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Perspectives

 Worked in intrusion detection since 1994
 Came into field by accident (from network meas.)

 20+ security program committees
 Chaired/co-chaired USENIX Security, IEEE S&P
 400+ reviews

 (Many repeated mistakes!)

 Much work in the field lacks soundness or
adequate generality
 Some of the sharpest examples come from rejected

submissions, so this talk light on “naming names”



Biases

 Network intrusion detection rather than
host-based
 This is simply a bias in emphasis

 Empiricism rather than theory
 … But I’m going to argue this is correct!

 Primary author of the “Bro” network
intrusion detection system
 … But even if I weren’t, I’d still trash Snort!



Problematic Nature
 of the Research Domain

 Intrusion detection spans very wide range of
activity, applications, semantics

 Much is bolt-on / reactive
 Solutions often lack completeness / coherence
 Greatly increases evasion opportunities

 Problem space is inherently adversarial
 Rapid evolution
 Increasingly complex semantics
 Commercialization of malware is accelerating pace
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Pitfalls for Problem Selection

 Research fundamental: understanding the
state-of-the-art

 Pitfall: coming to intrusion detection from
another domain, especially:
 Machine learning
 Hardware
 Mathematical/statistical modeling …

⇒ Due to field’s rapid innovation, very easy to
underestimate evolution of the problem domain



Coming From Machine Learning:

 Pitfall:
  Showing that a new ML technique performs
somewhat better than a previous one against a
particular dataset = Exceeding Slim Contribution
(ESC)
 Proof: see below

 What’s instead required:
  Develop a technique that

 Exhibits broad applicability …
 … and conveys insight into its power & limitations



Coming From Machine Learning, con’t

 General problem (R. Sommer):
Much of classical ML focuses on understanding
 The common cases …
 … for which classification errors aren’t costly

 For intrusion detection, we generally want to find
 Outliers ….
 … for which classification errors cost us either in

vulnerability or in wasted analyst time



Coming From Hardware:

 Pitfall:
  More quickly/efficiently matching sets of strings /
regular expressions / ACLs = ESC
 (Especially if done for Snort - see below)

 What’s instead required:
  Hardware in support of deep packet inspection

 Application-level analysis
 Not: transport-level (byte stream w/o app. semantics)
 Certainly not: network-level (per-packet)

 Correlation across flows or activity



Coming From Modeling:

 Pitfall:
  Refining models for worm propagation = ESC

 Particularly given published results on different, more efficient
propagation schemes

 What’s instead required:
  Modeling that changes perception of how to deal
with particular threats

 Operational relevance (see below)

      Modeling that provides insight into tuning,
FP/FN tradeoffs, detection speed



Commercial Approaches
 vs. Research
 Legitimate concern for problem selection:

  Is it interesting research if commercial vendors already
do it?

 Not infrequent concern for field due to combination of
(1) heavy commercialization + (2) heavy competition =
diminished insight into vendor technology

 Response:
  Yes, there is significant value to exploring technology in
open literature

 Valuable to also frame apparent state of commercial
practice



Problem Selection:
 Snort is not State-of-the-art
 NIDS problem space long ago evolved beyond

  per-packet analysis
 NIDS problem space long ago evolved beyond

  reassembled stream analysis
 Key conceptual difference: syntax versus semantics

 Analyzing semantics requires parsing & (lots of) state
 … but is crucial for (1) much more powerful analysis and

(2) resisting many forms of evasion
 Snort ≈ syntax

⇒ Research built on it fundamentally limited



Problem Selection &
 Operational Relevance
 Whole point of intrusion detection: work in the Real World
 Vital to consider how security works in practice.  E.g.:
 Threat model

 Pitfall: worst-case attack scenarios with attacker resources /
goals outside the threat model

 Available inputs
 Pitfall: correlation schemes assuming ubiquitous sensors or

perfect low-level detection
 Pitfall: neglecting aliasing (DHCP/NAT) and churn
 Pitfall: assuming a single-choke-point perimeter



Operational Relevance, con’t

 The need for actionable decisions:
 False positives ⇒ collateral damage

 Analyst burden:
 E.g., honeypot activity stimulates alarms

elsewhere; FPs

 Management considerations:
 E.g., endpoint deployment is expensive
 E.g., navigating logs, investigating alarms is

expensive



Operational Relevance, con’t

 Legal & business concerns:
 E.g., data sharing

 Granularity of operational procedures:
 E.g., disk wipe for rooted boxes vs. scheme to

enumerate altered files, but w/ some errors

 These concerns aren’t necessarily “deal
breakers” …
 … but can significantly affect research “heft”
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Development of Technique
 Pitfall: failing to separate data used for

development/analysis/training from data for
assessment
 Important to keep in mind the process is iterative

 Pitfall: failing to separate out the contribution of
different components

 Pitfall: failing to understand range/relevance of
parameter space

 Note: all of these are standard for research in general
 Not intrusion-detection specific
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Assessment Considerations

 Experimental design
 Pitfall: user studies

 Acquiring & dealing with data
 Tuning / training
 False positives & negatives (also true +/-’s!)
 Resource requirements
 Decision speed

 Fast enough for intrusion prevention?

 … Evasion & evolution



Assessment - The Difficulties of Data

 Arguably most significant challenge field faces
 Very few public resources ….
 …. due to issues of legality/privacy/security

 Problem #1: lack of diversity / scale
 Pitfall: using data measured in own CS lab

 Nothing tells you this isn’t sufficently diverse!

 Pitfall: using simulation
 See Difficulties in Simulating the Internet, Floyd/Paxson,

IEEE/ACM Transactions on Networking, 9(4), 2001

 Hurdle: the problem of “crud” …



1 day of “crud” seen at ICSI (155K times)

fragment-with-DFDNS-label-forward-
compress-offset

window-recisionPOP3-server-sending-
client-commands

FIN-advanced-last-seqtoo-many-DNS-
queries

unmatched-HTTP-
reply

NUL-in-lineexcess-RPCdata-before-
established

unescaped-special-
URI-char

no-login-promptdouble-%-in-URIdata-after-reset

unescaped-%-in-URImalformed-SSH-
identification

DNS-truncated-RR-
rdlength

connection-originator-
SYN-ack

truncated-NTPline-terminated-with-
single-CR

DNS-len-lt-hdr-lenbase64-illegal-
encoding

SYN-seq-jumpIRC-invalid-lineDNS-truncated-answerbad-TCP-header-len

SYN-inside-connectioninappropriate-FINDNS-RR-unknown-
type

bad-SYN-ack

SYN-after-resetillegal-%-at-end-of-URIDNS-RR-length-
mismatch

bad-RPC

SYN-after-closeHTTP-version-
mismatch

DNS-label-too-longbad-Ident-reply

possible-split-routingHTTP-chunked-
multipart

DNS-label-len-gt-pktactive-connection-
reuse



The Difficulties of Data, con’t

 Problem #2: stale data
 Today’s attacks often greatly differ from 5 years ago
 Pitfall: Lincoln Labs / KDD Cup datasets (as we’ll see)

 Problem #3: failing to tell us about the data
 Quality of data?  Ground truth?  Meta-data?
 Measurement errors & artifacts?

 How do you know?  (calibration)

 Presence of noise
 Internal scanners, honeypots, infections
 “Background radiation”

 Frame the limitations



The KDD Cup Pitfall / Vortex
 Lincoln Labs DARPA datasets (1998, 1999)

 Traces of activity, including attacks, on hypothetical air force base
 Virtually the only public, labeled intrusion datasets

 Major caveats
 Synthetic

 Unrelated artifacts, little “crud”
 Old!
 Overstudied!  (answers known in advance)

 Fundamental: Testing Intrusion detection systems:
A critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by
Lincoln Laboratory, John McHugh, ACM Transactions
on Information and System Security 3(4), 2000



KDD Cup Pitfall / Vortex, con’t
 KDD Cup dataset (1999)

 Distillation of Lincoln Labs 1998 dataset into features
for machine learning

 Used in competition for evaluating ML approaches
 Fundamental problem #1
 Fundamental problem #2

 There is nothing “holy” about the features
 And in fact some things unholy (“tells”)

 Even more over-studied than Lincoln Labs
 See An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly
Detection, Mahoney & Chan, Proc. RAID 2003



KDD Cup Pitfall / Vortex, con’t

 Data remains a magnet for ML assessment

 All that the datasets are good for:
 Test for “showstopper” flaws in your approach
 Cannot provide insight into utility, correctness



Assessment - Tuning & Training
 Many schemes require “fitting” of parameters

(tuning) or profiles (training) to operational
environment

 Assessing significance requires multiple datasets
 Both for initial development/testing …
 … and to see behavior under range of conditions
 Can often sub-divide datasets towards this end

 But do so in advance to avoid bias

 Longitudinal assessment:
 If you tune/train, for how long does it remain effective?



General Tuning/Training Considerations

 Very large benefit to minimizing parameters
 In addition, if training required then tolerating noisy

data

 When comparing against other schemes, crucial
to assess whether you fairly tuned them too

 General technique: assess range of parameters /
training rather than a single instance

 Even so, comparisons can exhibit striking
variability …



Performance Comparison Pitfall …

Snort gets worse on P4, Bro gets better - which is “correct” ?
If we hadn’t tried two different systems, we never would have known …

Sommer/Paxson,
ACM CCS 2003



Assessment - False Positives & Negatives

 FP/FN tradeoff is of fundamental interest
 FPs can often be assessed via manual inspection

 For large numbers of detections, can employ random
sampling

 FNs more problematic
 Inject some and look for them
 Find them by some other means

 e.g., simple brute-force algorithm

 Somehow acquire labeled data

 Common pitfall (esp. for machine learning):
 For both, need to analyze why they occurred



False Positives & Negatives, con’t

 For “opaque” algorithms (e.g., ML) need to also
assess why true positives & negatives occur!
 What does it mean that a feature exhibits power?

 Key operational concern: is detection actionable?
 Fundamental: The Base-Rate Fallacy and its

Implications for the Difficulty of Intrusion Detection,
S. Axelsson, Proc. ACM CCS 1999
 E.g., FP rate of 10-6 with 50M events/day ⇒ 50 FPs/day

 Particularly problematic for anomaly detection
 If not actionable, can still aim to:

 Provide high-quality information to analyst
 Aggregate multiple signals into something actionable



Assessment - Evasion
 One form of evasion: incompleteness

 E.g., your HTTP analyzer doesn’t understand
Unicode
 There are a zillion of these, so a pain for research
 But important for operation …

 Another (thorny) form: fundamental
ambiguity
 Consider the following attack URL:

http://…./c/winnt/system32/cmd.exe?/c+dir

 Easy to scan for (e.g., “cmd.exe”), right?



Fundamental Ambiguity, con’t

 But what about
    http://…./c/winnt/system32/cm%64.exe?/c+dir

 Okay, we need to handle % escapes.  

    (%64=‘d’)

 But what about
http://…./c/winnt/system32/cm%25%54%52.exe?/c+dir

 Oops.  Will server double-expand escapes …
or not?
 %25=‘%’   %54=‘6’  %52=‘4’



Assessment - Evasion, con’t
 Reviewers generally recognize that a spectrum of

evasions exists …
 … rather than ignoring these, you are better off

identifying possible evasions and reasoning about:
 Difficulty for attacker to exploit them
 Difficulty for defender to fix them
 Likely evolution

 Operational experience: there’s a lot of utility in
“raising the bar”

 However: if your scheme allows for easy evasion,
or plausible threat model indicates attackers will
undermine ….
 …. then you may be in trouble



Assessment - General Considerations

 Fundamental question: what insight does the
assessment illuminate for the approach?
 Pitfall: this is especially often neglected for ML and

anomaly detection studies …
 Note: often the features that work well for these

approaches can then be directly coded for, rather than
indirectly
 I.e., consider ML as a tool for developing an approach, rather

than a final scheme

 Fundamental question: where do things break?
 And why?



Summary of Pitfalls / Considerations

 Select an apt problem
 State-of-the-art
 Aligned with operational practices
 Avoid ESCs! (Exceedingly Slim Contributions)

 Beware KDD Cup! ……. Beware Snort!
 Obtain realistic, diverse data

 And tell us its properties
 What’s the range of operation?

 And accompanying trade-offs?
 How do the false positives scale?

 How do you have confidence in the false negatives?
 What’s the insight we draw from the assessment?


