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ABSTRACT Categories and Subject Descriptors
Automatic protocol reverse-engineering is important f@rm se- C.2.2 [Computer Systems Organizatiori: Network Protocols; D.4.6
curity applications, including the analysis and defenszreg bot- [Operating System$: Security and Protection

nets. Understanding the command-and-control (C&C) patosed

by a botnet is crucial for anticipating its repertoire ofamébus ac- General Terms
tivity and to enable active botnet infiltration. Frequentigcurity
analysts need to rewrite messages sent and received by a bot i
order to contain malicious activity and to provide the bditea
with an illusion of successful and unhampered operation effo Keywords

able such rewriting, we need detailed information aboutittent  protocol reverse engineering, botnet infiltration, binamglysis
and structure of the messageshioth directionsof the communi-

cation despite the fact that we generally only have accesketo

implementation of one endpoint, namely the bot binary. €ufrr 1 INTRODUCTION

Security

techniques cannot enable such rewriting. In this paper,ropegse Automatic protocol reverse-engineering techniques enakt

techniques to extract the format of protocol messamegby an tractjng .the protocol specification of unknown or undochadn
application that implements a protocol specification, améhfer application-level protocols [18,22,25,26, 35, 36, 38, 49letailed

the field semantics for messages bsémtandreceivedby the ap- protocol specification can enhance many security appticatsuch
plication. Our techniques enable applications such astiegthe as fuzzing [22], application fingerprinting [17], deep petkispec-
C&C messages for active botnet infiltration. We implement ou tion [29], or signature-based filtering [27].

techniques into Dispatcher, a tool to extract the messageafo One important application for automatic protocol reversgie

and field semantics of both received and sent messages. We us&€ering is the analysis and infiltration of botnets. Botnitgge
Dispatcher to analyze MegaD, a prevalent spam botnet eingloy ~ networks of infected computers under control of an attacies
a hitherto undocumented C&C protocol, and show that theoprot ~ One of the dominant threats in the Internet today. They enabl
col information extracted by Dispatcher can be used to tevihie wide variety of abusive or fraudulent activities, such aansming,
C&C messages. phishing, click-fraud, and distributed denial-of-ses/{®DoS) at-
tacks [10, 28, 32]. At the heart of a botnet is its command-and
control (C&C) protocol, which enables a bot to locate rendes
*This material is based upon work partially supported by the points in the network and provides the botmaster with a méans
National Science Foundation under Grants No. 0311808, No. coordinate malicious activity in the bot population. Autatic pro-
0448452, No. 0627511, and CCF-0424422, by the Air Force Of- tocol reverse-engineering can be used for understand@&C
fice of Scientific Research under MURI Grant No. 221789700417 protocol used by a botnet, revealing a wealth of informagibout
by the Army Research Office under the Cyber-TA Research Grant h biliti fits bot dth Il intent of theneat
No. W911NF-06-1-0316, and by CyLab at Carnegie Mellon under € €aPabIILES OT IS bots and the overall intent of then
grant DAAD19-02-1-0389 from thé Army Research Office. Any In addition to understanding its C&C protocol, an analysyma
opinions, findings, and conclusions or recommendationsessgd also be interested in interacting actively with the botri&tevious
in this material are those of the authors and do not necésseri work analyzed the economics of the Storm botnet by rewritireg
flect the views of the National Science Foundation, the AitBo  commands sent to the bots [33]. Other times, an analyst may wa
Office of Scientific Research, or the Army Research Office. to rewrite messages sent upstream by the bots, such as wites a s
containment policy requires the analyst to make bots lieiatheir
capabilities and achievements. For example, the analygtwaat
to rewrite a capability report sent by the bot to make the laster
Permission to make digital or hard copies of all or part o§ tiwork for believe that the bot can send email even if all the outgoingBM
personal or classroom use is granted without fee providatidbpies are connections by the bot are actually blocked, or that the dobi-
not made or distributed for profit or commercial advantage that copies nected to the Internet using a high-speed LAN when in redlity
bear this notice and the full citation on th_e first page. TwmmenNise,_tp funneling traffic through a low-throughput connection.
repuphs_h, to post on servers or to redistribute to listgunes prior specific To successfully rewrite a C&C message, an analyst first needs
permission and/or a fee. to understand the goal of the message, its field structuceiten
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Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00. location of fields carrying relevant information to rewrité/hile




older botnets build their C&C protocol on top of IRC, many @eew
botnets use customized or proprietary protocols [20, 31,43

Analyzing such C&C protocols is challenging. Manual pratoc
reverse-engineering of such protocols is time-consuniigearor-
prone. Furthermore, previous automatic protocol revemgéneer-
ing techniques have limitations that prevent them from &ngb
rewriting of such protocols. Techniques that use netwaitras
input [25, 26, 35, 36] are easily hampered by obfuscatiomoryg-
tion. Techniques that rely on observing how a communicatioth
point (client or server) processes a received input [1832249]
present two major limitations. First, given a program they c
only extract information about one side of the dialog, itkeere-
ceivedmessages. To obtain complete understanding of the proto-
col, they require access to the implementation of both sidi¢ise
dialog. Unfortunately, when studying a botnet analysterofiave
access only to the bot side of the communication. This isdise
for other (benign) applications such as instant-messagphgions
where the clients are freely available but the servers are$ec-
ond, current binary-based techniques do not address grtydbe
semantic information from the protocol messages. Semanitc
mation is fundamental for understanding the intent of a agss
and therefore to identify what parts of a dialog to rewriterr@ntic
information is needed for both text-based and binary-basetb-
cols. Although for text-based protocols an analyst can somes
infer such information from the content, this is often not $wr
example, an ASCII-encoded integer in a text-based protoanl
represent among others a length, a port number, a sleep timer
checksum value.

In this paper we present novel techniques to extract theagess
format for messagesentby an application, which enable extracting
the protocol message format from just one side of the comeaeni
tion. New techniques are needed because current techriigues
extracting the message formatreteivedmessages rely on taint-
ing the network input and monitoring how the tainted datasiscu

by the program. However, most data in sent messages does no

come from tainted network input. Instead, we use the folhgwi
intuition: programs store fields in memory buffers and caret

the messages to be sent by combining those buffers togdatines,

the structure of the buffer holding the message to be seme+ep
sents the inverse of the structure of that message. We adsermr
novel techniques to infer the field semantics in messagatand
receivedby an application. Our type-inference-based techniques
leverage the rich semantic information that is alreadylaltg in

the program by monitoring how data in the received messages i

used at places where the semantics are known, and how the sen

messages are built from data with known semantics. In aaiditi
we propose extensions to a recently proposed techniquentifigl
the buffers holding the unencryptedceivedmessage [48]. Our
extensions generalize the technique to support applitatidhere
there is no single boundary between decryption and profocsl
cessing, and to identify the buffers holding the unencrypent
message.

We implement our techniques into Dispatcher, a tool to ektra
the message format and field semantics of both received amd se
messages. We use Dispatcher to analyze the C&C protocobysed
MegaD, one of the most prevalent spam botnets in use todag][7,
To the best of our knowledge, MegaD's proprietary, encryphe-
nary C&C protocol has not been previously documented ansl thu
presents an ideal test case for our system. We show that tiiz C&
information extracted by Dispatcher can be used to rewréétegaD
C&C messages. In addition, we use four open protocols (HTTP,
FTP, ICQ, and DNS) to compare the message format autonigtical
extracted by Dispatcher with the one extracted by Wiresfidtk a

state-of-the-art protocol parser that contains manuatlitem pro-
tocol grammars.
In summary, our contributions are the following:

e \We propose novel techniques to extract the format of the pro-
tocol messagesentby an application. Previous work could
only extract the format akceivedmessages. Our techniques
enable extracting the complete protocol format even when
only one endpoint’s implementation of the protocol is avail
able.

We present techniques to infer the field semantics for mes-
sagesentandreceiveddy an application. Our type-inference-
based techniques leverage the wealth of semantic informa-
tion available in the program.

We design and develop Dispatcher, a tool that implements
our techniques and automatically extracts from one endipoin
implementation the message format and associated seman-
tics for both sides of a protocol. We use Dispatcher to ana-
lyze MegaD, a prevalent spam botnet that uses an encrypted
binary C&C protocol previously not publicly documented.

We show that the protocol information that Dispatcher ex-
tracts can be used to rewrite MegaD C&C messages, thereby
enabling active botnet infiltration.

OVERVIEW & PROBLEM DEFINITION

In this section we define the problems addressed in the pager a
give an overview of our approach.

Scope. The goal of automatic protocol reverse-engineering is to
extract theprotocol format which captures the structure of all mes-
sages that comprise the protocol [18, 25, 26, 35, 38, 49]tlzto-
{ocol state machinevhich captures the sequences of messages that
represent valid sessions of the protocol [22, 36]. Extractihe pro-
tocol format usually comprises two steps. First, given afetput
protocol messages, extract theessage formadf each message.
Second, given the set of message formats, identify optioepéti-
tive and alternative fields, and infer the protocol formatjck en-
compasses the multiple message types that comprise theepkot
Different representations for the protocol format are flsse.g.,
as a regular expression [49] or a BNF grammar [27].

This paper deals only with the first step of the protocol farexa
Eraction, extracting the message format for a given messdugeh
is a pre-requisite for extracting both the protocol formatl ahe
protocol state-machine.

Message format. The message format is captured in thessage
field tree a tree in which each node represents a field in the mes-
sagé. A child node represents a subfield of its parent, and thus
corresponds to a subrange of the parent field in the messdge. T
root node represents the complete message, the interrned neg-
resenthierarchicalfields’ and the leaf nodes represent the smallest
semantic units in the messdgeEach node contains an attribute
list, where each attribute captures properties about thedigh as

the field range (start and end positions in the given messtye)
field length (fixed or variable), as well as inter-field depemzies
(such as length fields or checksums). Figure 1 shows the gessa
field tree for a C&C message used by MegaD to communicate back
to the C&C server information about the bot’s host. The ramten

!called protocol field tree in [38].
2Called complex fields in [49].
3Called finest-grained fields in [38].



Length Host Info
[14:15] [16:51]
CPU-ID \ _ / IP addr
[16:19] [48:51]

Figure 1: Message field tree for the MegaD Host-Information
message.

Padding
[52:57]

represents the message, which is 58 bytes long. There araitwo
erarchical fields: the payload, which is the encrypted pathe
message, and the host information, which contains leaffieg-
resenting host data such as the CPU identifier and the IP sxldre
The attributes capture that thsg_lengtHfield is the length of the
payload and théengthfield is the length of thélost infofield.

Field semantics. One important property of a field is its seman-
tics, i.e, the type of data that the field contains. TypicdHfie-
mantics are lengths, timestamps, checksums, hostnantéjean
names. Inferring the field semantics is fundamental to stded
what a message does and to identify interesting parts ofi@gdia
rewrite. Field semantics are captured in the message fasdds an
attribute for each field and can be used to label the fields.efor
ample, in Figure 1 the semantics inference states that fd8g&l]
contains an IP address and range [6:13] contains some daiia pr
ously received over the network. We use this informatioratzel
the corresponding fieldBotID andIP addr.

Problem definition. In this paper we address two problems: 1)
extracting the message field tree for the messagetby the appli-
cation, and 2) inferring field semantics, that is, annotgtiive nodes
in the message field tree, for battteivedandsentmessages, with
a field semantics attribute.

Approach. Theoutput buffeicontains the message about to be sent
at the time that the function that sends data over the netigark
voked. As a special case, for encrypted protocols the oupffer
contains the unencrypted data at the time the encryptictinmis
invoked. To extract the format afentmessages we use the fol-
lowing intuition: programs store fields in memory bufferslamn-
struct the messages to be sent by combining those buffesthieg
Thus, the structure of the output buffer represents thesevef the
structure of the sent message. We proposker deconstruction

analyst has access only to the application implementingiateeof

the dialog. Dispatcher integrates previously proposebriecies

to extract the message format of received messages [18]384
well as our novel techniques to extract the message formseruf
messages, and to infer field semantics in both received amd se
messages. We show that the information extracted by Dispatc
enables rewriting MegaD’s C&C messages.

Obtaining an execution trace. The input to our message format
extraction and field semantics inference techniques isutixec
traces taken by monitoring the program while it is involvedai
network dialog using the unknown protocol. To monitor the-pr
gram we use a custom analysis environment that implements dy
namic taint tracking [21, 23, 40, 46] and produces instarctevel
execution traces containing all instructions executed, dbntent
of the operands, and the associated taint information. atyae
the protocol used by malware samples (e.g., the C&C protoicol
a botnet) safely, we need to execute them in a specializdgsima
network with custom containment policies [13,47].

An execution trace contains the processing of multiple ogss
sent and received by the program during the network dialog. W
split the execution trace into per-message traces by mangtthe
program’s use of networking functions that read or writeadedm
sockets. We split the execution trace into two traces eviemg t
that the program makes a successful call to write data to kesoc
(e.g.,send and every time that the program makes a successful call
to read data from a socket (e.gecV), except when the argument
defining the maximum number of bytes to read is tainted. Is thi
case, the read data is considered part of the previous neeasag
the trace is not split. This handles the case of a programmgad
a field conveying the length of the message payload and usisg t
value to read the payload itself.

Handling obfuscation. Our dynamic analysis approach is resilient
to obfuscation techniques designed to thwart static aizabtgch

as binary packing and inlining unnecessary instructiorsvéver,

a premise of our approach is that we can observe a sample’s pro
cessing of the received data in our analysis environmesetban

a system emulator). Thus, similar to all dynamic approacbes
approach can be evaded using techniques that detect izetdalr
emulated environments [19]. Also, while our techniqueskwoell

on MegaD, we expect malware to adapt. Thus, we have designed
our techniques to target fundamental properties so thgtateas
resilient as possible to obfuscation. Nevertheless, tbleniques
proposed in this paper are not specific to malware analysican

be used to analyze any unknown or undocumented protocols.

3. FIELD SEMANTICS INFERENCE

a technique to build the message field tree of a sent message by In this section we present our technique to identify the fszlel

analyzing how the output buffer is constructed from othemory
buffers in the program. We present our message format ¢xtnac
techniques for sent messages in Section 4 and our handlieg- of
crypted protocols in Section 5.

To infer the field semantics, we use type-inference-baset te
niques that leverage the observation that many functiodsiman
structions used by programs contain known semantic infioma
that can be leveraged for field semantics inference. Wherd fie
in the received message is used to derive the arguments & tho
functions or instructions (i.e., semantic sinks), we cdariits se-
mantics. When the output of those functions or instructi@mes,
semantic sources) are used to derive some field in the outffet,b
we can infer its semantics.

We have developed Dispatcher, a tool that enables analippitig
sides of the communication of an unknown protocol, even varen

mantics of both received and sent messges

The intuition behind our type-inference-based technigsiéisat
many functions and instructions used by programs contamse-
mantic information. We can leverage this information teeirfield
semantics by monitoring if received network data is usedpatiat
where the semantics are known, or if data to be sent to theonletw
has been derived from data with known semantics. $ufelience
is very general and can be used to identify a broad spectrum of
field semantics including timestamps, filenames, hostnapuets,
IP addresses, and many others. The semantic informatidrosét

40ur semantics inference techniques were first publishedavo-O
ber, 2007 as a technical report [16]. They are more geneaal th
simultaneous work that identifies cookies and filenames &ze3
cution traces [49], and predate other work that also idestgiuch
fields [27].



functions and instructions is publicly available in theioftypes,
which describe their goal as well as the semantics of itstsand
outputs. Function prototypes can be found, for exampléyeaMi-
crosoft Developer Network [8] or the standard C library doem-
tation [5]. For instructions, one can refer to the systemunfetur-
ers’ manuals [1, 4].

Techniques.Forreceivednessages, Dispatcher uses taint propaga-
tion to monitor if a sequence of bytes from the received ngssa
used in theargumentof some selected function calls and instruc-
tions, for which the system has been provided with the fomi
prototype. The sequence of bytes in the received messagheran
be associated with the semantics of the arguments as defitieel i
prototype. For example, when a program callsadbenectfunction
Dispatcher uses the function’s prototype to check if anyhefar-
guments on the stack is tainted. The function’s prototyfie tes
that the first argument is the socket descriptor, the seconadsoan
address structure that contains the IP address and poe bb#t to
connect to, and the third one is the length of the addresststeu If
the memory locations that correspond to the IP address toecbn
to in the address structure are tainted from four bytes inrtpet,
then Dispatcher can infer that those four bytes in the inpegsage
(identified by the offset in the taint information) form a fighat
contains an IP address to connect to. Similarly, if the menimr
cations that correspond to the port to connect to have bea@rede
from two bytes in the input message, it can identify the posiof
the port field in the input message.

For sentmessages, Dispatcher taints the output of selected func-
tions and instructions using a unique source identifier dfgkb
pair. For each tainted sequence of bytes in the output hubisr
patcher identifies from which taint source the sequence tdsby
was derived. The semantics of the taint source (return salae
given by the function’s or instruction’s prototype, and ¢enasso-
ciated to the sequence of bytes. For example, if a prograsthse
rdtsc x86 instruction, we can leverage the knowledge that it takes
no input and returns a 64-bit output representing the ctx@oe
of the processor’s time-stamp counter, which is placed gisters
EDX:EAX [4]. Thus, at the time of execution when the program
usesrdtsc Dispatcher taints the EDX and EAX registers with a
unique source identifier and offset pair. This pair uniqualels
the taint source to be fromdtsc and the offsets identify each byte
in therdtscstream (offsets 0 through 7 for the first use).

A special case of this technique ésokieinference. A cookie
represents data from a received message that propagatesiged
to the output buffer (e.g., session identifiers). Thus, &kigoc
simultaneously identified in the received and sent messages

Implementation. To identify field semantics Dispatcher uses an
input set of function and instruction prototypes. By defaDlis-
patcher includes over one hundred functions and a few ictibns

for which we have already added the prototypes by searching o
line repositories. To identify new field semantics and tloeire-
sponding functions, we examine the external functionsedally
the program in the execution trace. Table 1 shows the field se-
mantics that Dispatcher can infer from received and sensages
using the predefined functions. We refer the reader to Appedd
for examples of functions and instructions used to ideradgh of
the field semantics in Table 1.

4. EXTRACTING THE MESSAGE FORMAT
OF SENT MESSAGES

The message field tree captures the hierarchical field ateiof
the message as well as the field properties encoded in #isiblo
extract the message field tree of a sent message we firsteevers

Field Semantics | Received | Sent
Cookies yes yes
IP addresses yes yes
Error codes no yes
File data no yes
File information no yes
Filenames yes yes
Hash / Checksum yes yes
Hostnames yes yes
Host information no yes
Keyboard input no yes
Keywords yes yes
Length yes yes
Padding yes no

Ports yes yes
Registry data no yes
Sleep timers yes no

Stored data yes no

Timestamps no yes

Table 1: Field semantics identified by Dispatcher for both re
ceived and sent messages. Stored data represents data reedi
over the network and written to the filesystem or the Windows
registry, as opposed to dataead from those sources.

engineer the structure of the output message and outputsages
field tree with no field attributes. Then, we use specific tépines
to identify the field attributes, such as how to identify theldi
boundary (fixed-length, delimiter, length field) and the Wweyds
present in each field.

A field is a sequence of consecutive bytes in a message with
some meaning. A memory buffer is a sequence of consecutive
bytes in memory that stores data with some meaning. To revers
engineer the structure of the output message we cannot trsatu
techniques to extract the message formato&ivedmessages be-
cause they rely on tainting the network input and monitotiog
the tainted data is used by the program. Most data in sentagess
does not come from the tainted network input. Instead, we use
the following intuition: programs store fields in memory faug
and construct the messages to be sent by combining thosruff
together. Thus, the structure of the output buffer reprissiae in-
verse of the message field tree of the sent message. We propose
buffer deconstructigra technique to build the message field tree of
a sent message by analyzing how theput bufferis constructed
from other memory buffers in the program. Figure 2 shows the d
construction of the output buffer holding the message inufedL.
Note the similarity between Figure 1 and the upside-dowsigar
of Figure 2.

Extracting the message format of sent messages is a tlage-st
process. In th@reparationstep, Dispatcher makes a forward pass
over the execution trace to extract information about tlopathat
were executed, the liveness of buffers in the stack, andalstack
information at each point in the execution trace. It alsddsuan
index of the execution trace to enable random access to afrydn
tion. We present the preparation in Section 4.1. The cordef t
message format extraction is theffer deconstructiostep, which
is a recursive process in which one memory buffer is decocistd
at a time by extracting the sequence of memory buffers that co
prise it. The process is started with the output buffer acdnses
until there are no more buffers to deconstruct. Dispatcimgrie-
ments buffer deconstruction as a backward pass over anteecu
trace. Since the structure of the output buffer is the irverfsthe
message field tree for the sent message, every memory hudfler t
forms the output buffer (and, recursively, the memory lngfiat
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Figure 2: Buffer deconstruction for the MegaD message in Fig
ure 1. Each box is a memory buffer starting at addressB,. with

the byte length in brackets. Note the similarity with the upsde-
down version of Figure 1.

form them) corresponds to a field in the message field tree. For
example, deconstructing the output buffer in Figure 2 resar se-
qguence of two buffers, a 2-byte buffer starting at offsebzarthe
output buffer B1) and a 56-byte buffer starting at offset 2 in the
output buffer (82). Correspondingly a field with range [0:1] and
another one with range [2:57] are added to the no-attribigs-m
sage field tree. Thus, buffer deconstruction builds thettribate
message field tree as it recurses into the output buffertateicWe
present buffer deconstruction in Section 4.2. Findibld attribute
inferenceidentifies length fields, delimiters, keywords, arrays and
variable-length fields and adds the information into attte!s for
the corresponding fields in the message field tree. We préséht
attribute inference in Section 4.3.

4.1 Preparation

During preparation, Dispatcher makes a forward pass ower th
execution trace collecting information needed by the udtcon-
struction as well as the attribute inference.

Loop analysis.During the forward pass, Dispatcher extracts infor-
mation about each loop present in the execution trace. Tuifgle
the loops in the execution trace, Dispatcher supports tfferdit
detection methods: static and dynamic. The static methbdas
the addresses of the loop head and exit conditions statifralin

the binary before the forward pass starts, and uses thatiatmn
during the forward pass to identify the points where any okth
loops appears in the trace. The dynamic method does notreequi
any static processing and extracts the loops directly dutie for-
ward pass by monitoring instructions that appear multiiphes in
the same function. Both methods are complementary. Whiteyus
static information is more precise at identifying the loit eon-
ditions, it also requires analyzing all the modules (exalolat plus
dynamically link libraries) used by the application, maysmioops
that contain indirection, and cannot be applied if the ukpéddi-
nary is not available, such as in the case of MegaD. On the othe
hand, the dynamic method is less accurate at identifyindabe
exit conditions, but requires no setup and can be used onfany o
samples including MegaD.

Callstack Analysis. During the forward pass, Dispatcher replicates
the function stack of the program by monitoring the functiatis
and returns. Given an instruction number in the executaxeirthe
callstack analysis returns the innermost function thataiaed that
instruction at that point of the execution.

Buffer Liveness Analysis. During the execution trace capture,
Dispatcher monitors the heap allocation and free functimesl by
the program. For each heap allocation it provides the ingtm
number in the trace, the buffer start and the size of the buffer

each heap deallocation, it specifies the instruction nurbéne
trace, and the start address of the buffer being freed. Duha
forward pass, Dispatcher monitors the stack pointer atuhetfon
entry and return points, extracting information about whicem-
ory locations in the stack are freed when the function retufiis
information is used by Dispatcher to determine whether tifo d
ferent writes to the same memory address correspond to the sa
memory buffer, since memory locations in the stack (and sioca
ally in the heap) may be reused for different buffers.

4.2 Buffer Deconstruction

Buffer deconstruction is a recursive process. In eachtitara
it deconstructs a given memory buffer into the sequence hudrot
memory buffers that comprise it. The process starts wittothiput
buffer and recurses until there are no more buffers to déawmis
It has two parts. First, for each byte in the given buffer widdba
dependency chainThen, using the dependency chains and the in-
formation collected in the preparation step, we extracsthacture
of the given buffer. The input to each buffer deconstrucitera-
tion is a buffer defined by its start address in memory, itgtlen
and the instruction number in the trace where the buffer asas |
written. The start address and length of the output buffercdn-
tained from the arguments of the function that sends the aaa
the network (or the encryption function). The instructiammber
to start the analysis is the instruction number for the firstriuction
in the send (or encrypt) function. In the remainder of thistise
we introduce what locations and dependency chains are asdmr
how they are used to deconstruct the output buffer.

Program locations. We define gporogram locationto be a one-
byte-long storage unit in the program’s state. We consider f
types of locationsmemory locationsregister locationsimmedi-
ate locations andconstant locationsand focus on the address of
those locations, rather than on its content. Each memony isyt
a memory location indexed by its address. Each byte in ateggis
is a register location, for example, there are 4 locationEAX:
EAX(0) or AL, EAX(1) or AH, EAX(2), and EAX(3). An imme-
diate location corresponds to a byte from an immediate it
section of some module, indexed by the offset of the byte véth
spect to the beginning of the module. Constant locationssemt
the output of some instructions that have constant outport.ek-
ample, one common instruction is to XOR one register agéswf
(e.g.,xor %eax, %ea) which clears the register. Dispatcher rec-
ognizes a number of such instructions and makes each byte of i
output a constant location.

Dependency chains A dependency chain for a program location
is the sequence afrite operationsthat produced the value of the
location at a certain point in the program. A write operatom-
prises the instruction number at which the write occurrkd,des-
tination location (i..e, the location that was written)e tsource lo-
cation (i.e., the location that was read), and the offseth@fritten
location with respect to the beginning of the output bufféig-
ure 3 shows the dependency chains for Biebuffer (the one that
holds the encrypted payload) in Figure 2. In the figure, eanh b
represents a write operation, and each sequence of verogak
represents the dependency chain for one location in therbuff

The dependency chain is computed in a backward pass starting
at the given instruction number. We stop building the depeny
chain at the first write operation for which the source |cmatfis:
1) an immediate location, 2) a constant location, 3) a menwry
cation, or 4) an unknown location.

If the source location is part of an immediate or part of the ou
put from some constant output instruction, then there amnoie
dependencies and the chain is complete. This is the casb€dor t



Insn #: x-5 Insn #: x-5 Insn #: x+ 2 Insn #: x+ 2
Insn: mov Insn: mov Insn: mov Insn: mov
Offset: 2 Offset: 3 Offset: 4 Offset: 5
SLoc: IMM(C) SLoc: IMM(C+1) | | SLoc: IMM(D) SLoc: IMM(D+1)
DLoc: EAX(1) DLoc: EAX(0) DLoc: EAX(1) DLoc: EAX(0) ¢ Length
v v v v
Insn #: x-4 Insn #: x-4 Insn #:x + 3 Insn #: x+ 3 Insn #: x - 100 Insn #: x - 100
Insn: bswap Insn: bswap Insn: bswap Insn: bswap Insn: add Insn: add
Offset: 2 Offset: 3 Offset: 4 Offset: 5 Offset: 14 Offset: 15
SLoc: EAX(1) SLoc: EAX(0) SLoc: EAX(1) SLoc: EAX(0) Bot ID SlLoc: Unknown SLoc: Unknown
DLoc: EAX(0) DLoc: EAX(1) DLoc: EDX(0) DLoc: EDX(1) - p» | DLoc: EBX(0) DLoc: EBX(1)
Insn #: x Insn #: x Insn#:x +7 Insn#:x+7 Insn #: x+ 13 Insn #: x + 14 Insn #: x + 20 Insn #: x + 25 Insn #: x + 25
Insn: mov Insn: mov Insn: mov Insn: mov Insn: rep movsb Insn: rep movsb Insn: rep movsb Insn: mov Insn: mov
Offset: 2 Offset: 3 Offset: 4 Offset: 5 Offset: 6 Offset: 7 ... |Offset: 13 Offset: 14 Offset: 15
SLoc: EAX(0) SLoc: EAX(1) SLoc: EDX(0) SlLoc: EDX(1) SLoc: Mem(B) SLoc: Mem(B+1) SLoc: Mem(B+7) | |SLoc: EBX(0) SLoc: EBX(1)
DLoc: Mem(A) DLoc: Mem(A+1)| |DLoc: Mem(A+2)| |DLoc: Mem(A+3)| |DLoc: Mem(A+4)| |DLoc: Mem(A+5) DLoc: Mem(A+11)| |DLoc: Mem(A+12)| |DLoc: Mem(A+13)
v
‘ Mem(A) Mem(A+1) Mem(A+2) Mem(A+3) Mem(A+4) Mem(A+5) Mem(A+11) Mem(A+12) Mem(A+13)
B, (56)

Figure 3: Dependency chain forB; in Figure 2.

first four bytes ofB; in Figure 3. The reason to stop at a source
memory location is that we want to understand how a memory
buffer has been constructed from other memory buffers. rAste
tracting the structure of the given buffer, Dispatcher rees on
the buffers that form it. For example, in Figure 3 the depenyge
chains for locationdlem(A+4) throughMem(A+11) contains only
one write operation because the source location is anotberary
location. Dispatcher will then create a new dependencyncfoai
bufferMem(B)throughMem(B+7). When building the dependency
chains, Dispatcher only handles a small subset of x86 ictibns
which simply move data around, without modifying it. Thidsu
set includes move instructionsov,movl move with zero-extend
instructions (ov3, push and pop instructions, string store®§,
and instructions that are used to convert data from netwnhost
order and vice versa such as exchange instructiarig), swap in-
structions sway), or right shifts that shift entire bytes (e.ghr
$0x8,%eax When a write operation is performed by any other
instruction, the source is considered unknown and the akgrery
chain stops. Often, it is enough to stop the dependency @tain
such instructions, because the program is at that poinbieirig
some operation on the field (e.g., an arithmetic operatisn)pa
posed to just moving the content around. Since programsatsper
on leaf fields, not on hierarchical fields, then at that pointhe
chain we have already recursed up to the corresponding tdf fi
in the message field tree. For example, in Figure 3 the depepde
chains for the last two bytes stop at the saddinstruction. Thus,
both source locations are unknown. Note that those location
respond to the length field in Figure 1. The fact that the mogis
increasing the length value indicates that the dependdmain bas
already reached a leaf field.

Extracting the buffer structure. We call the source location of
the last element in the dependency chain of a buffer locatgon

The start address ofBs is A.

Attribute

Field Range
Field Boundary
Field Semantics
Field Keywords

Value

Start offset and length in messa
Fixed, Length, Delimiter

A value from Table 1

List of keywords in field

je

Table 2: Field attributes used in the message field tree.

the previous buffer location. If they do not, then it has fdum
boundary in the structure of the buffer. The structure ofgiven
buffer is output as a sequence of ranges that form it, wherk ea
range states whether it corresponds to a source memory.buffe

For example, in Figure 3 the source locationsNtam(A+) and
Mem(A+5) are contiguous locationslem(B)and Mem(B+1) but
the source locations faem(A+11) andMem(A+12) are not con-
tiguous. Thus, Dispatcher marks locatiblem(A+12) as the be-
ginning of a new range. Dispatcher finds 6 range8in The first
four are shown in Figure 3 and marked with arrows at the topef t
figure. Since only the third range originates from anothemory
buffer, that is the only buffer that Dispatcher will recurseto re-
construct. The last two ranges correspond to the Host Infibdied
the padding in Figure 1 and are not shown in Figure 3.

Once the buffer structure has been extracted, Dispatclesrthe
correspondence between buffers and fields in the analyzssage
to add one field to the message field tree per range in the buffer
structure using the offsets relative to the output bufferFigure 3
it adds four new fields that correspond to Wersion Type Bot ID,
andLengthin Figure 1.

source We say that two source locations belong to the same source4. 3 Fjeld Attributes Inference

buffer if they are contiguous memory locations (in eitharealing
or descending order) and the liveness information statsnibne
of those locations has been freed between their corresppmndite
operations. If the source locations are not in memory (eegis-
ter, immediate, constant or unknown location), they belmthe
same buffer if they were written by the same instruction §ame
instruction number).

To extract the structure for the given buffer Dispatchemites on
the buffer locations from the buffer start to the buffer eRdr each
buffer location, Dispatcher checks whether the sourceettirent
buffer location belongs to the same source buffer as theceanfr

The message field tree built during the buffer deconstroctiep
represents the hierarchical structure of the output messagdoes
not contain information about inter-field relationshipsisas if a
field represents the length of another target field. Suchtiaddi
information is captured by the field attributes in the meesiég/d
tree.

Table 2 presents the field attributes that we identify in plaiger.
The field range captures the position of the field in the messag
The field boundary captures how an application determinesevh
the field ends. Fields can be fixed-lengHixgd), variable-length
using a length fieldl{ength, or variable-length using a delimiter



(Delimiten)®. The field semantics are the values in Table 1. The the source address of all instances of the constant commstifre
field keywords attribute contains a list of all the protocohstants same buffer.

that appear in the field and their position. . Variable-length fields. Dispatcher marks fields that precede a de-
The field attributes in Table 2 are similar to the ones thatiptes limiter, and target fields for previously identified lengteldis as
work extracts for received messages [18, 49]. Howevergthesh- variable-length fields. It also marks as variable-lengtld$iele-

niques do not work on sent messages because they rely oromonit - rjyeq from semantic sources that are known to have variaiigth
ing how the data received over the network is processed, ¥dten  ¢\,ch as file data. All others are marked as fixed-length.

sent messages we can only observe how the sent messagestare bu
Our techniques share common intuitions with previous tegles:

both try to capture the fundamental properties of the difiepro-
tocol elements. In fact, some attribute values are morecdiffto
extract for sent messages than for received messages. arpkx
many fields that a protocol specification would define as fateia
length may encode some fixed-length data in a specific impleme
tation. For example th8erverheader is variable-length based on
the HTTP specification. However, a given HTTP server impleme

tation may have hard-coded tBerverstring in the binary, making 5. HANDLING ENCRYPTED MESSAGES

Arrays. The intuition behind identifying arrays of records is that
they are written in loops, one record at a time. Dispatches tise
loop information extracted during preparation to identifgps that
write multiple consecutive fields. Then, it adds to the mgedield
tree oneArray field with the range being the combined range of all
the consecutive fields written in the loop, and &exordfield per
range of bytes written in each iteration of the loop.

the field fixed-length for this implementation. Leveragihg avail- Similar to previous work, our protocol reverse engineetah-
ability of multiple implementations of the same protocalittbhelp niques work on unencrypted data. Thus, when reverse-esrifige
in such cases. We plan to study this in future work. encrypted protocols we need to address two problems. First,

Keywords. Keywords are constants that appear in network mes- received messages, we need to identify the buffers holtiegin-
sages. To identify constants in the output buffer, Dispatchints encrypted data at the point that the decryption has finishezt s
the memory region that contains the module (and DLLs shipped buffers may only hold the decrypted data for a brief periotirog.

with the main binary) with a specific taint source, effedyveint- Second, for sent messages, we need to identify the bufféds ho
ing both immediates in the code section as well as data siotbd ing the unencrypted data at the point that the encryptiordsia
data section. Locations in the output buffer tainted froia source to begin. Once the buffers holding the unencrypted data bega
are considered keywords. identified, protocol reverse engineering techniques caappiied

on them, rather than on the messages received or about tmbe se
on the wire.
Recent work has looked at the problem of reverse-engirgerin

Length fields. Dispatcher uses three different techniques to iden-
tify length fields insentmessages. The intuition behind the tech-

nigues is that length fields can be computed either by inanéinge . .
a counter as the program iterates on the field, or by subnacti the format of received encrypted messages [39, 48]. Sireajth

pointers to the beginning and the end of the buffer. The fiioti pIicqtion needs t9 depr){pt the datg before using it, thopeoghes
behind the first two techniques is that those arithmetic atpmrs monitor the application’s processing of Fhe encrypted mgssind
translate into an unknown source at the end of the dependencyatt_empt to locate the t_)uffers that_ contain the decrypted dathe
chains for the buffer locations corresponding to the lerfigh. point that the decryptloq hgs finished. Thosg approachesotio n
When a dependency chain ends in an unknown source, Dispatche 2ddress the problem of finding the buffers holding the ungsied

checks whether the instruction that performs the write $die a data bejore itis encrypted, which is alsg required in ouecas

known function that computes the length of a string (esglen) or In th'?‘ work we present t.WO extensions to the technlqu.e pre-
is a subtraction of pointers to the beginning and end of thtebu seqted in ReFormat [48_]' F'rSt_' ReFormat can only handl_él-app
The third technique tries to identify counter increment o not cations where there exists a.smgle boundary bgtween demmyp
correspond to well-known string length functions. For ebaffer an_d normal protocol processing. However, muiltiple suchnbeu .

it uses the loop information to identify if most writes to theffer® aries may e.X'St' As shown in Figure 1 MegaD messages comprise
belong to the same loop. If they do, then it uses the techsique two bytes with th? message length, followed by the encryptgd

in [45] to extract the loop induction variables. For eachuictibn load. After checking the message length, a MegaD bot wiltyfec

variable it computes the dependency chain and checks whiethe 8 b?/]tes from éhe encr;d/pted paylohad and grocess then;(,j’thee mov
intersects the dependency chains from any output buffetitoes to the next_8 ytes an Iprocesst em, and so 03' rlln Z 't'mt? SO
that precede the locations written in the loop (since a lefigtd messages in MegaD also use compression and the decryption an

always has to precede its target field). Any intersectingtioo is dlecompression_operr?tions”a(rje int_erleaved. Thu_s, the_rlets:im
part of the length field for the field processed in the loop. gle program point where all data in a message Is avallabla-une
crypted and uncompressed. Consequently, we extend thadqeeh

Delimiters. Delimiters are constants used by protocols to mark the identify everyinstanceof encryption, hashing, compression, and
boundary of variable-length fields. Thus, it is difficult tfferen- obfuscation, which we generally teremcoding functionsSecond,
tiate a delimiter from any another constant in the outputsags. ReFormat was not designed to identify the buffers holdiregth-
To identify delimiters, Dispatcher looks for constantstthppear encoded (unencrypted) data before encoding (encryptidhs,

multiple times in the same message or appear at the end af mult ;e extend the technique to also cover this case. We present th
ple messages in the same session (three appearances aedjequ generalized technique next.

Constants can be identified by checking the offsets of thm ai
! " y ng Identifying encoding functions. To identify every instance of an

formation for keyword identification. If the delimiters cenfrom ; ) o :
the data section, they can also be identified by checkinghenet ~ €ncoding function we have simplified the process in ReFohyat
removing the cumulative metric, the use of tainted data, thed

5Also called separator in [18]. concept of leaf functions. The extended technique apiiesntu-

éMany memory move functions are optimized to move 4 bytes at a tion in ReFormat that the decryption process contains artinate
time in one loop and use separate instructions or loops t@rtiey number of arithmetic and bitwise operations to encodingtions.
remaining bytes. It works as follows. Dispatcher makes a forward pass oveirthe




put execution trace replicating the callstack of the appitn by
monitoring the call and return instructions. For each fiorcit
computes the ratio between the number of arithmetic andidstw
operations over the total number of instructions in the fiomc
The ratio includes only the function’s own instructionsddies not
include instructions belonging to any invoked subfundtiorihe
ratio is computed for each appearance of the function inrdeet
Any function that executes a minimum number of instructiand
has a ratio larger than a pre-defined threshold is flagged by Di
patcher as an instance of a encoding function. In our exjeerisn
the threshold is set to 0.55 and the minimum number of instruc
tions is 20. Our evaluation results in Section 6.3 show that t
generalized technique identifies all instances of the gicny and
encryption functions in our MegaD traces and that the fatsitipe
rate of the technique is 0.002%.

Identifying the buffers. To identify the buffers holding the un-
encrypted data before encryption we computerteal setfor the
encryption routine, the set of locations read inside theygrion
routine before being written. The read set for the encryptmu-
tine includes the buffers holding the unencrypted dataettezyp-
tion key, and any hard-coded tables used by the routine. \We ca
differentiate the buffers holding the unencrypted dataahee their
content varies between multiple instances of the sameifimcto
identify the buffers holding the unencrypted data aftengetion
we compute thevrite setfor the decryption routine, the set of lo-
cations written inside the decryption routine and readr latehe
trace.

6. EVALUATION

In this section we evaluate our techniques on the MegaD C&C
protocol, as well as a number of open protocols.

6.1 Evaluation on MegaD

MegaD uses a proprietary, encrypted, binary protocol presly
not understood. Our MegaD evaluation has two parts. We first d
scribe the information obtained by Dispatcher on the C&Ggmol
used by MegaD, and then show how the information extracted by
Dispatcher can be used to rewrite a C&C dialog.

MegaD C&C Protocol. The MegaD C&C protocol uses port 443
over TCP for transport, employing a proprietary encrypiigo-
rithm instead of the SSL routines for HTTPS commonly used on
that port. Our network traces show our MegaD bot commurmigati
with three entities: th€&C serverthat the bot periodically probes
for new commands; thEMTP test serveian SMTP server whose
hostname is provided by the C&C server and to which the bot con
nects to test for spam sending capabilities; andsgp@m server
whose IP address and listening port are sent by the C&C strver
the bot so that the bot can download all spam-related infioma
such as the spam template or the email addresses to spam..comm

contains a 2-byte field that we term version as it is alwaysya ke
word of value 0x100 or 0x1, followed by a 2-byte message type
field. The structure of the remaining payload depends on &g m
sage type. To summarize the protocol format we have usedithe o
put of Dispatcher to write a BinPac grammar [41] that comgxiall

15 messages. Field semantics are added as comments tortie gra
mar. Appendix A presents an abridged version of the grammar.

To the best of our knowledge, we are the first to document the
C&C protocol employed by MegaD. Thus, we lack ground truth to
evaluate our grammar. To verify the grammar’s accuracy, se u
another execution trace that contains a different instafiome of
the analyzed dialogs. We dump the content of all unencryjiest
sages and try to parse the messages using our grammar. &or thi
we employed a stand-alone version of the BinPac parserdadiu
in Bro [42]. Using our grammar, the parser successfully ¢med|
MegaD C&C messages in the new dialog. In addition, the parser
throws an error when given messages that do not follow theallleg
grammar.

Attribute detection. The 15 MegaD messages contain no delim-
iters or arrays. They contain two variable-length fieldst thse
length fields to mark their boundaries: the compressed sptated
information (i.e., template and addresses) received flmrspam
server, and the host information field in Figure 1. Both thegta
fields and variable-length fields are correctly detected isp&tcher.
The only attributes that Dispatcher misses are the messagéhl
fields on sent messages because they are computed usingegompl
pointer arithmetic that Dispatcher cannot reason about.

Field semantics.Dispatcher identifies 11 different field semantics
over the 15 messages: IP addresses, ports, hostnameh, Eagp
timers, error codes, keywords, cookies, stored data, pgdaind
host information. There are only two fields in the MegaD gram-
mar for which Dispatcher does not identify their semantiBsth

of them happen in received messages: one of them is the neessag
type, which we identify by looking for fields that are compare
against multiple constants in the execution and for whiehrties-
sage format varies depending on its value. The other carnesp

to an integer whose value is checked by the program but apghare
not used further. Note that we identify some fields in sentsagss

as keywords because they come from immediates and constants
the data section. We cannot identify exactly what they regme
because we do not see how they are used by the C&C server.

Rewriting a MegaD dialog. To show how our grammar enables
live rewriting, we run a live MegaD bot inside our analysigieon-
ment, which is located in a network that filters all outgoing13?
connections for containment purposes. In a first dialog QRE€
server sends the command to the bot ordering to test for sppas ¢
bility using a given Spam test server. The analysis netwtokks

the SMTP connection causing the bot to send an error mesaage b
to the C&C server, to communicate that it cannot send spam. No

nication with the C&C and spam servers uses the encrypted C&C More spam-related messages are received by the bot. Thetarve

protocol, while communication with the SMTP test serversuse-
encrypted SMTP. The communication model is pull-based.bite
periodically probes the botmaster by sending a requestagess
The botmaster replies with two messages: one with autteitic
information, and the other one with a command. The bot perfor
the requested action and sends a response with its results.

Message format. Our MegaD C&C traces contain 15 different

a new dialog where at the time the bot calls the encrypt fondt
encrypt the error message, we stop the execution, reweternh
cryption buffer with the message that indicates succestledithe
execution continue After the rewriting the bot keeps receiving
the spam-related messages, including the spam templatthand
addresses to spam, despite the fact that it cannot send any sp
messages. Note that simply replaying the message thagtedic
success from a previous dialog into the new dialog does ndt wo

messages (7 received and 8 sent by the bot). Using DisDatCherbecause the success message includes a cookie value tG&@he

we have extracted the message field tree for messages oniboth d

rections, as well as the associated field semantics. All 1&ages
follow the structure shown in Figure 1 with a 2-byte messaggth
followed by an encrypted payload. The payload, once deedypt

selects and may change between dialogs.

"The size of both messages is the same once padding is actounte
for, thus we can reuse the buffer allocated by the bot.



Wireshark Dispatcher Errors

Protocol | Message Type | [Lw]| | [Hw] | [Lpl | [Hpl | TEGw)] [ [ECH) | [EEW) [ 1EHD)|

HTTP GET reply 11 1 22 0 11 1 0 1
POST reply 11 1 22 0 11 1 0 1

DNS Areply 27 4 28 0 1 0 0 4

FTP WelcomeO 2 1 3 1 1 0 0 0
Welcomel 2 1 3 1 1 0 0 0
Welcome2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1

ICQ New connection 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0

[ Total [ 123 ] 30 [ 154 ] 22 ] 34 | 5 | 0 | 8 |

Table 3: Comparison of the message field tree for sent messagextracted by Dispatcher and Wireshark

6.2 Evaluation on Open Protocols

In this section we evaluate our techniques on four open proto
cols: HTTP, DNS, FTP, and ICQ. To this end, we compare the out-
put of Dispatcher with that of Wireshark 1.0.5 [12] when mes-
ing 12 messages belonging to those protocols. For eachcptoto
we select a representative application that implementprittecol:
Apache-2.2.1 for HTTP, Bind-9.6.0 for DNS, Filezilla-(Q. for
FTP, and Pidgin-2.5.5 for ICQ. Note that regardless of th@ica-
tion being a client (Pidgin) or a server (Bind, Apache, Hllay, for
this part of the evaluation we focus on sent messages.

Message format. Wireshark is a network protocol analyzer con-
taining manually written grammars (called dissectors)ddarge
variety of network protocols. Although Wireshark is a matand
widely-used tool, its dissectors have been manually géedi@nd
therefore are not completely error-free. To compare theracy
of the message format automatically extracted by Dispatchine
manually written ones included in Wireshark, we analyzenties-
sage field tree output by both tools and manually compare them
the protocol specification. Thus, we can classify any diffiees
between the output of both tools to be due to errors in Disaic
Wireshark, or both.

We denote the set of leaf fields and the set of hierarchicalfiel
in the message field tree output by Wiresharldas and Hw, re-
spectively. Lp and Hp are the corresponding sets for Dispatcher.
Table 3 shows the evaluation results. For each protocol aast m
sage it shows the number of leaf fields and hierarchical fialtise
message field tree output by both tools as well as the restieof
manual classification of its errors. Hendy(Lw)| and |E(Lp)|
represent the number of errors on leaf fields in the messalge fie
tree output by Wireshark and Dispatcher respectively. [&ihgj
|E(Hw)| and|E(Hp)| represent the number of errors on hierar-
chical fields.

The results show that Dispatcher outperforms Wiresharknwhe
identifying leaf fields. This surprising result is due to theonsis-
tencies between the different dissectors in Wireshark vithenti-
fying delimiters. Some dissectors do not add delimiter fietdthe
message field tree, some concatenate them to the variaigttle
field for which they mark the boundary, while others treatnthe
as separate fields. After checking the protocol specifinafive
believe that delimiters should be treated as their own figicl
dissectors. The results also show that Wireshark outpag@is-
patcher when identifying hierarchical fields. This is du¢h® pro-
gram not using loops to write the arrays because the number of
elements in the array is known or is small enough that the demp
has unrolled the loop.

Overall, Dispatcher outperformed Wireshark for the givessm
sages. Note that we do not claim that Dispatcher is genarahe
accurate than Wireshark since we are only evaluating adamit
number of protocols and messages. However, the results thlabw
the accuracy of the message format automatically extrdogtéls-
patcher can rival that of Wireshark, without requiring a nnaty
generated grammar.

Errors on leaf fields. Here we detail the errors on leaf fields that
we have assigned to Dispatcher. The error in the HTTP GET re-
ply message is in th8tatus-Line The HTTP/1.1 specification [30]
states that its format isStatus-Line = HTTP-Version SP Status-
Code SP Reason-Phrase CRIbiat both Dispatcher and Wireshark
consider the Status-Code, the delimiter, and the Reasmas@io
belong to the same field. The FTP specification [44] statdsthe
ply message comprises a completion code followed by a temgst
The error in the FTP USER reply message is due to the factitbat t
server echoes back the username to the client and Dispadiemer
tifies the username being echoed back as an additional cfielkie
The other FTP replies have the same type of error: the respons
code is merged with the text string because the program kbeps
whole message (except the delimiter) in a single buffer indata
section. As mentioned earlier the errors on hierarchictddiare
due to the program being analyzed not using loops to writathe
rays. For example, the four errors in the DNS reply corredpgon
the Queries AnswersAuthoritative andAdditional sections in the
message, which Bind processes separately and therefqratthier
cannot identify as an array.

These errors highlight the fact that the message field tree ex
tracted by Dispatcher is limited to the quality of the pratioien-
plementation in the binary, and may differ from the specifwa

Attribute detection. The 12 messages contain 14 length fields,
43 delimiters, 57 variable-length fields, and 3 arrays. Bislper
misses 8 length fields because their value is hard-codec iprt+
gram. Thus, their target variable-length fields are comsitléxed-
length. Out of the 43 delimiters Dispatcher only misses arrech
corresponds to a null byte marking the end of a cookie stiiag t
was considered part of the string. Dispatcher correctiytifles
all other variable-length fields. Out of 3 arrays, Dispatanésses
one formed by th&ueries AnswersAuthoritative andAdditional
sections in the DNS reply, which Bind processes separataly a
therefore cannot be identified by Dispatcher.

Field semantics.Dispatcher correctly identifies all semantic infor-
mation in the sent messages, except the 3 pointers in the BN r
used by the DNS compression method, which are computed using
pointer arithmetic that Dispatcher cannot reason about.



Number of traces | Number of functions

True Positives

False Positives| False Positive Rate

20 3,569,773 (22,379)

7,874 (21)

87 9) 0.002%

Table 4: Evaluation of the detection of encoding functionsValues in parentheses represent the numbers of unique instaes. False

positives are computed based on manual verification.

6.3 Detecting Encoding Functions

To evaluate the detection of encoding functions present&e:¢-
tion 5 we perform the following experiment. We obtain 20 axec
tion traces from multiple programs that handle network d&fae
of these traces process encrypted and compressed fundtionef

which capture how a program processes a received message [18
22,27,38,49].

Techniques that take as input network data [14, 25, 36] faee t
issue of limited semantic information in network tracesj aannot
address encrypted or obfuscated protocols. Techniquestrace

them are from MegaD sessions and the other one is from Apachethe message field tree are a prerequisite for techniquesitratt

while handling an HTTPS session. MegaD uses its own enanypti
algorithm and thezlib library for compression and Apache uses

the protocol format [27, 49] and the protocol state-mach2®]
from execution traces. Current approaches that extrachéssage

SSL with AES and SHA- The remaining 15 execution traces are  field tree of a given message have focused on extracting theafo

from a variety of programs including browsers (Internet Exgr 7,

Safari 3.1, and Google Chrome 1.0), network servers (Birtd, A

phttpd), and services embedded in Windows (RPC, MSSQL).
Dispatcher flags any function instances in the executioretra
with at least 20 instructions and a ratio of arithmetic arsvisie
instructions greater than 0.55 as encoding functions. €balts
are shown in Table 4. The 20 execution traces contain ovani3.5
lion functions calls from 22,379 unique functions. Dispecflags

0.14% of the function instances as encoding functions. We-ma

ually classify the unique functions flagged by Dispatchetras
positives or false positives, using the function names asd@ated
debugging information. We conservatively classify altamces of
functions flagged by Dispatcher, for which we don’t have amy i
formation as false positives.

Dispatcher correctly identifies all encoding functionshie £x-

of messageseceivedby an application. To obtain a complete un-
derstanding of the protocol they require access to botts gifithe
dialog. Our techniques allow to extract the message fiekl fve
sentmessages, thus enabling the study of both sides of a communi-
cation from a single binary.

Lim et al [37] use inter-procedural static analysis to ecttthe
format from files and application data output by a programeiirh
approach requires the user to input the prototype of thetifume
that write data to the output buffer. This information isesftnot
available, e.g., when the functions used to write data ateexo
ported by the program. Their approach also requires saopdiist
analysis to deal with indirection, cannot handle packeds
such as MegaD, and does not address semantics inference.
approach differs in that we do not require any a priori knalgke
about the program, and we use a dynamic binary analysis agipro

Our

ecution traces of MegaD and Apache-SSL. In the MegaD traces, that can effectively deal with indirection and packed biegr

all instances of three unique encoding functions are ifledtithe

decryption routine, the encryption routine, and a key getiam

routine that generates the encryption and decryption keya &

seed value in the binary before calling the encryption oryggon

routines. In addition, in the traces that process messaijlesom-

pressed data, Dispatcher flags a fourth function that qooress to
theinflatefunction in thezlib library, which is statically linked into
the MegaD binary.

State-machine inference. Protocol reverse-engineering also in-
cludes inferring the protocol’s state-machine. Script@&8] in-
fers the protocol state-machine from network data. Dueedabk

of semantics in network data it is difficult for ScriptGen tetefr-
mine whether two network messages are two instances of the sa
message type. Prospex [22] addresses this issue by lawgriagi
formation extracted during program execution such as thesage
field tree and the functions called by the program upon messag

There is a total of 87 false positives from nine unique func- reception.

tions. Of those, we have been able to identify tw@nchr and
conttl 32.dl|:: TrueSaturateBits. All instances of the
other seven are conservatively classified as false positiBased
on these results, our technique correctly identifies allkmencod-
ing functions and has a false positive rate of 0.002%.

7. RELATED WORK

Protocol reverse-engineering projects have existed fangfime
to enable interoperability of open solutions with progigtproto-
cols. Those projects relied on manual techniques, whictslave
and costly [2, 3, 6,9, 11]. Automatic protocol reverse eagiing
techniques can be used, among other applications, to ratlece
cost and time associated with these projects.

Automatic protocol reverse-engineering.Automatic protocol re-
verse engineering techniques can be divided into thosestiatct
the field structure of a single message [18, 25, 38], thoseatie
lyze multiple messages to extract the protocol format [1449],
and those that infer the protocol state-machine [22, 36kyTdan
also be classified into techniques that use as input netwafk t
fic [14, 25, 36] and techniques that use as input executiaresra

8TLS-DHE-RSA with AES-CBC-256-SHA-1

Replaying network sessions. Previous work has addressed the
problem of replaying previously captured network sessjafs35,
36]. Such systems perform limited protocol reverse-ereging on
network traces only to the extent necessary for replay. rTioei
cus is to identify the dynamic fields, i.e., fields that chargkie
between sessions, such as cookies, length fields or IP addres

Identifying application sessions.There has been additional work
that can be used in the protocol reverse-engineering proti{ean-
nan et al [34] studied how to extract the application-levelcture
in application data. Their work can be used to find multiple-co
nections that belong to the same protocol session.

Encoding the protocol information. Previous work has proposed
languages to describe protocol specifications [15,24 d¢h lan-
guages are useful to store the results from protocol rexargaeering,
enabling the construction of generic protocol parsers.

8. CONCLUSION

Automatic protocol reverse-engineering is important fany
security applications, including the analysis and infiltma of bot-
nets. Prior techniques cannot enable rewriting of C&C nssa
needed for infiltration because they cannot analyze eredypto-



tocols used by newer botnets, they do not extract informatimut
the semantics of the protocol, or they require access to foeths
in a protocol dialog for a complete view of the protocol. lnsth
paper we have addressed those limitations.

K. Levitt, B. Lindell, P. Liu, D. Miller, R. Mundy,

C. Neuman, R. Ostrenga, V. Paxson, P. Porras, C. Rosenberg,
J. D. Tygar, S. Sastry, D. Sterne, and S. F. Wu. Cyber defense
technology networking and evaluatidBommunications of

We have proposed techniques to extract the message format of the ACM 47(3), 2004.

sentmessages. Our techniques leverage the intuition thathe- st
ture of the output buffer represents the inverse of the siraof
the sent message. Thus, we introdbaffer deconstructiora tech-
nigue that extracts the structure of a message being seetcby+
structing how the output buffer has been built from other mm
buffers in the program. In addition, we have proposed tepres
for inferring field semantics, a prerequisite for rewriti@§C mes-
sages for botnet infiltration. Our type-inference-basetheues
leverage the rich semantic information that is alreadylallg in

the program by monitoring how data in the received messages i

[14] M. A. Beddoe. Network protocol analysis using
bioinformatics algorithms.
http://www.baselineresearch.net/Pl/.

[15] N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo. Generic
application-level protocol analyzer and its language. In
Network and Distributed System Security Symposan
Diego, CA, February 2007.

[16] J. Caballero and D. Song. Rosetta: Extracting protocol
semantics using binary analysis with applications to proto
replay and NAT rewriting. Technical Report

used at places where the semantics are known, and how the sent  cyy-CyLab-07-014, Cylab, Carnegie Mellon University,

messages are built from data with known semantics.

We have implemented our techniques as well as previous ap- [17]

proaches into Dispatcher, a tool that enables the analf/gisoto-
col dialogs even when only one of the peers involved in thindia
is available. We have used Dispatcher to analyze the prslyiou

undocumented C&C protocol of MegaD, a prevalent spam botnet

We have shown that the information output by Dispatcher keisab
botnet infiltration by rewriting the C&C messages.
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APPENDIX
A. MEGAD BINPAC GRAMMAR

type MegaD Message(is_i nbound: bool) =
nmsg_len : uintl6;
encrypt ed_payl oad(i s_i nbound):
bytestring & ength = 8 * nmsg_| en;
} &byt eorder = bigendian;

record {

type encrypted_payl oad(i s_i nbound: bool) = record {
version : uintl6; # Constant (0x0100 or 0x0001)
nmtype : uintl6;

data : MegaD data(is_i nbound, ntype);

s

# Message types seen in our traces

type MegaD data(i s_i nbound: bool, nsg_type:
case nmsg_type of {

uint1l6) =

0x00 -> nDO : msg_0x0;
0x01 -> nD1 : msg_Ox1;
0x0e -> nDe : enpty_nsg;
0x15 -> nll5 : enpty_nsg;
0x16 -> nl6 : msg_0x16;
0x18 -> nill8 : enpty_nsg;
Oxlc -> mlc : msg_Ox1lc(is_i nbound);
Ox1ld -> md nsg_0x1d;
0x21 -> nR1 msg_0x21;
0x22 -> nR2 nmsg_0x22;
0x23 -> nk3 nmsg_0x23;
0x24 -> nR4 : msg_0x24,
0x25 -> nk5 : msg_0x25;

default -> unknown : bytestring &restofdata;

s
# Direction: outbound (To: CC server)

# MegaD supports two subnmessages for type zero
type msg_0x0 = record {

fld_00 : uint8; # <unknown>

fld_01 : MegaD_nsgO(fld_00);

b

type MegaD nmsgO(nsg0_t ype:
case nmsg0_type of {
0x00 -> nDO : nsg_Ox0_init;
0x01 -> nD1 : nsg_Ox0_idle;
default -> unknown : bytestring &restofdata;

uint8) =



type msg_0x0_init = record {

fld_00 : bytestring & ength=16; # Constant(0)
fld_01 : uint32; # Constant (0xd)

fld_02 : uint32; # Constant (0x26)

fld_03 : uint32; # | P address

pad : bytestring & estofdata; # Padding
H

type msg_0x0_idle = record {
fld_00 : bytestring & ength=8; # Bot |ID
fld_ 01 : uint32; # Constant(0)
pad : bytestring & estofdata; # Padding

# Direction: inbound (From CC server)
type enpty_msg = record {
pad : bytestring & estofdata; # Padding

# Direction: inbound (From CC server)
type msg_0x1 = record {

fld_00 : bytestring & ength=16; # Cookie
fld_01 : uint32; # Sleep Tiner
fld_02 : bytestring & ength=8; # Bot |ID

b

type host_info = record {
fld 00 : uint32; # Cpu identifier

fld_01 : uint32; # Tick difference
fld_02 : uint32; # Tick counter
fld_03 : uintl6; # OS nmjor version
fld_04 : uintl6; # OS nminor version
fld_05 : uintl6; # OGS build nunber
fld_06 : uintl6; # Service pack nmjor
fld_07 : uintl6; # Service pack m nor
fld_08 : uint32; # Physical menory(KB)
fld_09 : uint32; # Avail abl e menory(KB)
fld_ 10 : uintl6; # Internet conn. type
fld_ 11 : uint32; # |P address

H

# Direction: outbound (To: CC server)

type msg_0x16 = record {

fld_00 : bytestring & ength=8; # Bot |ID
fld_01 : uintl6; # Length(fld_02)
fld_02 : host_info; # Host information

pad : bytestring & estofdata; # Padding
H

# Direction: inbound or outbound (Spam server)
type msg_Ox1c(is_i nbound: bool) =
case i s_inbound of {
true -> nilc_i nbound
fal se -> nilc_out bound

nmsg_0Ox1c_i nbound
msg_0Ox1c_out bound

b

# Direction: inbound (From Spam server)
type msg_Oxl1lc_i nbound = record {

fld_00 : uint32; # Stored data

fld 01 : uint32; # Length

fld_02 : uint32; # Length(fld_03)

fld_03 : bytestring & ength = fld_02; # Conpressed
pad : bytestring & estofdata; # Paddi ng

# Direction: outbound (To: Spam server)

type msg_Ox1lc_out bound = record {

fld_00 : bytestring & ength = 16; # Cookie
fld_01 : uint32; # Constant(0)

H

# Direction: outbound (To
type nmsg_0x1d = record {
fld_00 : bytestring & ength = 16; # Cookie
fld_01 : uint32; # Constant(0)

H

# Direction: inbound (From CC server)
type msg_0x21 = record {

Spam server)

fld_00 : uint32; # <unknown>

fld_01 : uintl6; # Port

fld_02 : uint8[] &until($el ement == 0); # Hostnane
pad : bytestring & estofdata; # Paddi ng

b

# Direction: outbound (To

type nmsg_0x22 = record {
fld_00 : bytestring & ength=8; # Bot |D
pad : bytestring & estofdata; # Padding

CC server)

# Direction: outbound (To
type nmsg_0x23 = record {
fld_00 : uint32; # Error code

fld_01 : bytestring & ength=8; # Bot |D
H

# Direction: inbound (From CC server)
type neg_0x24 = record {

CC server)

fld_00 : uint32; # |P address
fld_01 : uintl6; # Port
bytestring & estofdata; # Padding

pad :

# Direction: outbound (To

type nmsg_0x25 = record {
fld_00 : bytestring & ength=8; # Bot |ID
pad : bytestring & estofdata; # Paddi ng

CC server)

B. FIELD SEMANTICS

This appendix provides some examples of functions usecte id
tify the field semantics described in Table 1.

Cookies.Cookies represent data from a received network message
that propagates to a sent message (e.g., session ideptifiérss,

a cookie is simultaneously identified in the received and s&s-
sages. Note that once a cookie has been identified we can itheck
it appears in later messages (both received and sent) inglog d

IP addresses.Dispatcher identifies IP addresses in received mes-
sages by monitoring if the arguments of some functions useg-t
tablish network connections (e.ggnnec} or perform DNS reverse
lookups (e.g.getnameinfp have been derived from the received
messages. Dispatcher identifies IP addresses in sent rasdsag
tainting the output of functions that return local inforimoat (e.g.,
gethostbyname remote information (e.ggetpeernamyg or func-
tions that check the name of connected sockets @etspcknanje

Error codes. Some programs report back unexpected errors using
error codes. Dispatcher identifies error codes in sent rgesday
tainting the output of functions that report error condigaoe.g.,
RtlGetLastWin32Errox.

File data. File data is data read from the file system. Dispatcher
can identify file data in sent messages by tainting the output
functions that read from a file (e.gead) or functions that map
files directly into memory (e.gMapViewOfFilg. A special case

of file data is user-specifiezbnfiguration datssuch as the number
of times to retry a connection. Dispatcher can mark file data a
configuration data when provided with the list of files thantzdn

the configuration information for the program.



File information. File information is file metadata such as the size
of a file or the last modification date. Dispatcher identifiéesifi-
formation in sent messages by tainting the output of funetitat
query for file properties (e.gNtQuerylnformationFilg

Filenames. Filenames are a special case of file information. Dis-
patcher can identify filenames in received messages by zngly

if the arguments of functions used to open files (epger) or used

to get file properties (e.gNtQuerylnformationFilg have been de-
rived from data previously received over the network. It @en-

tify filenames in sent messages by tainting the output oftfans
that list the files in a directory (e.g\NtQueryDirectoryFilg.

Hash / Checksum. We call both hash and checksum fielgkyi-

Keywords. Dispatcher identifies keywords in received messages
using the techniques proposed in Polyglot [18] and in serg-me
sages by tainting the memory region that contains a giverutapd
as explained in Section 4.3.

Length. Dispatcher identifies length fields in received messages
using previously proposed techniques [18,49] and in sessages
using the techniques described in Section 4.3. Messagéhleng
special type of length, which represents the length of a agesen

the wire. Dispatcher can identify message length fieldsderived
messages by monitoring if some bytes in the received message
compared against the output of the function calls to reaa ilam

the socket (e.gead recy).

fication fieldsbecause they are often used to check if the data has Padding. Dispatcher identifies padding in received messages by

been modified during transmission. Dispatcher identifiefiva-
tion functions using the technique to identify encodingdiions
presented in Section 5. If the output of a encoding functaroim-
pared against a range of bytes received over the networntk tlizae
range is marked as a verification field in the received messiige
the output of a encoding function appears on a sent message, t
it is either a verification field or an encrypted/obfuscatettifi Dis-
patcher can use the scope (the range of bytes in the sentgegtsa
distinguish between a verification field and an encryptedéatated
field, since verification fields are usually shorter.

Hostnames. Hostnames can identify remote hosts as well as the
local host. Dispatcher can identify hostnames in receivessages

by checking if the arguments of functions that start netwark-
nections (e.g.connec} are derived from received messages and in
sent messages by tainting the output of functions thatméagal
host information (e.ggethostnampe

Host information. We subsume any hardware or software proper-
ties of the host undérost information For example, when MegaD
builds the message in Figure 1, it queries the operatingsy&br
information about the processor type, the operating sys&sion,

the memory status of the host or the type of connection torthe |
ternet, all of which are examples of host information fiel@ss-
patcher identifies host information fields in sent messageaibt-

ing the output of a variety of functions such@stVersionExAand
GlobalMemoryStatus

Keyboard input. Protocol messages often include data provided

looking for tainted bytes that are not used by the progranty(on
moved around) and that are present at the end of variabigHen
fields or at the end of the message. Dispatcher considersdingad
field to be at most 7 bytes (64-bit alignment).

Ports. Ports are usually used altogether with IP addresses or host-
names to define an end point for a connection. Dispatchetiiden
fies ports in received messages by analyzing how the argsrént
functions used by the program to start new connections, @0-

nec) and bind new listening ports (e.cdind) have been derived
from a previously received message. Dispatcher identifiess [in

sent messages by tainting the output of functions that ckieek
name of connected sockets (eggtsockname

Registry data. Registry data is any data stored in the Windows
registry. Dispatcher identifies registry data in sent mgssay
tainting the output of functions that read data from the \Wimsl
registry (e.g.NtQueryValueKey

Sleep timers.Sleep timers are timers used to indicate to a host that
it should delay execution for a certain amount of time. Dishar
identifies sleep timers in received messages by monitofitigei
arguments to functions that delay execution (eslgep have been
derived from data received over the network.

Stored data. Stored data refers to data received over the network
that the program saves into permanent storage. It includes d
written to disk, as well as data stored in the Windows regifis-
patcher can identify stored data by monitoring if data nesover

the network is used to derive the data argument for functibas

by the user via'the keybloard, such as the filename in a FTP down-yyite data to file (e.gwrite) or the Windows registry (e.ghtSet-
load, the domain name in a DNS query or the user name and passy/|yeKey.

word in an ICQ login session. Dispatcher identifies keybadapdt
in sent messages by tainting any data input by the user useng t
keyboard.

Timestamps. Timestamps are fields that contain time data. Dis-
patcher identifies timestamps in sent messages by tairfitenguit-
put of functions that request the local or system time (&egtLo-
calTime GetSystemTime



