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Abstract. In the recent past, both network- and host-based approaches
to intrusion detection have received much attention in the network se-
curity community. No approach, taken exclusively, provides a satisfac-
tory solution: network-based systems are prone to evasion, while host-
based solutions suffer from scalability and maintenance problems. In this
paper we present an integrated approach, leveraging the best of both
worlds: we preserve the advantages of network-based detection, but al-
leviate its weaknesses by improving the accuracy of the traffic analysis
with specific host-based context. Our framework preserves a separation
of policy from mechanism, is highly configurable and more flexible than
sensor/manager-based architectures, and imposes a low overhead on the
involved end hosts. We include a case study of our approach for a no-
toriously hard problem for purely network-based systems: the correct
processing of HTTP requests.

1 Introduction

In recent years, intrusion detection systems (IDSs) have become a central com-
ponent in the tool chest of security analysts. Assuming proper maintenance and
attention, IDSs provide essential information for the investigation of user activ-
ity, both in real-time and for post-incident forensics. Traditionally, one dimen-
sion along which IDSs have been classified is their vantage point : network-based
systems (NIDSs) benefit from their wide field of vision, but suffer from both
ambiguity in their observations [1] and challenging performance requirements.
Host-based systems (HIDSs) solve the ambiguity problem, but often impose a
significant performance overhead on executing processes and monitor individual
hosts only. A number of solutions have been proposed to improve the accuracy
of the network-based analysis process and to reduce the ambiguity problem [2,
3]. Furthermore, a number of distributed approaches have been proposed for
improving the coverage of activity throughout the network (e.g., [4–6]). How-
ever, widespread adoption of such systems has not occurred. Despite well-known



shortcomings, most systems deployed today still operate in a network-based and
centralized fashion. The reasons are manifold and include ease of maintenance
of a single device, potentially high coverage from a single point of view, and ease
of deployment.

In this paper, we acknowledge this situation and present an architecture
based on the Bro IDS [7] that remains faithful to its primarily network-based
approach, while improving its accuracy by providing host-based context where
it matters most in the analysis process. Our architecture allows for a gradual
transition toward more distributed detection. We improve Bro’s field of vision
by augmenting its mechanism without sacrificing flexibility at the policy level:
we integrate host-based components by allowing them to send and receive Bro
events, the building blocks of the analysis policy in Bro deployments. We fo-
cus our attention on crucial and frequently exploited services that typically run
on only a handful of machines. Compared to the usual host-based paradigm of
performing all analysis on the end host itself, our solution incurs very modest
performance and maintenance overhead on the end hosts because the actual anal-
ysis work is performed not by it but on a different system. From the perspective
of the NIDS, our approach trades off an additional burden of communicating
with the end systems for potentially saving a considerable number of cycles in
the analysis process by obviating the need for costly NIDS processing to resolve
ambiguity. A key question for the approach is to what degree this tradeoff of in-
creased communication for decreased processing is a net gain. As we will show,
this is indeed generally a significant win.

We note that the idea of leveraging host-based context in network-based
IDSs is not itself novel [8, 9]. The contributions of our work are twofold: first, we
move the idea forward by tightly integrating it with the well-established policy-
driven approach of the Bro system. Second, we identify novel ways of leveraging
the context provided by similar processing stages in the NIDS and host-based
applications. In a detailed case study, we instrument the Apache web server
with an interface to Bro. To demonstrate the feasibility of the architecture, we
deploy such a setup in two production environments. Additionally, we examine
the effectiveness of our multi-point analysis approach in a testbed by launching
a large number of scripted attacks against the web server.

In the remainder of this paper we first recapitulate Bro’s architecture in Sec-
tion 2, including an overview of the recent addition of a communication frame-
work to the system. We then discuss the benefits of including host-supplied
context in Section 3. In Section 4 we conduct a case study: we instrument the
Apache web server to supply information to concurrently executing Bros. Sec-
tion 5 presents our experiences with instrumented Apaches in a test-lab installa-
tion as well as in two productional environments. We summarize the paper and
point out future work in Section 6.



2 Bro: A Distributed Event-Based Intrusion Detection

System

Bro’s architecture has remained faithful to the original philosophy developed in
the original paper [7]; we briefly summarize it below. A significant recent im-
provement has been the introduction of a communications framework as the basis
of a more powerful event model suitable for distributed event communication [10,
11]. We summarize the architecture’s key elements here in condensed form to
put in context our integration of host-supplied context. Figure 1 illustrates Bro’s
architecture.

2.1 Separation of Mechanism from Policy

A core idea of Bro is to split event detection mechanisms from event processing
policies. Event generation is performed by analyzers in Bro’s core: these analyzers
operate continuously based on input observed by Bro instances and trigger events
asynchronously when corresponding activity is observed. Bro’s core contains
analyzers for a wide range of network protocols such as RPC, FTP, HTTP,
ICMP, SMTP, TCP, UDP, and others. These analyzers are connection-oriented:
they associate state with connections observed on the network and trigger events
whenever interesting protocol activity is encountered.4 Examples include the
establishment of a new TCP connection or an HTTP request. Bro also provides
a signature engine for typical misuse-based intrusion detection: it matches byte
string signatures against traffic flows and triggers events whenever a signature
matches [12]. Once an event is triggered, the engine passes it to the policy layer,
which then takes care of processing the event, possibly triggering new ones. The
design takes care to minimize CPU load: only analyzers responsible for triggering
the events used at the policy layer are actually enabled.

2.2 Policy Configuration

Each Bro peer runs a policy configuration in its policy layer. This policy embod-
ies the site’s security policy, expressed in scripts containing statements in the
special-purpose Bro scripting language. To understand the significance of this
approach it is important to realize that the relevance of an event varies from
site to site. A very simple example is that some sites may consider the detec-
tion of a Microsoft IIS exploit attempt on a pure UNIX network a threat, while
others may not; much more detailed, subtle, and contextual policy distinctions
are not only supported but often seen in operational use. Bro’s policy language
is strongly typed, procedural in style, and provides a wide range of elementary
data types to facilitate the analysis of activity on a network.

4 Bro’s concept of a connection is protocol-dependent; for connectionless protocols,
such as UDP, a connection is defined as a bidirectional flow that shares the same
endpoint addresses and ports and is terminated upon an inactivity timeout.
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Fig. 1. Architecture of the Bro IDS.

2.3 Communication Framework and State Management

Bro’s communication framework supports the serialization and transmission of
arbitrary kinds of state between Bro instances. The driving idea behind its design
is to allow the realization of independent state [10]: that is, we should no longer
think of state accumulated at the policy layer as a local concept, but rather as
information dispersed throughout the network, and potentially shared between
past and future executions of Bro. The communication model imposes no hi-
erarchical structure. Examples of exchangeable state include triggered events;
state kept in data structures managed by policies; and the policy definitions
themselves. For the purpose of this paper it is sufficient to think of the enti-
ties exchanged between peers as events, though that ignores a large part of its
flexibility.

To interface other applications to Bro, we have implemented a lightweight,
highly portable library supporting Bro’s communication protocol called Broccoli5

that allows nodes that are not instances of the Bro IDS to partake in its event
communication [13]. Broccoli nodes can request, send, and receive Bro events
just like Bro itself, but cannot be configured using Bro’s policy language. A
Broccoli node’s policy has to be implemented directly in the client’s code, or
through mechanisms such as configuration files.

3 Using Host-Supplied Context in Network Intrusion

Detection

Having a distributed Network Intrusion Detection System at hand, we can use
the NIDS’s communication mechanisms to implement host-based sensors to sup-

5
Broccoli is the healthy acronym for “Bro Client Communications Library.”



plement the NIDS’s analyses. In this section we explain how a NIDS can benefit
from this additional information and how we integrated host-supplied context
into Bro’s event-based framework.

3.1 Motivation

Our motivation for augmenting network-based analysis with host-supplied con-
text is fivefold:

1. Overcoming encryption. One major benefit of host-supplied context is
that the host has access to information before and after any flow encryption
takes place. The recipient of an encrypted connection can be instrumented
to report selected information to the NIDS, such as user login names or
requested objects. Thus, instrumenting server applications that employ en-
crypted communication allows us to do the same protocol analysis as for
clear-text protocols.

2. Comprehensive protocol analysis. Having host applications report to
the NIDS enables us to access additional information about the applications’
internal protocol state. As endpoints fully decode the application-layer pro-
tocol in any case, they can easily provide the NIDS with context that for the
NIDS is hard to derive itself.

A simple example is user authentication during a Telnet login session. The
Telnet protocol does not include any information about login success or
failure, so Bro must resort to heuristics in an attempt to infer the result
of an authentication attempt based on the keystroke/response dialog [7].
But the Telnet server end host immediately and unambiguously knows the
outcome of such attempts.

3. Anti-evasion. Evasion attacks are one of the most fundamental problems
of network intrusion detection. They exploit ambiguities inherently present
in observing network traffic from a location other than one of the endpoints.
These ambiguities render it hard, or even impossible, for a NIDS to cor-
rectly interpret skillfully crafted packet sequences in the same fashion as the
end host receiving them. Such attacks can exploit differing interpretations
of traffic at multiple protocol levels. From the application layer’s point of
view, it is generally not possible to pinpoint the exact location in the pro-
tocol stack where the ambiguity was introduced: for a web server, it might
have been within HTTP itself, but could just as well have occurred due to
TCP retransmissions (layer 4) or IP fragmentation (layer 3). In a seminal pa-
per [1], Ptacek and Newsham describe several network- and transport-layer
attacks that lead to different payload streams perceived by the end-system
and the NIDS. Approaches that alleviate the problem exist (e.g., normaliza-
tion [2] and active mapping [3]), but have not seen deployment in large-scale
networks yet.

The NIDS’s analysis can likewise leverage host-based context at multiple
levels. One way to use this is for learning how the application interprets the



received data, i.e., we can use additional information to detect evasion at-
tacks against the NIDS. By including application-layer state of the host into
the analysis, such attacks can be detected and/or avoided. Another interest-
ing approach is the instrumentation of a host’s network stack, which would
allow it to share information about its stream reassembly with the NIDS. A
key question here is how to minimize the amount of information that needs to
be shared to allow such a comparison. For example, we can envision exchang-
ing checksums of the stream to detect mismatches in a lightweight fashion.
Such instrumentation would allow us to monitor multiple types of applica-
tions for evasion attacks without the need to instrument each application
individually.

4. Adaptive scrutiny. Generally, there is a wealth of things that can cause
an IDS to become suspicious about a connection’s intent: unusual destination
hosts or ports, scanning behavior by the source host in the past, matches to
traffic flow signatures, or a large number of IP fragments are just a small set
of examples. Our approach adds another indicator to the toolbox: deviation
of the interpretations on the end host and the NIDS can also be used to
classify a connection as more suspicious than others, initiating closer scrutiny
of such traffic.

5. IDS hardening. Lastly, differing interpretations of the same data might
simply point out subtle bugs in the implementation of the NIDS, or even in
the application itself.

More generally, we see that there are two – somewhat complementary –
approaches to leveraging host-supplied context. First, the host can provide addi-
tional context for the NIDS to include into analysis. Second, the host can supply
redundant context which the NIDS uses to verify information is has distilled it-
self.

3.2 Integration into Bro

We incorporate host-supplied context into Bro’s analysis by letting selected ap-
plications send events to a central Bro instance. Similar to Bro’s core-generated
events, remote events still represent policy neutral descriptions of phenomena
occurring within individual process executions. This implies that the policy that
determines the relevance of these events is exclusively maintained on the Bro
host. The benefits of maintaining the policy here, rather than pushed out to the
end hosts, are twofold: first, the policy is accessible centrally and thus easier to
adapt; second, this approach imposes less overhead on the monitored host than
ordinary HIDSs since the data is not analyzed on the host itself. Generating and
sending an event does not cost the host much more effort than writing to a log
file. In addition, we can instrument a host process with fairly little effort using
the Broccoli library. Since Broccoli implements bidirectional event communica-
tion, an instrumented application can also be made controllable by Bro in order
to react in accordance to the policy.



We do not make any further assumptions about the semantics of remote
events. Usually, their meaning is application-specific. However, different appli-
cations may generate the same kind of events. For example, a Web server and
an HTTP proxy may both communicate URLs. If suitable, remote events may
also directly map to some of Bro’s internal events. In this case, their default
processing can be leveraged.

Bro’s connection-oriented view of traffic analysis raises significant issues for
the integration of remote events with existing local state. Essentially, we need
to unite the stream of events generated by observing a connection on the wire
with the stream of events generated by the remote application that processes
the connection’s data. One avenue for doing so is to have the remote application
send along the parameters identifying the connection, for example the IP/port
quadruple. In order for this to work, the analyzer must be structured in a way to
allow this fusion of event streams. This means that we must make available all
state required to process the events to all relevant event handlers. Furthermore,
this state must be structured to support the processing of events of different
origins and levels of abstraction levels. One instance of this problem space is
the need for synchronization when we cannot guarantee that the Bro host can
monitor all relevant traffic: we must ensure that new state can be instantiated
by both local and remote events, and that this state is not expired prematurely.

4 Analysis of HTTP Sessions

For our case study, we decided to take a closer look at HTTP, the most widely
used application layer protocol in the Internet. It is not uncommon that Web
traffic amounts for more than half of all TCP connections in a large network.
All major NIDSs provide components to detect HTTP-based attacks, which at a
minimum extract the requested URLs from the network stream and match these
against a set of signatures to detect malicious requests.

The main observation here is that there are at least two HTTP decoders
which dissect the same HTTP connection, namely the web server and the NIDS.
While this is a duplication of work, the separation of the tasks is indeed rea-
sonable: per our discussion above, we prefer the web server not to perform the
intrusion detection itself (and, naturally, it does not make sense for the NIDS
to serve HTTP requests). However, this redundancy allows us to benefit from
both additional and redundant context, as discussed in Section 3.1. We will now
discuss both approaches in turn. While we will focus on URLs extracted from
the requests, we note that similar reasoning holds for deeper inspection.

4.1 Leveraging Additional Web Server Context

With respect to the semantics of a given HTTP request, it is obviously the
web server that is authoritative: its environment-specific configuration defines
the interpretation of the request and the meaning of any reply. Thus, providing



the NIDS with information from the web server promises to offer a significant
increase in contextual information.

Web servers can provide several kinds of context that are hard or impossible
for the NIDS to derive by itself:

– Decryption: SSL-enabled sessions have become quite common for transfer-
ring sensitive data. While quite desirable, this poses severe restrictions on
passive application-layer network monitoring. However, since the web server
decrypts such requests, it can provide them as clear-text to the NIDS via an
independent (and again encrypted) channel.

– Full request processing: The web server always fully decodes the request
stream it receives. In contrast, many NIDSs perform this task rather half-
heartedly; e.g., Snort [14] may miss requests in pipelined/persistent connec-
tions if they cross packet boundaries (older versions used to extract only the
very first URL from each packet).

– Full reply processing: Some information can be easily provided by the
web server while a NIDS needs to put considerable effort into deriving it.
For example, Bro is able to extract the server’s reply code from HTTP
sessions. But, to our experience in several high-performance environments,
this comes at a prohibitive processing cost. On the other hand, for the web
server there is no additional cost involved in providing the result, other than
that of sending the data to the NIDS.

– Disambiguation: The document eventually served can substantially differ
from the one requested. The server resolves the path inside a URL in a
virtual namespace; without further context it may not be predictable which
file is given in response. Redirection and rewriting mechanisms internal to the
server can change the URL path arbitrarily. For a NIDS to follow the exact
same steps as the web server, it would need to know all related configuration
statements as well as the full file system layout of the web server — infeasible
in practical terms. Furthermore, most NIDSs are simply not flexible enough
to accommodate such a “shadow configuration”.

4.2 Avoiding Evasion using Redundant Context

Evasion attacks can be used to mislead the NIDS’s HTTP protocol decoding.
If the NIDS extracts a different HTTP request than the web server — or if it
does not see one at all — it may produce both false negatives and false positives.
However, if we can compare the outcome of the two HTTP decoders, we have
an opportunity to detect these mismatches.

For a web session, network- and transport layers evasion attacks [1] can be
used to hide, alter, or inject URLs. Moreover, there are ways to evade the
application-layer HTTP decoders of NIDSs. The most prevalent form is URL
encoding [15]. Per RFC 2396 [16], URLs may only contain a subset of the US-
ASCII characters. However, to represent other characters, arbitrary values can
be encoded using special control sequences. For example, web servers are required



to support the “percent-encoding” which can encode arbitrary hexadecimal val-
ues. Some web servers — most notably Microsoft’s IIS — also provide more
sophisticated encodings, such as Unicode [17].

For a NIDS, it is hard to precisely mimic these encodings and character sets.
In the past, many systems required fixes upon the discovery of new encoding
tricks (e.g., [18]). In general, a web server’s eventual interpretation of an URL
depends on its local environment and configuration, making it nearly impossible
for a NIDS to derive it. This issue is part of the more general problem of NIDSs
often lacking context required to reliably detect attacks [12].

Often, such application-layer encoding attacks target not the NIDS but the
web server itself. Due to implementation bugs, such an encoding may circumvent
internal checks. For example, CVE entry 2001-0333 [19] discusses a flaw in the
IIS server which leads to a filename being decoded twice. We can detect such
bugs if we compare the decoding the web server performs with the independent
result of the NIDS. Similarly, the NIDS might have flaws that show up when
verified with the outcome of the web server.

Finally, while comparing the output of the two decoders can detect both
evasion attacks and implementation flaws, we must also prepare ourselves for
the possibility of numerous benign differences, which we explore further below.

5 Deployment and Results

For our case study, we have evaluated our approach in three installations: an
experimental testbed and two production environments. All use the Apache web
server and the Bro NIDS.

5.1 Setup

We instrumented the Apache web server with a Broccoli client that communi-
cates with an instance of the Bro NIDS running concurrently on either the same
machine or a remote host. Semantically, the communication between Apache
and Bro is one-way. For each request, Apache sends the involved hosts and TCP
ports, the original request string, the URL as canonicalized by Apache, the name
of the file being served, and the HTTP reply code. This information is available
through Apache’s default logging module (except we need a slight extension to
access the ports).

There are two different ways of connecting the server with Broccoli. The first,
which is particularly unobtrusive, is using a separate process for the Broccoli
client, which either reads the Apache log file (so no modification to Apache at
all) or communicates with Apache via a pipe. The second is to integrate use of
Broccoli directly into Apache. We implemented both of these. We used the first
for our operational deployments, and the second for our performance testing
(detailed below).

When Bro receives an Apache request, it runs two kinds of analysis, cor-
responding to the two main uses identified in Sections 4.1 and 4.2. First, it



passes the canonicalized URL through its standard detection process. This in-
cludes both script-layer analysis and event-layer signature matching. Second, it
matches the URL against the one extracted by Bro itself from the connection’s
packet stream. If it encounters a difference, it generates an alert.

In our testbed, we installed Apache 2.0.52 and a recent development version
of Bro on the same host. We let Bro run its default HTTP analysis on the
packet stream as seen on the loopback device. The Apache-supplied information
was sent over a TCP connection from the Broccoli client to the Bro system.

We also instrumented two production web servers at Technische Universität
München, Germany: the main web server of the the Computer Science Depart-
ment, and the server of the Network Architectures Group. Both are connected
to a backbone network with a Gb/s uplink to the Internet. The main server
handles between 20.000 and 30.000 requests per day. To monitor it, we used the
approach of a separate Broccoli client reading from its log file. The Network
Architecture Group’s server processes about 5.000-6.000 requests a day. For it,
we ran Bro on the same host and used a direct connection between Apache and
the Broccoli client, like we did with the testbed.

5.2 Experiences

We operated these setups for two weeks, with very encouraging results. We
first discuss how the additional context indeed provided significant benefits for
the detection process, and then our preliminary experiences with evaluating
redundant context to detect evasion attacks and decoding flaws. We also note
that maintaining the analysis policy on the Bro side while keeping the Broccoli
client policy-neutral proved valuable: we could change the configuration of the
NIDS at will without needing to touch the web servers.

Additional Context Incorporating context supplied by Apache proved to be
a major gain. First, we could confirm that the NIDS reliably saw all requests
served by the web server — a major benefit, since in high-volume environments
a NIDS running on commodity hardware regularly drops packets and therefore
may miss accesses [20].

Next, we confirmed that Bro could perform signature matching on the URLs
and filenames even if we omitted HTTP decoding from Bro’s configuration. For
high-volume web servers, this holds the potential to realize a major performance
gain, since HTTP analysis can easily increase total CPU usage by a factor of
4–6 [20].

Bro’s signature engine assumes internal connection state already exists when
matching signatures for a given connection. But if Bro is not decoding the HTTP
traffic directly, but rather only receiving it as a feed from Apache, it will not have
instantiated this state. Fortunately, we can arrange for Bro to instantiate such
state by having it capture only TCP control packets (SYNs, FINs and RSTs).
In our experience, it is quite feasible to analyze all such control packets even
in highly loaded Gb/s environments. Note, though, that this approach limits



internal signature matching to HTTP sessions which Bro sees itself. Matching
on requests from unseen connections (for example, those internal to the site)
will require additional internal modifications, which we plan to implement soon.
Also, we note that this restriction only applies to the internal signature engine.
Script-level analysis, such as regular expression matching, is generally possible
even without internal connection state.

Bro uses bidirectional signatures to avoid false positives. For example, many
of the HTTP signatures only alert if the server does not respond with an error
message. Since Apache supplies us with its reply code as well, we retain this
important feature.

Finally, we now for the first time are able to detect attacks in SSL-encrypted
sessions. We verified that Bro indeed received the decrypted information and
spotted sensitive accesses within them.

Redundant Context We configured the Bro system to automatically com-
pare the URLs received from the Apache server with those distilled by its own
HTTP decoder. There are cases in which differences in the URLs are legitimate.
Most importantly, the web server may internally expand the requested URL, for
example when expanding a request like /foo/bar/ into /foo/bar/index.html.
However, from our preliminary experiences with the two production servers, it
appears that in practice such differences may be rare enough to be explicitly
coded into the NIDS’s configuration. Consequently, for Bro we implemented an
expansion table of regular expressions that reproduces such URL translations.

Before we compare two URLs, we also strip CGI parameters. When logging a
URL, Apache does not remove the URL-encoded parameters. Bro, on the other
hand, decodes the parameters fully. Therefore, such stripping is required to avoid
mismatches in accesses to CGI scripts.

This policy is running well on our production servers. The main source of
differences we encountered were with requests of the form

GET http://www.foo.bar/index.html HTTP/1.x

Such requests indicate that somebody is trying to use the web server as a proxy.
Apache strips http://www.foo.bar before processing the request; Bro does not.
Examining these requests more closely, we saw that they were mostly scans for
open proxies. Others indicated client misconfigurations.

We found additional differences between Apache and Bro. None of these
turned out to be security-relevant (e.g., we saw client requests which included
labels of the form “foo.html#label”; these labels are removed by Apache). How-
ever, the question remains whether in a larger-scale environment such differences
would occur often enough, and in sufficiently varied forms, to significantly com-
plicate the use of redundant context for detecting evasion attempts and decoder
flaws.

To stress both Apache and Bro more intensively, we installed three evasion
tools in our test-lab. Libwhisker [21] is a Perl library which includes various URL
encoding tricks supposed to evade NIDSs or the security mechanisms of a web
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Fig. 2. Overhead of Bro event transmission on service time for a sequence of 1000
requests to the same, static webpage. The left graph shows an unmodified Apache’s
operation, the middle one shows service times with a single event transmitted per
request, the right one shows service times with 10 identical events transmitted per
request. In each case, the horizontal line indicates the average value across all requests.

server [22]. It includes a command-line script for issuing individual requests to
a server. We patched this script to selectively enable one or more of the evasion
methods. We also installed the penetration testing tool Nikto [23], which ships
with a large library of HTTP requests to exploit known server vulnerabilities.
Internally, Nikto leverages libwhisker. Therefore, it is able to encode its requests
using libwhisker’s evasion techniques. Finally, we used a small stand-alone en-
coder [24], which converts arbitrary strings into different Unicode representa-
tions.

The results of our evasion experiments are encouraging. Both systems, Apache
and Bro, decode the crafted requests without any hitch, yet with the following
differences:

– Libwhisker can insert relative directory references into the URLs, turn-
ing /foo/bar/ into e.g. /foo/./bar/ or /garbage/../foo/bar/. Apache
canonicalizes the path. Bro leaves it untouched, which for a NIDS not know-
ing the web server’s filesystem layout makes sense: subsequent analysis may
want to alert on these references.

– To avoid ambiguities, double-encoded requests are never to be decoded more
than once. (In a double encoding, a character such as ‘z’ — ASCII 0x7a —
is encoded as %%37%41. The first decoding step yields %7a, then the second
gives ‘z’). If Apache encounters such a request, it logs the result of the
first decoding step but sends an error to the client. Bro also decodes it only
once, but removes the additional percentage sign before further processing. In
addition, it reports the ambiguity. While their behaviors differ, both systems
recognize the situation and report an error.

– Requests containing Unicode characters (literally, or encoded with the IIS-
proprietary %u encoding) are either left untouched or treated as an error by
Apache.6 Bro always leaves such characters untouched. Thus, either the two
systems agree, or Apache does not serve any document.

6 This is true for Unix systems. On Windows, Apache may handle Unicode differently
but we have not examined this further.



To summarize, we see that Apache and Bro appear to work well together
in terms of HTTP URL-canonicalization. If in the future we encounter more
mismatches, we can now detect them as soon as they occur. We note that our
results may not readily apply to other web servers. For example, Microsoft’s IIS
supports a handful of other encodings [17] not supported by Bro. In particular,
Bro does not include a Unicode decoder yet. In addition, past experience with
IIS vulnerabilities suggests that its more complex decoder may also be more
vulnerable than Apache’s.

5.3 Performance Evaluation

A key question is whether the performance overhead of the instrumentation is tol-
erable. We tested the performance impact incurred on Apache using httperf [25]
as a load generator. We ran each of httperf, Apache, and Bro on separate ma-
chines (2.53Ghz Pentium 4s with 500MB RAM) connected on a 100Mb/s net-
work. For these measurements, we implemented the Broccoli client in the form
of an Apache 1.3 logging module, mod bro, requiring only an additional 120 lines
of C code.

We first measured the per-request overhead of sending Bro events from a
lightly loaded Apache. We requested a single, static webpage 1000 times at a
rate of 20 connections per second, measuring the request processing times using
the mod benchmark module [26], and averaged the results of the nth request
across 10 separate runs. The results are shown in Figure 2: on average, Apache
required around 2ms for each request. Sending the single Bro event necessary
for our contextual analysis had quite low performance impact, on the order of
300µs per request, so capable of supporting say 1000 requests/sec.

The second experiment tested the overhead with a Bro under heavy load. To
emulate this situation reliably, we artificially introduced a processing delay of
0.2s per received event on the Bro side7. Broccoli clients have a bounded per-
connection event queue that we configured to a maximum size of 1000 events.
Additional events enqueued at this point lead to the oldest events being dropped.
To simplify the queuing behavior, we ran Apache with a single process serving
requests only. The results are shown in Figure 3: the workload of the receiving
Bro host does not noticeably affect the instrumented application’s performance.

In our production installations we always connected a single web server to
Bro. To explore how our setup might scale with more instrumented servers, we
measured the amount of data exchanged between one instance of Apache and
the receiving Bro. This volume depends on the number of HTTP requests as
well as the length of the requested URLs, but is independent of the HTTP
connection’s actual payload size. A single run of Nikto (see Section 5.2) issues
2443 requests to the web server. On average, for every request 455 bytes of
payload are transmitted between Apache and Bro.8 Thus, the network load is

7 0.2s turned out to be a suitable value, causing a reproduceable queue build-up.
8 Roughly two thirds of these bytes come from protocol overhead. While high, note

that Bro’s communication protocol can exchange serializations of Bro’s complex
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Fig. 3. Overhead of event transmission when the collecting Bro is overloaded. The size
of the event queue in the instrumented application has no noticeable impact on the
application’s performance.

modest: under 1 Mbps for 2000 requests/sec, a level that can accommodate a
good number of busy web servers. For the Bro side, the amount of work to
process the received bytes is, in general, much less than to parse the full HTTP
stream (the experiments performed in [20] showed a performance decrease of a
factor of 4–6 when doing HTTP processing). Therefore, one option here is to
significantly lighten the load on Bro by leveraging the web server’s processing
and context, which should enable Bro’s monitoring to scale to significantly higher
HTTP loads than before.

To summarize, from our preliminary assessment the overhead imposed by in-
strumenting applications to participate in the event communication of a network
of Bro nodes appears quite acceptable.

6 Summary and Future Work

In this paper we have developed the notion of the extensive enhancements possi-
ble by supplementing network-based intrusion detection with host-supplied con-
text. By incorporating a host’s authoritative state into the NIDS’s analysis,
we can provide the NIDS with both additional context and redundant context.
These allow us to analyze encrypted traffic, leverage the host’s protocol decoder,
detect evasion attacks, increase scrutiny for suspicious hosts, and both offload
and harden the NIDS itself.

data structures while ensuring type-safety, reconstructing reference structures, and
performing architecture-independent data marshaling. We thus trade off efficiency
for flexibility here.



As a case study we instrumented the Apache web server with an interface
to the open-source Bro NIDS. We extended Bro to incorporate the web server
accesses into its detection process. Additionally, Bro can compare the URLs
provided by Apache with the URLs it distilled itself by passive HTTP protocol
analysis, providing a means for detecting evasion attacks and flawed decoders
(either the server’s or its own).

We installed the Apache/Bro combo in two production environments and ex-
amined it in more detail in a testbed. The proof-of-principle results from these
deployments are quite encouraging. A critical question to now explore concerns
scaling : will the projections we obtained from our preliminary experiments in-
deed hold up when we deploy such instrumentation more widely within a site? In
particular, the direct communication of redundant context (i) doubles the vol-
ume of data the NIDS processes, and (ii) may wind up generating many more
benign differences in deployments where a wider diversity of server configura-
tions comes into play. These problems may be amenable to refinements in the
basic technique — for example, rather than transmitting the entire redundant
context from the server to the NIDS, instead only sending an incremental check-
sum, greatly reducing the network volume in the common case of the streams
agreeing; and finding additional canonicalizations to remove benign variations
— but it will take broader operational experiences to properly explore these
possibilities.

Another area ripe for future work concerns extending the approach to other
host applications. In particular, we are working on an SSH server instrumented
to report both the results of authentication attempts and the clear text inputs
and outputs of login sessions. These then will allow us to leverage Bro’s existing
Rlogin and Telnet analyzers for the examination of encrypted user sessions,
which operationally has proved increasingly critical with the now widespread
use of SSH.
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