
Detecting Network Intruders in Real Time

Vern Paxson

ICSI Center for Internet Research (ICIR)
International Computer Science Institute

and
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA

vern@{icir.org, ee.lbl.gov}

April 24, 2003

Overview:

Why network intrusion detection? Why not?

Styles of approaches.

An example of a NIDS: BRO.

The fundamental problem of evasion, possible solutions.

Detecting activity: sniffers, stepping stones, backdoors.

What can you learn watching a network link?

• Far and away, most traffic travels across the Internet

unencrypted.

• Communication is layered with higher layers correspond-

ing to greater semantic content.

• The entire communication between two hosts can be

reassembled: individual packets (e.g., TCP/IP headers),

application connections (TCP byte streams), user sessions

(Web surfing).

• You can do this in real-time.

Tapping links, con’t:

• Appealing because it’s cheap and gives broad coverage.

• You can have multiple boxes watching the same traffic.

• Generally (not always) undetectable.

• Can also provide insight into a site’s general network use.

Problems with passive monitoring:

• Reactive, not proactive.

• Assumes network-oriented (often “external”) threat model.

• For high-speed links, monitor may not be able to keep up.

Accordingly, monitors often rely on filtering (kernel/BPF).

Very high speed: beyond state-of-the-art.

• Depending on “vantage point”, sometimes you see only

one side of a conversation (especially inside backbone).

• Against a skilled opponent, there is a fundamental problem

of evasion: confusing / manipulating the monitor.

Styles of intrusion detection — Signature-based:

Core idea: look for specific, known attacks.

Example (from Snort):

alert tcp any any -> [a.b.0.0/16,c.d.e.0/24] 80
(msg:"WEB-ATTACKS conf/httpd.conf attempt"; nocase;
sid:1373; flow:to_server,established;
content:"conf/httpd.conf"; [...])

Note: Can be at different semantic layers (e.g., headers; bytestream).

Pro: good attack libraries, easy to understand results.

Con: unable to detect new attacks, or even just variants.

Styles of intrusion detection — Anomaly-detection:

Core idea: attacks are peculiar.

Approach: build/infer a profile of “normal” use, flag deviations.

Example: “user joe only logs in from host A, usually at night.”

Note: works best for narrowly-defined entities.

Pro: potentially detects wide range of attacks, including novel.

Con: potentially misses wide range of attacks, including known.

Con: can potentially be “trained” to accept attacks as normal.

Styles of intrusion detection — Specification-based:

Core idea: manually specify what activity is okay / not okay.

Look for patterns of activity that deviate from the site’s policy.

Example: “user joe is only allowed to log in from host A.”

Pro: potentially detects wide range of attacks, including novel.

Pro: framework can accommodate signatures, anomalies.

Con: policies/specifications require significant development &

maintenance. Harder to construct attack libraries.

Some general considerations about the problem space:

Security is about policy.

The goal is risk management, not bulletproof protection.

All intrusion detection systems suffer from the twin problems

of false positives and false negatives.

These are not minor, but an Achilles heel.

Scaling works against us: as the volume of monitored traffic

grows, so does its diversity.

⇒ NIDS research “in the lab” is far removed from operational

reality.

A look at BRO— design goals & constraints (1995):

High-speed, large volume monitoring (FDDI/GigEther).

Real-time notification.

Mechanism separate from policy.

Extensible.

Avoid simple mistakes ⇒ specialized policy language.

The monitor will be attacked.

Network

Event Engine

Policy Script Interpreter

libpcap

Policy script Real-time notification
Record to disk

Event streamEvent control

Tcpdump filter Filtered packet stream

Packet stream

Event engine:

Event engine does generic (non-policy) analysis.

E.g. Connection-level: connection attempt

connection finished

E.g. Application-level: ftp request, pm request getport,

login input line

E.g. Activity-level: login success, stepping stone,

ssh signature found

If you define a handler for a given event, it will be invoked any

time the event occurs. Otherwise, event engine skips the work

for detecting the event.

The Bro policy language:

Strongly typed ⇒ catch errors at compile time.

Arithmetic types, pattern, time, interval, port, addr.

Records, associative tables & sets:

global ftp sessions: table[conn id] of

ftp session info

Strings are counted rather than NUL-terminated:

USER nice\0USER root

Analyzers:

For all TCP connections (via SYN/FIN/RST packets):

- start time, duration, service, addresses, sizes

- port, address scanning, including stealth scans

Applications: DNS, FTP, HTTP, SMTP, NTP, Portmapper . . .

Telnet and RLogin:

login successful, login failure

activating encryption, login confused

⇒ login input line, login output line

in first five months of operation,

120 UCB break-ins (60 root compromises)

Teeth:

“rst” terminates the local end of a TCP connection via RST

packet(s). (Tricky for picky TCP stacks that insist on exact

sequence numbers.)

“drop-connectivity” talks to border router, throws away

given remote traffic: a reactive firewall.

Both invoked via system(), per arbitrary policy.

At LBNL, 40–70 scans dropped each day.

Routers run with 500–2,000∗ ACL entries.

When scan blocking fails, mean time to break-in: 4 hours.

Attacks on the monitor:

Overload: make it drop packets, sneak in.

Defense: leave doubt as to monitor’s capabilities; shed load.

Crash: make it fault, or run out of resources.

Defense: watchdog timer & backup tracing;

resource management hooks.

Discredit: make it generate zillions of false alarms.

Defense: supple alarm filtering, rule editing.

Subterfuge: fool the monitor.

Example: how to pull out strings from TCP session?

The problem of evasion:

How to detect particular text (e.g., “USER root”) in a packet?

Easiest: scan for the text in each packet.

No good : text might span multiple packets.

(Major inadequacy of stateless NIDS’s.)

Okay, then: remember text scanned in last packet.

No good : out-of-order delivery.

Okay, then: fully reassemble the byte stream.

Tricky. Costs state . . . and still evadeable.

Monitor

(10 hops)

(18 hops)
user

seq= 6 ... 9

TTL=20

TTL=12

10 .. 13

nice

10 .. 13

TTL=20 root

TTL expires

user nice

user root

?

?

user root

VictimAttacker

Crud seen on a DMZ:

Storms of 10,000+ FIN or RST packets, due to TCP bugs.

Storms due to foggy days.

Private addresses leaking out.

Legitimate tiny fragments.

Fragments with DF set.

Overlapping fragments.

TCPs that acknowledge data that was never sent (!).

TCPs that retransmit different data than sent in the first place.

The problem of evasion, con’t:

• Many evasions look anomalous, but when monitoring a

high volume traffic stream, you already see lots of anomalous-

but-benign junk.

• Problem is pervasive. See “Insertion, Evasion, and Denial of

Service: Eluding Network Intrusion Detection,” Ptacek/Newsham:

http://www.icir.org/vern/Ptacek-Newsham-Evasion-98.ps

• Evasion “toolkits” have been available for a number of years.

Not yet widely used.

• As in much of intrusion detection, likely arms race.

Possible ways to resist evasion:

• Exercise great care when developing IDS, attending to all

possible exceptional events.

• Deploy sensors on the end hosts.

• Bifurcating analysis. E.g., for “rob<BS><BS>ot”,

examine directly; as “ro<BS><BS>ot”; and as “root”.

• Understand network and end-host details sufficiently well

to resolve ambiguities [Shankar/Paxson 2003].

• Deploy a traffic “normalizer” (or “scrubber”) to remove

ambiguities from traffic stream [Handley/Kreibich/Paxson 2002]

Traffic normalizers — defending against subterfuge:

Idea: “bump in the wire” removes ambiguities from traffic stream.

Examples:

• rectify inconsistent IP fragments

• drop excessively long fragments

• regenerate TTLs (!)

• clear Don’t-Fragment

• shed load under flooding

• defend patsy, victim from stealth port scanning

• make TCP RSTs reliable

• 60+ more

Detecting activity — sniffer detection:

Depending on your threat model, you can often get a lot of

mileage out of detecting evidence of a compromise rather

than the attack itself.

E.g., at LBNL, inbound IRC = break-in.

Another form: sniffer detection.

• e.g., via increased ping times

• e.g., via observing reverse DNS queries

• e.g., via transmitting bogus username/password pairs

• note: works for bad guys detecting IDS, too.

Detecting “stepping stones”:

Internet attacks invariably do not come from the attacker’s

own personal machine, but from a stepping-stone: an intermediary

previously compromised.

Furthermore, usually it is a chain of stepping stones.

Manually tracing attacker back across the chain is virtually

impossible.

So: want to detect that a connection going into a site is closely

related to one going out of the site.

Detecting stepping stones, con’t:

Approach #1 (Staniford/Heberlein, 1994):

Look for similar text content.

For each connection, generate a thumbprint (24 bytes)

summarizing per-minute character frequencies.

Connections with similar thumbprints become likely stepping

stone candidates.

Detecting stepping stones, con’t:

Approach #2 (USAF, 1994):

• Break-in to upstream attack site.

• Recurse.

Detecting stepping stones, con’t:

Approach #3 (Zhang/Paxson, 2000):

Leverage unique on/off pattern of user login sessions.

Look for connections that end idle periods at the same time.

Two idle periods correlated if ending time differ by ≤ σ sec.

If enough idle periods coincide ⇒ stepping stone pair.

For A → B → C stepping stone, just 2 correlations suffices.

(For A → B → . . . → C → D, 4 suffices.)

Detecting stepping stones, con’t:

⇒ Works very well, even for encrypted traffic.

But: easy to evade, if attacker cognizant of algorithm.

And: also turns out there are frequent legit stepping stones.

Detecting backdoors:

“Backdoor”: a service installed on a compromised machine to

allow the attacker to surreptitously return.

How to find access to these against sea of background traffic?

General algorithm for interactive traffic (Zhang/Paxson 2000):

• look for frequent small packets

• look for small packets with large interarrivals

Detecting backdoors, con’t:

Protocol-specific: SSH, Rlogin, Telnet, FTP.

Algorithms also amenable to filtering for large perf. gain:

e.g., tcp[(tcp[12]>>2):4] = 0x5353482D and

(tcp[((tcp[12]>>2)+4):2] = 0x312E or

tcp[((tcp[12]>>2)+4):2] = 0x322E)

Detecting backdoors, con’t:

Plus: a hack for detecting some root backdoors (“# ”).

⇒ Found 437 root backdoors in single 24-hour period at UCB.

Also recognizers for non-interactive protocols:

SMTP, Napster, Gnutella, KaZaA.

In general, algorithms perform quite well.

And: can employ filtering with little loss of accuracy.

But: find many legit backdoors.

Summary points:

• Security is not about bullet-proof; it’s about policies and

tradeoffs.

• You can detect a whole lot by piecing together judiciously

filtered network traffic into events reflecting activity . . .

• . . . but there are significant problems with evasion leading

to an arms race.

• Traffic contains much more diversity/junk than you’d think.

• The endpoint host is a great location to look for attacks.

• Increasingly, NIDS need to be supplemented by an

active forwarding element.

