greatly benefit from interactive
exploration of disparate types of activity when analyzing an
incident.

In this paper, we present the design, implementation, and
evaluation of VAST (Visibility Across Space and Time), a dis-
tributed platform for high-performance network forensics and
incident response that provides both continuous ingestion of
voluminous event streams and interactive query performance.
VAST leverages a native implementation of the actor model
to scale both intra-machine across available CPU cores, and
inter-machine over a cluster of commodity systems.

1 Introduction

Security incidents often leave network operators scram-
bling to ferret out answers to key questions: How did the
attackers get in? What did they do once inside? Where
did they come from? What activity patterns serve as indi-
cators reflecting their presence? How do we prevent this
attack in the future?

Operators can only answer such questions by drawing
upon high-quality logs of past activity recorded over ex-
tended time. Incident analysis often starts with a narrow
piece of intelligence, typically a local system exhibiting
questionable behavior, or a report from another site de-
scribing an attack they detected. The analyst then tries
to locate the described behavior by examining logs of
past activity, often cross-correlating information of dif-
ferent types to build up additional context. Frequently,
this process in turn produces new leads to explore itera-
tively (“peeling the onion”), continuing and expanding
until ultimately the analyst converges on as complete of

an understanding of the incident as they can extract from
the available information.

This process, however, remains manual and time-
consuming, as no single storage system efficiently inte-
grates the disparate sources of data (e.g., NIDS, firewalls,
NetFlow data, service logs, packet traces) that investiga-
tions often involve. While standard SIEM systems such
as Splunk aggregate logs from different sources into a
single database, their data models omit crucial semantics,
and they struggle to scale to the data rates that large-scale
environments require.

Based on these needs, and drawing upon our years of
experience working closely with operational security staff,
we formulate three key goals for a system supporting the
forensic process [2]:

Interactivity. The potential damage that an attacker
can wreak inside an organization grows quickly as a func-
tion of time, making fast detection and containment a vital
concern. Further, a system’s interactivity greatly affects
the productivity of an analyst [16]. We thus desire replies
to queries to begin arriving within a second or so.

Scalability. The volume of data to archive and process
exceeds the capacity of single-machine deployments. A
fundamental challenge lies in devising a distributed archi-
tecture that scales with the number of nodes in the system,
as well as maximally utilizes the cores available in each
node.

Expressiveness. Representing arbitrary activity re-
quires a richly typed data model to avoid losing domain-
specific semantics when importing data. Similarly, the
system should expose a high-level query language to en-
able analysts to work within their domain, rather than
spending time translating their workflows to lower-level
system idiosyncrasies.

In this work, we develop a system for network foren-
sics and incident response that aims to achieve these goals.
We present the design and implementation of VAST (Visi-
bility Across Space and Time), a unified storage platform
that provides: (i) an expressive data model to capture de-



scriptions of various forms of activity; (ii) the capability
to use a single, declarative query language to drive both
post-facto analyses and detection of future activity; and
(iii) the scalability to support archiving and querying of
not just log files, but a network’s entire activity, from
high-level IDS alerts to raw packets from the wire.

The key to VAST’s power concerns providing the nec-
essary performance to support both very high data vol-
umes (100,000s of events/sec) and interactive queries
against extensive historical data. VAST features an en-
tirely asynchronous architecture designed in terms of the
actor model [25], a message-passing abstraction for con-
current systems, to fully utilize all available CPU and stor-
age resources, and to transparently scale from single-node
to cluster deployments. To support interactive queries,
VAST relies extensively on bitmap indexes that we adapt
to support its expressive query language.

Our evaluations show that on a single machine VAST
can ingest 100 K events/sec for events with 20 fields, re-
flecting an input rate of 2 M values/sec. Moreover, dis-
tributed ingestion allows for spreading the load over nu-
merous system entry points. Users receive a “taste” of
their results typically within 1 sec. This first subset helps
users to quickly triage the relevance of the result and
move on with the analysis by aborting or modifying the
current query. We also show that VAST, with its unified
approach, can effectively serve as a high-volume packet
bulk recorder.

We structure the rest of the paper as follows. In §2 we
summarize related work. We present the architecture of
VAST in §3 and our implementation in §4. In §5 we
evaluate VAST and assess its aptness for the domain.
Finally, we conclude in §6.

2 Related Work

Data Warehouses. VAST receives read-only data for
archiving, similar to a data warehouse. Dremel [40] stores
semi-structured data in situ and offers an SQL interface
for ad-hoc queries with interactive response. Dremel’s
query executor forms a tree structure where intermediate
nodes aggregate results from their children. VAST gen-
eralizes this approach with its actor-based architecture to
both data import and query execution.

Succinct [1] also stores data in situ, but in compressed
flat files that do not require decompression when searched.
Internally, Succinct operates on suffix trees and therefore
supports point, wildcard, and lexicographical lookup on
strings. Other data types (e.g., arithmetic, compound)
require transformations into strings to maintain a lexico-
graphical ordering. Succinct exhibits high preprocessing
costs and modest sequential throughput, rendering it inapt
for high-volume scenarios. When the working set fits in

memory, Succinct offers competitive performance, but
not when primarily executing off the filesystem.

ElasticSearch [17] is a distributed, document-oriented
database built on top of Apache Lucene [36], which
provides a full-text inverted index. ElasticSearch hides
Lucene behind a RESTful API and a scheme to partition
data over a cluster of machines. VAST uses a similar
deployment model, but instead provides a semi-structured
data model and internally relies on different indexing tech-
nology more amenable to hit composition and iterative
refinements.

Network Forensics. NET-Fli [20] is a single-machine
NetFlow indexer relying on secondary bitmap indexes.
The authors also present a promising (though patented)
bit vector encoding scheme, COMPAX. Instead of hand-
optimizing a system for NetFlow records, VAST offers a
generic data model. The separation between base data and
indexes has also found application in similar systems [51],
with the difference of relying on a column store for the
base data instead of a key-value store. The existing sys-
tems show how one can design a single-machine archi-
tectures, whereas we present a design that transparently
scales from single-machine to cluster deployments.

The Time Machine [38] records raw network traffic
in PCAP format and builds indexes for a limited set of
packet header fields. To cope with large traffic volumes,
the Time Machine employs a cutoff to cease recording a
connection’s packets after they exceed a size threshold.
The system hard-codes the use of four tree indexes over
the connection tuple, and cannot reuse its indexes across
restarts. Similarly, NetStore [22], pcapIndex [19], and
FloSIS [33] offer custom architectures geared specifically
towards flow archival. VAST represents a superset of bulk
packet recorders: it supports the same cutoff functionality,
and packets simply constitute a particular event type in
VAST’s data model.

The GRR Rapid Response framework [11] enables live
forensic investigations where analysts push out queries
to agents running on end-hosts. A NoSQL store accu-
mulates the query results in a central location, but GRR
does not feature a persistence component to comprehen-
sively archive end-host activity over long time periods.
VAST can serve as a long-term storage backend for host-
level data, which allows analysts to query both host and
network events in a unified fashion.

Finally, existing aggregators such as Splunk [49] oper-
ate on unstructured, high-level logs that lack the semantics
to support typed queries, and are not designed for stor-
ing data at the massive volumes required by lower-level
representations of activity. Splunk in particular cannot
dynamically adapt its use of CPU resources to change in
workload.

Distributed Computing. The MapReduce [14] execu-
tion model enables arbitrary computation, distributed over



a cluster of machines. While generic, MapReduce cannot
deliver interactive response times on large datasets due
to the full data scan performed for each job. Spark [58]
overcomes this limitation with a distributed in-memory
cluster computing model where data is efficiently shared
between stages of computation. However, for rapid re-
sponse times, the entire dataset must reside preloaded in
memory. But analysts can rarely define a working set
a priori, especially for spatially distant data, which can
result in thrashing due to frequent loading and evicting
of working sets from memory. We envision VAST going
hand-in-hand with Hadoop or Spark, where VAST quickly
finds a tractable working set and then hands it off to a
system well-suited for more complex analysis.

3 Architecture

To support flexible deployments on large-scale clusters,
as well as single machines while retaining a high de-
gree of concurrency, we designed VAST in terms of
the actor model [25]. In this model, concurrent en-
tities (“actors”) execute independently and in parallel,
while providing local fault isolation and recovery. Using
unique, location-independent addresses, actors communi-
cate asynchronously solely via message passing. They do
not share state, which prevents data races by design.

A related model of computation is communicating se-
quential processes (CSP) [26] in which processes commu-
nicate via synchronous channels. As a result, the sender
blocks until the receiver has processed the message. This
creates a tighter coupling compared to the asynchronous
fire-and-forget semantics of actor messaging. CSP em-
phasizes the channel while the actor model its endpoints:
actors have a location-independent address whereas pro-
cesses remain anonymous. In the context of distributed
systems, the focus on endpoints provides a powerful ad-
vantage: the actor model contains a flexible failure propa-
gation model based on monitors, links, and hierarchical
supervision trees [4]. These primitives allow for isolating
failure domains and implementing local recovery strate-
gies, and thus constitute an essential capability at scale,
where component failure is the norm rather than the ex-
ception. For these reasons, we deem the actor model a
superior fit for our requirements.

We first present the underlying data model and the
associated query language (§3.1), and then VAST’s com-
ponents and their structure (§3.2).

3.1 Data Model

VAST’s data model consists of types, which define the
physical interpretation of data. A type’s signature in-
cludes a type name and type attributes. A value combines

Boolean Expression Symbol

Conjunction E1 && E2
Disjunction E1 || E2
Negation / Group ! E / (E)
Predicate LHS ◦ RHS

Relational Operator ◦ Symbol

Arithmetic <, <=, ==, !=, >=, >

Membership in, !in

Extractor (LHS/RHS) Semantics

:T All values having type T
x.y.z Value according to schema
&key Event meta data

Types Examples

bool T, F
int / count / real +42 / 42 / -4.2

duration / time 10ms / 2014-09-25

string "foo", "b\x2Ar"
addr 10.0.0.1, ::1
subnet 192.168.0.0/24

port 80/tcp, 53/udp, 8/icmp
vector<T> / set<T> [x, x, x] / {x, x, x}

table<T,U> {(k,v), ..}

Table 1: VAST’s query language.

a type with a data instance. An event is a value with addi-
tional metadata, such as a timestamp, a unique identifier,
and arbitrary key-value pairs. A schema describes the
access structure of one or more types.

VAST’s type system includes basic types to represent a
single value (booleans, signed/unsigned integers, floating-
point, times and durations, strings, IPv4 and IPv6 ad-
dresses, subnets, ports), container types for bundled val-
ues (vectors, sets, tables), and compound types to create
sequenced structures (records), where each named field
holds a value (or nil if absent).

Query Language. VAST’s query language supports
filtering data according to boolean algebra. Table 1 lists
the key syntactic elements. A query expression con-
sists of one or more predicates connected with boolean
AND/OR/NOT. A predicate has the form LHS ◦ RHS,
with ◦ representing a binary relational operator. VAST
supports arithmetic and membership operators. At least
one side of the operator typically must be an extractor,
which specifies the lookup aspect for the value, as follows.

Schema extractors refer to particular values in the
schema. For example, in the predicate http.method

== "POST", http.method is a schema extractor, and
"POST" is the value to match. Meta extractors refer to
event metadata, such as &name to reference the event
name and &time the event timestamp. For example, the
predicate &time > now - 1d selects all events within



importer

archive

index

exporter

node

source sink

(a) Single-machine deployment. The NODE actor
accommodates all key system actors.

(b) Cluster deployment. Multiple NODEs peer to form
a cluster, which users access transparently.

Figure 1: VAST system architecture.

the last 24 hours. Type extractors leverage the strict typing
in VAST to perform queries over all values having a given
type. For example, the predicate :addr in 10.0.0.0/8

applies to all IP addresses (any VAST value or record field
with type addr).

To represent a log file having a fixed number of
columns, VAST automatically transforms each line into a
record whose fields correspond to the columns. VAST
enforces type safety over queries and only forwards them
to those index partitions with a compatible schema.

3.2 Components
From a high-level view, VAST consists of four key com-
ponents: (i) import to parse data from a source into events
and assign them a globally unique ID, (ii) archive to store
compressed events and provide a key-value interface for
retrieval, (iii) index to accelerate queries by keeping a par-
titioned secondary index referencing events in the archive,
and (iv) export to spawn queries and relay them to sinks
of various output formats. Each component consists of
multiple actors, which can execute all inside the same
process, across separate processes on the same host, or on
different machines.

A NODE1 represents a container for other actors. Typi-
cally, a NODE maps to a single OS-level process. Users
can spawn components all within a NODE (Figure 1(a))
or spread them out over multiple NODEs (Figure 1(b)) to
harness available hardware and network resources in the
most effective way. NODEs can peer to form a cluster,
using Raft [42] for achieving distributed consensus over
global state accessible through a key-value store interface
similar to etcd [18]. We refer to this globally replicated
state as meta store. Each NODE has access to its own meta
store instance which performs the fault-tolerant distribu-
tion of values. A typical cluster deployment exhibits a
shared-nothing architecture, where each NODE constitutes
a fully independent system by itself. In the following we

1We refer to particular actors in a SMALL CAPS font style.

discuss each of the four components in more detail.
Import. Data enters VAST via SOURCEs, each of

which can parse various input formats. SOURCEs produce
batches of events and relay them to IMPORTER, where
they receive a unique monotone ID. Upon receiving the
ID range and assigning them to the events, IMPORTER
relays the batch to ARCHIVE and INDEX.

Each event represents a unique description of activity
which analysts need to be able to unambiguously refer-
ence. This requires each event to have a unique iden-
tifier (ID) as meta data independent of its value. The
ID also establishes a link between the archive and index
component: an index lookup yields a set of IDs, each of
which identify a single event in the archive. This yields
the following requirements on ID generation: (i) 64 bits
to represent a sufficiently large number of events, but not
larger since modern processors efficiently operate on 64-
bit integers, (ii) monotonicity because the indexes we use
are append-only data structures, and (iii) ID generation
should also work in distributed setups.

The sequentiality requirement precludes approaches
involving randomness, such as universally unique identi-
fiers [32]. In fact, any random ID generation algorithm
experiences collisions after≈

√
N IDs due to the birthday

paradox. In combination with the 64-bit requirement, this
would degenerate the effective space from 264 to only√

264 = 232 IDs. Our approach uses a single distributed
counter in the meta store. Requesting a range of N IDs
translates to incrementing this counter by N, which re-
turns a pair with the old and new counter value [o,n)
denoting the allocated half-open range with n− o ≤ N
IDs. To avoid high latencies from frequent interaction
with the meta store, IMPORTER keeps a local cache of IDs
and only replenishes it when running low of IDs.

Archive. The ARCHIVE receives events from IM-
PORTER and stores them compressed on the filesystem.2

To avoid frequent I/O operations for small amounts of

2VAST supports LZ4 [37] and Snappy [48] for compression; both
trade higher speeds for lower compression ratios.



data, ARCHIVE keeps event batches in a fixed-size mem-
ory buffer (by default 128 MB) before writing them to the
filesystem. The buffer (which we term segment) keeps
batches sorted by the ID of their first event. Because
events have continuous IDs within a batch, this process
ensures strictly monotonic IDs within a segment.

ARCHIVE exposes a key-value interface: queried with a
specific ID, it returns a batch containing the ID. The alter-
native, returning the single matching event, only works for
small requests, but would quickly bottleneck the messag-
ing subsystem for moderate request volumes. Internally,
ARCHIVE operates at the granularity of segments to fur-
ther group event batches into larger blocks suitable for
sequential filesystem I/O. ARCHIVE keeps an LRU cache
of a configurable number of segments in memory. In the
future, we plan to store data in a format also shareable
with other applications, e.g., HDFS [46].

Index. By itself, ARCHIVE does not provide efficient
access to data, since extracting events with specific prop-
erties would require a full scan of the archive. Therefore,
VAST maintains a comprehensive set of secondary in-
dexes, which we divide up in horizontal partitions as a
unit of data scaling.

We chose bitmap indexes [41] because they provide an
excellent fit for the domain. First, appending new values
only requires time linear in the number of values in the
new data, which is optimal and yields deterministic per-
formance. Second, bitmap indexes have space-efficient
representations that enable us to carry out bitwise oper-
ations without expanding them. Third, bitmap indexes
compose efficiently: intermediate results have the form
of bit vectors and combining them with logical operation
translates into inexpensive bitwise operations. In §4.2 we
describe bitmap indexes in more detail.

VAST’s index consists of horizontal PARTITIONs, each
of which manages an independent set of bitmap indexes.
An active partition is mutable and can incorporate events,
whereas a passive partition is an immutable unit which
the scheduler manages during query processing. INDEX
relays each arriving batch of events to the currently active
PARTITION, which spawns a set of INDEXERs, one per
event type. An INDEXER may internally further helper
actors, e.g., record INDEXERs use one helper per field.
In comparison to a relational database, this architecture
provides a fine-grained concurrent equivalent to tables
(INDEXERs) and their attributes. PARTITION relays each
batch concurrently to all INDEXERs, each of which pro-
cesses only the subset matching its type. The copy-on-
write message passing semantics of the actor model im-
plementation makes this an efficient operation (INDEXERs
only need read-access to the events) while providing a
high degree of parallelism.

Export. While the import component handles event
ingestion, the export component deals with retrieving

subscribe

importer

archive

index

sinkexporter

relay event stream

filter
results

source

assign
IDs

Figure 2: Continuous query architecture.

events through queries. There exists one EXPORTER per
query, who sends its result to SINKs for rendering. VAST
currently includes ASCII, JSON, PCAP [35], Bro [43],
and Kafka [29] SINKs.

For historical queries over existing data, INDEX ana-
lyzes the abstract syntax tree (AST) of the query expres-
sion to determine the relevant PARTITIONs and constructs
a schedule to process them sequentially. This process
begins with partition pruning: the selection of relevant
partitions for a query. To this end, VAST uses a “meta
index,” consisting of event meta data and event type in-
formation. The meta index has different requirements
than the event indexes within a partition: it must tolerate
immense throughput and update rates. We currently asso-
ciate with each partition the time period its events spans
and record the entire partition schema.

After pruning, INDEX relays the query to the remain-
ing PARTITIONs, which then deconstructs the AST into
its predicates to match them with INDEXERs. If neces-
sary, PARTITION loads the INDEXER from the filesystem
into memory. Upon performing the predicate lookup, IN-
DEXERs send their hits back to their PARTITION, where
they trigger a re-evaluation of the query expression. If the
evaluation yields a change, PARTITION relays the delta
hits from the last evaluation up to INDEX, which in turn
forwards them to the subscribed EXPORTERs. As soon as
the first hits arrive at an EXPORTER, extracting events can
begin by asking ARCHIVE. When EXPORTER receives an
answer in the form of a batch of events, it concurrently
prefetches another batch proceeding with the “candidate
check” to filter out false positives, which may be neces-
sary for some indexes types (e.g., when using binning
for floating point values, see §4.2). Finally, EXPORTER
sends the matching results back to SINK. The process
terminates after EXPORTER has no more unprocessed hits
to extract.

VAST also supports continuous queries to subscribe to
new results as they arrive. As we illustrate in Figure 2,
EXPORTER can subscribe to a copy of the full incoming
event feed at IMPORTER to filter out those events matching
the query expression. Since IMPORTER and EXPORTER
live in the same process this operation does not copy any



data. In fact, a continuous query is effectively a candidate
check, with the only difference that events now come from
IMPORTER instead of ARCHIVE. The main challenge
lies in efficiently performing this check. To this end,
EXPORTER derives from the AST of the query expression
a visitor performing the candidate check. EXPORTER
constructs one visitor per unique event type on the fly,
and dispatches to the relevant visitor efficiently through
a hash table. For example, an expression may include
the predicate :addr in 10.1.1.0/24. If the current
event has no data of type addr, the visitor discards the
predicate.

3.3 Distribution

When the amount of data exceeds the capacity of a sin-
gle machine, VAST can distribute the load over multiple
machines, as we show in Figure 1(b) for 4 peering NODEs.

Cluster Deployment. In case a SOURCE produces
events at a rate that overloads a single system, it can
load-balance its events over all NODEs. Alternatively,
users can pin SOURCEs to a specific set of NODEs (e.g.,
if certain data should land on a more powerful system).
The dual occurs during querying: the user decides on
which NODEs to spawn an EXPORTER, each of which will
relay its events to the same SINK. In the common case
of round-robin load-balancing of input data, a user query
results in spawning one EXPORTER on all NODEs.

Fault Tolerance. Coping with NODE failure concerns
two aspects: data loss and query execution. To avoid
permanent data loss, we assume a reliable, distributed
filesystem, e.g., HDFS. Data loss can still occur during
ingestion, when ARCHIVE and INDEX have not yet written
their data to the filesystem. VAST minimizes this risk by
writing data out as quickly as possible. When a NODE
fails during query execution, another takes over respon-
sibility of its persistent ARCHIVE and INDEX data, and
re-executes the query on its behalf. EXPORTER can peri-
odically checkpoint its state (consisting of index hits and
event identifiers of results that have passed the candidate
check) to reduce the amount of duplicate results.

4 Implementation

We now present some implementation highlights of the
previously discussed architecture with a focus on ac-
tors (§4.1), bitmap indexes (§4.2), and queries (§4.3).

4.1 Actors

We implemented the components discussed in §3.2 with
the C++ Actor Framework (CAF), a native implementa-
tion of the actor model [10].

A

B

C

D

E

F

G

H

I

J

K

L

Figure 3: Flow-control implemented as back-pressure:
overloaded nodes J, I, and E propagate their load status
upstream such that data sources can throttle their sending
rate.

Performance. CAF offers a high-performance runtime
with a type-safe messaging layer that exhibits minimal
memory overhead. The runtime can distribute actors dy-
namically, within the same process, across the network,
or to GPUs. Within the same process, CAF uses copy-
on-write semantics to enable efficient messaging. CAF’s
networking layer handles actor communication and rout-
ing transparent to the user: the runtime decides whether
sending a message translates into a local enqueue opera-
tion into the recipient’s mailbox, or whether a middleman
serializes the message and ships it across the network.

CAF’s copy-on-write messaging proves particularly
valuable during the indexing process, where PARTITION
sends the same set of events to each INDEXER without
incurring a copy of the data. Although each INDEXER
sees the full data feed, this method still runs faster than
chopping up the input sequence and incurring extra mem-
ory allocations. Such a computation style resembles GPU
programming where we make available data “globally”
and each execution context picks its relevant subset.

Flow Control. CAF operates entirely asynchronously
and does not block: immediately after sending a message
an actor can dequeue a message from its mailbox. This
makes it easy for data producers to overwhelm down-
stream nodes if not equipped with enough processing ca-
pacity. A naive reaction entails provisioning more buffer
capacity at the edge so that the system can receive more
messages. But without including the true bottlenecks in
the decision, buffer bloat [31] only worsens the situation
by introducing higher latency and jitter. Flow control
attempts to prevent this scenario from happening: back-
pressure signals overload back to the sender, load shed-
ding reduces the accumulating tasks at the bottleneck, and
timeouts at various stages in the data flow graph bound
the maximum response time.

CAF currently does not support flow control. During
data import, data producers (SOURCEs) can easily over-
load downstream components (ARCHIVE and INDEX). To
throttle the sending rate of SOURCEs, we implemented a
simple back-pressure mechanism: when an actor becomes
overloaded, it sends an overload message to all its reg-
istered upstream components, which either propagate it



further, or if being the data producer themselves, throttle
their sending rate (see Figure 3). When an overloaded
actor becomes underloaded again, it sends an underload
message to signal upstream senders that it can process
data again. This basic mechanism works well to prevent
system crashes due to overloads, but does not help at ab-
sorb peak input rates. To prevent data loss of non-critical,
latency-insensitive events, queueing brokers that spill to
the filesystem (e.g., Kafka [29]) at the edges help smooth-
ing the data arrival rate to facilitate resource provisioning
for the average case. We are currently working with the
CAF developers to integrate various forms of flow control
deeper into the runtime.

4.2 Composable Indexing
VAST exclusively relies on bitmap indexes to accelerate
queries. We begin in §4.2.1 with briefly summarizing
existing work, which we then rely on in §4.2.2 to define
composable higher-level index types.

4.2.1 A Unified Indexing Framework

Traditional tree and hash indexes [6, 30] provide a quick
entry point into base data, but they do not compose effi-
ciently for higher-dimensional search queries. Inverted
and bitmap indexes avoid this problem by adding an extra
level of indirection: instead of looking up base data di-
rectly, they operate on the IDs of the base data, allowing
for combining results from multiple index lookups via set
operations. Consider the event values x(α) where x rep-
resents a numeric value and α its ID, e.g., 1(0), 3(1), 1(2),
2(3), and 1(4). An inverted index represents the events
as a mapping from values to position lists: 1→{0,2,4},
2→{3}, and 3→{1}. A bitmap index is an isomorphic
data structure where the position lists have the form of bit
vectors:3 1→ 〈10101〉, 2→ 〈00010〉, and 3→ 〈01000〉.
When the distinction does not matter, we use the term
identifier set to mean either position list or bit vector.

There exist hybrid schemes which combine both index
types in a single data structure [7], but VAST currently
implements its algorithms only in terms of bitmap indexes,
where operations from boolean algebra (set, intersection,
complement) naturally map to native CPU instructions. In
general, an index I provides two basic primitives: adding
new values and looking up existing ones under a given
predicate. To add a new value x(α), the index adds α to
the identifier set for x. A lookup under a predicate I ◦ x
retrieves the identifier set S = {α | x(α) ∈ I}. The size of
and index |I|= N represents the number of values entered
and the cardinality #I =C the number of distinct values.

3The literature often uses the term “bitmap” to refer to a bit vector,
i.e., a sequence of bits. We use “bit vector” instead to avoid confusion
between “bitmap” and “bitmap index.”

2

1

3

X

001

0

0

1

0

1

0

012

0010

0

0

1

0

0

0

0

1

0123

1

11

0

0,11,2

Equality Range Interval

1 0110100 11

1 0110100 11

0

0

Figure 4: Equality, range, and interval encoding exempli-
fied using bitmap indexes.

Our example has N = 5 and C = 3. In the following, we
sketch key concepts that affect the inherent space-time
trade-off during the implementation of indexes, which
include binning, coding, compression, and composition.

Binning reduces the cardinality of an index by group-
ing values into bins or rounding floating-point values to
a certain decimal precision. For example, we could cre-
ate bins [1,2]→ 〈10111〉 and [3,4]→ 〈01000〉, which
reduces the cardinality of the index to C = 2. The sur-
jective nature of binning introduces false positives and
therefore requires a candidate check with the base data to
verify whether a certain hit qualifies as an actual result.
A candidate check can easily dominate the entire query
execution time due to materializing additional base data
(high I/O costs) and extra post-processing. Therefore,
choosing an efficient binning strategy requires careful
tuning and domain knowledge, or advanced adaptive al-
gorithms [44, 47].

Encoding determines how an index maps values to
identifier sets. We show in Figure 4 the three major exist-
ing encoding schemes for a fixed cardinality C = 4, which
can represent values 0–3. Equality encoding associates
each value with exactly one identifier set. This scheme
reflects our running example and consists of exactly C
identifier sets. Range encoding associates each value x(α)

with a range of C− 1 identifier sets such that an ID α

lands in i sets where x≤ i. We can omit the last identifier
set because x ≤C−1 holds true for all possible values.
Interval encoding splits the index into dC

2 e overlapping
slices, each of which covers half of the values. In our
example, we have two the intervals [0,1] and [1,2].

Compression algorithms for bit vectors typically use
variations of run-length encoding, which support bitwise
operations without prior decompression. There exist nu-
merous algorithms: BBC [3], WAH [56], COMPAX [20],
CONCISE [12], WBC/EWAH [57, 34], PLWAH [15],
DFWAH [45], PWAH [53], VLC [13], and VAL [24].
We chose EWAH for VAST because when we began our
project software patents covered (and still do) the other
attractive candidates (WAH, PLWAH, COMPAX), which
would have prevented us from releasing our project as



open-source software. EWAH also trades space for time:
while exhibiting a slightly larger footprint, it executes
faster in certain conditions [23] because it can skip entire
blocks of words.

Multi-component indexes combine several individual
index instances (which might use different approaches)
such that each covers a disjoint partition of the value
domain. Doing so provides an exponential reduction in
space by decreasing the size of the value domain by a mul-
tiplicative factor for each component. We can decompose
a value x into k components 〈xk, . . . ,x1〉 by representing
it with respect to a fixed base (or radix) β = 〈βk, . . . ,β1〉:
x = ∑

k
i=1 xiβi, where xi = bx/∏

i−1
j=1 β jc mod βi, for all

i ∈ {1, . . . ,k}. This decomposition scheme directly ap-
plies to the index structure as well: a multi-component
index Kβ = 〈Ik, . . . , I1〉 consists of k indexes, where each
Ii covers a total of βi values. A base is uniform if βi = β j
for all i 6= j. A uniform base with βi = 2 for all 1≤ i≤ k
yields the bit-sliced index [55], because each xi can only
take on values 0 and 1. We denote this special case by
Θk = Kβ where |β | = k and βi = β j = 2 for all i 6= j.
Further, we define Φw = Kβ where ∏

k
i=1 βi ≤ 2w as an

index which supports up to 2w values.
For example, consider a two-component index Kβ =

〈I2, I1〉 with β = 〈10,10〉, which supports 100 distinct
values. Appending a value x(α) = 42 involves first de-
composing it into 〈4,2〉, and then appending 4(α) to I2
and 2(α) to I1. Looking up the value x = 23 begins with
decomposing x into 〈2,3〉, and then proceeds with com-
puting I2 = 2 ∧ I1 = 3. The final step resolves each com-
ponent lookup according to its encoding scheme. Oper-
ators other than {=, 6=} require more elaborate lookup
algorithms [8, 9], which we lay out in greater detail sepa-
rately [52].

4.2.2 Higher-Level Indexing

For each type in VAST’s data model, there exist differ-
ent requirements derived from the desired query opera-
tions. For example, numeric values commonly involve
inequality comparisons and IP address lookups top-k pre-
fix search. Different lookup operations require different
index layouts.

Per §3.1, a value consists of a type and corresponding
data. A value can exhibit no data, in which case it only
carries type information. We define the value index V=
〈N,D〉 as a composite structure with a null index N to
represent whether data is null (implemented as single
identifier set), and a data index D to represent a type-
specific index, whose instantiations we describe next.

Integral Indexes. The boolean index B= 〈S〉 for type
bool consists of a single identifier set, where α ∈ S im-
plies x(α) = true.

For types count and int, the challenge lies in both

supporting lookups under {<,≤,=, 6=,≥,>}, as well as
representing 264 distinct values. To address the high car-
dinality challenge, we use a multi-component index Φ64.
We found that a uniform base 10 works well in prac-
tice. To support the desired arithmetic operations, we use
range coding, which supports both equality and inequality
lookups efficiently.

Signed integers introduce a complication: we cannot
map negative values to array indices during encoding, and
only positive numbers work with value decomposition.
For a w-bit signed integer, we therefore introduce a “bias”
of 2w−1, which shifts the smallest value of −2w−1 to 0
in the unsigned representation. This allows us to use the
same index type for signed an unsigned integers inter-
nally. Thus, we define the count index as C= Φ64 and the
integer index as I= Φ64 with the aforementioned bias.

Floating-Point Index. Type real corresponds to a
IEEE 754 double precision floating point value [28],
which consists of one sign bit, 11 bits for the exponent,
and 52 bits for the significand. Consequently, we con-
struct the real index F = 〈S,E,M〉 as a boolean index
S = B for the sign, a bit-sliced index E = Θ11 for the ex-
ponent, and a bit-sliced index M = Θ52 for the significand.
Varying the number of bits in E and M allows for trading
space for precision without the need to round to a specific
decimal point.

Temporal Indexes. VAST represents duration data
as a 64-bit signed integers in nanosecond resolution,
which can represent ±292.3 years. Since duration and
int are representationally equal, the duration index D= I
directly maps to an integer index.

The type time describes a fixed point in time, which
VAST internally expresses as duration relative to the
UNIX epoch. Thus, the time index T= D is representa-
tionally equal to the duration index.

String Index. Existing string indexes rely on a dic-
tionary to map each unique string value to a unique nu-
meric value [50]. However, constructing a space-efficient
dictionary poses a challenge in itself [39, 27]. More-
over, this design only supports equality lookups naturally:
for substring search, one must search the dictionary key
space first to get the identifier sets, and then perform the
lookup for each identifier set, and finally combine the
result. Instead of using a stateful dictionary, one can rely
on hashing to compute a unique string identifier [51]. The
possibility of collisions now requires a candidate check.
While space-optimal due to the absence of a dictionary,
and time-efficient due to fast computation, this approach
does not support substring search.

We propose a new approach for string indexing that
supports both equality and substring search, yet operates
in a stateless fashion without dictionary. Our string index
S= 〈φ ,κ1, . . . ,κM〉 consists of an index φ = Kβ for the
string length, plus M indexes κi = Φ8 per character where



M is the largest string added to the index. When repre-
senting the character-level indexes κi as a bit-sliced index
Θ8, we obtain efficient case-insensitive (substring) search
for ASCII-encoded strings. This works because only the
6th bit determines casing in ASCII, and by simply omit-
ting the corresponding identifier set Θ8

6 during lookup,
case-insensitive search executes faster than case-sensitive
search. We plan on supporting search via a subset of regu-
lar expressions by compiling a pattern into an automaton
performing a sequence of per-character lookups. Like-
wise this structure lends itself to similarity search, e.g.,
via edit-distance.

This design works well for bounded, non-uniform
string data, such as URLs or HTTP user agents. For
other workloads we fall back to hashing in combination
with tokenization. This preprocessing step splits a string
according to a pattern (e.g., whitespace for text, ’/’ for
URIs, etc.), which then creates a set of multiple smaller
strings. Adaptively switching between the index types
presents an interesting opportunity for future work, e.g.,
by inspecting both the nature of user queries as well as
inferring the data distribution.

Network Indexes. IP addresses constitute a central
data type to describe endpoints of communicating enti-
ties. The most common operation on IP addresses con-
sists of top-k prefix search, e.g., I ∈ 192.168.0.0/24

or I /∈ fd00::/8. We can consider equality lookup as a
special case when k = 32 and k = 128 for IPv4 and IPv6,
respectively. There exists a standardized scheme to embed
a 32-bit IPv4 address inside a 128-bit IPv6 address [5]:
set the first 96 bits to 0 and copy the IPv4 address in the
last 32 bits. This yields the address index A= Θ128 where
each bit in the address corresponds to one identifier set in
the index.

The subnet type consists of a network address and
a prefix. Typical queries involve point lookups of IP
addresses (e.g., 192.168.0.42 ∈ I), and subset relation-
ships to test whether one subnet contains another (e.g.,
192.168.0.0/28⊆ I). The subnet index U= 〈A,P〉 con-
sists of an address index A and a single equality-encoded
index P for the prefix.

The port type consists of a 16-bit number and a trans-
port protocol type. The port index P= 〈Φ16,T 〉 consists
of an index for the 16-bit bit port number and a single
equality-encoded index T for the different port types.

Container Indexes. Container types include vector,
set, and table. A container contains a variable num-
ber of elements of a homogeneous type, unlike records,
which allows for fixed-length heterogeneous data with
named fields. For example, a set describes DNS lookup
results, where a single host name has associated multiple
A records. We support cardinality and subset queries on
containers.

The design of string indexes generalizes to contain-

extracting

waitingidle

done

hits arrived,
unprocessed hits

finished batch,
no inflight batches

finished batch,
inflight batch

processed fewer events
than in batch

all hits arrived,
no unprocessed hits batch

arrived

Figure 5: The QUERY state machine.

ers. Let M denote the maximum number of elements
in a container. We define the vector index XV and set
index XS both as 〈φ ,V1, . . . ,VM〉: an index φ = Kβ for
the container size and M value indexes Vi. The table in-
dex XT = 〈φ ,X1, . . . ,XM,Y1, . . . ,YM〉 consists of an index
for the size φ , a sequence of value indexes Xi = V for the
table keys, and a sequence of value indexes Yi = V for
the table values. Tables support key lookup, value lookup,
and checking for specific mappings.

4.3 Queries
The actor model provides an apt vehicle to implement a
fully asynchronous architecture, which enables VAST to
deliver interactive response times. We illustrate how this
applies to query processing in the following.

Finite state machines. We found that finite state ma-
chines (FSMs) prove an indispensable mechanism to en-
sure correct message handling during query execution.
Recall that NODE spawns an EXPORTER for each query
to bridge ARCHIVE and INDEX. We implemented EX-
PORTER as a finite state machine (see Figure 5), which
begins in idle state. Upon receiving new hits EXPORTER
asks ARCHIVE for the corresponding batches and tran-
sitions into waiting. As soon as the first batch arrives,
it transitions into extracting, from where a user can
selectively control it to fetch specific results. By letting
the user drive the extraction, VAST does not consume
resources unless needed.

Predicate-level caching. To speed-up related queries,
INDEX maintains a predicate cache. If hits for the expres-
sion A || B exists already, then a new expression A &&

D only requires looking up D. This makes iterative query
styles viable, where the analyst keeps on refining a filter
until having pin-pointed the desired information.

Evaluating expressions. When INDEX receives a
query consisting of multiple predicates, VAST evaluates
them concurrently. Recall from §3.2 that during a histori-
cal query INDEXERs send their hits back to PARTITION,
where they trigger an evaluation of the expression. If
the evaluation yields new hits (i.e., a bit vector with new



A

&&

BA

!

&&

B

||

C

! !

!

C

!

&&

B' C'A

Figure 6: Expression normalization: negation normal
form (NNF) and negation absorbing. The expression A ∧
B ∨C first becomes A∧ B∧C. Thereafter, we can absorb
negations further and reduce the intermediate expression
to A ∧ B′ ∧C′, e.g., if B = I < x, then B′ = I ≥ x.)

1-bits), PARTITION forwards them to INDEX, which in
turn relays them to EXPORTER.

To minimize latency and relay hits as soon as possible,
we normalize queries to negation normal form (NNF),
which eliminates double-negations and pushes negations
inwards to the predicate level. We also absorb remaining
negations into the predicates, which is possible because
each operator has a complement (e.g., < and≥). Figure 6
illustrates the normalization procedure. The absence of
negations, aside from saving an extra complement oper-
ation, has a useful property: a 1-bit will never turn to 0
during evaluation.

To understand this benefit, consider a predicate A
which decomposes into n sub-predicates. This may occur
for predicates of the form :addr in 172.16.0.0/16,
where the type extractor acts as a placeholder resolving to
n concrete schema extractors. When PARTITION sends A
to the n INDEXERS, they report their hits asynchronously
as soon as they become available. PARTITION contin-
uously re-evaluates the AST for new arriving Hi, until
having computed A = H1 ∨ ·· · ∨ Hn. As soon as a re-
evaluation yields one or more new 1-bits, PARTITION
relays this delta upstream to INDEX. If we kept the nega-
tion A, we would to wait for all n hits to arrive in order
to ensure we are not producing false positives. Without
negations, we can relay this change immediately since a
1-bit cannot turn 0 again in a disjunction.

5 Evaluation

We evaluate our implementation in terms of through-
put (§5.1), latency (§5.2), and storage requirements (§5.4).
We performed measurements with two types of inputs:
synthetic workloads that we can precisely control, and
real-world network traffic. For the former, we imple-
mented a benchmark SOURCE that generates input for
VAST according to a configuration file. The SOURCE
generates all synthetic data in memory to avoid adding
I/O load. For real-world input, we use logs from Bro and
raw PCAP traces. For the latter, VAST functions as a
flow-oriented bulk packet recorder.

VAST comprises 36,800 lines of C++14 code (exclud-
ing whitespace and comments), plus 6,700 line of C++
unit tests verifying the system’s building blocks and basic
interactions. We expand on these checks with an end-to-
end test of whether the entire pipeline—from import, over
querying, to export—yields correct results. For valida-
tion, we processed our ground truth (Bro logs and PCAP
traces) separately and cross-checked against the query
results VAST delivers. We found full agreement.

We conducted our single-machine evaluation experi-
ments on a 64-bit FreeBSD system with two 8-core Intel
Xeon E5-2650 CPUs with 128 GB of RAM and four 3 TB
SAS 7.2 K disks (RAID 10 with 2 GB of cache). Our
dataset encompasses a full-packet trace from the upstream
link at the International Computer Science Institute (ICSI),
containing 10 M packets over a 24-hour window on Feb.
24, 2015. We further use 3.4 M Bro connection logs de-
rived from this trace. For our cluster experiments, we
use 1.24 B Bro connection logs (152 GB), split into N
slices for N worker nodes, with N ranging from 1 to 24.
Each worker node runs FreeBSD 10 on a system with two
8-core Intel Xeon E5430 CPUs with 12 GB of RAM and
2 x 500 MB SATA disks. An additional machine with two
Xeon X5570 CPUs and 24 GB performs the slicing. The
machines share a 1 GE network link.

5.1 Throughput

One key performance metric represents the rate of events
that VAST can ingest. Recall the data flow: SOURCEs
parse and send input to a system entry point, an IM-
PORTER, which dispatches the events to ARCHIVE and
INDEX. Because we can spawn multiple SOURCEs for ar-
bitrary subsets of the data, we did not optimize SOURCEs
at this stage in the development, nor ARCHIVE since it
merely sequentially compresses events into fixed-size
chunks and writes them out to the filesystem. Instead, we
concerned ourselves with achieving high performance at
the bottleneck: INDEX, which performs the CPU-intensive
task of building bitmap indexes.

Macro Benchmark. For the ingestion benchmark,
we configured a batch size of 65,536 events at SOURCE,
after observing that greater values entail slightly poorer
performance and higher variance (we tested up to 524,288
events per batch).

Figure 7 shows the event rates for three data formats
(Bro, PCAP, and a benchmark test) at SOURCE, ARCHIVE,
and INDEX as a function of number of cores provided
to CAF’s scheduler in the single system setup. The y-
axis shows the throughput in events per second; note
the log scale. As mentioned above, by design SOURCE
and ARCHIVE exhibit a fairly constant throughput rate.
The highly concurrent architecture complicates measure-
ments of aggregate throughput at INDEX, because there



●

●

●

●

● ●

● ●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●
●

●

●

●

●

●
●

● ●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
● ●

●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

bro pcap test

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1,048,576

2,097,152

4,194,304

0 10 20 30 0 10 20 30 0 10 20 30
Cores

E
ve

nt
s/

se
c

Aspect
● Index

Archive
Source

Figure 7: Throughput in events per second as a function of the number of cores for three data types: Bro connection
logs, PCAP traces, and a test source generating synthetic events.

Label Results Query Description

A 374 resp h == 2001:7fe::53 Connections to a specific IPv6 address
B 942 (duration > 1000s || resp bytes > 40000) && service == "dns" Anomalous DNS / zone transfers
C 13 orig h in 192.150.186.0/23 && orig bytes > 10000 && service == "http" Outgoing HTTP requests > 10 KB (exfiltration)
D 3 duration > 1h && service == "ssh" Long-lived SSH sessions
E 969,092 conn state != "SF" TCP sessions lacking normal termination
F 4812 :addr in 192.150.186.0/23 && :port == 3389/? All RDP involving ICSI connections

G 1,077 :addr in 192.150.186.0/23 && :port == 3389/? Same as above, but applied to PCAP trace
H 34 &time > 2015-02-04+10:00:00 && &time < 2015-02-04+11:00:00 && ((src

== 77.255.19.163 && dst == 192.150.187.43 && sport == 49613/? &&
dport == 443/?) || (src == 192.150.187.43 && dst == 77.255.19.163
&& sport == 443/? && dport == 49613/?))

Extract all packets from a single connection
specified by its 4-tuple and restricted to a
one-hour time window

I 187,015 &time > 2015-02-04+10:00:00 && &time < 2015-02-04+11:00:00 && :addr
== 192.150.187.43

All traffic from a single machine within a one-hour
window

Table 2: Test queries for single-machine throughput and latency evaluation. The top 6 queries run over Bro connection
logs and the bottom 3 over a PCAP trace.

exist multiple running INDEXERs, but not all start and
finish at the same time. Therefore we compute through-
put at INDEX as the number of events processed between
start and end of the measurement. Consequently, the
throughput can never exceed the input rate of SOURCE.
We observe that the indexing rate approaches the input
rate for all sources at around 10 cores. Giving CAF’s
work-stealing scheduler, more cores yield no further im-
provement; in fact, performance decreases slightly. We
presume this occurs to due thrashing since CAF does not
pin the worker threads to a specific core, which increases
context switches and cache evictions.

VAST parses Bro events at a rate of roughly 100 K
events per second, with each event consisting of 20 dif-
ferent values, yielding an aggregate throughput of 2 M
values per second. For PCAP, events consist of only the
4-tuple plus the full packet payload; the latter do not need
indexing. VAST can read at around 260 K packets per
second with libpcap. Since ARCHIVE does not skip
the payload, it cannot keep up with the input rate. This
suggests that we need to parallelize this component in the
future, which can involve spawning one COMPRESSOR
per event batch to parallelize the process. With our test

SOURCE, INDEX converges to the input rate at around 14
cores, and we observe input rates close to 1 M events per
second. We conclude that VAST meets the performance
and scalability goals for data import on a single machine:
the system scales up to the point of the input rate after
10-14 cores.

Micro Benchmark. To better understand where VAST
spends its time, we instrumented CAF’s scheduler to get
fine-grained, per-actor resource statistics. This involved
bracketing the job execution with resource tracking calls
(getrusage), i.e., we only measure actor execution and
leave CAF runtime overhead, mostly out of the picture.

In Figure 8, we plot user versus system CPU time for all
key actors. Each point represents a single actor instance,
with its size scaled to the utilization: user plus system
CPU time divided by wallclock time. Note the log scale
on both axes. In the top-right corner, we see ARCHIVE,
which spends its time compressing events (user) and writ-
ing chunks to disk (system). Likewise, INDEX appears
nearby, which manages primarily PARTITIONs and builds
small “meta indexes” based on time to quickly identify
which PARTITION to consider during a query. The bulk
of the processing time spreads over numerous INDEXERs,



● ●

0us

10us

100us

1ms

10ms

100ms

1s

0us 10us 100us 1ms 10ms 100ms 1s 10s
User CPU time

S
ys

te
m

 C
P

U
 ti

m
e

ID

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

accountant
archive
event−data−indexer
event−indexer
event−name−indexer
event−time−indexer
identifier
importer
index
key−value−store
node
OTHER
partition
task

Utilization
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

0.25
0.50
0.75
1.00

Figure 8: User versus system CPU time for key actors.
Each point represents a single actor instance, with point
size scaled to utilization: user plus system CPU time
divided by wallclock time.

which we can see accumulating on the right-hand side,
because building bitmap indexes is a CPU-bound task.

5.2 Latency
Query response time plays a crucial role in assessing the
system’s viability. VAST spawns one EXPORTER per
query, which acts as a middleman receiving hits from IN-
DEX and retrieving the corresponding compressed chunks
of events from ARCHIVE. This architecture exhibits two
interleaving latency elements: the time (i) from the first
to the last set of hits received from INDEX, and (ii) from
the first to the last result sent to a SINK after a successful
candidate check.

To evaluate these latency components, we use the set
of test queries given in Table 2, which a security operator
for a large enterprise confirmed indeed reflect common
searches during an investigation.

Query Pipeline. Figure 9 illustrates the latency ele-
ments seen over the test queries. For all queries, we ran
VAST with 12 cores and a batch size of 65,536. The first
red bar corresponds to the time it took until EXPORTER
received the first set of hits from INDEX. The green bar
shows the time until EXPORTER has sent the first result
to its SINKs. We refer to this as “taste” time, since from
the user perspective it represents the first system response.
The blue bar shows the time until EXPORTER has sent
the full set of results to its SINK. The black transparent

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●

I

H

G

F

E

D

C

B

A

0 5 10 15 20 25 30 35 40 45
Latency (seconds)

Q
ue

ry

Time until
Index
Taste
Query

Count
●

●

●

100,000
200,000
300,000

Figure 9: Query pipeline reflecting various stages of
single-node execution. The first stage (Index) may appear
absent because it can take too little time to manifest in the
plot.

●

● ●

●

●

● ● ● ● ● ● ● ●
●

● ●

0

2

4

6

8

10

12

14

16

4 8 12 16
Cores

La
te

nc
y 

(s
ec

on
ds

) Query
● A

B
C
D
E
F
G
H
I

Figure 10: Index latency (full computation of hits) as a
function of cores.

box corresponds to the time when INDEX finished the
computation of hits. Finally, the crosses inside the bar
correspond to points in time when hits arrive, and the
circles to the times when EXPORTER finishes extracting
results from a batch of events.

We see that extracting results from ARCHIVE (blue bar)
accounts for the largest share of execution time. Currently,
this time is a linear function of the query selectivity, be-
cause EXPORTER does not perform extraction in parallel.
We plan to improve this in the future by letting EXPORTER
spawn a dedicated helper actor per arriving batch from
ARCHIVE, allowing for concurrent sweeps over the candi-
dates. Alternatively, we could offload more computation
into ARCHIVE. Selective decompression algorithms [21]
present an orthogonal avenue for further improvement.

Index. VAST processes index lookups in a continuous
fashion, with first hits trickling in after a few 100 msecs.
Figure 10 shows that nearly all index lookups fully com-
plete within 3 seconds once we use more than 4 cores.
For query G, we observe scaling gains up to 10 cores.
This particular query processes large intermediate bit vec-
tors during the evaluation, which require more time to
combine.

Overall, we find that VAST meets our single-machine
performance expections. In particular, we prioritized ab-



●

●

●

●

●

●

●

0.5

1.0

1.5

2.0

5 10 15 20 25
Nodes

1 
/ U

til
iz

at
io

n

Figure 11: Per-node CPU utilization during ingestion.

straction to performance in our implementation, and have
not micro-optimized code bottlenecks (such as via in-
specting profiler call graphs). Given that each layer of
abstraction—from low-level bit-wise operations to high-
level concurrency constructs—comes at the cost of perfor-
mance, we believe that future tuning efforts hold promise
for even further gains.

5.3 Scaling
In addition to single-machine benchmarks, we analyze
how VAST scales over multiple machines in a cluster
setting, as this will constitute the only viable deployment
model for large sites exhibiting copious amounts of data.

Ingestion. Our first measurement concerns quantifying
how CPU load during event import varies as a function of
cluster nodes. To this end, we ingest 1.24 B Bro connec-
tion logs by load-balance them over the cluster NODEs in
batches of 65 K. That is, as in Figure 1(b), a SOURCE on
a separate machine parses the logs and generates batches
with a median rate of 125 K events per second. Due to the
fixed input rate, we assess scaling by looking at the CPU
load of each worker.

Figure 11 shows per-machine CPU inverse utilization
1/U for U = ∑

N
i (ui + si)/∑

N
i ti with user CPU time ui,

system CPU time si, and wallclock time ti, for selected
values of i in [0,N]. The value U can exceed 1.0 because
each node runs several threads, and CPU time measure-
ments yield the sum of all threads. As one would expect
for effective load-balancing, we observe linear scaling
gains for each added node N.

Query. Our second measurement seeks to understand
how query latency changes when varying the number of
nodes. We show the index completion time of query D
in Figure 12. For these measurements, we first primed the
file system cache in each case to compensate for a short-
cut that our current implementation takes (it maintains
the index in numerous small files that cause high seek
penalties for reads from disk; an effect we could avoid by
optimizing the disk layout through an intermediary step
so that the index can read its data sequentially).

We observe linear scaling from 12 nodes upward, but

●

●●

●●
●

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25
Nodes

La
te

nc
y 

(s
ec

on
ds

)

Figure 12: Index completion latency as function of nodes.

experience problems for the lower half. Other queries
show linear scaling for small numbers of nodes. We are
in the process of investigating the discrepancy.

5.4 Storage
Unlike systems which process data in situ, VAST relies on
secondary indexes that require additional storage space.
In the case of the Bro connection logs, the index increases
the total storage by 90%. VAST, however, also com-
presses the raw data before storing in the archive, in this
case cutting it down to 47% of its original size. Taken
together, VAST requires 1.37 times the volume of its raw
input. For PCAP traces VAST, archives entire packets,
but skips all packet payload during index construction.
Archive compression brings down the trace to 92% of its
original size, whereas the index for connection 4-tuple
plus timestamps amounts to 4%. In total, VAST still
occupies less space than the original data.

String and container indexes require the most storage,
due to their composite and variable-length nature. The
remaining indexes exhibit constant space design, and their
concrete size is a direct function of encoding and layout
of the bit vectors.

6 Conclusion

When security analysts today attempt to reconstruct the
sequence of events leading to a cyber incident, they strug-
gle to bring together enormous volumes of heterogeneous
data. We present VAST [54], a novel platform for forensic
analysis that captures and retains a high-fidelity archive
of a network’s entire activity, leveraging domain-specific
semantics to manage high data volumes while support-
ing rapid queries against historical data. VAST’s novelty
comes from synthesizing powerful indexing technology
with a distributed, entirely asynchronous system archi-
tecture that can fully exploit today’s highly concurrent
architectures. Our evaluation with real-world log and
packet data demonstrates the system’s potential to sup-
port interactive investigation and exploration at a level
beyond what current systems offer.



References

[1] AGARWAL, R., KHANDELWAL, A., AND STOICA,
I. Succinct: Enabling Queries on Compressed Data.
In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI)
(2015).

[2] ALLMAN, M., KREIBICH, C., PAXSON, V., SOM-
MER, R., AND WEAVER, N. Principles for Devel-
oping Comprehensive Network Visibility. In Pro-
ceedings of the USENIX Workshop on Hot Topics in
Security (HotSec) (2008).

[3] ANTOSHENKOV, G. Byte-aligned Bitmap Compres-
sion. In Proceedings of the Conference on Data
Compression (DCC) (1995), p. 476.

[4] ARMSTRONG, J. Making Reliable Distributed Sys-
tems in the Presence of Software Errors. Ph.D. The-
sis, Department of Microelectronics and Informa-
tion Technology, KTH, Sweden, 2003.

[5] BAO, C., HUITEMA, C., BAGNULO, M., BOU-
CADAIR, M., AND LI, X. IPv6 Addressing of
IPv4/IPv6 Translators. RFC 6052, Internet Engi-
neering Task Force (IETF), 2010.

[6] BAYER, R., AND MCCREIGHT, E. M. Organiza-
tion and Maintenance of Large Ordered Indexes. In
Record of the ACM SIGFIDET Workshop on Data
Description and Access (1970), pp. 107–141.

[7] CHAMBI, S., LEMIRE, D., KASER, O., AND
GODIN, R. Better Bitmap Performance with Roar-
ing Bitmaps. CoRR abs/1402.6407 (2014).

[8] CHAN, C.-Y., AND IOANNIDIS, Y. E. Bitmap
Index Design and Evaluation. In Proceedings of the
International Conference on Management of Data
(SIGMOD) (1998), pp. 355–366.

[9] CHAN, C.-Y., AND IOANNIDIS, Y. E. An Efficient
Bitmap Encoding Scheme for Selection Queries.
In Proceedings of the International Conference on
Management of Data (SIGMOD) (1999), pp. 215–
226.

[10] CHAROUSSET, D., SCHMIDT, T. C., HIESGEN, R.,
AND WÄHLISCH, M. Native Actors – A Scalable
Software Platform for Distributed, Heterogeneous
Environments. In Proceedings of the International
Workshop on Programming based on Actors, Agents,
and Decentralized Control (AGERE!) (2013).

[11] COHEN, M. I., BILBY, D., AND CARONNI, G.
Distributed Forensics and Incident Response in the
Enterprise. Digital Investigations 8 (2011), S101–
S110.

[12] COLANTONIO, A., AND DI PIETRO, R. CON-
CISE: Compressed ’n’ Composable Integer Set. In-
formation Processing Letters 110, 16 (2010), 644–
650.

[13] CORRALES, F., CHIU, D., AND SAWIN, J. Vari-
able Length Compression for Bitmap Indices. In
Proceedings of the International Conference on
Database and Expert Systems Applications (DEXA)
(2011), pp. 381–395.

[14] DEAN, J., AND GHEMAWAT, S. MapReduce: Sim-
plified Data Processing on Large Clusters. In Pro-
ceedings of the Conference on Symposium on Op-
erating Systems Design & Implementation (OSDI)
(2004), vol. 6, pp. 10–10.

[15] DELIÈGE, F., AND PEDERSEN, T. B. Position
List Word Aligned Hybrid: Optimizing Space and
Performance for Compressed Bitmaps. In Proceed-
ings of the International Conference on Extending
Database Technology (EDBT) (2010), pp. 228–239.

[16] DOHERTY, W. J., AND THADANI, A. J. The Eco-
nomic Value of Rapid Response Time. IBM (1982).

[17] ElasticSearch. https://www.elastic.co/

products/elasticsearch.

[18] etcd. https://github.com/coreos/etcd.

[19] FUSCO, F., DIMITROPOULOS, X., VLACHOS, M.,
AND DERI, L. pcapIndex: An Index for Network
Packet Traces with Legacy Compatibility. SIG-
COMM Computer Communication Review 42, 1
(2012), 47–53.

[20] FUSCO, F., STOECKLIN, M. P., AND VLACHOS,
M. NET-FLi: On-the-fly Compression, Archiving
and Indexing of Streaming Network Traffic. Pro-
ceedings of the VLDB Endowment 3, 1-2 (2010),
1382–1393.

[21] FUSCO, F., VLACHOS, M., AND DIMITROPOULOS,
X. RasterZip: Compressing Network Monitoring
Data with Support for Partial Decompression. In
Proceedings of the Internet Measurement Confer-
ence (IMC) (2012), pp. 51–64.

[22] GIURA, P., AND MEMON, N. NetStore: An Effi-
cient Storage Infrastructure for Network Forensics
and Monitoring. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detec-
tion (RAID) (2010), pp. 277–296.

[23] GUZUN, G., AND CANAHUATE, G. Performance
Evaluation of Word-Aligned Compression Methods
for Bitmap Indices. Knowledge and Information
Systems (2015), 1–28.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
https://github.com/coreos/etcd


[24] GUZUN, G., CANAHUATE, G., CHIU, D., AND
SAWIN, J. A Tunable Compression Framework
for Bitmap Indices. In In Proceedings of the Inter-
national Conference on Data Engineering (ICDE)
(2014), pp. 484–495.

[25] HEWITT, C., BISHOP, P., AND STEIGER, R. A
Universal Modular ACTOR Formalism for Artificial
Intelligence. In Proceedings of the International
Joint Conferences on Artificial Intelligence (IJCAI)
(1973), pp. 235–245.

[26] HOARE, C. A. R. Communicating Sequential Pro-
cesses. Communications of the ACM 21, 8 (1978),
666–677.

[27] INGO MLLER, CORNELIUS RATSCH, F. F. Adap-
tive String Dictionary Compression in In-Memory
Column-Store Database Systems. In Proceed-
ings of the International Conference on Extending
Database Technology (EDBT) (2014), pp. 283–294.

[28] ISO/IEC. Information technology – Microproces-
sor Systems – Floating-Point arithmetic. Standard
60559:2011, 2011.

[29] Apache Kafka. http://kafka.apache.org.

[30] KNUTH, D. E. The Art of Computer Programming:
Sorting and Searching, vol. 3. 1998.

[31] KREIBICH, C., WEAVER, N., NECHAEV, B., AND
PAXSON, V. Netalyzr: Illuminating the Edge Net-
work. In Proceedings of the Internet Measurement
Conference (IMC) (2010), pp. 246–259.

[32] LEACH, P. J., MEALLING, M., AND SALZ, R. A
Universally Unique IDentifier (UUID) URN Names-
pace. RFC 4122, Internet Engineering Task Force
(IETF), 2005.

[33] LEE, J., LEE, S., LEE, J., YI, Y., AND PARK, K.
FloSIS: A Highly Scalable Network Flow Capture
System for Fast Retrieval and Storage Efficiency.
In Proceedings of the USENIX Annual Technical
Conference (ATC) (2015).

[34] LEMIRE, D., KASER, O., AND AOUICHE, K. Sort-
ing Improves Word-aligned Bitmap Indexes. Data
& Knowledge Engineering 69, 1 (2010), 3–28.

[35] libpcap. http://www.tcpdump.org.

[36] Lucene. https://lucene.apache.org.

[37] LZ4: Extremely Fast Compression algorithm.
https://github.com/Cyan4973/lz4.

[38] MAIER, G., SOMMER, R., DREGER, H., FELD-
MANN, A., PAXSON, V., AND SCHNEIDER, F. En-
riching Network Security Analysis with Time Travel.
In Proceedings of the ACM SIGCOMM conference
(2008).

[39] MARTNEZ-PRIETO, M. A., BRISABOA, N., CNO-
VAS, R., CLAUDE, F., AND NAVARRO, G. Practical
Compressed String Dictionaries. Information Sys-
tems 56 (2016), 73–108.

[40] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER,
G., SHIVAKUMAR, S., TOLTON, M., AND VAS-
SILAKIS, T. Dremel: Interactive Analysis of Web-
Scale Datasets. Proceedings of the VLDB Endow-
ment 3, 1-2 (2010), 330–339.

[41] O’NEIL, P. E. Model 204 Architecture and Perfor-
mance. In Proceedings of the International Work-
shop on High Performance Transaction Systems
(1987), pp. 40–59.

[42] ONGARO, D., AND OUSTERHOUT, J. In Search of
an Understandable Consensus Algorithm. In Pro-
ceedings of the USENIX Annual Technical Confer-
ence (ATC) (2014), pp. 305–319.

[43] PAXSON, V. Bro: A System for Detecting Network
Intruders in Real-Time. Computer Networks 31,
23–24 (1999), 2435–2463.

[44] ROTEM, D., STOCKINGER, K., AND WU, K. Opti-
mizing Candidate Check Costs for Bitmap Indices.
In Proceedings of International Conference on In-
formation and Knowledge Management (CIKM)
(2005), pp. 648–655.

[45] SCHMIDT, A., AND BEINE, M. A Concept for a
Compression Scheme of Medium-Sparse Bitmaps.
In Proceedings of the International Conference on
Advances in Databases, Knowledge, and Data Ap-
plications (DBKDA) (2011), pp. 192–195.

[46] SHVACHKO, K., KUANG, H., RADIA, S., AND
CHANSLER, R. The Hadoop Distributed File Sys-
tem. In Proceedings of the Symposium on Mass
Storage Systems and Technologies (MSST) (2010),
pp. 1–10.

[47] SINHA, R. R., AND WINSLETT, M. Multi-
resolution Bitmap Indexes for Scientific Data. ACM
Transactions on Database Systems (TODS) 32, 3
(2007).

[48] Snappy: A fast compressor/decompressor. https:
//code.google.com/p/snappy/.

[49] Splunk. http://www.splunk.com.

http://kafka.apache.org
http://www.tcpdump.org
https://lucene.apache.org
https://github.com/Cyan4973/lz4
https://code.google.com/p/snappy/
https://code.google.com/p/snappy/
http://www.splunk.com


[50] STOCKINGER, K., CIESLEWICZ, J., WU, K.,
ROTEM, D., AND SHOSHANI, A. Using bitmap
index for joint queries on structured and text data.
New Trends in Data Warehousing and Data Analysis
(2009), 1–23.

[51] TAYLOR, T., COULL, S. E., MONROSE, F., AND
MCHUGH, J. Toward Efficient Querying of Com-
pressed Network Payloads. In Proceedings of
the USENIX Annual Technical Conference (ATC)
(2012), USENIX ATC ’12.

[52] VALLENTIN, M. Scalable Network Forensics.
Ph.D. Thesis, University of California, Berkeley,
2016. (in preparation).

[53] VAN SCHAIK, S. J., AND DE MOOR, O. A Memory
Efficient Reachability Data Structure Through Bit
Vector Compression. In Proceedings of the Inter-
national Conference on Management of Data (SIG-
MOD) (2011), pp. 913–924.

[54] VAST. http://vast.io.

[55] WONG, H. K. T., LIU, H.-F., OLKEN, F., ROTEM,
D., AND WONG, L. Bit Transposed Files. In Pro-
ceedings of the International Conference on Very
Large Data Bases (VLDB) (1985), pp. 448–457.

[56] WU, K., OTOO, E., AND SHOSHANI, A. On the
Performance of Bitmap Indices for High Cardinality
Attributes. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB) (2004),
pp. 24–35.

[57] WU, K., OTOO, E. J., AND SHOSHANI, A. A Per-
formance Comparison of Bitmap Indexes. In Pro-
ceedings of International Conference on Informa-
tion and Knowledge Management (CIKM) (2001),
pp. 559–561.

[58] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE,
A., MA, J., MCCAULEY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proceedings of
the USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI) (2012), pp. 2–2.

Appendix

In §4.2.2 we introduce the structure of VAST’s high-level
index types, but do note elaborating how to operate on
them with concrete algorithms. Table 3 and Table 4 pro-
vide this information in more detail. For each type, we
show how to append a value (symbol�) to an index as
well as how to query it in terms of logical operations.

The basic index I in these tables represents a bitmap or
inverted index with a fixed binning, encoding, and com-
pression scheme. I operates on unsigned integer values
and supports operators {<,≤,=, 6=,≥,>}. For append
and lookup algorithms of the concrete encoding schemes,
we refer the reader to the literature [8, 9], from which sum-
marize established results about multi-component indexes
in the following.

The basic index forms the foundation for the
k-component index Kβ = 〈I1, . . . , Ik〉 with |β | = k
(see §4.2.1). It represents the foundation of many higher-
level indexes and its lookup algorithm varies according to
the relational operator of the predicate. Answering equal-
ity queries involves computing a simple conjunction:

EQ(i,x) =
i∧

j=1

(I j = x j) (1)

Thus, we can answer Kβ = x with EQ(k,x), and Kβ 6= x
with EQ(k,x). For one-sided range queries, the algorithm
less-than-or-equal (LE) implements range lookup of the
form Kβ ≤ x as follows:

LE(i,x)=


(Ii ≤ xi−1) ∨ (θi ∧ LE(i−1,x)) i > 1,xi > 0
θi ∧ LE(i−1,x) i > 1,xi = 0
(Ii ≤ xi−1) ∨ LE(i−1,x) i > 1,xi = βi−1
Ii ≤ xi i = 1

(2)
The extra parameter θi depends on the coding scheme

and means either Ii = xi or Ii ≤ xi. Putting together algo-
rithms EQ and LE, we can now answer Kβ ◦ x under all
relational operators with the algorithm `:

`(Kβ ,◦,x) =



EQ(k,x) ◦ ∈ {=}
EQ(k,x) ◦ ∈ {6=}
LE(k,x) ◦ ∈ {≤}
LE(k,x) ◦ ∈ {>}
LE(k,x−1) ◦ ∈ {<} ∧ x > 0
LE(k,x−1) ◦ ∈ {≥} ∧ x > 0
0 ◦ ∈ {<} ∧ x = 0
1 ◦ ∈ {≥} ∧ x = 0

(3)

The two results 0 and 1 denote the empty and complete
identifier set. In the case of bitmap indexes, 0 represents
a bit vector with all 0-bits, whereas 1 only consists of
1-bits.

http://vast.io


Ty
pe

St
ru

ct
ur

e
A

pp
en

d
L

oo
ku

p

ba
si

c∗
I

I
�

x(
α
)

I◦
x

k-
co

m
po

ne
nt

†
K

β
=
〈I

k,
..
.,

I 1
〉

Θ
k
=

K
β

β
i=

β
j=

2
∧
|β
|=

k

Φ
w
=

K
β

∏
k i=

1
β

i
≤

2w

K
β
�

x(
α
)
≡

I i
�

x(α
)

i
∀1
≤

i≤
k

K
β
◦x
≡

`(
K

β
,◦
,x
)

b
o
o
l

B
=

S
B
�

x(
α
)
≡

S
�

α
iff

x
=
t
r
u
e

B
◦x
≡

{ S
x
=
f
a
l
s
e

S
x
=
t
r
u
e

c
o
u
n
t

C
=

Φ
64

C
�

x(
α
)
≡

Φ
64
�

x(
α
)

C
◦x
≡

Φ
64
◦x

i
n
t

I=
Φ

64
I�

x(
α
)
≡

Φ
64
�

(x
(α

)
u +

263
)

I◦
x
≡

Φ
64
◦(

x
u +

263
)

r
e
a
l

§

F
=
〈S
,E

,M
〉

S
=
B

E
=

Θ
11

M
=

Θ
52

F
�
〈x

s,
x e
,x

m
〉(α

)
≡

    S
�

x(α
)

s

E
�

x(α
)

e

M
�

x(α
)

m

F
◦x
≡

              S
=

x s
∧

E
◦x

e
∧

M
◦x

m
◦
∈
{=

,6=
}

S
=

0
∧

E
◦x

e
∧

M
◦x

m
x
≥

0
∧
◦
∈
{>

,≥
}

S
=

1
∨
(E
◦x

e
∧

M
◦x

m
)

x
≥

0
∧
◦
∈
{<

,≤
}

S
=

0
∨
(E
O

x e
∧

M
O

x m
)

x
<

0
∧
◦
∈
{>

,≥
}

S
=

1
∧

E
O

x e
∧

M
O

x m
x
<

0
∧
◦
∈
{<

,≤
}

d
u
r
a
t
i
o
n

D
=
I

D
�

x(
α
)
≡

I�
x(

α
)

D
◦x
≡

I◦
x

t
i
m
e

T
=
D

T
�

x(
α
)
≡

D
�

x(
α
)

T
◦x
≡

D
◦x

s
t
r
i
n
g

S
=
〈φ

,κ
1,
..
.,

κ
M
〉

φ
=

K
β

κ
i
=

Θ
8

S
�
〈x

1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

κ
i
�

x(α
)

i
∀1
≤

i≤
n

S
◦x
≡

                      0
|x
|>

M
φ
=

0
|x
|=

0

φ
=
|x
|∧

|x
| ∧ i=
1

κ
i
=

x i
◦
∈
{=

,6=
}

φ
≥
|x
|∧

M
−
|x
|+

1 ∨ i=
1

 |x| ∧ j=
1

κ
i+

j−
1
=

x j

 
◦
∈
{∈

,/∈
}

∗
T

he
ba

si
c

in
de

x
ha

s
a

fix
ed

bi
nn

in
g,

co
di

ng
,a

nd
co

m
pr

es
si

on
sc

he
m

e
an

d
op

er
at

es
on

va
lu

es
x
∈

X
⊆
N
+ 0

an
d

ha
s

ca
rd

in
al

ity
C
≤
|X
|.

(s
ee

§4
.2

.1
)

†
T

he
k-

co
m

po
ne

nt
in

de
x

op
er

at
es

w
ith

a
ba

se
β
=
〈β

k,
..
.,

β
1〉

.W
e

sh
ow

al
go

ri
th

m
`

in
§?

?.
T

he
bi

t-
sl

ic
ed

in
de

x
[5

5]
is

a
sp

ec
ia

lo
fK

β
w

he
re

β
i
=

β
i
=

2
fo

ra
ll

i6=
j.

T
he

m
ul

ti-
co

m
po

ne
nt

in
de

x
Φ

w

ca
n

at
m

os
tr

ep
re

se
nt

2w
di

st
in

ct
va

lu
es

.
§

W
e

de
no

te
by
O

th
e

“m
ir

ro
re

d”
op

er
at

or
of
◦,

e.
g.

,<
an

d
>

.

Ta
bl

e
3:

Su
m

m
ar

y
of

ap
pe

nd
an

d
lo

ok
up

op
er

at
io

ns
on

hi
gh

-l
ev

el
in

de
xe

s.



Ty
pe

St
ru

ct
ur

e
A

pp
en

d
L

oo
ku

p

a
d
d
r

A
=

Θ
12

8
A
�
〈x

1,
..
.,

x 1
28
〉(α

)
≡

Θ
12

8
i
←

x(α
)

i
∀1
≤

i≤
12

8
A
◦x
≡

    k ∧ i=
1

Θ
12

8
i

=
x i
◦
∈
{∈
}

A
3

x
◦
∈
{/∈
}

s
u
b
n
e
t

U
=
〈A

,Φ
8 〉

U
�
〈x

a,
x p
〉(α

)
≡

{ A
�

x(α
)

a

Φ
8
�

x(α
)

p
U
◦x
≡

    Φ
8
≤

x p
∧

( p ∧ i=
1

A
i
=

x a
i) ◦

∈
{∈
}

U
3

x
◦
∈
{/∈
}

p
o
r
t

P
=
〈Φ

16
,Φ

2 〉
P
�
〈x

n,
x t
〉(α

)
≡

{ Φ
16
�

x(α
)

n

Φ
2
�

x(α
)

t
P
◦x
≡

{ Φ
16
◦x

n
∧

Φ
2
=

x t
x t
6=
u
n
k
n
o
w
n

Φ
16
◦x

n
x t
=
u
n
k
n
o
w
n

v
e
c
t
o
r
∗

X
V
=
〈φ

,V
1,
..
.,
V

M
〉

φ
=

K
β

X
V
�
〈x

1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

V
i
�

x(α
)

i
∀1
≤

i≤
n

X
V
◦x
≡

{ se
e
S
◦x

τ
(x
)
=
v
e
c
t
o
r

se
e
X

S
◦x

τ
(x
)
=
s
e
t

s
e
t

X
S
=
〈φ

,V
1,
..
.,
V

M
〉

φ
=

K
β

X
S
�
〈x

1,
..
.,

x n
〉(α

)
≡

{ φ
�

n(
α
)

V
i
�

x(α
)

i
∀1
≤

i≤
n

X
S
◦x
≡

          0
|x
|>

M
φ
=

0
|x
|=

0
|x
| ∧ i=
1

( M ∨ j=
1

V
j
=

x i

) ot
he

rw
is

e

t
a
b
l
e

†

X
T
=
〈φ

,X
1,
..
.,

X M
,Y

1,
..
.,

Y M
〉

φ
=

K
β

X i
=
V

Y i
=
V

X
T
�
〈(

k 1
,v

1)
,.
..
,(

k n
,v

n)
〉(α

)
≡

    φ
�

n(
α
)

X i
�

k(α
)

i
∀1
≤

i≤
n

Y i
�

v(α
)

i
∀1
≤

i≤
n

X
T
◦k
≡

    M ∨ i=
1

X i
=

k
◦
∈
{∈
}

X
T
3

k
◦
∈
{/∈
}

X
T
◦v
≡

    M ∨ i=
1Y i

=
v
◦
∈
{∈
}

X
T
3

v
◦
∈
{/∈
}

X
T
◦(

k,
v)
≡

    M ∨ i=
1(X

i
=

k
∧

Y i
=

v)
◦
∈
{∈
}

X
T
3
(k
→

v)
◦
∈
{/∈
}

∗
D

ep
en

di
ng

on
th

e
ty

pe
τ
(x
)

of
va

lu
e

x,
th

e
lo

ok
up

fu
nc

tio
n

ca
n

ei
th

er
pr

es
er

ve
or

de
ri

ng
(a

s
in

su
bs

tr
in

g
se

ar
ch

)o
ri

gn
or

e
or

de
ri

ng
(a

s
in

su
bs

et
se

ar
ch

).
†

A
ta

bl
e

va
lu

e
ha

s
th

e
fo

rm
x
=
〈(

k 1
,v

1)
,.
..
,(

k n
,v

n)
〉.

W
e

sh
ow

lo
ok

up
s

fo
ra

si
ng

le
ke

y,
va

lu
e,

or
m

ap
pi

ng
.

Ta
bl

e
4:

Su
m

m
ar

y
of

ap
pe

nd
an

d
lo

ok
up

op
er

at
io

ns
on

hi
gh

-l
ev

el
in

de
xe

s.


	Introduction
	Related Work
	Architecture
	Data Model
	Components
	Distribution

	Implementation
	Actors
	Composable Indexing
	A Unified Indexing Framework
	Higher-Level Indexing

	Queries

	Evaluation
	Throughput
	Latency
	Scaling
	Storage

	Conclusion
	

