
Dispatcher: Enabling Active Botnet Infiltration using
Automatic Protocol Reverse-Engineering

Juan Caballero
CMU and UC Berkeley

jcaballero@cmu.edu

Pongsin Poosankam
CMU and UC Berkeley

ppoosank@cmu.edu

Christian Kreibich
ICSI

christian@icir.org

Dawn Song∗

UC Berkeley
dawnsong@cs.berkeley.edu

ABSTRACT
Automatic protocol reverse-engineering is important for many se-
curity applications, including the analysis and defense against bot-
nets. Understanding the command-and-control (C&C) protocol used
by a botnet is crucial for anticipating its repertoire of nefarious ac-
tivity and to enable active botnet infiltration. Frequently, security
analysts need to rewrite messages sent and received by a bot in
order to contain malicious activity and to provide the botmaster
with an illusion of successful and unhampered operation. Toen-
able such rewriting, we need detailed information about theintent
and structure of the messages inboth directionsof the communi-
cation despite the fact that we generally only have access tothe
implementation of one endpoint, namely the bot binary. Current
techniques cannot enable such rewriting. In this paper, we propose
techniques to extract the format of protocol messagessentby an
application that implements a protocol specification, and to infer
the field semantics for messages bothsentandreceivedby the ap-
plication. Our techniques enable applications such as rewriting the
C&C messages for active botnet infiltration. We implement our
techniques into Dispatcher, a tool to extract the message format
and field semantics of both received and sent messages. We use
Dispatcher to analyze MegaD, a prevalent spam botnet employing
a hitherto undocumented C&C protocol, and show that the proto-
col information extracted by Dispatcher can be used to rewrite the
C&C messages.

∗This material is based upon work partially supported by the
National Science Foundation under Grants No. 0311808, No.
0448452, No. 0627511, and CCF-0424422, by the Air Force Of-
fice of Scientific Research under MURI Grant No. 22178970-4170,
by the Army Research Office under the Cyber-TA Research Grant
No. W911NF-06-1-0316, and by CyLab at Carnegie Mellon under
grant DAAD19-02-1-0389 from the Army Research Office. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation, the Air Force
Office of Scientific Research, or the Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09,November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Network Protocols; D.4.6
[Operating Systems]: Security and Protection

General Terms
Security

Keywords
protocol reverse engineering, botnet infiltration, binaryanalysis

1. INTRODUCTION
Automatic protocol reverse-engineering techniques enable ex-

tracting the protocol specification of unknown or undocumented
application-level protocols [18,22,25,26,35,36,38,49]. A detailed
protocol specification can enhance many security applications such
as fuzzing [22], application fingerprinting [17], deep packet inspec-
tion [29], or signature-based filtering [27].

One important application for automatic protocol reverse engi-
neering is the analysis and infiltration of botnets. Botnets, large
networks of infected computers under control of an attacker, are
one of the dominant threats in the Internet today. They enable a
wide variety of abusive or fraudulent activities, such as spamming,
phishing, click-fraud, and distributed denial-of-service (DDoS) at-
tacks [10, 28, 32]. At the heart of a botnet is its command-and-
control (C&C) protocol, which enables a bot to locate rendezvous
points in the network and provides the botmaster with a meansto
coordinate malicious activity in the bot population. Automatic pro-
tocol reverse-engineering can be used for understanding the C&C
protocol used by a botnet, revealing a wealth of informationabout
the capabilities of its bots and the overall intent of the botnet.

In addition to understanding its C&C protocol, an analyst may
also be interested in interacting actively with the botnet.Previous
work analyzed the economics of the Storm botnet by rewritingthe
commands sent to the bots [33]. Other times, an analyst may want
to rewrite messages sent upstream by the bots, such as when a site’s
containment policy requires the analyst to make bots lie about their
capabilities and achievements. For example, the analyst may want
to rewrite a capability report sent by the bot to make the botmaster
believe that the bot can send email even if all the outgoing SMTP
connections by the bot are actually blocked, or that the bot is con-
nected to the Internet using a high-speed LAN when in realityit is
funneling traffic through a low-throughput connection.

To successfully rewrite a C&C message, an analyst first needs
to understand the goal of the message, its field structure, and the
location of fields carrying relevant information to rewrite. While



older botnets build their C&C protocol on top of IRC, many newer
botnets use customized or proprietary protocols [20,31,43].

Analyzing such C&C protocols is challenging. Manual protocol
reverse-engineering of such protocols is time-consuming and error-
prone. Furthermore, previous automatic protocol reverse engineer-
ing techniques have limitations that prevent them from enabling
rewriting of such protocols. Techniques that use network traffic as
input [25,26,35,36] are easily hampered by obfuscation or encryp-
tion. Techniques that rely on observing how a communicationend
point (client or server) processes a received input [18, 22,38, 49]
present two major limitations. First, given a program they can
only extract information about one side of the dialog, i.e.,the re-
ceivedmessages. To obtain complete understanding of the proto-
col, they require access to the implementation of both sidesof the
dialog. Unfortunately, when studying a botnet analysts often have
access only to the bot side of the communication. This is truealso
for other (benign) applications such as instant-messagingsolutions
where the clients are freely available but the servers are not. Sec-
ond, current binary-based techniques do not address extracting the
semantic information from the protocol messages. Semanticinfor-
mation is fundamental for understanding the intent of a message,
and therefore to identify what parts of a dialog to rewrite. Semantic
information is needed for both text-based and binary-basedproto-
cols. Although for text-based protocols an analyst can sometimes
infer such information from the content, this is often not so. For
example, an ASCII-encoded integer in a text-based protocolcan
represent among others a length, a port number, a sleep timer, or a
checksum value.

In this paper we present novel techniques to extract the message
format for messagessentby an application, which enable extracting
the protocol message format from just one side of the communica-
tion. New techniques are needed because current techniquesfor
extracting the message format ofreceivedmessages rely on taint-
ing the network input and monitoring how the tainted data is used
by the program. However, most data in sent messages does not
come from tainted network input. Instead, we use the following
intuition: programs store fields in memory buffers and construct
the messages to be sent by combining those buffers together.Thus,
the structure of the buffer holding the message to be sent repre-
sents the inverse of the structure of that message. We also present
novel techniques to infer the field semantics in messagessentand
receivedby an application. Our type-inference-based techniques
leverage the rich semantic information that is already available in
the program by monitoring how data in the received messages is
used at places where the semantics are known, and how the sent
messages are built from data with known semantics. In addition,
we propose extensions to a recently proposed technique to identify
the buffers holding the unencryptedreceivedmessage [48]. Our
extensions generalize the technique to support applications where
there is no single boundary between decryption and protocolpro-
cessing, and to identify the buffers holding the unencrypted sent
message.

We implement our techniques into Dispatcher, a tool to extract
the message format and field semantics of both received and sent
messages. We use Dispatcher to analyze the C&C protocol usedby
MegaD, one of the most prevalent spam botnets in use today [7,32].
To the best of our knowledge, MegaD’s proprietary, encrypted, bi-
nary C&C protocol has not been previously documented and thus
presents an ideal test case for our system. We show that the C&C
information extracted by Dispatcher can be used to rewrite the MegaD
C&C messages. In addition, we use four open protocols (HTTP,
FTP, ICQ, and DNS) to compare the message format automatically
extracted by Dispatcher with the one extracted by Wireshark[12], a

state-of-the-art protocol parser that contains manually written pro-
tocol grammars.

In summary, our contributions are the following:

• We propose novel techniques to extract the format of the pro-
tocol messagessentby an application. Previous work could
only extract the format ofreceivedmessages. Our techniques
enable extracting the complete protocol format even when
only one endpoint’s implementation of the protocol is avail-
able.

• We present techniques to infer the field semantics for mes-
sagessentandreceivedby an application. Our type-inference-
based techniques leverage the wealth of semantic informa-
tion available in the program.

• We design and develop Dispatcher, a tool that implements
our techniques and automatically extracts from one endpoint’s
implementation the message format and associated seman-
tics for both sides of a protocol. We use Dispatcher to ana-
lyze MegaD, a prevalent spam botnet that uses an encrypted
binary C&C protocol previously not publicly documented.

• We show that the protocol information that Dispatcher ex-
tracts can be used to rewrite MegaD C&C messages, thereby
enabling active botnet infiltration.

2. OVERVIEW & PROBLEM DEFINITION
In this section we define the problems addressed in the paper and

give an overview of our approach.

Scope. The goal of automatic protocol reverse-engineering is to
extract theprotocol format, which captures the structure of all mes-
sages that comprise the protocol [18,25,26,35,38,49], andthepro-
tocol state machine, which captures the sequences of messages that
represent valid sessions of the protocol [22,36]. Extracting the pro-
tocol format usually comprises two steps. First, given a setof input
protocol messages, extract themessage formatof each message.
Second, given the set of message formats, identify optional, repeti-
tive and alternative fields, and infer the protocol format, which en-
compasses the multiple message types that comprise the protocol.
Different representations for the protocol format are possible, e.g.,
as a regular expression [49] or a BNF grammar [27].

This paper deals only with the first step of the protocol format ex-
traction, extracting the message format for a given message, which
is a pre-requisite for extracting both the protocol format and the
protocol state-machine.

Message format.The message format is captured in themessage
field tree, a tree in which each node represents a field in the mes-
sage1. A child node represents a subfield of its parent, and thus
corresponds to a subrange of the parent field in the message. The
root node represents the complete message, the internal nodes rep-
resenthierarchicalfields2 and the leaf nodes represent the smallest
semantic units in the message3. Each node contains an attribute
list, where each attribute captures properties about the field such as
the field range (start and end positions in the given message), the
field length (fixed or variable), as well as inter-field dependencies
(such as length fields or checksums). Figure 1 shows the message
field tree for a C&C message used by MegaD to communicate back
to the C&C server information about the bot’s host. The root node

1Called protocol field tree in [38].
2Called complex fields in [49].
3Called finest-grained fields in [38].



Figure 1: Message field tree for the MegaD Host-Information
message.

represents the message, which is 58 bytes long. There are twohi-
erarchical fields: the payload, which is the encrypted part of the
message, and the host information, which contains leaf fields rep-
resenting host data such as the CPU identifier and the IP address.
The attributes capture that theMsg_lengthfield is the length of the
payload and theLengthfield is the length of theHost infofield.

Field semantics. One important property of a field is its seman-
tics, i.e, the type of data that the field contains. Typical field se-
mantics are lengths, timestamps, checksums, hostnames, and file-
names. Inferring the field semantics is fundamental to understand
what a message does and to identify interesting parts of a dialog to
rewrite. Field semantics are captured in the message field tree as an
attribute for each field and can be used to label the fields. Forex-
ample, in Figure 1 the semantics inference states that range[48:51]
contains an IP address and range [6:13] contains some data previ-
ously received over the network. We use this information to label
the corresponding fieldsBotID andIP addr.

Problem definition. In this paper we address two problems: 1)
extracting the message field tree for the messagessentby the appli-
cation, and 2) inferring field semantics, that is, annotating the nodes
in the message field tree, for bothreceivedandsentmessages, with
a field semantics attribute.

Approach. Theoutput buffercontains the message about to be sent
at the time that the function that sends data over the networkis in-
voked. As a special case, for encrypted protocols the outputbuffer
contains the unencrypted data at the time the encryption routine is
invoked. To extract the format ofsentmessages we use the fol-
lowing intuition: programs store fields in memory buffers and con-
struct the messages to be sent by combining those buffers together.
Thus, the structure of the output buffer represents the inverse of the
structure of the sent message. We proposebuffer deconstruction,
a technique to build the message field tree of a sent message by
analyzing how the output buffer is constructed from other memory
buffers in the program. We present our message format extraction
techniques for sent messages in Section 4 and our handling ofen-
crypted protocols in Section 5.

To infer the field semantics, we use type-inference-based tech-
niques that leverage the observation that many functions and in-
structions used by programs contain known semantic information
that can be leveraged for field semantics inference. When a field
in the received message is used to derive the arguments of those
functions or instructions (i.e., semantic sinks), we can infer its se-
mantics. When the output of those functions or instructions(i.e.,
semantic sources) are used to derive some field in the output buffer,
we can infer its semantics.

We have developed Dispatcher, a tool that enables analyzingboth
sides of the communication of an unknown protocol, even whenan

analyst has access only to the application implementing oneside of
the dialog. Dispatcher integrates previously proposed techniques
to extract the message format of received messages [18, 38, 49], as
well as our novel techniques to extract the message format ofsent
messages, and to infer field semantics in both received and sent
messages. We show that the information extracted by Dispatcher
enables rewriting MegaD’s C&C messages.

Obtaining an execution trace. The input to our message format
extraction and field semantics inference techniques is execution
traces taken by monitoring the program while it is involved in a
network dialog using the unknown protocol. To monitor the pro-
gram we use a custom analysis environment that implements dy-
namic taint tracking [21, 23, 40, 46] and produces instruction-level
execution traces containing all instructions executed, the content
of the operands, and the associated taint information. To analyze
the protocol used by malware samples (e.g., the C&C protocolof
a botnet) safely, we need to execute them in a specialized analysis
network with custom containment policies [13,47].

An execution trace contains the processing of multiple messages
sent and received by the program during the network dialog. We
split the execution trace into per-message traces by monitoring the
program’s use of networking functions that read or write data from
sockets. We split the execution trace into two traces every time
that the program makes a successful call to write data to a socket
(e.g.,send) and every time that the program makes a successful call
to read data from a socket (e.g.,recv), except when the argument
defining the maximum number of bytes to read is tainted. In this
case, the read data is considered part of the previous message and
the trace is not split. This handles the case of a program reading
a field conveying the length of the message payload and using this
value to read the payload itself.

Handling obfuscation. Our dynamic analysis approach is resilient
to obfuscation techniques designed to thwart static analysis such
as binary packing and inlining unnecessary instructions. However,
a premise of our approach is that we can observe a sample’s pro-
cessing of the received data in our analysis environment (based on
a system emulator). Thus, similar to all dynamic approaches, our
approach can be evaded using techniques that detect virtualized or
emulated environments [19]. Also, while our techniques work well
on MegaD, we expect malware to adapt. Thus, we have designed
our techniques to target fundamental properties so that they are as
resilient as possible to obfuscation. Nevertheless, the techniques
proposed in this paper are not specific to malware analysis and can
be used to analyze any unknown or undocumented protocols.

3. FIELD SEMANTICS INFERENCE
In this section we present our technique to identify the fieldse-

mantics of both received and sent messages4.
The intuition behind our type-inference-based techniquesis that

many functions and instructions used by programs contain rich se-
mantic information. We can leverage this information to infer field
semantics by monitoring if received network data is used at apoint
where the semantics are known, or if data to be sent to the network
has been derived from data with known semantics. Suchinference
is very general and can be used to identify a broad spectrum of
field semantics including timestamps, filenames, hostnames, ports,
IP addresses, and many others. The semantic information of those

4Our semantics inference techniques were first published on Octo-
ber, 2007 as a technical report [16]. They are more general than
simultaneous work that identifies cookies and filenames fromexe-
cution traces [49], and predate other work that also identifies such
fields [27].



functions and instructions is publicly available in their prototypes,
which describe their goal as well as the semantics of its inputs and
outputs. Function prototypes can be found, for example, at the Mi-
crosoft Developer Network [8] or the standard C library documen-
tation [5]. For instructions, one can refer to the system manufactur-
ers’ manuals [1,4].

Techniques.Forreceivedmessages, Dispatcher uses taint propaga-
tion to monitor if a sequence of bytes from the received message is
used in theargumentsof some selected function calls and instruc-
tions, for which the system has been provided with the function’s
prototype. The sequence of bytes in the received message canthen
be associated with the semantics of the arguments as defined in the
prototype. For example, when a program calls theconnectfunction
Dispatcher uses the function’s prototype to check if any of the ar-
guments on the stack is tainted. The function’s prototype tells us
that the first argument is the socket descriptor, the second one is an
address structure that contains the IP address and port of the host to
connect to, and the third one is the length of the address structure. If
the memory locations that correspond to the IP address to connect
to in the address structure are tainted from four bytes in theinput,
then Dispatcher can infer that those four bytes in the input message
(identified by the offset in the taint information) form a field that
contains an IP address to connect to. Similarly, if the memory lo-
cations that correspond to the port to connect to have been derived
from two bytes in the input message, it can identify the position of
the port field in the input message.

Forsentmessages, Dispatcher taints the output of selected func-
tions and instructions using a unique source identifier and offset
pair. For each tainted sequence of bytes in the output buffer, Dis-
patcher identifies from which taint source the sequence of bytes
was derived. The semantics of the taint source (return values) are
given by the function’s or instruction’s prototype, and canbe asso-
ciated to the sequence of bytes. For example, if a program uses the
rdtsc x86 instruction, we can leverage the knowledge that it takes
no input and returns a 64-bit output representing the current value
of the processor’s time-stamp counter, which is placed in registers
EDX:EAX [4]. Thus, at the time of execution when the program
usesrdtsc, Dispatcher taints the EDX and EAX registers with a
unique source identifier and offset pair. This pair uniquelylabels
the taint source to be fromrdtsc, and the offsets identify each byte
in therdtscstream (offsets 0 through 7 for the first use).

A special case of this technique iscookieinference. A cookie
represents data from a received message that propagates unchanged
to the output buffer (e.g., session identifiers). Thus, a cookie is
simultaneously identified in the received and sent messages.

Implementation. To identify field semantics Dispatcher uses an
input set of function and instruction prototypes. By default, Dis-
patcher includes over one hundred functions and a few instructions
for which we have already added the prototypes by searching on-
line repositories. To identify new field semantics and theircorre-
sponding functions, we examine the external functions called by
the program in the execution trace. Table 1 shows the field se-
mantics that Dispatcher can infer from received and sent messages
using the predefined functions. We refer the reader to Appendix B
for examples of functions and instructions used to identifyeach of
the field semantics in Table 1.

4. EXTRACTING THE MESSAGE FORMAT
OF SENT MESSAGES

The message field tree captures the hierarchical field structure of
the message as well as the field properties encoded in attributes. To
extract the message field tree of a sent message we first reverse-

Field Semantics Received Sent
Cookies yes yes
IP addresses yes yes
Error codes no yes
File data no yes
File information no yes
Filenames yes yes
Hash / Checksum yes yes
Hostnames yes yes
Host information no yes
Keyboard input no yes
Keywords yes yes
Length yes yes
Padding yes no
Ports yes yes
Registry data no yes
Sleep timers yes no
Stored data yes no
Timestamps no yes

Table 1: Field semantics identified by Dispatcher for both re-
ceived and sent messages. Stored data represents data received
over the network and written to the filesystem or the Windows
registry, as opposed to dataread from those sources.

engineer the structure of the output message and output a message
field tree with no field attributes. Then, we use specific techniques
to identify the field attributes, such as how to identify the field
boundary (fixed-length, delimiter, length field) and the keywords
present in each field.

A field is a sequence of consecutive bytes in a message with
some meaning. A memory buffer is a sequence of consecutive
bytes in memory that stores data with some meaning. To reverse-
engineer the structure of the output message we cannot use current
techniques to extract the message format ofreceivedmessages be-
cause they rely on tainting the network input and monitoringhow
the tainted data is used by the program. Most data in sent messages
does not come from the tainted network input. Instead, we use
the following intuition: programs store fields in memory buffers
and construct the messages to be sent by combining those buffers
together. Thus, the structure of the output buffer represents the in-
verse of the message field tree of the sent message. We propose
buffer deconstruction, a technique to build the message field tree of
a sent message by analyzing how theoutput bufferis constructed
from other memory buffers in the program. Figure 2 shows the de-
construction of the output buffer holding the message in Figure 1.
Note the similarity between Figure 1 and the upside-down version
of Figure 2.

Extracting the message format of sent messages is a three-step
process. In thepreparationstep, Dispatcher makes a forward pass
over the execution trace to extract information about the loops that
were executed, the liveness of buffers in the stack, and the callstack
information at each point in the execution trace. It also builds an
index of the execution trace to enable random access to any instruc-
tion. We present the preparation in Section 4.1. The core of the
message format extraction is thebuffer deconstructionstep, which
is a recursive process in which one memory buffer is deconstructed
at a time by extracting the sequence of memory buffers that com-
prise it. The process is started with the output buffer and recurses
until there are no more buffers to deconstruct. Dispatcher imple-
ments buffer deconstruction as a backward pass over an execution
trace. Since the structure of the output buffer is the inverse of the
message field tree for the sent message, every memory buffer that
forms the output buffer (and, recursively, the memory buffers that



Figure 2: Buffer deconstruction for the MegaD message in Fig-
ure 1. Each box is a memory buffer starting at addressBx with
the byte length in brackets. Note the similarity with the upside-
down version of Figure 1.

form them) corresponds to a field in the message field tree. For
example, deconstructing the output buffer in Figure 2 returns a se-
quence of two buffers, a 2-byte buffer starting at offset zero in the
output buffer (B1) and a 56-byte buffer starting at offset 2 in the
output buffer (B2). Correspondingly a field with range [0:1] and
another one with range [2:57] are added to the no-attribute mes-
sage field tree. Thus, buffer deconstruction builds the no-attribute
message field tree as it recurses into the output buffer structure. We
present buffer deconstruction in Section 4.2. Finally,field attribute
inferenceidentifies length fields, delimiters, keywords, arrays and
variable-length fields and adds the information into attributes for
the corresponding fields in the message field tree. We presentfield
attribute inference in Section 4.3.

4.1 Preparation
During preparation, Dispatcher makes a forward pass over the

execution trace collecting information needed by the buffer decon-
struction as well as the attribute inference.

Loop analysis.During the forward pass, Dispatcher extracts infor-
mation about each loop present in the execution trace. To identify
the loops in the execution trace, Dispatcher supports two different
detection methods: static and dynamic. The static method extracts
the addresses of the loop head and exit conditions statically from
the binary before the forward pass starts, and uses that information
during the forward pass to identify the points where any of those
loops appears in the trace. The dynamic method does not require
any static processing and extracts the loops directly during the for-
ward pass by monitoring instructions that appear multiple times in
the same function. Both methods are complementary. While using
static information is more precise at identifying the loop exit con-
ditions, it also requires analyzing all the modules (executable plus
dynamically link libraries) used by the application, may miss loops
that contain indirection, and cannot be applied if the unpacked bi-
nary is not available, such as in the case of MegaD. On the other
hand, the dynamic method is less accurate at identifying theloop
exit conditions, but requires no setup and can be used on any of our
samples including MegaD.

Callstack Analysis.During the forward pass, Dispatcher replicates
the function stack of the program by monitoring the functioncalls
and returns. Given an instruction number in the execution trace, the
callstack analysis returns the innermost function that contained that
instruction at that point of the execution.

Buffer Liveness Analysis. During the execution trace capture,
Dispatcher monitors the heap allocation and free functionsused by
the program. For each heap allocation it provides the instruction
number in the trace, the buffer start and the size of the buffer. For

each heap deallocation, it specifies the instruction numberin the
trace, and the start address of the buffer being freed. During the
forward pass, Dispatcher monitors the stack pointer at the function
entry and return points, extracting information about which mem-
ory locations in the stack are freed when the function returns. This
information is used by Dispatcher to determine whether two dif-
ferent writes to the same memory address correspond to the same
memory buffer, since memory locations in the stack (and occasion-
ally in the heap) may be reused for different buffers.

4.2 Buffer Deconstruction
Buffer deconstruction is a recursive process. In each iteration

it deconstructs a given memory buffer into the sequence of other
memory buffers that comprise it. The process starts with theoutput
buffer and recurses until there are no more buffers to deconstruct.
It has two parts. First, for each byte in the given buffer we build a
dependency chain. Then, using the dependency chains and the in-
formation collected in the preparation step, we extract thestructure
of the given buffer. The input to each buffer deconstructionitera-
tion is a buffer defined by its start address in memory, its length,
and the instruction number in the trace where the buffer was last
written. The start address and length of the output buffer are ob-
tained from the arguments of the function that sends the dataover
the network (or the encryption function). The instruction number
to start the analysis is the instruction number for the first instruction
in the send (or encrypt) function. In the remainder of this section
we introduce what locations and dependency chains are and present
how they are used to deconstruct the output buffer.

Program locations. We define aprogram locationto be a one-
byte-long storage unit in the program’s state. We consider four
types of locations:memory locations, register locations, immedi-
ate locations, andconstant locations, and focus on the address of
those locations, rather than on its content. Each memory byte is
a memory location indexed by its address. Each byte in a register
is a register location, for example, there are 4 locations inEAX:
EAX(0) or AL, EAX(1) or AH, EAX(2), and EAX(3). An imme-
diate location corresponds to a byte from an immediate in thecode
section of some module, indexed by the offset of the byte withre-
spect to the beginning of the module. Constant locations represent
the output of some instructions that have constant output. For ex-
ample, one common instruction is to XOR one register againstitself
(e.g.,xor %eax, %eax), which clears the register. Dispatcher rec-
ognizes a number of such instructions and makes each byte of its
output a constant location.

Dependency chains.A dependency chain for a program location
is the sequence ofwrite operationsthat produced the value of the
location at a certain point in the program. A write operationcom-
prises the instruction number at which the write occurred, the des-
tination location (i..e, the location that was written), the source lo-
cation (i.e., the location that was read), and the offset of the written
location with respect to the beginning of the output buffer.Fig-
ure 3 shows the dependency chains for theB2 buffer (the one that
holds the encrypted payload) in Figure 2. In the figure, each box
represents a write operation, and each sequence of verticalboxes
represents the dependency chain for one location in the buffer.

The dependency chain is computed in a backward pass starting
at the given instruction number. We stop building the dependency
chain at the first write operation for which the source location is:
1) an immediate location, 2) a constant location, 3) a memorylo-
cation, or 4) an unknown location.

If the source location is part of an immediate or part of the out-
put from some constant output instruction, then there are nomore
dependencies and the chain is complete. This is the case for the



Figure 3: Dependency chain forB2 in Figure 2. The start address ofB2 is A.

first four bytes ofB2 in Figure 3. The reason to stop at a source
memory location is that we want to understand how a memory
buffer has been constructed from other memory buffers. After ex-
tracting the structure of the given buffer, Dispatcher recurses on
the buffers that form it. For example, in Figure 3 the dependency
chains for locationsMem(A+4) throughMem(A+11) contains only
one write operation because the source location is another memory
location. Dispatcher will then create a new dependency chain for
bufferMem(B)throughMem(B+7). When building the dependency
chains, Dispatcher only handles a small subset of x86 instructions
which simply move data around, without modifying it. This sub-
set includes move instructions (mov,movs), move with zero-extend
instructions (movz), push and pop instructions, string stores (stos),
and instructions that are used to convert data from network to host
order and vice versa such as exchange instructions (xchg), swap in-
structions (bswap), or right shifts that shift entire bytes (e.g.,shr
$0x8,%eax). When a write operation is performed by any other
instruction, the source is considered unknown and the dependency
chain stops. Often, it is enough to stop the dependency chainat
such instructions, because the program is at that point performing
some operation on the field (e.g., an arithmetic operation) as op-
posed to just moving the content around. Since programs operate
on leaf fields, not on hierarchical fields, then at that point of the
chain we have already recursed up to the corresponding leaf field
in the message field tree. For example, in Figure 3 the dependency
chains for the last two bytes stop at the sameadd instruction. Thus,
both source locations are unknown. Note that those locations cor-
respond to the length field in Figure 1. The fact that the program is
increasing the length value indicates that the dependency chain has
already reached a leaf field.

Extracting the buffer structure. We call the source location of
the last element in the dependency chain of a buffer locationits
source. We say that two source locations belong to the same source
buffer if they are contiguous memory locations (in either ascending
or descending order) and the liveness information states that none
of those locations has been freed between their corresponding write
operations. If the source locations are not in memory (e.g.,regis-
ter, immediate, constant or unknown location), they belongto the
same buffer if they were written by the same instruction (i.e, same
instruction number).

To extract the structure for the given buffer Dispatcher iterates on
the buffer locations from the buffer start to the buffer end.For each
buffer location, Dispatcher checks whether the source of the current
buffer location belongs to the same source buffer as the source of

Attribute Value
Field Range Start offset and length in message
Field Boundary Fixed, Length, Delimiter
Field Semantics A value from Table 1
Field Keywords List of keywords in field

Table 2: Field attributes used in the message field tree.

the previous buffer location. If they do not, then it has found a
boundary in the structure of the buffer. The structure of thegiven
buffer is output as a sequence of ranges that form it, where each
range states whether it corresponds to a source memory buffer.

For example, in Figure 3 the source locations forMem(A+4) and
Mem(A+5) are contiguous locationsMem(B)and Mem(B+1) but
the source locations forMem(A+11) andMem(A+12) are not con-
tiguous. Thus, Dispatcher marks locationMem(A+12) as the be-
ginning of a new range. Dispatcher finds 6 ranges inB2. The first
four are shown in Figure 3 and marked with arrows at the top of the
figure. Since only the third range originates from another memory
buffer, that is the only buffer that Dispatcher will recurseon to re-
construct. The last two ranges correspond to the Host Info field and
the padding in Figure 1 and are not shown in Figure 3.

Once the buffer structure has been extracted, Dispatcher uses the
correspondence between buffers and fields in the analyzed message
to add one field to the message field tree per range in the buffer
structure using the offsets relative to the output buffer. In Figure 3
it adds four new fields that correspond to theVersion, Type, Bot ID,
andLengthin Figure 1.

4.3 Field Attributes Inference
The message field tree built during the buffer deconstruction step

represents the hierarchical structure of the output message, but does
not contain information about inter-field relationships such as if a
field represents the length of another target field. Such additional
information is captured by the field attributes in the message field
tree.

Table 2 presents the field attributes that we identify in thispaper.
The field range captures the position of the field in the message.
The field boundary captures how an application determines where
the field ends. Fields can be fixed-length (Fixed), variable-length
using a length field (Length), or variable-length using a delimiter



(Delimiter)5. The field semantics are the values in Table 1. The
field keywords attribute contains a list of all the protocol constants
that appear in the field and their position.

The field attributes in Table 2 are similar to the ones that previous
work extracts for received messages [18,49]. However, these tech-
niques do not work on sent messages because they rely on monitor-
ing how the data received over the network is processed, whenfor
sent messages we can only observe how the sent messages are built.
Our techniques share common intuitions with previous techniques:
both try to capture the fundamental properties of the different pro-
tocol elements. In fact, some attribute values are more difficult to
extract for sent messages than for received messages. For example,
many fields that a protocol specification would define as variable-
length may encode some fixed-length data in a specific implemen-
tation. For example theServerheader is variable-length based on
the HTTP specification. However, a given HTTP server implemen-
tation may have hard-coded theServerstring in the binary, making
the field fixed-length for this implementation. Leveraging the avail-
ability of multiple implementations of the same protocol could help
in such cases. We plan to study this in future work.

Keywords. Keywords are constants that appear in network mes-
sages. To identify constants in the output buffer, Dispatcher taints
the memory region that contains the module (and DLLs shipped
with the main binary) with a specific taint source, effectively taint-
ing both immediates in the code section as well as data storedin the
data section. Locations in the output buffer tainted from this source
are considered keywords.

Length fields. Dispatcher uses three different techniques to iden-
tify length fields insentmessages. The intuition behind the tech-
niques is that length fields can be computed either by incrementing
a counter as the program iterates on the field, or by subtracting
pointers to the beginning and the end of the buffer. The intuition
behind the first two techniques is that those arithmetic operations
translate into an unknown source at the end of the dependency
chains for the buffer locations corresponding to the lengthfield.
When a dependency chain ends in an unknown source, Dispatcher
checks whether the instruction that performs the write is inside a
known function that computes the length of a string (e.g.,strlen) or
is a subtraction of pointers to the beginning and end of the buffer.
The third technique tries to identify counter increments that do not
correspond to well-known string length functions. For eachbuffer
it uses the loop information to identify if most writes to thebuffer6

belong to the same loop. If they do, then it uses the techniques
in [45] to extract the loop induction variables. For each induction
variable it computes the dependency chain and checks whether it
intersects the dependency chains from any output buffer locations
that precede the locations written in the loop (since a length field
always has to precede its target field). Any intersecting location is
part of the length field for the field processed in the loop.

Delimiters. Delimiters are constants used by protocols to mark the
boundary of variable-length fields. Thus, it is difficult to differen-
tiate a delimiter from any another constant in the output message.
To identify delimiters, Dispatcher looks for constants that appear
multiple times in the same message or appear at the end of multi-
ple messages in the same session (three appearances are required).
Constants can be identified by checking the offsets of the taint in-
formation for keyword identification. If the delimiters come from
the data section, they can also be identified by checking whether

5Also called separator in [18].
6Many memory move functions are optimized to move 4 bytes at a
time in one loop and use separate instructions or loops to move the
remaining bytes.

the source address of all instances of the constant comes from the
same buffer.

Variable-length fields. Dispatcher marks fields that precede a de-
limiter, and target fields for previously identified length fields as
variable-length fields. It also marks as variable-length fields de-
rived from semantic sources that are known to have variable length
such as file data. All others are marked as fixed-length.

Arrays. The intuition behind identifying arrays of records is that
they are written in loops, one record at a time. Dispatcher uses the
loop information extracted during preparation to identifyloops that
write multiple consecutive fields. Then, it adds to the message field
tree oneArray field with the range being the combined range of all
the consecutive fields written in the loop, and oneRecordfield per
range of bytes written in each iteration of the loop.

5. HANDLING ENCRYPTED MESSAGES
Similar to previous work, our protocol reverse engineeringtech-

niques work on unencrypted data. Thus, when reverse-engineering
encrypted protocols we need to address two problems. First,for
received messages, we need to identify the buffers holding the un-
encrypted data at the point that the decryption has finished since
buffers may only hold the decrypted data for a brief period oftime.
Second, for sent messages, we need to identify the buffers hold-
ing the unencrypted data at the point that the encryption is about
to begin. Once the buffers holding the unencrypted data havebeen
identified, protocol reverse engineering techniques can beapplied
on them, rather than on the messages received or about to be sent
on the wire.

Recent work has looked at the problem of reverse-engineering
the format of received encrypted messages [39, 48]. Since the ap-
plication needs to decrypt the data before using it, those approaches
monitor the application’s processing of the encrypted message and
attempt to locate the buffers that contain the decrypted data at the
point that the decryption has finished. Those approaches do not
address the problem of finding the buffers holding the unencrypted
data before it is encrypted, which is also required in our case.

In this work we present two extensions to the technique pre-
sented in ReFormat [48]. First, ReFormat can only handle appli-
cations where there exists a single boundary between decryption
and normal protocol processing. However, multiple such bound-
aries may exist. As shown in Figure 1 MegaD messages comprise
two bytes with the message length, followed by the encryptedpay-
load. After checking the message length, a MegaD bot will decrypt
8 bytes from the encrypted payload and process them, then move
to the next 8 bytes and process them, and so on. In addition, some
messages in MegaD also use compression and the decryption and
decompression operations are interleaved. Thus, there is no sin-
gle program point where all data in a message is available unen-
crypted and uncompressed. Consequently, we extend the technique
to identify everyinstanceof encryption, hashing, compression, and
obfuscation, which we generally termencoding functions. Second,
ReFormat was not designed to identify the buffers holding the un-
encoded (unencrypted) data before encoding (encryption).Thus,
we extend the technique to also cover this case. We present the
generalized technique next.

Identifying encoding functions. To identify every instance of an
encoding function we have simplified the process in ReFormatby
removing the cumulative metric, the use of tainted data, andthe
concept of leaf functions. The extended technique applies the intu-
ition in ReFormat that the decryption process contains an inordinate
number of arithmetic and bitwise operations to encoding functions.
It works as follows. Dispatcher makes a forward pass over thein-



put execution trace replicating the callstack of the application by
monitoring the call and return instructions. For each function it
computes the ratio between the number of arithmetic and bitwise
operations over the total number of instructions in the function.
The ratio includes only the function’s own instructions. Itdoes not
include instructions belonging to any invoked subfunctions. The
ratio is computed for each appearance of the function in the trace.
Any function that executes a minimum number of instructionsand
has a ratio larger than a pre-defined threshold is flagged by Dis-
patcher as an instance of a encoding function. In our experiments,
the threshold is set to 0.55 and the minimum number of instruc-
tions is 20. Our evaluation results in Section 6.3 show that the
generalized technique identifies all instances of the decryption and
encryption functions in our MegaD traces and that the false positive
rate of the technique is 0.002%.

Identifying the buffers. To identify the buffers holding the un-
encrypted data before encryption we compute theread setfor the
encryption routine, the set of locations read inside the encryption
routine before being written. The read set for the encryption rou-
tine includes the buffers holding the unencrypted data, theencryp-
tion key, and any hard-coded tables used by the routine. We can
differentiate the buffers holding the unencrypted data because their
content varies between multiple instances of the same function. To
identify the buffers holding the unencrypted data after decryption
we compute thewrite setfor the decryption routine, the set of lo-
cations written inside the decryption routine and read later in the
trace.

6. EVALUATION
In this section we evaluate our techniques on the MegaD C&C

protocol, as well as a number of open protocols.

6.1 Evaluation on MegaD
MegaD uses a proprietary, encrypted, binary protocol previously

not understood. Our MegaD evaluation has two parts. We first de-
scribe the information obtained by Dispatcher on the C&C protocol
used by MegaD, and then show how the information extracted by
Dispatcher can be used to rewrite a C&C dialog.

MegaD C&C Protocol. The MegaD C&C protocol uses port 443
over TCP for transport, employing a proprietary encryptionalgo-
rithm instead of the SSL routines for HTTPS commonly used on
that port. Our network traces show our MegaD bot communicating
with three entities: theC&C serverthat the bot periodically probes
for new commands; theSMTP test server, an SMTP server whose
hostname is provided by the C&C server and to which the bot con-
nects to test for spam sending capabilities; and thespam server,
whose IP address and listening port are sent by the C&C serverto
the bot so that the bot can download all spam-related information
such as the spam template or the email addresses to spam. Commu-
nication with the C&C and spam servers uses the encrypted C&C
protocol, while communication with the SMTP test server uses un-
encrypted SMTP. The communication model is pull-based. Thebot
periodically probes the botmaster by sending a request message.
The botmaster replies with two messages: one with authentication
information, and the other one with a command. The bot performs
the requested action and sends a response with its results.

Message format. Our MegaD C&C traces contain 15 different
messages (7 received and 8 sent by the bot). Using Dispatcher,
we have extracted the message field tree for messages on both di-
rections, as well as the associated field semantics. All 15 messages
follow the structure shown in Figure 1 with a 2-byte message length
followed by an encrypted payload. The payload, once decrypted,

contains a 2-byte field that we term version as it is always a key-
word of value 0x100 or 0x1, followed by a 2-byte message type
field. The structure of the remaining payload depends on the mes-
sage type. To summarize the protocol format we have used the out-
put of Dispatcher to write a BinPac grammar [41] that comprises all
15 messages. Field semantics are added as comments to the gram-
mar. Appendix A presents an abridged version of the grammar.

To the best of our knowledge, we are the first to document the
C&C protocol employed by MegaD. Thus, we lack ground truth to
evaluate our grammar. To verify the grammar’s accuracy, we use
another execution trace that contains a different instanceof one of
the analyzed dialogs. We dump the content of all unencryptedmes-
sages and try to parse the messages using our grammar. For this,
we employed a stand-alone version of the BinPac parser included
in Bro [42]. Using our grammar, the parser successfully parses all
MegaD C&C messages in the new dialog. In addition, the parser
throws an error when given messages that do not follow the MegaD
grammar.

Attribute detection. The 15 MegaD messages contain no delim-
iters or arrays. They contain two variable-length fields that use
length fields to mark their boundaries: the compressed spam-related
information (i.e., template and addresses) received from the spam
server, and the host information field in Figure 1. Both the length
fields and variable-length fields are correctly detected by Dispatcher.
The only attributes that Dispatcher misses are the message length
fields on sent messages because they are computed using complex
pointer arithmetic that Dispatcher cannot reason about.

Field semantics.Dispatcher identifies 11 different field semantics
over the 15 messages: IP addresses, ports, hostnames, length, sleep
timers, error codes, keywords, cookies, stored data, padding and
host information. There are only two fields in the MegaD gram-
mar for which Dispatcher does not identify their semantics.Both
of them happen in received messages: one of them is the message
type, which we identify by looking for fields that are compared
against multiple constants in the execution and for which the mes-
sage format varies depending on its value. The other corresponds
to an integer whose value is checked by the program but apparently
not used further. Note that we identify some fields in sent messages
as keywords because they come from immediates and constantsin
the data section. We cannot identify exactly what they represent
because we do not see how they are used by the C&C server.

Rewriting a MegaD dialog. To show how our grammar enables
live rewriting, we run a live MegaD bot inside our analysis environ-
ment, which is located in a network that filters all outgoing SMTP
connections for containment purposes. In a first dialog, theC&C
server sends the command to the bot ordering to test for spam capa-
bility using a given Spam test server. The analysis network blocks
the SMTP connection causing the bot to send an error message back
to the C&C server, to communicate that it cannot send spam. No
more spam-related messages are received by the bot. Then, westart
a new dialog where at the time the bot calls the encrypt function to
encrypt the error message, we stop the execution, rewrite the en-
cryption buffer with the message that indicates success, and let the
execution continue7. After the rewriting the bot keeps receiving
the spam-related messages, including the spam template andthe
addresses to spam, despite the fact that it cannot send any spam
messages. Note that simply replaying the message that indicates
success from a previous dialog into the new dialog does not work
because the success message includes a cookie value that theC&C
selects and may change between dialogs.

7The size of both messages is the same once padding is accounted
for, thus we can reuse the buffer allocated by the bot.



Wireshark Dispatcher Errors
Protocol Message Type |LW | |HW | |LD| |HD| |E(LW )| |E(LD)| |E(HW )| |E(HD)|
HTTP GET reply 11 1 22 0 11 1 0 1

POST reply 11 1 22 0 11 1 0 1
DNS A reply 27 4 28 0 1 0 0 4
FTP Welcome0 2 1 3 1 1 0 0 0

Welcome1 2 1 3 1 1 0 0 0
Welcome2 2 1 3 1 1 0 0 0
USER reply 2 1 3 1 1 1 0 0
PASS reply 2 1 2 0 1 1 0 1
SYST reply 2 1 2 0 1 1 0 1

ICQ New connection 5 0 5 0 0 0 0 0
AIM Sign-on 11 3 15 3 5 0 0 0
AIM Logon 46 15 46 15 0 0 0 0

Total 123 30 154 22 34 5 0 8

Table 3: Comparison of the message field tree for sent messages extracted by Dispatcher and Wireshark

6.2 Evaluation on Open Protocols
In this section we evaluate our techniques on four open proto-

cols: HTTP , DNS, FTP, and ICQ. To this end, we compare the out-
put of Dispatcher with that of Wireshark 1.0.5 [12] when process-
ing 12 messages belonging to those protocols. For each protocol
we select a representative application that implements theprotocol:
Apache-2.2.1 for HTTP, Bind-9.6.0 for DNS, Filezilla-0.9.31 for
FTP, and Pidgin-2.5.5 for ICQ. Note that regardless of the applica-
tion being a client (Pidgin) or a server (Bind, Apache, Filezilla), for
this part of the evaluation we focus on sent messages.

Message format. Wireshark is a network protocol analyzer con-
taining manually written grammars (called dissectors) fora large
variety of network protocols. Although Wireshark is a mature and
widely-used tool, its dissectors have been manually generated and
therefore are not completely error-free. To compare the accuracy
of the message format automatically extracted by Dispatcher to the
manually written ones included in Wireshark, we analyze themes-
sage field tree output by both tools and manually compare themto
the protocol specification. Thus, we can classify any differences
between the output of both tools to be due to errors in Dispatcher,
Wireshark, or both.

We denote the set of leaf fields and the set of hierarchical fields
in the message field tree output by Wireshark asLW andHW , re-
spectively.LD andHD are the corresponding sets for Dispatcher.
Table 3 shows the evaluation results. For each protocol and mes-
sage it shows the number of leaf fields and hierarchical fieldsin the
message field tree output by both tools as well as the result ofthe
manual classification of its errors. Here,|E(LW )| and |E(LD)|
represent the number of errors on leaf fields in the message field
tree output by Wireshark and Dispatcher respectively. Similarly,
|E(HW )| and |E(HD)| represent the number of errors on hierar-
chical fields.

The results show that Dispatcher outperforms Wireshark when
identifying leaf fields. This surprising result is due to theinconsis-
tencies between the different dissectors in Wireshark whenidenti-
fying delimiters. Some dissectors do not add delimiter fields to the
message field tree, some concatenate them to the variable-length
field for which they mark the boundary, while others treat them
as separate fields. After checking the protocol specifications, we
believe that delimiters should be treated as their own fieldsin all
dissectors. The results also show that Wireshark outperforms Dis-
patcher when identifying hierarchical fields. This is due tothe pro-
gram not using loops to write the arrays because the number of
elements in the array is known or is small enough that the compiler
has unrolled the loop.

Overall, Dispatcher outperformed Wireshark for the given mes-
sages. Note that we do not claim that Dispatcher is generallymore
accurate than Wireshark since we are only evaluating a limited
number of protocols and messages. However, the results showthat
the accuracy of the message format automatically extractedby Dis-
patcher can rival that of Wireshark, without requiring a manually
generated grammar.

Errors on leaf fields. Here we detail the errors on leaf fields that
we have assigned to Dispatcher. The error in the HTTP GET re-
ply message is in theStatus-Line. The HTTP/1.1 specification [30]
states that its format is:Status-Line = HTTP-Version SP Status-
Code SP Reason-Phrase CRLF, but both Dispatcher and Wireshark
consider the Status-Code, the delimiter, and the Reason-Phrase to
belong to the same field. The FTP specification [44] states that a re-
ply message comprises a completion code followed by a text string.
The error in the FTP USER reply message is due to the fact that the
server echoes back the username to the client and Dispatcheriden-
tifies the username being echoed back as an additional cookiefield.
The other FTP replies have the same type of error: the response
code is merged with the text string because the program keepsthe
whole message (except the delimiter) in a single buffer in the data
section. As mentioned earlier the errors on hierarchical fields are
due to the program being analyzed not using loops to write thear-
rays. For example, the four errors in the DNS reply correspond to
theQueries, Answers, Authoritative, andAdditionalsections in the
message, which Bind processes separately and therefore Dispatcher
cannot identify as an array.

These errors highlight the fact that the message field tree ex-
tracted by Dispatcher is limited to the quality of the protocol im-
plementation in the binary, and may differ from the specification.

Attribute detection. The 12 messages contain 14 length fields,
43 delimiters, 57 variable-length fields, and 3 arrays. Dispatcher
misses 8 length fields because their value is hard-coded in the pro-
gram. Thus, their target variable-length fields are considered fixed-
length. Out of the 43 delimiters Dispatcher only misses one,which
corresponds to a null byte marking the end of a cookie string that
was considered part of the string. Dispatcher correctly identifies
all other variable-length fields. Out of 3 arrays, Dispatcher misses
one formed by theQueries, Answers, Authoritative, andAdditional
sections in the DNS reply, which Bind processes separately and
therefore cannot be identified by Dispatcher.

Field semantics.Dispatcher correctly identifies all semantic infor-
mation in the sent messages, except the 3 pointers in the DNS reply,
used by the DNS compression method, which are computed using
pointer arithmetic that Dispatcher cannot reason about.



Number of traces Number of functions True Positives False Positives False Positive Rate
20 3,569,773 (22,379) 4,874 (21) 87 (9) 0.002%

Table 4: Evaluation of the detection of encoding functions.Values in parentheses represent the numbers of unique instances. False
positives are computed based on manual verification.

6.3 Detecting Encoding Functions
To evaluate the detection of encoding functions presented in Sec-

tion 5 we perform the following experiment. We obtain 20 execu-
tion traces from multiple programs that handle network data. Five
of these traces process encrypted and compressed functions, four of
them are from MegaD sessions and the other one is from Apache
while handling an HTTPS session. MegaD uses its own encryption
algorithm and thezlib library for compression and Apache uses
SSL with AES and SHA-18. The remaining 15 execution traces are
from a variety of programs including browsers (Internet Explorer 7,
Safari 3.1, and Google Chrome 1.0), network servers (Bind, At-
phttpd), and services embedded in Windows (RPC, MSSQL).

Dispatcher flags any function instances in the execution traces
with at least 20 instructions and a ratio of arithmetic and bitwise
instructions greater than 0.55 as encoding functions. The results
are shown in Table 4. The 20 execution traces contain over 3.5mil-
lion functions calls from 22,379 unique functions. Dispatcher flags
0.14% of the function instances as encoding functions. We man-
ually classify the unique functions flagged by Dispatcher astrue
positives or false positives, using the function names and associated
debugging information. We conservatively classify all instances of
functions flagged by Dispatcher, for which we don’t have any in-
formation as false positives.

Dispatcher correctly identifies all encoding functions in the ex-
ecution traces of MegaD and Apache-SSL. In the MegaD traces,
all instances of three unique encoding functions are identified: the
decryption routine, the encryption routine, and a key generation
routine that generates the encryption and decryption keys from a
seed value in the binary before calling the encryption or decryption
routines. In addition, in the traces that process messages with com-
pressed data, Dispatcher flags a fourth function that corresponds to
the inflatefunction in thezlib library, which is statically linked into
the MegaD binary.

There is a total of 87 false positives from nine unique func-
tions. Of those, we have been able to identify two:memchr and
comctl32.dll::TrueSaturateBits. All instances of the
other seven are conservatively classified as false positives. Based
on these results, our technique correctly identifies all known encod-
ing functions and has a false positive rate of 0.002%.

7. RELATED WORK
Protocol reverse-engineering projects have existed for a long time

to enable interoperability of open solutions with proprietary proto-
cols. Those projects relied on manual techniques, which areslow
and costly [2, 3, 6, 9, 11]. Automatic protocol reverse engineering
techniques can be used, among other applications, to reducethe
cost and time associated with these projects.

Automatic protocol reverse-engineering.Automatic protocol re-
verse engineering techniques can be divided into those thatextract
the field structure of a single message [18, 25, 38], those that ana-
lyze multiple messages to extract the protocol format [14, 27, 49],
and those that infer the protocol state-machine [22, 36]. They can
also be classified into techniques that use as input network traf-
fic [14, 25, 36] and techniques that use as input execution traces,

8TLS-DHE-RSA with AES-CBC-256-SHA-1

which capture how a program processes a received message [18,
22,27,38,49].

Techniques that take as input network data [14, 25, 36] face the
issue of limited semantic information in network traces, and cannot
address encrypted or obfuscated protocols. Techniques to extract
the message field tree are a prerequisite for techniques thatextract
the protocol format [27, 49] and the protocol state-machine[22]
from execution traces. Current approaches that extract themessage
field tree of a given message have focused on extracting the format
of messagesreceivedby an application. To obtain a complete un-
derstanding of the protocol they require access to both sides of the
dialog. Our techniques allow to extract the message field tree for
sentmessages, thus enabling the study of both sides of a communi-
cation from a single binary.

Lim et al [37] use inter-procedural static analysis to extract the
format from files and application data output by a program. Their
approach requires the user to input the prototype of the functions
that write data to the output buffer. This information is often not
available, e.g., when the functions used to write data are not ex-
ported by the program. Their approach also requires sophisticated
analysis to deal with indirection, cannot handle packed binaries
such as MegaD, and does not address semantics inference. Our
approach differs in that we do not require any a priori knowledge
about the program, and we use a dynamic binary analysis approach
that can effectively deal with indirection and packed binaries.

State-machine inference. Protocol reverse-engineering also in-
cludes inferring the protocol’s state-machine. ScriptGen[36] in-
fers the protocol state-machine from network data. Due to the lack
of semantics in network data it is difficult for ScriptGen to deter-
mine whether two network messages are two instances of the same
message type. Prospex [22] addresses this issue by leveraging in-
formation extracted during program execution such as the message
field tree and the functions called by the program upon message
reception.

Replaying network sessions.Previous work has addressed the
problem of replaying previously captured network sessions[26,35,
36]. Such systems perform limited protocol reverse-engineering on
network traces only to the extent necessary for replay. Their fo-
cus is to identify the dynamic fields, i.e., fields that changevalue
between sessions, such as cookies, length fields or IP addresses.

Identifying application sessions.There has been additional work
that can be used in the protocol reverse-engineering problem. Kan-
nan et al [34] studied how to extract the application-level structure
in application data. Their work can be used to find multiple con-
nections that belong to the same protocol session.

Encoding the protocol information. Previous work has proposed
languages to describe protocol specifications [15,24,41].Such lan-
guages are useful to store the results from protocol reverse-engineering,
enabling the construction of generic protocol parsers.

8. CONCLUSION
Automatic protocol reverse-engineering is important for many

security applications, including the analysis and infiltration of bot-
nets. Prior techniques cannot enable rewriting of C&C messages
needed for infiltration because they cannot analyze encrypted pro-



tocols used by newer botnets, they do not extract information about
the semantics of the protocol, or they require access to bothpeers
in a protocol dialog for a complete view of the protocol. In this
paper we have addressed those limitations.

We have proposed techniques to extract the message format of
sentmessages. Our techniques leverage the intuition that the struc-
ture of the output buffer represents the inverse of the structure of
the sent message. Thus, we introducebuffer deconstruction, a tech-
nique that extracts the structure of a message being sent by recon-
structing how the output buffer has been built from other memory
buffers in the program. In addition, we have proposed techniques
for inferring field semantics, a prerequisite for rewritingC&C mes-
sages for botnet infiltration. Our type-inference-based techniques
leverage the rich semantic information that is already available in
the program by monitoring how data in the received messages is
used at places where the semantics are known, and how the sent
messages are built from data with known semantics.

We have implemented our techniques as well as previous ap-
proaches into Dispatcher, a tool that enables the analysis of proto-
col dialogs even when only one of the peers involved in the dialog
is available. We have used Dispatcher to analyze the previously
undocumented C&C protocol of MegaD, a prevalent spam botnet.
We have shown that the information output by Dispatcher enables
botnet infiltration by rewriting the C&C messages.

9. ACKNOWLEDGEMENTS
We thank Robin Sommer for providing us with a stand-alone

version of BinPac. We are grateful to Stephen McCamant and the
anonymous reviewers for their valuable comments to improvethis
manuscript.

10. REFERENCES
[1] AMD64 architecture tech docs.http://www.amd.com/

us-en/Processors/DevelopWithAMD/0,,30_
2252_875_7044,00.html.

[2] How Samba was written.http://samba.org/ftp/
tridge/misc/french\_cafe.txt.

[3] Icqlib: The ICQ library.
http://kicq.sourceforge.net/icqlib.shtml.

[4] Intel64 and IA-32 architectures software developer’s
manuals.http://www.intel.com/products/
processor/manuals/.

[5] The ISO/IEC 9899:1999 C programming language standard.
http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1124.pdf.

[6] Libyahoo2: A C library for Yahoo! Messenger.
http://libyahoo2.sourceforge.net.

[7] Marshal8e6 security threats: Email and web threats.
http://www.marshal.com/newsimages/trace/
Marshal8e6_TRACE_Report_Jan2009.pdf.

[8] MSDN: Microsoft developer network.
http://msdn.microsoft.com.

[9] MSN Messenger protocol.http:
//www.hypothetic.org/docs/msn/index.php.

[10] Spotlight on bots: The worldŠs most un-wanted bots.
http://nortontoday.symantec.com/
features/spotlight_on_bots.php.

[11] The unofficial AIM/OSCAR protocol specification.
http://www.oilcan.org/oscar/.

[12] Wireshark.http://www.wireshark.org/.
[13] R. Bajcsy, T. Benzel, M. Bishop, B. Braden, C. Brodley,

S. Fahmy, S. Floyd, W. Hardaker, A. Joseph, G. Kesidis,

K. Levitt, B. Lindell, P. Liu, D. Miller, R. Mundy,
C. Neuman, R. Ostrenga, V. Paxson, P. Porras, C. Rosenberg,
J. D. Tygar, S. Sastry, D. Sterne, and S. F. Wu. Cyber defense
technology networking and evaluation.Communications of
the ACM, 47(3), 2004.

[14] M. A. Beddoe. Network protocol analysis using
bioinformatics algorithms.
http://www.baselineresearch.net/PI/.

[15] N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo. Generic
application-level protocol analyzer and its language. In
Network and Distributed System Security Symposium, San
Diego, CA, February 2007.

[16] J. Caballero and D. Song. Rosetta: Extracting protocol
semantics using binary analysis with applications to protocol
replay and NAT rewriting. Technical Report
CMU-CyLab-07-014, Cylab, Carnegie Mellon University,
October 2007.

[17] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang,
D. Song, and A. Blum. FiG: Automatic fingerprint
generation. InNetwork and Distributed System Security
Symposium, San Diego, CA, February 2007.

[18] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
Automatic extraction of protocol message format using
dynamic binary analysis. InACM Conference on Computer
and Communications Security, Alexandria, VA, October
2007.

[19] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario.
Towards an understanding of anti-virtualization and
anti-debugging behavior in modern malware. In
International Conference on Dependable Systems and
Networks, Anchorage, AK, June 2008.

[20] K. Chiang and L. Lloyd. A case study of the Rustock rootkit
and spam bot. InWorkshop on Hot Topics in Understanding
Botnets, April 2007.

[21] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. InUSENIX Security Symposium, San
Diego, CA, August 2004.

[22] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda.
Prospex: Protocol specification extraction. InIEEE
Symposium on Security and Privacy, Oakland, CA, May
2009.

[23] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. InSymposium on Operating Systems
Principles, Brighton, United Kingdom, October 2005.

[24] D. Crocker and P. Overell. Augmented BNF for syntax
specifications: ABNF. RFC 4234 (Draft Standard), October
2005.http://www.ietf.org/rfc/rfc4234.txt.

[25] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic
protocol description generation from network traces. In
USENIX Security Symposium, Boston, MA, August 2007.

[26] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application dialog.
In Network and Distributed System Security Symposium, San
Diego, CA, February 2006.

[27] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz.
Tupni: Automatic reverse engineering of input formats. In
ACM Conference on Computer and Communications
Security, Alexandria, VA, October 2008.

[28] N. Daswani, M. Stoppelman, and the Google Click Quality
and Security Teams. The anatomy of Clickbot.A. In



Workshop on Hot Topics in Understanding Botnets, April
2007.

[29] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer.
Dynamic application-layer protocol analysis for network
intrusion detection. InUSENIX Security Symposium,
Vancouver, Canada, July 2006.

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999.

[31] J. B. Grizzard, V. Sharma, C. Nunnery, and B. B. Kang.
Peer-to-peer botnets: Overview and case study. InWorkshop
on Hot Topics in Understanding Botnets, April 2007.

[32] J. P. John, A. Moshchuk, S. D. Gribble, and
A. Krishnamurthy. Studying spamming botnets using Botlab.
In Symposium on Networked System Design and
Implementation, Boston, MA, April 2009.

[33] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M.
Voelker, V. Paxson, and S. Savage. Spamalytics: An
empirical analysis of spam marketing conversion. InACM
Conference on Computer and Communications Security,
Alexandria, VA, October 2008.

[34] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal.
Semi-automated discovery of application session structure.
In Internet Measurement Conference, Rio de Janeiro, Brazil,
October 2006.

[35] C. Leita, M. Dacier, and F. Massicotte. Automatic handling
of protocol dependencies and reaction to 0-day attacks with
ScriptGen based honeypots. InInternational Symposium on
Recent Advances in Intrusion Detection, Hamburg, Germany,
September 2006.

[36] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An
automated script generation tool for Honeyd. InAnnual
Computer Security Applications Conference, Tucson, AZ,
December 2005.

[37] J. Lim, T. Reps, and B. Liblit. Extracting output formats
from executables. InWorking Conference on Reverse
Engineering, Benevento, Italy, October 2006.

[38] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol
format reverse engineering through context-aware monitored
execution. InNetwork and Distributed System Security
Symposium, San Diego, CA, February 2008.

[39] N. Lutz. Towards revealing attacker’s intent by automatically
decrypting network traffic. Master’s thesis, ETH, Zürich,
Switzerland, July 2008.

[40] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InNetwork and Distributed
System Security Symposium, San Diego, CA, February 2005.

[41] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A
yacc for writing application protocol parsers. InInternet
Measurement Conference, Rio de Janeiro, Brazil, October
2006.

[42] V. Paxson. Bro: A system for detecting network intruders in
real-time.Computer Networks, 31(23–24), 1999.

[43] P. Porras, H. Saidi, and V. Yegneswaran. A foray into
Conficker’s logic and rendezvous points. InUSENIX
Workshop on Large-Scale Exploits and Emergent Threats,
Boston, MA, April 2009.

[44] J. Postel and J. Reynolds. File transfer protocol. RFC 959
(Standard), October 1985. Updated by RFCs 2228, 2640,
2773, 3659.

[45] P. Saxena, P. Poosankam, S. McCamant, and D. Song.
Loop-extended symbolic execution on binary programs. In
International Symposium on Software Testing and Analysis,
Chicago, IL, July 2009.

[46] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston,
MA, October 2004.

[47] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, fidelity,
and containment in the Potemkin virtual honeyfarm. In
Symposium on Operating Systems Principles, Brighton,
United Kingdom, October 2005.

[48] Z. Wang, X. Jiang, W. Cui, and X. Wang. ReFormat:
Automatic reverse engineering of encrypted messages. In
European Symposium on Research in Computer Security,
Saint-Malo, France, September 2009.

[49] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda.
Automatic network protocol analysis. InNetwork and
Distributed System Security Symposium, San Diego, CA,
February 2008.

APPENDIX

A. MEGAD BINPAC GRAMMAR

type MegaD_Message(is_inbound: bool) = record {
msg_len : uint16;
encrypted_payload(is_inbound):

bytestring &length = 8 * msg_len;
} &byteorder = bigendian;

type encrypted_payload(is_inbound: bool) = record {
version : uint16; # Constant (0x0100 or 0x0001)
mtype : uint16;
data : MegaD_data(is_inbound, mtype);

};
# Message types seen in our traces
type MegaD_data(is_inbound: bool,msg_type: uint16) =

case msg_type of {
0x00 -> m00 : msg_0x0;
0x01 -> m01 : msg_0x1;
0x0e -> m0e : empty_msg;
0x15 -> m15 : empty_msg;
0x16 -> m16 : msg_0x16;
0x18 -> m18 : empty_msg;
0x1c -> m1c : msg_0x1c(is_inbound);
0x1d -> m1d : msg_0x1d;
0x21 -> m21 : msg_0x21;
0x22 -> m22 : msg_0x22;
0x23 -> m23 : msg_0x23;
0x24 -> m24 : msg_0x24;
0x25 -> m25 : msg_0x25;
default -> unknown : bytestring &restofdata;

};
# Direction: outbound (To: CC server)
# MegaD supports two submessages for type zero
type msg_0x0 = record {

fld_00 : uint8; # <unknown>
fld_01 : MegaD_msg0(fld_00);

};

type MegaD_msg0(msg0_type: uint8) =
case msg0_type of {

0x00 -> m00 : msg_0x0_init;
0x01 -> m01 : msg_0x0_idle;
default -> unknown : bytestring &restofdata;

};



type msg_0x0_init = record {
fld_00 : bytestring &length=16; # Constant(0)
fld_01 : uint32; # Constant (0xd)
fld_02 : uint32; # Constant (0x26)
fld_03 : uint32; # IP address
pad : bytestring &restofdata; # Padding

};

type msg_0x0_idle = record {
fld_00 : bytestring &length=8; # Bot ID
fld_01 : uint32; # Constant(0)
pad : bytestring &restofdata; # Padding

};

# Direction: inbound (From: CC server)
type empty_msg = record {

pad : bytestring &restofdata; # Padding
};

# Direction: inbound (From: CC server)
type msg_0x1 = record {

fld_00 : bytestring &length=16; # Cookie
fld_01 : uint32; # Sleep Timer
fld_02 : bytestring &length=8; # Bot ID

};

type host_info = record {
fld_00 : uint32; # Cpu identifier
fld_01 : uint32; # Tick difference
fld_02 : uint32; # Tick counter
fld_03 : uint16; # OS major version
fld_04 : uint16; # OS minor version
fld_05 : uint16; # OS build number
fld_06 : uint16; # Service pack major
fld_07 : uint16; # Service pack minor
fld_08 : uint32; # Physical memory(KB)
fld_09 : uint32; # Available memory(KB)
fld_10 : uint16; # Internet conn. type
fld_11 : uint32; # IP address

};

# Direction: outbound (To: CC server)
type msg_0x16 = record {

fld_00 : bytestring &length=8; # Bot ID
fld_01 : uint16; # Length(fld_02)
fld_02 : host_info; # Host information
pad : bytestring &restofdata; # Padding

};

# Direction: inbound or outbound (Spam server)
type msg_0x1c(is_inbound: bool) =

case is_inbound of {
true -> m1c_inbound : msg_0x1c_inbound;
false -> m1c_outbound : msg_0x1c_outbound;

};

# Direction: inbound (From: Spam server)
type msg_0x1c_inbound = record {

fld_00 : uint32; # Stored data
fld_01 : uint32; # Length
fld_02 : uint32; # Length(fld_03)
fld_03 : bytestring &length = fld_02; # Compressed
pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: Spam server)
type msg_0x1c_outbound = record {

fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)

};

# Direction: outbound (To: Spam server)
type msg_0x1d = record {

fld_00 : bytestring &length = 16; # Cookie
fld_01 : uint32; # Constant(0)

};

# Direction: inbound (From: CC server)
type msg_0x21 = record {

fld_00 : uint32; # <unknown>
fld_01 : uint16; # Port
fld_02 : uint8[] &until($element == 0); # Hostname
pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)
type msg_0x22 = record {

fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)
type msg_0x23 = record {

fld_00 : uint32; # Error code
fld_01 : bytestring &length=8; # Bot ID

};

# Direction: inbound (From: CC server)
type msg_0x24 = record {

fld_00 : uint32; # IP address
fld_01 : uint16; # Port
pad : bytestring &restofdata; # Padding

};

# Direction: outbound (To: CC server)
type msg_0x25 = record {

fld_00 : bytestring &length=8; # Bot ID
pad : bytestring &restofdata; # Padding

};

B. FIELD SEMANTICS
This appendix provides some examples of functions used to iden-

tify the field semantics described in Table 1.

Cookies.Cookies represent data from a received network message
that propagates to a sent message (e.g., session identifiers). Thus,
a cookie is simultaneously identified in the received and sent mes-
sages. Note that once a cookie has been identified we can checkif
it appears in later messages (both received and sent) in the dialog.

IP addresses.Dispatcher identifies IP addresses in received mes-
sages by monitoring if the arguments of some functions used to es-
tablish network connections (e.g.,connect) or perform DNS reverse
lookups (e.g.,getnameinfo) have been derived from the received
messages. Dispatcher identifies IP addresses in sent messages by
tainting the output of functions that return local information (e.g.,
gethostbyname), remote information (e.g.,getpeername), or func-
tions that check the name of connected sockets (e.g.,getsockname).

Error codes. Some programs report back unexpected errors using
error codes. Dispatcher identifies error codes in sent messages by
tainting the output of functions that report error conditions (e.g.,
RtlGetLastWin32Error).

File data. File data is data read from the file system. Dispatcher
can identify file data in sent messages by tainting the outputof
functions that read from a file (e.g.,read) or functions that map
files directly into memory (e.g.,MapViewOfFile). A special case
of file data is user-specifiedconfiguration datasuch as the number
of times to retry a connection. Dispatcher can mark file data as
configuration data when provided with the list of files that contain
the configuration information for the program.



File information. File information is file metadata such as the size
of a file or the last modification date. Dispatcher identifies file in-
formation in sent messages by tainting the output of functions that
query for file properties (e.g.,NtQueryInformationFile).

Filenames. Filenames are a special case of file information. Dis-
patcher can identify filenames in received messages by analyzing
if the arguments of functions used to open files (e.g.,open) or used
to get file properties (e.g.,NtQueryInformationFile) have been de-
rived from data previously received over the network. It caniden-
tify filenames in sent messages by tainting the output of functions
that list the files in a directory (e.g.,NtQueryDirectoryFile).

Hash / Checksum. We call both hash and checksum fieldsveri-
fication fieldsbecause they are often used to check if the data has
been modified during transmission. Dispatcher identifies verifica-
tion functions using the technique to identify encoding functions
presented in Section 5. If the output of a encoding function is com-
pared against a range of bytes received over the network, then that
range is marked as a verification field in the received message. If
the output of a encoding function appears on a sent message, then
it is either a verification field or an encrypted/obfuscated field. Dis-
patcher can use the scope (the range of bytes in the sent message) to
distinguish between a verification field and an encrypted/obfuscated
field, since verification fields are usually shorter.

Hostnames. Hostnames can identify remote hosts as well as the
local host. Dispatcher can identify hostnames in received messages
by checking if the arguments of functions that start networkcon-
nections (e.g.,connect) are derived from received messages and in
sent messages by tainting the output of functions that return local
host information (e.g.,gethostname).

Host information. We subsume any hardware or software proper-
ties of the host underhost information. For example, when MegaD
builds the message in Figure 1, it queries the operating system for
information about the processor type, the operating systemversion,
the memory status of the host or the type of connection to the In-
ternet, all of which are examples of host information fields.Dis-
patcher identifies host information fields in sent messages by taint-
ing the output of a variety of functions such asGetVersionExAand
GlobalMemoryStatus.

Keyboard input. Protocol messages often include data provided
by the user via the keyboard, such as the filename in a FTP down-
load, the domain name in a DNS query or the user name and pass-
word in an ICQ login session. Dispatcher identifies keyboardinput
in sent messages by tainting any data input by the user using the
keyboard.

Keywords. Dispatcher identifies keywords in received messages
using the techniques proposed in Polyglot [18] and in sent mes-
sages by tainting the memory region that contains a given module,
as explained in Section 4.3.

Length. Dispatcher identifies length fields in received messages
using previously proposed techniques [18,49] and in sent messages
using the techniques described in Section 4.3. Message length is a
special type of length, which represents the length of a message on
the wire. Dispatcher can identify message length fields in received
messages by monitoring if some bytes in the received messageare
compared against the output of the function calls to read data from
the socket (e.g,read, recv).

Padding. Dispatcher identifies padding in received messages by
looking for tainted bytes that are not used by the program (only
moved around) and that are present at the end of variable-length
fields or at the end of the message. Dispatcher considers a padding
field to be at most 7 bytes (64-bit alignment).

Ports. Ports are usually used altogether with IP addresses or host-
names to define an end point for a connection. Dispatcher identi-
fies ports in received messages by analyzing how the arguments of
functions used by the program to start new connections (e.g., con-
nect) and bind new listening ports (e.g.,bind) have been derived
from a previously received message. Dispatcher identifies ports in
sent messages by tainting the output of functions that checkthe
name of connected sockets (e.g.,getsockname).

Registry data. Registry data is any data stored in the Windows
registry. Dispatcher identifies registry data in sent messages by
tainting the output of functions that read data from the Windows
registry (e.g.,NtQueryValueKey).

Sleep timers.Sleep timers are timers used to indicate to a host that
it should delay execution for a certain amount of time. Dispatcher
identifies sleep timers in received messages by monitoring if the
arguments to functions that delay execution (e.g.,sleep) have been
derived from data received over the network.

Stored data. Stored data refers to data received over the network
that the program saves into permanent storage. It includes data
written to disk, as well as data stored in the Windows registry. Dis-
patcher can identify stored data by monitoring if data received over
the network is used to derive the data argument for functionsthat
write data to file (e.g.,write) or the Windows registry (e.g.,NtSet-
ValueKey).

Timestamps. Timestamps are fields that contain time data. Dis-
patcher identifies timestamps in sent messages by tainting the out-
put of functions that request the local or system time (e.g.,GetLo-
calTime, GetSystemTime).


